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A B S T R A C T   

For a healthy production line, it is essential to ensure a low failure rate of products. Product quality in production 
lines can be inspected using several techniques at the end of a production process, including a manual inspection. 
Different methods are applied to inspect the product quality at the end of the production process and sometimes 
during the production. This is often done using manual inspection, but this is less efficient, expensive, and time- 
consuming. Machine learning algorithms have the potential for evaluating and predicting product quality in a 
production line. In this paper, a novel product failure detection model that applies ANOVA (Analysis of Variance) 
feature selection method, Min-Max Scaling normalization method, mean imputation technique, Random Forest 
classification algorithm, a data sampling technique, and Grid Search parameter optimization approach is pro
posed and validated. For the comparison of the proposed model, several experiments have been performed using 
five classification algorithms, including RUSBoosted Tree. Experimental results demonstrated that the proposed 
model using the Random Forest algorithm, ANOVA feature selection, and sampling method achieves the best 
performance among other models and detects the faulty products effectively. It was also shown that the RUS
Boosted Tree algorithm can be considered by practitioners for building the faulty product prediction model when 
data sampling and feature selection techniques are not integrated into the prediction model.   

1. Introduction 

For a healthy production line, it is essential to ensure a low failure 
rate of products. Very often, defective products are inevitable, which 
results in products that are of no use; that is, these cannot be sold or 
passed to the next production stage. This lack of quality can create a 
tremendous economic loss for the production line business. The high 
failure rate can also lead to waste and unnecessary energy consumption 
because defective products are regularly deposed as waste materials. As 
lives are increasingly dependent on industrial products, expectations for 
high-quality products are rising day by day. 

Because of these reasons, an effective quality control strategy is 
increasingly essential for production line management. Different 
methods are applied to inspect the product quality at the end of the 
production process and sometimes during the production. This is often 
done using manual inspection, but this is less efficient, expensive, and 
time-consuming. Professional quality test equipment can be adopted, 
but this may require substantial adjustment of the production line and 
also, a high up-front investment. One solution is to perform an inspec
tion for each processing step and ship only the products that pass all 

inspections (Chun, 2016). Nevertheless, failures still occur due to un
satisfactory inspections, poor quality standards, and variations in the 
environment (Kang et al., 2018). This results in customer dissatisfaction 
and warranty claim costs (Yang, 2008). It is indeed challenging to 
identify product failures from a production line using low-cost and high- 
efficient approaches. 

To overcome the above problems of manual inspection, predictive 
analysis has been increasingly applied in different application domains 
(Köksal et al., 2011; Choudhary et al., 2009; Kusiak, 2006). These pre
diction models predict the defective products and market failure rate 
decrease (Lughofer et al., 2017). Also, the analysis of significant vari
ables in models can help to identify the root causes of faults (Kang et al., 
2018), which can help to improve the quality of future products. 

Machine learning algorithms have the potential for evaluating and 
predicting product quality in a production line. In production lines, most 
equipment types generate a large amount of data. Product failures tend 
to generate outlier data in production lines. To this end, machine 
learning can use this generated data to build a prediction model. In this 
case, no extra modification for the production line or additional labor is 
required. 
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Raw production data is different than other types of data used in 
predictive modeling studies. For instance, they may often consist of 
many missing values (Kang et al., 2017) due to the environment (Kwak 
& Kim, 2012). Furthermore, data is highly unbalanced because most of 
the data points belong to the majority class (i.e., non-faulty production 
data), and very few data points belong to the minority class (i.e., faulty 
production data). This characteristic of the data requires additional 
methods to apply. 

The main motivation of this study is to reduce the cost of faulty 
product detection systems by automating the faulty product prediction 
process. Although several prediction models have been investigated in 
the literature to automate this task, most of these studies considered 
only a few contributing factors and/or algorithms (e.g., feature selection 
technique or data balancing algorithm) for building a highly accurate 
model. This study aims to utilize many different feature engineering 
techniques to propose a specific faulty product prediction framework for 
a particular case study (i.e., a semiconductor manufacturing process), 
however, a similar experimental setup must be designed easily for 
different major industries. In a recent survey paper (Kang et al., 2020), 
we showed that product failure detection is one of the most important 
problems using machine learning in production lines and, classification 
and anomaly detection approaches are mostly applied to address this 
problem. In the same survey study (Kang et al., 2020); we observed that 
preventive maintenance, which requires the prediction of Remaining 
Useful Life (RUL), is also one of the problems related to the production 
lines and is difficult to measure in practice. As such, we developed a 
machine learning-based novel RUL prediction approach recently (Kang 
et al., 2021) and used the run-to-failure data of similar jet engines to 
predict the failures. Due to our above-mentioned recent research papers 
and motivation in this field, we aimed to design a faulty product pre
diction model. 

In this current study, several machine learning algorithms and rele
vant techniques are applied to build a novel model, and experimental 
results are presented. A normalization technique (i.e., MinMax Scaler), a 
data imputation technique for missing values (i.e., mean imputation), 
feature selection technique (i.e., ANOVA), classification algorithms, 
parameter optimization technique (i.e., GridSearch), and data balancing 
approaches (i.e., over-sampling and under-sampling) were investigated 
to improve the performance of classification algorithms. 

This study provides practitioners an insight into the potential of 
machine learning approaches in product quality control. For re
searchers, this study provides an overview of the strength and weak
nesses of different machine learning algorithms in product failure 
detection. 

In this study, as the dataset is highly imbalanced, special algorithms 
such as the RUSBoosted Trees (RUSBT) algorithm and data balancing 
techniques were investigated. Several machine learning algorithms were 
investigated and integrated to build a highly accurate prediction model. 
Also, several evaluation metrics were evaluated to measure the perfor
mance of the prediction model. 

