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A B S T R A C T   

Water quality plays an important role in aquaculture since it affects the growth, survival, and production of 
aquaculture species. Consequently, measurement devices are needed to monitor water quality. However, this 
requires significant capital and extensive knowledge of the farmers, especially for smallholder farmers in 
developing tropical countries like Indonesia. As a cheaper alternative to using only hardware sensors, soft(ware) 
sensors may be used, as well. However, before designing feasible soft sensors, a so-called (theoretical) observ
ability analysis needs to be done, where observability is a measure of how well internal states of a system can be 
inferred from measured system inputs and outputs. The aim of this study was to investigate the selection of 
sensors, such that a full reconstruction of the internal pond constituents, in tropical fish ponds, from the selected 
external sensor outputs can be realized at any time. A system theoretical observability analysis of a published 
antecedent dynamic model, describing the complex interactions between the pond constituents (states), was 
conducted to determine the minimum set of sensors that makes the pond system fully observable, thus in 
principle allowing a full reconstruction of all states at any time. Using only a DO sensor does not suffice. The 
minimum set of sensors that guarantees full observability of the pond system were two during the day and three 
during the night. The observability analysis showed that 11 possible combinations of two sensors provide a fully 
observable system during the day. In contrast, only one combination of sensors, that is CO2, NO3 and phosphorus, 
guarantees a fully observable system during day and night. Observability analysis is crucial for understanding the 
systems’ behaviour and sensor selection, and supports the design of reliable soft sensors for better control and 
management of fish ponds.   

1. Introduction 

The aquaculture sector is one of the main food producers in the 
world. In 2018, the aquaculture production has reached 96.4 million 
tonnes (FAO, 2020). Indonesia is the second-largest producer of aqua
culture in the world (FAO, 2020). The total production of the Indonesian 
inland aquaculture was around 5.5 million tonnes in 2018 (FAO, 2018). 
In 2030, the total projected output of Indonesian aquaculture will be 
around 10 – 15 million tonnes with tilapia as the main contributor 

(Phillips et al., 2015). 
Also nowadays, tilapia is one of the most important fish species in 

Indonesia with a mixed demand from domestic and international mar
kets. On the international market, Indonesian tilapia has a stable market 
share of 10% in the USA for over 10 years (Dai et al., 2020). Besides huge 
demands, tilapia producing companies are the largest employer in the 
Indonesian aquaculture sector (Phillips et al., 2015). Most Indonesian 
tilapia ponds use extensive or semi-intensive culture systems (FAO, 
2018). These production systems are mostly operated by smallholder 
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farmers which accounts for 80% of the total Indonesian aquaculture 
production (YIDH, 2018). 

Investment in smallholder farms is advised to only those ponds that 
promote data management tools and water quality sensors to boost 
sustainable aquaculture practice in Indonesia (YIDH, 2018). According 
to government publications, smallholder farms use simple technology in 
aquaculture and own a maximum of 2 of hectares freshwater ponds 
(YIDH, 2018). Sophisticated technology can be expensive for the Indo
nesian smallholder ponds as they have limited access to capital (YIDH, 
2018). 

The success of aquaculture food production systems strongly de
pends on the water quality in the pond, since it affects the growth, 
survival, and production of aquaculture species (Junaidi and Kartiko, 
2020). However, especially for smallholder farmers, the number of 
measurement devices should be limited. Hence, in addition to hardware 
sensors to monitor and control water quality, so-called soft(ware) sen
sors may be used, as well. 

A soft sensor is a virtual on-line analyser that reduces the measure
ment requirements of a system. Although it has slightly less accuracy, a 
soft sensor is much cheaper and reliable (Torgashov and Zmeu, 2015). In 
agriculture, recently a soft sensor has already been used for the esti
mation of a leaf area index (García-Mañas et al., 2020) and in many 
more implementations in biotechnology (Keesman, 2002; Luttmann 
et al., 2012; Price et al., 2015). 

