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Abstract

A tool for plant phenotyping is proposed to aid users in analyzing data on-demand. This tool is
web-based and runs deep learning models. The current study focuses on the development of this
tool, as well as obtaining a plant dataset to train a neural network. Furthermore, smartphone and
drone imagery are used to test the derived model. The results demonstrate how data generalization
can be reached through participatory sensing. Finally, drones show potential as being a fast solution
for acquiring sensory information within greenhouses.
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Introduction

Plant phenotyping represents the observable characteristics of the physiological and biochemical
properties of a plant, as well as its anatomical and ontological traits (Guo & Zhu, 2015). Plant
phenotyping can be used to improve the decision-making process in agriculture. Furthermore,
breeders benefit from plant phenotyping as they can enhance the genotype selection. Since plant
phenotyping is useful in understanding the functioning of crops, it also helps in developing and
calibrating crop models. Traditionally, characterizing the plant phenotype required a significant
number of experienced individuals recording plant characteristics manually: a labour intensive
and often invasive process. More recently, plant phenotyping evolved into a digital, non-invasive
discipline (Costa ef al., 2019). With this evolution, plant phenotyping is becoming useful to plant
breeding and selection. Multiple traits such as yield and stress adaptation are now measured in
order to optimize the required parameters for environmental adaptation (Fiorani & Schurr, 2013).
To perfect plant phenotyping, multiple study domains need to be combined. From biology to
computer science, today’s challenge is to merge these disciplines under one common language
(Costa ef al., 2019). The aim of the current study is to create a bridge between plant and information
sciences by facilitating the data analysis process. This can be achieved through an online system
based on deep learning algorithms. Ultimately, plant scientists and horticulturists will benefit from
this system as they will not be required to be proficient in another discipline. Data collected will be
valuable regardless of researchers’ computer abilities. In plant sciences, applications of deep learning
include classifying plants and deriving relevant phenotypes that may explain more about the plant
physiology and status (Christin ef al., 2019).

There are many image analysis tools designed for plant phenotyping, most of which are available
as downloadable software. Whether they are standalone executables or plugins, installing the tools
is required. Out of 179 tools covered in a plant phenotyping database, only one of them is web
based (Lobet et al., 2013). Furthermore, that tool only addresses a specific niche: counting stomata
(Fetter et al., 2019). The web-based application proposed in this paper represents a starting point
to bridging the gap between farmers and plant phenotyping technology.

The aim of the study is to bring current technology closer to the farmer following several research
objectives. The first one is designing an integrative framework to aid farmers into collecting and
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analyzing data. The second objective is gathering an image dataset using two cultivars of a rosette
plant. The image dataset is to be released as an open-source package for further research. The third
research objective is using the acquired dataset to train a deep neural network for plant phenotyping,
deriving an improved model. Furthermore, the fourth objective is to test smartphone and drone
imagery on the resulting model using the web application developed within the study. Finally, the
teasibility of using drones for data acquisition inside greenhouses is evaluated.

Materials and methods

Participatory sensing approach

Participatory sensing is an approach through which individuals contribute to a body of knowledge
by using a mobile device (Tilak, 2013) to upload information. This approach helps both the user
and the expert. For example, farmers can obtain phenotype information by collecting data in the
greenhouse or the field and uploading it to a server for processing. The information can be further
used to improve plant phenotyping models. A scheme of participatory sensing is illustrated in
Figure 1.

Experimental setup and data acquisition

Two kale varieties were grown inside the greenhouse of Wageningen University & Research, in two
stages. Each stage contained half of the plants and were grown for 28 days: June 16" — July 14"
(Stage 1) and July 10" — August 7™ (Stage 2). In total, 160 plants were grown per variety, totaling
320 plants. Eight days after seeding, the plants reached the necessary growth stage to begin the
dataset acquisition phase. Thus, all plants were photographed individually for 20 consecutive days,
resulting in a 6,400-image dataset. When taking the images, a high degree of standardization was
intended. Thus, the phone holder was used to ensure the same angle and height. Furthermore, the
pots were placed in the same position without being rotated between shots (Figure 2).