The main contributions of this study are specified as follows:  

1. We presented a novel machine learning-based methodology to detect 
faulty products and compared the performance with other machine 
learning-based models.  

2. It was demonstrated that the faulty product detection system can be 
automated using machine learning algorithms and highly accurate 
prediction models can be built.  

3. The ANOVA feature selection technique improved the performance 
of the prediction model.  

4. Data sampling techniques improved the performance of the proposed 
model.  

5. It was shown that simpler prediction models can be built using the 
RUSBoosted Tree algorithm and therefore, practitioners can consider 
the implementations using this algorithm before investigating more 
complex models.  

6. The proposed methodology is flexible to be adapted to different 
major industries and similar experiments can be performed to ach
ieve the highly accurate faulty product detection models. 

The remainder of this paper is organized as follows: Section 2 pre
sents the background and related work. Section 3 explains the analysis of 
the data, and Section 4 discusses the methodology applied in this study. 
Section 5 shows the experimental results. Section 6 presents the dis
cussion, and Section 7 explains the conclusion of this paper. 

2. Background and related work 

According to Miljkovic’s survey (2011), there are three categories of 
defects detection methods, which are explained as follows:  

• Process model-based methods: These methods compare the output of 
the measuring system with the output of the mathematic model. 
Then, the residue of the comparison is used to adjust and improve the 
mathematic model. Many studies apply different process model- 
based methods, including Parity Equations (Frank, 1990), state ob
servers (Isermann, 2005), and parameter estimation (Isermann, 
2006; Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003).  

• Knowledge-based methods: These methods, which are rule-based, 
mainly rely on expert knowledge. This kind of model is easy to 
interpret and runs fast. However, they are inflexible and expensive to 
maintain. An online fault diagnosis system that applies this method is 
discussed in the paper of Angeli (2010). According to Miljkovic 
(2011), expert knowledge-based methods are more suitable to be 
used in well-defined processes.  

• Data-driven methods: These methods can be categorized into signal 
analysis, spectrum analysis, and pattern analysis. Isermann (2006) 
presented some examples that identify faulty products by analyzing 
the normal and faulty signals from sensors. 

The novel machine learning-based approach that was developed in 
this study can be considered as a data-driven method because different 
patterns in the dataset are discovered with the help of machine learning 
techniques, and numerous data points are used during the training 
phase. Four types of machine learning techniques exist in the literature, 
namely supervised learning, unsupervised learning (e.g., clustering al
gorithms), semi-supervised learning, and reinforcement learning. In 
different studies, several algorithms were proposed and used from these 
categories for modelling and classification purposes. Recently, Borlea 
et al. (2021) used Fuzzy C-means and K-means clustering algorithms in a 
unified form and implemented this novel model in a distributed plat
form. Jodas et al. (2020) developed a classification model using machine 
learning techniques. Pozna and Precup (2014) proposed an approach for 
expert systems modelling. These successful modelling applications in 
various fields have emerged in recent years. This type of machine 
learning-based studies helped the transformation of the manufacturing 
sector and increased the use of digitalization within the context of In
dustry 4.0 (Catal and Tekinerdogan, 2019). 

From the machine learning perspective, our problem is a binary 
classification task because there exist two kinds of classes, namely 
passing and failing products. In a research study, K-Nearest Neighbour 
(KNN), a supervised learning approach, was applied to identify the 
faulty products in a semiconductor production line (Verdier & Ferreira, 
2011). Russ et al. (2005) applied the dynamic growing self-organizing 
map to separate the good and faulty wafers from raw production data. 

However, datasets are mostly imbalanced in this problem, and this 
characteristic of the datasets makes the problem more complex. During 
the production process of products, most of the products are normal, and 
only a small portion of the data points belongs to the faulty class. To this 
end, models cannot have sufficient data that belongs to the positive class 
(i.e., minority class that consists of failing data), and much more data 
exist that belongs to the negative class (i.e., majority class that consists 
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of passing data). For example, during the semiconductor manufacturing 
process, a product might be produced faulty and therefore, these prod
ucts are labeled as positive data instances in the dataset. If the product 
that is produced is not faulty, it is labeled as a negative class. To handle 
imbalanced data problems, data sampling techniques can be used to 
balance the dataset so that the model can learn from a dataset, including 
a similar number of positive and negative data points. Some data 
balancing algorithms (i.e., SMOTE, ClusterSMOTE, BorderlineSMOTE, 
ADASYN) and classification algorithms (i.e., RUSBoosted) were 
designed to address this problem. 

To deal with the imbalance sample structure, the following two ap
proaches are mostly applied (Chen, Liaw, & Breiman, 2004):  

• Cost-sensitive learning: This method increases the positive class’ 
weight during the training process so that more penalty is applied to 
the misclassification of positive samples.  

• Sampling: This category of approaches uses sampling techniques to 
balance the class distribution. 

There are mainly two kinds of sampling methods that are over- 
sampling and under-sampling. Veni (2018) explained the pros and 
cons of these two sampling methods. The over-sampling method repli
cates the minority class samples so that the number of data points in 
each class is similar to each other. The advantage of the over-sampling 
method is that no information is lost during the sampling. The disad
vantage of over-sampling is that it is prone to overfitting. Opposite to the 
over-sampling, under-sampling balances the data by removing the data 
points that belong to the majority class so that the number of data points 
in each class is similar to each other. It avoids overfitting better than 
overfitting; however, it is more suitable for a large dataset because some 
of the data points in the dataset are lost while balancing the distribution 
of classes. 