However, before designing feasible soft sensors, a so-called (theo
retical) observability analysis needs to be done, where observability is a 
measure of how well internal states of a system can be inferred from 
measured system inputs and outputs. 

The aim of this study was to investigate the selection of sensors, such 
that, in principle, a full reconstruction of the internal fish pond con
stituents from known feed inputs and selected external sensor outputs 
can be realized at any time. 

In this study, an observability analysis was performed based on the 
pioneering aquaculture model of Svirezhev et al. (1984), which is a 
biomass-based model, and adjusted for an individual fish weight using 
the model of Nath (1996). Recently, Varga et al. (2020) has validated the 
usability of the models of Svirezhev et al. (1984) and Nath (1996), with 
some modifications to evaluate various climate and management sce
narios. As yet, as in Varga et al. (2020), the bacterial population was not 
explicitly modelled to keep the model relatively simple. 

Because of the relevance of pond aquaculture in Indonesia, as shown 
in the reports of FAO (2018, 2020) and YIDH (2018), the sensor selec
tion procedure is demonstrated to a virtual tropical fish pond in 
Indonesia. 

2. Material and method 

2.1. Dynamic modelling of tropical pond system 

Dynamic mathematical models from previous studies (Fritz et al., 
1979; Jimenez-Montealegre, 2001; Svirezhev et al., 1984) were used to 
describe the biophysical behaviour of an aquaculture pond. However, 
the reference model of Svirezhev et al. (1984) was used as a starting 
point, since it provides a general description of the pond dynamics in the 
water column. Model parameters were subsequently adapted from (Fritz 
et al., 1979; Jimenez-Montealegre, 2001). Fig. 1 presents an overview of 
the complex pond dynamics described in this study. In total, 11 state 
variables were defined, namely tilapia (C), phytoplankton (F), 
zooplankton (Z), benthos (B), dissolved oxygen (O), total ammonia ni
trogen (TAN), nitrate (NO3), phosphorus (P), carbon dioxide (CO), 
detritus (D) and artificial feed (A). Uptake rate of Nile Tilapia on arti
ficial feed, benthos, and zooplankton follows a switching function, as in 
Svirezhev et al. (1984), thus leading to a non-linear dynamic model. 

The feeding rate (U) was calculated using the following non-linear 
expression from Ursin (1967): 

U = h ∗ Cm (1) 

The power law coefficients h and m represent tilapia’s coefficient of 
food consumption (g1− m h− 1) and the order of body weight for net 
anabolism, respectively. In this study, h= 0.033 g1− m h− 1 (Nath, 1996) 
and m= 0.67 (Ursin, 1967) Feeding was done every 12 h. 

The non-linear dynamic model of Svirezhev et al. (1984) and Nath 
(1996) was used and adapted to a tropical tilapia pond setting in 
Indonesia. For a detailed model description, see Supplementary Mate
rials SM1. Pond rearing parameters are listed in Table 1. 

The system was limited to the water column in an ideally mixed 
tropical tilapia pond with measured concentrations. Thus, pond sedi
ment dynamics and stratification in the water column were not taken 
into account. 

Furthermore, we assumed constant solar radiation, constant wind 
speed over the pond, constant water temperature and no fish mortality 
due to low stocking density. Solar radiation, wind speed and water 

Fig. 1. Complex pond dynamics, in which green text rep
resents state variables and qXY represents material flow 
rate from X to Y. C= tilapia, F = phytoplankton, 
Z = zooplankton, B= benthos, O= oxygen, TAN= total 
ammonia nitrogen, NO3 = nitrate, P = phosphorus, 
CO= carbon dioxide, D= detritus, A= formulated feed; Nit 
= material flow rate due to nitrification, SED 
= sedimentation of material X, Volat = TAN volatilize to 
the air, S = mass transfer of X to the air due to surface 
aeration, Denit = Denitrification of NO3; Red arrows show 
the fluxes between state variables. Blue dashed arrow 
represents the control signal from tilapia (C) to feeding rate 
(U), Eq. 1. For a detailed description of variables and pa
rameters, see Tables in Supplementary Materials SM1.   