Recently, deep learning, which is a sub-branch of machine learning, 
has been applied in this domain. Li et al. (2019) applied the Deep Neural 
Network (DNN) algorithm for degradation assessment in mechanical 
equipment and demonstrated that the proposed approach outperforms 
other traditional machine learning-based approaches. Wang et al. 
(2016) developed a Deep Neural Network-based framework for the 
identification of the health of wind turbine (WT) gearboxes and showed 
that the DNN model provides the best performance among six machine 
learning algorithms. Khumprom and Yodo (2019) used the Deep Neural 
Networks approach to predict the State of Health (SoH) of the lithium- 
ion battery and showed that they provide better performance than the 
traditional machine learning algorithms. Li et al. (2020a) applied the 
Deep Belief Network (DBN) algorithm for predicting the backlash error 
that can affect the geometry of the components and showed that their 
model provides superior performance in machining centers. Iqbal et al. 
(2019) proposed a Fault Detection and Isolation (FDI) system using deep 
learning algorithms and demonstrated that their approach can locate 
several faults under real-time working conditions. Liong et al. (2020) 
designed a leather defect detection technique by employing a deep 
learning approach and showed its effectiveness on a real dataset. A 
modified AlexNet architecture was used for feature extraction and the U- 
net architecture was applied for segmentation. Liang et al. (2018) 
developed a DNN model for detecting energy anomalous patterns during 
the aluminum extrusion process and applied a transfer learning 
approach effectively. 

Despite deep learning algorithms providing superior performance for 
failure detection, there are several drawbacks to these approaches. For 
example, these algorithms require additional expertise, required 
computational power is higher, hyperparameter tuning is mostly 
needed, and a lot of data must be collected for achieving high perfor
mance. In order to avoid these drawbacks, we decided to develop a novel 
machine learning model, which is highly accurate but does not include 
these drawbacks. Also, nowadays every major industry is using auto
mation for faulty product detection, however, mostly the existing 

solutions are quite costly for organizations. In this study, we aimed to 
reduce the cost of faulty product detection systems by applying machine 
learning algorithms. 

3. Data analysis 

In this study, a dataset that contains sensory data from a semi
conductor manufacturing process (McCann & Johnston, 2008) is used, 
and the task is to identify the product failure from the production line. 

The dataset has 1567 samples with 592 features, including 591 
sensor features (i.e., float data types) and a time feature. Each record of 
the dataset is labeled by − 1 for failing products and by 1 for passing 
products. A data instance of the dataset (i.e., only 15 features of the first 
data point) is presented as follows: 

[3030.93, 2564, 2187.7333, 1411.1265, 1.3602, 100, 97.6133, 
0.1242, 1.5005, 0.0162, − 0.0034, 0.9455, 202.4396, 0, 7.9558, …]. 

There are four challenges that need to be addressed in this dataset. 
The first challenge of this dataset is that the feature-sample ratio is too 
high. The number of features is one-third of the number of data points, 
which means that there is less information to train on each feature. The 
second challenge is that the dataset is highly imbalanced, as shown in 
Fig. 1. There are 1463 normal samples, while there are only 104 failure 

Fig. 1. The Number of Passing and Failing Samples in the Dataset.  

Fig. 2. The Correlation Index between Features and the Dependent Variable.  
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samples. 
The third challenge is that many of the features in the dataset are 

noisy or irrelevant signals. As shown in Fig. 2, only 3.2% of features have 
an absolute correlation greater than 0.1. Fig. 3 also shows that the 
correlation among most features is very weak. Most of the correlation 
indexes are between − 0.1 and 0.1. As such, it can be concluded that the 
majority of the features are noisy or irrelevant for the dependent 
variable. 

The last challenge is that the dataset contains a lot of missing values. 
538 features have missing values smaller than 10% of the data size, as 
shown in Fig. 4, and 52 features have missing values greater than 10% of 
the data size, as shown in Fig. 5. 

Fig. 6 shows the distributions of feature values. The scales of values 
are very different among features. Some sensors are on a scale of thou
sand, while some features are on a scale of decimal. Additionally, some 
features have a significant tail such as sensor 589, which can be useful to 

identify the outliers. Also, as shown in Fig. 7, there are 116 features 
(16% of features) with a constant value, which is not helpful for machine 
learning models because they cannot help to distinguish the data points. 

Before presenting our methodology, we establish the problem 
statement as follows (He & Garcia, 2009). 

Classification problem: Given a training set T including n number of 
data points, the following definitions are presented. T ¼ { (xi, yi)}, i = 1, 
2, …, n, where xi ∊ X is an instance in the m-dimensional feature space X 
¼ {f1, f2, …, fm} and yi ∊ Y ¼ {0, 1} is the class label of the xi. Also, the 
following subsets are defined in this problem. Tmin ⊂ T and Tmaj ⊂ T, 
where Tmin represents the minority class data points in T, and Tmaj 
represents the majority class data points such that Tmin ∩ Tmaj ¼{Ф} 
and Tmin ∪ Tmaj ¼ T. We must find a classification model that can 
effectively classify data points in T using Tmin and Tmaj data points. 

In this study, Support Vector Classifier, Multilayer Perceptron, 

Fig. 3. The Heatmap of the Features in the Dataset.  

Fig. 4. Feature Count Distribution for a Missing Value Smaller than 10% of the 
Total Data Size. 

Fig. 5. Feature Count Distribution for a Missing Value Greater than 10% of the 
Total Data Size. 
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Random Forest, Gradient Boosted Trees, and RUSBoostedTree classifi
cation algorithms together with other feature engineering techniques 
are investigated to solve this challenging problem. 

4. Methodology 

An overview of the methodology is presented in Fig. 8. As shown in 
this figure, data pre-processing, feature selection, data sampling, 
parameter optimization techniques are applied together with the ma
chine learning algorithm. First, the dataset is divided into training and 
testing sets using the hold-out approach (i.e., 80% for training and 20% 
for testing). The data of the training set is pre-processed before training 
the models. During the pre-processing stage, the mean imputation 
method is applied for replacing the missing values, and the Min-Max 
scaling normalization method is used for the normalization of the 
data. For feature selection, the ANOVA (Analysis of Variance) feature 
selection (FS) approach is applied to select the most relevant features. 

For sampling, over-sampling (OS) and under-sampling (US) techniques 
are investigated to improve the performance of the algorithms. For 
parameter optimization, the Grid Search optimization technique is used, 
and as such, hyper-parameters are tuned accordingly. To evaluate the 
performance of the model, the trained model is tested with the testing 
set. Five classification algorithms, namely Support Vector Classifier 
(SVC), Multilayer Perceptron (MLP), Random Forest (RF), Gradient 
Boosted Trees (GDBT), and RUSBoostedTree (RUSBT) are applied during 
experiments. As baseline models, all the machine learning algorithms 
are initially applied without the use of feature selection and sampling 
techniques. Later, these techniques are also applied to investigate the 
performance variation of the models. In the following subsections, the 
data pre-processing step, classification algorithms, feature selection 
approach, data sampling techniques, model configuration, parameter 
optimization stage, and evaluation strategy are explained. 

4.1. Data PreProcessing 

According to data analysis, a large number of features have a high 
portion of missing values. These features do not provide much useful 
information to the machine learning models, and even they require extra 
computational power. Replacing missing values with zero or mean 
values is an approach to handle the missing values, but features with too 
many missing values can have a negative impact on the prediction 
models. To this end, features with more than 80% missing value samples 
are dropped from the dataset. Furthermore, the time feature is removed 
as the quality of the product is not dependent on the time in this case 
study. As shown in Table 1, 125 features are removed from the original 
dataset, and hence, the adjusted dataset includes 466 features at the end 
of this process. 

After dropping features with substantial missing values, there are 
still missing value cells in the dataset. As such, the mean imputation 
method is used to replace all missing values with the mean of the cor
responding feature, and a dataset without missing values is generated. 
Because no separate testing set is provided for this analysis, a testing 

Fig. 6. Distribution of Feature Values for Sensors 0, 127, 284, and 589.  

Fig. 7. Distribution of Features.  
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dataset is created from the original dataset. 20% of the dataset is 
randomly sampled from the dataset as a testing set, and the remaining 
part is used as the training set. The number of data points in each set is 
presented in Table 1. 

The value ranges and scales of features are very different in the 
dataset, which makes machine learning algorithms difficult to converge 
based on the loss function. To improve the performance of the machine 
learning models, normalization is implemented to remove the negative 
impact of the diverse value scales and value ranges. The Min-Max 
Scaling is used to normalize the feature value to the range of [0, 1], as 
shown in Eq. (1). 

x’ =
x − xmin

xmax − xmin
(1)  

4.2. Classification algorithms 

In this study, the following classification algorithms were utilized: 
Support Vector Classifier (SVC), Multilayer Perceptron (MLP), Random 
Forest (RF), Gradient Boosted Trees (GDBT), and RUSBoostedTree 
(RUSBT) algorithms. 

Support Vector Classifier (SVC) is a Support Vector Machine (SVM) 
implementation that performs the classification task. It has a low 
computational cost and is effective in classifying high-dimensional data 
with a low sample size. It performs well when the data separation 
margin is large. Eq. (2) shows the linear form of the SVM algorithm. 

f(x) = wTr. x+ b (2) 

x represents the input variable, w shows the weight, b is the bias, and 
Tr represents the transpose. The algorithm aims to minimize the error 
that must be within the permissible range (∊). The optimization problem 
can be formulated as shown in Eq. (3) (Banadkooki et al., 2019). C 
represents the penalty factor, ξ−i and ξ+i are penalties related to the 
training data, w shows the weight, y is the output variable, and X is the 
input variable. 

Minimize
1
2
‖w‖2

+ C
∑m

i=1

�
ξ−i + ξ+i

)

subject(to)(wi⋅xi + b) − yi < ε + ξ+i

(3) 

Multilayer Perceptron (MLP) neural network has been widely 
applied in recent years due to the state-of-the-art results of deep learning 
algorithms for many problems and the increasing computational power 
of systems. However, neural network algorithms require a large amount 
of data for training. Eq. (4) shows how the MLP algorithm works. wj 
represents the weight coefficient of neurons, fj is the activation function 
of the corresponding neuron, n represents the number of neurons in 
input layers, m shows the number of neurons in hidden layer, xi(k) 
represents the input variable, T is the transpose of the matrix, and w0 
shows the bias of the output layer (Banadkooki et al., 2019). 

y(k) =
∑m

j=1
wjfj

(
∑n

j=1
wijxi(k) + w0

)

(4) 

Random Forest (RF) is a tree-based method and applies to bootstrap 
during the training process. RF (Cutler, Cutler, & Stevens, 2011) consists 
of multiple trees, and each tree only uses a subset of all the features. 
Each tree generates a prediction, and the final prediction is an aggre
gation of all predictions. The RF has three major tuning parameters, 
which are the tree size, number of predictor variables, and tree depth. RF 
can also deal with imbalanced data by adjusting the weight of each class. 
The performance of RF generally outperforms single tree prediction al
gorithms (Chen et al., 2004). Chen et al. (2004) used both weighed RF 
and balanced RF to classify imbalanced data, and their results outper
form other algorithms. The decision function of the RF algorithm is 
presented in Eq. (5). H(x) shows the combination of the classification 
models, hi represents a single decision tree model, I is the indicator 
function, and Y shows the output variable (Liu et al., 2012). 