Table 1 
Pond rearing parameters.  

Parameters Unit Value 

Pond area ha  1 
Pond depth m  1 
Stocking density #fish ha− 1  4.000 
Individual fingerling size gr  10  
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temperature values were aligned with the reported Indonesian climate 
(BMKG, 2021; Morrison and Sudjito, 1992). 

While wind speed and temperature were assumed constant for 24 h, 
solar radiation was different between day and night, but constant within 
day and within night. At night, solar radiation was set to zero. Table 2 
shows the values of the microclimate for the studied pond system. 

In what follows, for the analysis a linearized version of the non-linear 
dynamic model is required. 

2.2. Linearization of a non-linear system 

To linearize the non-linear models of Svirezhev et al. (1984) and 
Nath (1996) Taylor expansion was applied under the assumption of 
small deviations in the state variables (Δx) and inputs (Δu) around the 
linearization points (x,u). The initial conditions for each of the n (= 11) 
state variables is given in Table 3. 

Further, a linearized state-space representation of the original non- 
linear model was derived by defining matrices A(t) (Eq. 2) and B(t)
(Eq. 3), as follows: 

A(t) =
(

∂fi

∂xj

)

⌉
x(t), u(t)

(2)  

B(t) =
(

∂fi

∂uk

)

⌉
x(t), u(t)

(3)  

for i,j = 1, 2,., n (number of state variables) and k = 1,., m (numbers of 
input variables). Furthermore, fi represents the right-hand side of the 
differential equation related to the ith (with i = 1, 2,., 11) state variable 
(see Supplementary Materials SM2 for details of the matrix A(t)). 
Consequently, the time-varying, linear state space model, in terms of the 
deviation variables, is given by: 

d
dt

Δx(t) = A(t)Δx(t)+B(t)Δu(t) (4)  

Δy(t) = CΔx(t)+DΔu(t) (5) 

In which, A(t) is an n × n and B(t) an n × m matrix with n = 11 (see 
Table 3) and m = 1. As these matrices are evaluated along dynamic 
trajectories, indicated by x(t) and u(t), these are time-varying matrices. 
However, on a small time interval in the neighbourhood of the lineari
zation points these matrices can be considered constant, thus A and B. 
The matrix C in the algebraic output Eq. (5) is a p × n matrix with p the 
number of sensors, and filled with zeros and ones. Hence, C represents 
the selection of states that are measured and thus sensor outputs. 
Furthermore, the matrix D = 0, i.e. none of the inputs affects the outputs 
directly. 

In what follows, and for ease of notation, Δx,Δu, and Δy in Eqs. 4–5 
were denoted by x, u, and y. The linearization process was conducted in 
MATLAB and linearization points were hourly updated along each 
state’s trajectory. These new linearization points were obtained from the 
non-linear model simulation. Every 12 h the solar radiation inter
changed between zero and a non-zero value. This corresponds to day 
and night conditions in a tropical environment. 

In this study, the evaluated time was limited to 24 h to demonstrate 
the cycle of day and night. Time instant t = 0 corresponds with 6 am 
while t = 11 is at 6 pm. 

2.3. Pond system observability analysis 

System observability was checked by the rank of the following np x n 
matrix: 

O =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C

CA
CA2

⋮

C An− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6) 

The observability matrix O (Eq. 6), as well as the rank test of O , were 
evaluated in MATLAB, using hourly values of states and inputs along the 
trajectories. When the rank (r) of O equals n, the system is said to be 
fully observable and thus allowing a full reconstruction of all predefined 
pond constituents at any time. Consequently, through appropriate 
choices of non-zero elements in matrix C a feasible combination of 
sensors can be obtained. 

The analysis started with one sensor and with matrix A evaluated at 
t = 0. The maximum rank of one sensor was recorded for 24 h and 
plotted to investigate the dynamics of the system observability. Thus, 

initially 

(
11
1

)

= 11 potential sensors, directly related to each of the 11 

states, were evaluated. In case of rank deficiency, thus when r < n, the 
analysis can be further explored to find the unobservable states during 
the day from the null space of the matrix O . This analysis will not be 
shown here. Instead, a second or third sensor was added when the sys
tem turned out to be not fully observable. 

In order to end up with a fully observable system, in this study, 
(

11
2

)

= 55 combinations of two sensors and 

(
11
3

)

= 165 combina

tions of three sensors were investigated, as well. 

3. Result 

Given the initial states in Table 3, Fig. 2 shows the state trajectories 
for a period of one day. 

Due to the relationship between states as shown in Fig. 1, some state 
trajectories show a similar trend to the other states (Fig. 2). For instance, 
fish and detritus trajectories show a similar increasing trend since the 
biggest detritus source is the fish faecal waste. In addition to this, the 
artificial feed given to the pond is also a major source of detritus. Notice 
that artificial feed concentration in the water column is in line with the 
feeding rate (U) and feeding time instances every 12 h. This effect of the 
feeding strategy is also visible in the trajectories of fish biomass and 
detritus. 

In contrast, the concentrations of phytoplankton, zooplankton, 
benthos, and TAN decline during the first day. Notice that the phos
phorus concentration declines exponentially to a low level. This decay 
affects the phytoplankton photosynthesis which subsequently influences 

Table 2 
Pond microclimate setting.  

Variable Unit Value 

Temperature ◦C  31 
Wind speed m/s  4 
Solar radiation kWh m− 2 h− 1  0.243  

Table 3 
Initial values of the state variables, at t = 0.  

State Variables Description Initial conditions (g m− 3) 

F Phytoplankton  4 
Z Zooplankton  0.2 
B Benthos  0.1 
C Fish  4 
D Detritus  0.001 
TAN Total ammonia nitrogen  0.25 
NO3 Nitrate  0.5 
P Phosphorus  0.0003 
O2 Dissolved oxygen  6.5 
CO2 Carbon dioxide  1 
A Formulated feed  0  
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other states. In the food web (Fig. 1) phosphorus is determined by tilapia 
and detritus, thus, phosphorus concentration was expected to increase. 
However, the phosphorus trajectory, during the first 24 h, shows a 
contrasting trend. During this stage, the rate of phosphorus production 
(qCP) by the fish was still low due to small biomass. More importantly, 
dissolved oxygen concentration was still abundant during the first 24 h, 
thus, the detritus mineralization rate (qDP) was insignificant. As the fish 
grows and the dissolved oxygen starts to deplete, phosphorus concen
tration is expected to increase, as shown in Supplementary Materials 
SM3. 

Ranks of the observability matrix were constant for every six hours, 

thus, it is only shown for every 6 h (Fig. 3). No single sensor showed full 
system observability since for every hour of the day all individual sen
sors showed a maximum rank smaller than n = 11 (Fig. 3). The 
maximum rank for a single sensor case is equal to 8, meaning the min
imum number of combinations of unobservable states equals 3. 

The observability measure (rank of observability matrix O ) of the 
system was constant during day-time and night-time for nitrate, phos
phorus, benthos, and artificial feed (Fig. 3). The ranks related to fish and 
detritus measurements were constant only for 17 h (until 11 pm) before 
rising to 8 at 24 h (6 am the next day). The ranks related to measure
ments of phytoplankton, TAN, O2, and CO2 rank show more variations. 

Fig. 2. State trajectories for one day.  

Fig. 3. Maximum rank of O with a single sensor in 24 h simulation, starting at 6 am.  