Fig. 8. The Methodology of the Proposed Machine-Learning based Failure Detection Model.  

Table 1 
Summary of the Training Data and Testing Data.  

Original dataset 
No. of samples 1567 No. of features 591 

Training dataset 
No. of samples 1253 No. of features 466 
No. of failure samples 91 Failure ratio 7% 
Testing dataset 
No. of samples 314 No. of features 466 
No. of failure samples 13 Failure ratio 4%  

Z. Kang et al.                                                                                                                                                                                                                                    



�(�[�S�H�U�W �6�\�V�W�H�P�V �:�L�W�K �$�S�S�O�L�F�D�W�L�R�Q�V ������ ������������ ������������

7

H(x) = argmax
Y

∑k

i=1
I(hi(x = Y) ) (5) 

Gradient Boosted Trees (GDBT) algorithm converts a series of weak 
learners into stronger learners (Natekin & Knoll, 2013). Each tree of 
GDBT improves the prediction from the result of the previous tree al
gorithms. This makes the GDBT highly flexible and increasingly popular 
in recent years. GDBT has been largely used to perform prognostic ge
netic tasks (Teramoto, 2009) that are normally imbalanced classification 
problems. Teramoto’s study (2009) shows that GDBT outperforms RF 
and SVM. The GBDT algorithm aims to minimize the regularized 
objective shown in Eq. (6). Ω(f)is a regularization term and each fk is 
related to a decision tree (Li et al., 2020b). 

�̃ =
∑

i
i(ŷi, yi) +

∑

k
Ω(fk) (6) 

RUSBoosted Tree (RUSBT) is a hybrid of boosted tree and under- 
sampling, which saves some time for data pre-processing. RUSBT per
forms random under-sampling to balance the class before boosting. 
Compared to SMOTEBoost, RUSBT is much faster and less complex 
(Seiffert, Khoshgoftaar, Van Hulse, & Napolitano, 2009). During the 
boosting, RUSBT combines multiple weak learners to form a strong 
leaner, which is similar to GDBT. In Seiffert et al. s study (2009), RUSBT 
provided a better performance compared to SMOTEBoost and Adaboost 
algorithms. For the RUSBT algorithm, the following equations are uti
lized (Mounce et al., 2017). Eq. (7) shows how to calculate pseudo-loss. 
Eq. (8) explains how to calculate the weight update parameter. Eq. (9) 
shows how to update Dt. Eq. (10) and Eq. (11) explains how to normalize 
Dt+1. Eq. (12) represents the final hypothesis output. 

∈t =
∑

(i,y),yi∕=y

Dt(i)(1 − ht(xi, yi) + ht(xi, y) ) (7)  

αt =
∈t

1 − ∈t
(8)  

Dt+1(i) = Dt(i)α
1
2 (1+ht(xi ,yi)− ht(xi ,y:y∕=yi) )
t (9)  

Zt =
∑

i
Dt+1(i) (10)  

Dt+1(i) =
Dt+1(i)

Zt
(11)  

H(x) = argmax
y∈Y

∑T

t=1
ht(x, y)log

1
αt

(12)  

4.3. Feature selection 

The dataset has a very high feature-to-sample ratio, and a substantial 
number of features have a low correlation with the dependent variable. 
In this case, feature selection is required to reduce the number of irrel
evant features before the data is applied for training the model. ANOVA 
f-score is used to judge whether a feature is important for the dependent 
variable or not. A higher f-score rejects the null hypothesis, which means 

that the variable variance has an impact on the dependent variable 
variance. A percentage of the top f-score variables are selected as the 
training features. In this study, ANOVA was applied to measure the 
correlation between a feature and all features. For this purpose, the 
F statistic of the feature was used. In statistics, the F-statistic of the 
feature satisfies the F-distribution and is applied for the significance test. 

The evaluation process determines the percentage, and different 
machine learning algorithms may have different percent of feature se
lection. In Table 2, the number of features and percentages are presented 
for each algorithm. For the RUSBT algorithm, sampling is not applied 
because it already includes sampling as its internal mechanism. 

4.4. Under-Sampling and Over-Sampling 

The training data is highly imbalanced, and only 7% of the data 
points belong to the faulty class. Imbalanced datasets are always more 
challenging and may lead to biased and misleading prediction accuracy. 
Under-sampling and over-sampling are two commonly used methods to 
tackle imbalanced classification problems. Under-sampling samples all 
minority class samples and randomly selects an equal number of ma
jority class samples. Then, it combines the two sampled subsets to form a 
new balanced dataset. In this training set, normal samples belong to the 
majority class, and the faulty samples belong to the minority class. As 
shown in Table 3, after the under-sampling, the total data size reduces 
from 1253 to 182. As shown here, the under-sampling method balances 
the data by losing some data points and useful information. 

Opposite to the under-sampling, the over-sampling balances the data 
by replicating the minority class samples. As shown in Table 3, 91 faulty 
samples are replicated to 1162 samples, which is equal to the size of 
normal samples. Consequently, the total training size increases from 
1253 to 2324, which is almost double. The over-sampling method bal
ances the data and increases the data size; however, the drawback is that 
it is prone to overfitting due to the data replication. Synthetic Minority 
Over-sampling Technique (SMOTE) is one of the most commonly used 
over-sampling methods to reduce the overfitting problem. Instead of 
repeating the minority samples, SMOTE synthesizes similar data points. 
For instance, a minority point finds its k-nearest neighbors using 
Euclidean Distance and then creates one or multiple new points in be
tween. In this case study, the SMOTE technique is applied as the un
derlying over-sampling approach. 

4.5. Model configuration 

First, we trained and applied the Random Forest algorithm with 
default parameters, and later, we aimed to optimize the hyper- 

Table 2 
Percentile and Number of Features Selected for Training.   

Percentile (%) No. of Features 

RF + Over-sampling 80 372 
RF + Under-sampling 30 117 
GDBT + Over-sampling 50 233 
GDBT + Under-sampling 30 117 
SVC + Over-sampling 30 117 
SVC + Under-sampling 20 93 
RUSBT 40 186  

Table 3 
Summary of the Datasets.   

Original train 
dataset 

Under-sampled 
dataset 

Over-sampled 
dataset 

No. of normal 
samples 

1162 91 1162 

No. of faulty 
samples 

91 91 1162 

Total sample size 1253 182 2324  

Table 4 
Hyper-parameters of RF in Different Configurations.   

Number of estimators Max tree depth 

RF 50 7 
RF + OS 200 7 
RF + US 2 200 
RF + OS + FS 200 7 
RF + US + FS 3 100  
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parameters of the algorithm. The number of estimators and the max tree 
depth parameters were determined using a parameter optimization 
approach. In this case study, hyper-parameters of RF are optimized via 
the Grid Search Cross-Validation (GridSearchCV) method. Table 4 shows 
the parameters of the RF algorithm used with sampling and feature se
lection techniques. 

After the GridSearchCV is applied, the hyper-parameters of RUSBT 
are shown in Table 5. 

GDBT is computationally intensive, and thus, the optimization of all 
hyper-parameters is not feasible and practical. Only hyper-parameters 
shown in Table 6 are tuned via the GridSearchCV method. 

SVC also provides several hyper-parameters to tune with the Grid
SearchCV method. These parameters are presented in Table 7. 

The configuration of the MLP algorithm is presented in Table 8. 
GridSearchCV method is also applied for the MLP algorithm to optimize 
these parameters. 

4.6. Evaluation 

For binary classification problems, different performance metrics are 
defined based on the confusion matrix shown in Table 9. Accuracy is the 
most common performance metric to evaluate classification models due 
to its intuitiveness (Chawla, Japkowicz, & Kotcz, 2004). As shown in Eq. 
(13), it represents the percentage of correct predictions of all samples. 

The low accuracy shows that it does not distinguish classes and does 
not work well for imbalanced classification, where the positive response 
is more important than the negative response (Hossin & Sulaiman, 
2015). Precision (Eq. (14)) and recall (Eq. (15)) are the metrics with 
more discriminating power over different classes. Precision measures 
the percentage of correct prediction among all positive predictions while 
recall measures the percentage of correct prediction among all positive 
samples. However, none of these two metrics consider all elements in the 
confusion matrix. According to Hossin and Sulaiman (2015), F1-score 
(Eq.16) is the best metric to evaluate the performance of imbalanced 
binary classification tasks as it is a balance between precision and recall. 

Accuracy =
TP + TN

FP + FN + TP + TN
(13)  

Precision =
TP

TP + FP
(14)  

Recall =
TP

TP + FN
(15)  

F1 = 2 ×
Precision × Recall
Precision + Recall

(16) 

Precision and recall are usually used to evaluate the performance of 
imbalanced classification tasks. For this case study, precision measures 
the percentage of true faults in the predicted faults (Eq. (14)), and recall 
measures the percentage of predicted faults in the true faults (Eq. (15)). 
In practice, increasing recall tends to reduce the precision as the high 
recall needs a low threshold. Thus, F1-score is introduced (Eq. (16)) to 
balance between precision and recall. In this case study, F1-score is 
chosen to be the indicator of the classification performance. The best 
model should have the highest F1-score. 

The hyper-parameters are tuned to achieve the best F1-Score. Grid
SearchCV is used to check the F1-Score for different combinations of 
hyper-parameters. Fig. 9 shows the process of applying GridSearchCV to 
find the best hyper-parameters of RUSBT. Fig. 10 shows the process of 
cross-validation of the MLP. The neuron weights stop when the valida
tion accuracy is stabilized. 

Table 5 
Hyper-parameters of RUSBT in Different Settings.   

Number of estimators Learning Rate 

RUSBT 150  0.4 
RF + FS 150  0.5  

Table 6 
Hyper-parameters of GDBT in Different Settings.   

Number of estimators Max tree depth Learning rate 

GDBT 50 3 1 
GDBT + OS 100 5 0.5 
GDBT + US 100 1 0.7 
GDBT + OS + FS 150 3 0.5 
GDBT + US + FS 100 3 0.3  

Table 7 
Hyper-parameters of SVC in Different Settings.   

Kernel function C Degree Coef0 

SVC Poly 1 2 2 
SVC + OS Poly 1 5 0.1 
SVC + US Poly 1 5 0 
SVC + OS + FS Poly 1 5 2 
SVC + US + FS Poly 1 5 0.1  

Table 8 
MLP Configuration.   

Connection Number of 
units 

Input 
dimension 

Activation 
fun 

Input Layer Dense 60 466 Relu 
Hidden 

Layer 
Dense 30 – Relu 

Output 
Layer 

Dense 1 – Linear  

Loss fun Optimizer Learning 
Rate 

metrics 

Compiling Binary cross- 
entropy 

Adam 0.001 accuracy  

Table 9 
Confusion Matrix.   

Actual True Actual False 

Predicted Positive True Positive (TP) False Positive (FP) 
Predicted Negative False Negative (FN) True Negative (TN)  

Fig. 9. GridsearchCV of RUSBT.  
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The test dataset has 314 samples, including 4% faulty samples. The 
test data is also normalized before it is used for the model. The top-five 
F1-score models are also evaluated using Precision-Recall Curves (PR- 
Curve), which is another way of imbalanced classification evaluation. 