B.M. Inderaja et al.                                                                                                                                                                                                                             



Aquacultural Engineering 98 (2022) 102258

5

For instance, when the solar radiation is not equal to zero (6 am – 5 pm), 
the ranks related to these state variables were constant. During night 
time (6 pm – 5 am) the rank decreased before increasing again to its 
initial value (at 6 am). Phytoplankton use solar radiation for photo
synthesis to produce O2 while consuming TAN and CO2. It is thus 
reasonable to expect that the rank related to phytoplankton measure
ments will change as a function of solar radiation. As shown in Fig. 1, the 
state variables are complexly related, thus, a change in the rank related 
to phytoplankton will also affect the ranks related to O2, CO2, and TAN 
sensors. 

The combination of two sensors that guarantee system observability 
during day-time is shown in Fig. 4. 

During day-time, 11 combinations of two sensors give rise to full 
system observability. Sensor combinations of two sensors that contain 
an F, Z, O2, CO2, NO3, or TAN sensor all show three options for full 
observability throughout day-time. In contrast, there are no pairs con
taining a D, B, or P sensor that guarantee full observability during day- 
time. 

During the night at least a combination of three sensors is needed to 
guarantee full system observability. Only one sensor combination gua
rantees full observability at night, which is the combination of NO3, CO2, 
and P sensors. During day-time (Fig. 4), the sensor combination of NO3 
and CO2 always shows full system observability. At night, a P sensor 
need to be added to keep the system fully observable throughout the 
24 h. 

All state variables were (in)directly related as shown by the red ar
rows in Fig. 1. Notice that all species (F,B,Z,C,D) produce or consume 
CO2 metabolically, which provides information about the other states. 
The metabolism occurs during day-time and night-time. Hence, 
measuring CO2 the whole 24 h provides much information, and thus 
contributes to full system observability. 

The intake of nutrients (NO3, TAN, P) and CO2 by the phytoplankton 
is missing during night-time because phytoplankton does not take up 
nutrients during the night. Phosphorus shows only a direct relationship 
with phytoplankton and detritus. During day-time, phytoplankton 
intake of phosphorus can provide information of phosphorus for full 
system observability. During night-time, this relationship is absent, thus 
measuring P is needed during the night. 

The way to get information about NO3 was from nitrification of TAN 
and phytoplankton intake of NO3 during day-time. During the night, the 
intake of NO3 by phytoplankton was absent. Thus, measuring NO3 was 

the only way to get its information for full system observability over 
24 h. 

4. Discussion 

The manuscript focuses on sensor selection, given a non-linear model 
of fish pond dynamics, and was developed considering average envi
ronmental conditions in low intensity aquaculture ponds (0.4 fish m− 2 at 
the start, Table 1) in Indonesia. The state variables used in the model 
include phytoplankton, zooplankton, benthos, fish (Nile tilapia), 
detritus, total ammonia nitrogen, nitrate, phosphorus, dissolved oxygen, 
carbon dioxide and formulated feed. The initial values and the range 
within which these state variables fluctuate during model runs were 
checked against values observed during tilapia pond experiments that 
were executed in Bangladesh (Kabir et al., 2019a, 2019b, 2020a, 
2020b). The simulated and experimental values from these studies were 
in the same range. To the best of our knowledge no studies report all of 
the above-mentioned state variables in one experiment. 

In mathematical systems theory it is well-known that linear, time- 
invariant systems need to be fully observable or at least detectable 
(Hautus, 1983; Tanwani and Trenn, 2019) before proceeding to the 
design of observers or so-called soft sensors. Detectability is a slightly 
weaker notion than observability. A system is called detectable if all the 
unobservable states are stable. 