5. Experimental results 

As shown in Fig. 11, MLP with under-sampling converged around 
200 iterations while the MLP and MLP with over-sampling methods 
could not reach convergence within 300 iterations. The MLP without 
sampling only contained a small number of failure samples reducing the 
rate of convergence. The MLP with under-sampling had balanced 
training data, but sample size is inadequate for neural network to reach a 
convergence. As a result, over-sampling raised the training speed and 
convergence rate and under-sampling method had the opposite effect. 

As the baseline models, classification algorithms were applied 
without the use of sampling and feature selection techniques. In 
Table 10, the experimental results of these models are presented. Ac
cording to these results, the RUSBT algorithm outperforms other algo
rithms in terms of F1-score because RUSBT has an embedded sampling 
algorithm that performs random under-sampling of the training data 
before the boosting is applied. The Adaboost component of the RUSBT 
algorithm is trained with this balanced data, but other models are 
trained with imbalanced data. To this end, the main advantage of the 
RUSBT algorithm is that it does not need an extra sampling stage to train 
the model. RF has a lower F1-score than the RUSBT, but it has a much 
higher recall value than the RUSBT. Because the training data is highly 
imbalanced and consists of noisy instances, RF is also effective in dealing 

with an imbalance classification problem. GDBT fails to identify any 
faulty samples and has zero F1-score, which indicates that GDBT is not 
suited for this problem. 

As shown in Table 11, after the application of under-sampling and 
over-sampling, RF with over-sampling provides the best performance in 
terms of F1-score, which is followed by the RUSBT algorithm. As shown 
in Fig. 12, when the oversampling is applied, the recall of RF reduces by 
half (i.e., from 0.62 to 0.31), but the precision becomes nearly double (i. 
e., from 0.13 to 0.20). However, the under-sampling method does not 
make significant changes to the RF algorithm. The performance of GDBT 
increases dramatically after applying sampling before the training step. 
Fig. 13 shows that both over-sampling and under-sampling raise the F1- 
score of the prediction. Particularly, the recall of the under-sampling 
GDBT increases from 0 to 0.61. Over-sampled GDBT slightly overper
forms the under-sampled model in terms of F1-score. Sampling methods 
do not significantly increase the performance of MLP and SVC. The 
performance of the SVC model even deteriorates due to oversampling. 
To this end, it is concluded that MLP and SVC are not suitable algo
rithms, and they are filtered out from the classification list. RF, RUSBT, 
and GDBT algorithms are then applied with both sampling and feature 
selection methods. 

As shown in Table 12, after applying the feature selection method (i. 
e., ANOVA), RF achieves the highest F1-score (i.e., 0.29), which is 
almost twice of the second-best model GDBT (i.e., 0.15). Fig. 14 shows 
that all evaluation parameters of RF increase after implementing the 
feature selection. However, the RUSBT and GDBT algorithms predict less 
accurately compared to their corresponding models that do not use 
feature selection. The reason for this observation might be related to the 
internal mechanisms of the algorithms because boosting is resistant to 
noise, and additional feature selection may not provide extra perfor
mance. Removing some features may cause us to lose some information, 
and therefore, this might adversely impact the prediction performance 
of boosting mechanism. 

As shown in Table 12, RF with over-sampling and feature selection is 
the best model in terms of F1-score value. However, different evaluation 
parameters may cause different results. As such, the PR-Curves and 
Receiver Operating Characteristics (ROC) Curves were investigated. For 
ROC Curves, the x-axis plots the false positive rate, and the y-axis shows 
the true positive rate. For PR-Curves, the x-axis is the recall, and the y- 
axis is the precision. 

As shown in Fig. 15, PR-Curve and ROC Curve demonstrate that RF 
with under-sampling and feature selection provides the best perfor
mance in terms of Area Under Curve (AUC) parameters. Table 13 shows 

Fig. 10. Cross-validation of MLP.  

Fig. 11. MLP convergence rate of different data processing treatments.  

Table 10 
Results of the Five Models without Sampling and Feature Selection.  

Algorithms Accuracy Precision Recall F1-Score 

RUSBT  0.88  0.13  0.30  0.19 
RF  0.63  0.07  0.62  0.12 
SVC  0.80  0.05  0.23  0.09 
MLP  0.92  0.08  0.08  0.08 
GDBT  0.96  0.00  0.00  0.00  

Table 11 
Results of Models with Over-sampling and Under-sampling.  

Algorithms Sampling Accuracy Precision Recall F1-Score 

RF Over-sampling  0.92  0.20  0.31  0.24 
RUSBT –  0.88  0.13  0.30  0.19 
GDBT Over-sampling  0.94  0.22  0.15  0.18 
RF Under-sampling  0.65  0.07  0.61  0.13 
GDBT Under-sampling  0.65  0.07  0.61  0.13 
SVC Under-sampling  0.58  0.06  0.62  0.11 
MLP Under-sampling  0.63  0.05  0.53  0.10 
MLP Over-sampling  0.89  0.00  0.00  0.00 
SVC Over-sampling  0.89  0.00  0.00  0.00  

Z. Kang et al.                                                                                                                                                                                                                                    



�(�[�S�H�U�W �6�\�V�W�H�P�V �:�L�W�K �$�S�S�O�L�F�D�W�L�R�Q�V ������ ������������ ������������

10

that this model achieves the best performance (i.e., ROC AUC = 0.72 and 
PR AUC = 0.14). RF with over-sampling and feature selection is the 
second-best algorithm in terms of AUC values. This table shows that RF 
overperforms GDBT in terms of PR and ROC curves. 

According to experimental results, the RUSBT algorithm has the best 
performance when no sampling and feature selection methods are 
applied. RF outperforms other algorithms if the sampling method is 

applied to balance the data points in the dataset. It was observed that the 
feature selection significantly improves the performance of RF. RF with 
under-sampling and feature selection provided the best performance to 
predict the dependent variable in this study. 0.72 AUC score is achieved 
with RF under-sampling and feature selection model. 0.69 AUC score is 
achieved with the RF over-sampling and feature selection model. 

6. Discussion 

This study illustrated the effectiveness of sampling methods and 
feature selection methods over different machine learning algorithms. It 
showed that both under-sampling and over-sampling methods were 
effective in dealing with the imbalanced classification problem. Partic
ularly, the under-sampling and the over-sampling methods can signifi
cantly improves the performance of RF and GDBT, which are decision- 
tree based algorithms. However, under-sampling methods might 
decrease the accuracy of prediction due to sample size reduction. 
Feature selection can effectively remove noises from the less correlated 
features and improves the accuracy of all algorithms. The combination 
of imbalance data resampling and feature selection are useful methods 
to improve the accuracy of product failure detection algorithms. 

Fig. 12. RF Results Before and After Sampling.  

Fig. 13. GDBT Results Before and After Sampling.  

Table 12 
Results of RF, GDBT, and RUSBT with Sampling and Feature Selection.  

Algorithms Data Processing Accuracy Precision Recall F1- 
Score 

RF Over-sampling +
Feature Selection  

0.92  0.24  0.38  0.29 

GDBT Over-sampling +
Feature Selection  

0.93  0.15  0.15  0.15 

RF Under-sampling +
Feature Selection  

0.68  0.08  0.62  0.14 

GDBT Under-sampling +
Feature Selection  

0.69  0.07  0.54  0.13 

RUSBT Feature Selection  0.87  0.09  0.23  0.13  
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In this study, it was demonstrated that machine learning could 
effectively detect faulty products in production lines. Particularly, the 
RF-based model provided the best performance, however, this model 
requires the use of a data sampling algorithm. As a result of boot
strapping, the training data may not contain or only contain a small 
portion of the minority data, causing that RF is prone to imbalanced 
dataset. If the practitioners do not want to investigate the effect of data 
sampling approaches, it is also possible to design the prediction model 
using the RUSBT algorithm because this algorithm has an embedded 
sampling algorithm. When feature selection algorithms are applied, the 
best performance was achieved with the RF algorithm. When all the 
experiments are considered, the RF with under-sampling and feature 
selection provided the best performance among other models. According 
to these observations, we suggest practitioners apply our RF-based 
model to improve their production activities. Although the 

performance of the proposed model is sufficient, there are still some 
possibilities to improve the overall performance. Because the dataset 
size is limited and the sample-to-feature ratio is low, the prediction 
performance can be further improved by increasing the dataset size. 
Also, additional data pre-processing methods (i.e., normalization tech
niques and data imputation approaches), classification algorithms, 
feature selection techniques, data sampling approaches, and parameter 
optimization techniques can be applied to improve the performance of 
the proposed model. Due to the limited size of the dataset, traditional 
classification algorithms were focused on; however, deep learning al
gorithms might improve the performance on a larger dataset though 
they have several limitations as explained in the Background and 
Related Work section. 

In this study, a public production line dataset is used to evaluate the 
effectiveness of the machine learning approaches. One of the major 
drawbacks of this public dataset is that the feature names are unknown, 
and as such, this makes it more difficult to select the most relevant 
features. However, we believe that feature names should be known to 
the data scientists and engineers, and in such a case, the irrelevant or 
noisy features can be filtered out before applying the feature selection. 
This additional information on the features can increase the perfor
mance significantly and reduce the workload of data pre-processing. The 
proposed model using machine learning has been applied in a specific 
production line context, and the performance of this model might differ 
in a different production line context. The difference between 

Fig. 14. Results of RF Over-sampling Before and After Feature Selection.  

Fig. 15. PR-Curve and ROC-Curve of the Top-five F1-score Models.  

Table 13 
PR-Curve AUC and ROC-Curve AUC values with Sampling and Feature Selection.  

Algorithms Data Processing PR AUC ROC AUC 

RF Under-sampling + FS  0.14  0.72 
RF Over-sampling + FS  0.13  0.69 
GDBT Over-sampling + FS  0.09  0.64 
GDBT Under-sampling + FS  0.07  0.66 
RUSBT FS  0.07  0.6  
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production lines is vast, and the sensory data quality varies among 
different production lines. Some production lines may not include many 
features, and some of them can have parallel paths, which means that 
one product does not pass through all the sensors. All these differences 
make it hard to design a universal machine learning-based model to 
detect faulty products in a production line. 

7. Conclusion 

In this study, the effectiveness of machine learning-based prediction 
models was investigated for the identification of faulty products in 
production lines. For this purpose, normalization, data imputation, 
feature selection, data balancing, classifiers, and parameter optimiza
tion techniques have been used to build a novel prediction model. It was 
observed that under-sampling and over-sampling are both effective 
methods, which improve the prediction performance of RF-based 
models. Feature selection reduces the noise and increases the perfor
mance of classification algorithms. Random Forest with sampling and 
feature selection achieved the best performance score in terms of AUC 
value for faulty product detection. The prediction results achieved in 
this study demonstrate the potential of data-driven methods in the 
domain of prognostic diagnosis in production lines. The performance of 
the proposed machine learning-based model can be further improved if 
more data points per feature are available, and more information about 
features is provided in the datasets. The future plan is to apply deep 
learning algorithms such as convolutional neural networks and recur
rent neural networks when a large dataset is reached. 
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