Thus, the sensor requirements for full observability in preceding 
sections can be relaxed. However, this needs a deeper mathematical 
analysis of the pond system (Fig. 1), as it is not clear beforehand that for 
a specific sensor combination all unobservable states will be stable. 
Consequently, for this we need to find the set of unobservable states and 
show that this subsystem is stable. On the basis of prior knowledge of the 
fish production system we can already identify two unstable states, 
which are tilapia and detritus (see Fig. 2). Nevertheless, our analysis 
showed (data not shown) that the linearized system along the state 
trajectories, thus for a sequence of relatively small time intervals of one 
hour, is detectable and thus in principle less than three sensors are 
needed for a full reconstruction of all 11 states. 

So far, for all sensors or sensor combinations it was implicitly 
assumed that the sensors produce noise-free outputs. Thus, in addition to 
a theoretical observability or detectability analysis, as in this study, a 
soft sensor design procedure needs to be explored on the basis of noisy 
data in order to fully show which sensors and with what accuracy are 
needed for an accurate reconstruction of the state variables. 

While multiple sensor combinations can guarantee full system 
observability during the day, only one combination of three sensors 
provided full system information during the night. So far, our results are 
shown only for the first day. However, the combination of sensors of 
CO2, NO3, and P was also validated over a period of 20 days, showing 
full system observability over a longer period (see rank of observability 
matrix in Supplementary Materials SM4). 

The application of a sensor combination of CO2, NO3, and P mea
surement is not practical. However, more present and available sensors, 
such as a dissolved oxygen (O2) sensor, did not provide full system in
formation (see Supplementary Materials SM5). Not all pond constituents 
have a direct relationship to the O2 pool (Fig. 1). Thus, O2 measurement 
alone will not provide full system information. 

Given the validity of the non-linear model (Supplementary Materials 
SM1) and linearized model (Section 2.2), a soft sensor using only O2 
measurements can still be designed as long as the linearized system 
along the state trajectories is detectable. However, in that case the state 
trajectories of the (stable) unobservable subsystem will only follow from 
model simulations, while only the observable subsystem (subset of 
states) will be corrected by the data. For a practical application of the 
research, system stability and detectability are thus essential. 

Our methodological results show a fundamental first step in the 
design of soft sensors in aquaculture. Starting from an incomplete set of 
sensors with corresponding unobservable subsystem will in the end lead 

Fig. 4. Upper left sensor combinations that guarantee full observability of the 
pond system at the end of the day (11 h); Solid red circles represent sensor 
combinations that always show full system observability throughout day-time; 
Sensor combination of NO3 and CO2 guarantees full system observability during 
the day-time and night-time with additional P sensor. 
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to inaccurate and uncertain estimates of some or all states. For a final 
test of the sensor selection procedure, however, real input and selected 
sensor output data should be collected from a pond, a soft sensor 
designed and its estimation uncertainties evaluated. 

5. Conclusions 

Given the non-linear models of Svirezhev et al. (1984) and Nath 
(1996) with corresponding linearized model, 11 model states (fish, 
phytoplankton, zooplankton, benthos, dissolved oxygen, total ammonia 
nitrogen, nitrate, phosphorus, carbon dioxide, detritus, and artificial 
feed) were defined. Eleven two-sensor combinations from the set of 
potential sensors, and directly related to the model states, that allow full 
observability during day-time were found. Only one three-sensor com
bination (CO2, NO3, and P) allows full system observability during day 
and night, and thus allowing a full reconstruction of all states at any 
hour of the day given data from this sensor combination. 

Especially for small-scale resource-poor farmers in developing 
countries a well-functioning soft sensor system to monitor water quality 
will allow the farmer to observe shifts in food web dynamics and to 
maintain good water quality and a high feeding efficiency during the 
culture period. However, before designing a feasible soft sensor system 
with reliable state estimates, the dynamic mathematical model with 
selection of potential sensors must be observable, asking for a theoretical 
observability analysis as a necessary first step. 

Further research into system stability, detectability and sensor ac
curacy can potentially help to reduce the number of affordable sensors 
needed to continuously monitor the states (water quality parameters) in 
aquaculture ponds. 
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