Sensory information was obtained by taking images of plants. A standardized dataset was obtained
with a OnePlus 6T (OnePlus Technology, China, released 2018) mobile phone. In order to account for
diversity in mobile phones owned by farmers as well as different acquisition platforms and conditions,
images from different angles and of different quality were taken using two mobile phones — iPhone
6S (Apple Inc., USA, released 2015), Samsung SGH-T679 (Samsung Group, South Korea, released
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Figure 1. Participatory sensing scheme. Data are collected using a mobile device or drone and
uploaded to the server where it is processed. Results are displayed on the device.
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Figure 2. Examples of dataset images. From top to bottom: day 1, day 10, day 20 of (a) Brassica oleracea
var. acephala 'Nero di Toscana’ and (b) B. oleracea var. sabellica.

2011) and a Parrot Anafi (Parrot SA, France, released 2018) drone (Figure 3). The mobile phones
were chosen to compare performance between different smartphone generations.

Image classification

The dataset was used for training a deep neural network for leaf counting, one of the more important
traits of plant phenotyping which gained a lot of attention recently (Scharr et al., 2016). All images
were rescaled due to computer processing constraints. Thus, the open source Pheno-Deep Counter
architecture (only the RGB branch) was chosen for its high performance (Giuffrida ef al., 2018). This
architecture uses the ResNet50 convolutional neural network as feature extractor, with output fed
to three fully connected layers to obtain the final leaf counting prediction. The ResNet50 backbone
was initialized with ImageNet weights and then fine-tuned with the standardized images of kale.
Specifically, the first half of the images was used for training, while the second half for validation
and testing. The resulting model was used for evaluating the mobile phones and drone imagery in
leaf counting. For the smartphones, fifty images were randomly chosen from a subsequent dataset
for each variety. The drone was operated at two heights, the lower one at approximately one meter
and the higher height at two meters. Furthermore, drone imagery was cropped to fit one pot per
image, ten images per height being analysed. To assess the dataset, evaluation metrics were used
as in Giuftrida et al. (2018): difference in count [dic]: average of the difference between the ground

Figure 3. Drones usage for data collection.
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truth and the algorithmic prediction; absolute difference in count [|dic|]: similar to dic, but each
difference is computed in absolute value; Mean Square Error [MSE]: average of the squared difference
between the ground truth and the prediction; Percentage Agreement [PA]: number of times (in
percentage) the model correctly predicts the leaf count. Furthermore, data significance was assessed
using Student’s independent t-test at a significance level [P] of 0.05. The [t] statistic is presented, as
well as the mean [M] and standard deviation [SD] of each tested group.

Website application

A website application was built as part of the integrative framework (available at https://saidlab.wur.
nl/phenotyping). The application was developed using Django within its architecture, a high-level
Python web framework (Anonymous, 2021). To take advantage of the machine learning deployment
capabilities of Django, the web application was hosted on Amazon Web Services. A registration
system was set up on the website. User registration is free but not required to use the tool. Thus,
registered users benefit from uploading and processing multiple images at once (a maximum of
ten). The framework was designed to support various plant phenotyping models. Currently, the web
application runs the model trained within the current project. Once the images are processed by
the server, users are shown the results on the web page. Registered users can also access the analysis
history on a separate page (Figure 4).

Results

Neural network training

The network was trained in two different conditions: intra- and inter-variety. In the intra-variety,
the network was trained and tested on the same kale species. Specifically, it was trained with the
var. acephala and evaluated with images of the same variety. Likewise, the model was trained and
tested with the var. sabellica. As shown in Table 1, training with either of the varieties of kale gave
encouraging results, showing a MSE of approx. 1. Furthermore, following the same training paradigm
as in Dobrescu ef al. (2017), the neural network was also trained by combining both varieties. As
shown in Table 1, the MSE dropped to 0.82, resulting in a more accurate model. This is in line with

* Home Analyse Signup  Login

Welcome to the online plant phenotyping tool!

This deep learning based ool allows you o guickly detamming the number of leaves for your datsset. To get siamed, upload your
image(s) bekrw. In order o upload mutiple images and save your analysis hstory, please consider signing .

To get started, upload your imaueisﬂn.

Figure 4. Web application landing page.
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Table 1. Leaf counting testing intra- and inter-species results for B. oleracea var. acephala ‘Nero di
Toscana’ and B. oleracea var. sabellica. dic and |dic| reports in parenthesis the standard deviation.

Trained on Tested on dic |dic| MSE PA
Intra variaety  var. acephala var. acephala -0.20(1.0) 0.75 (0.71) 1.1 40
var. sabellica var. sabellica -0.41 (0.92) 0.76 (0.66) 1.0 35
All All -0.03 (0.42) 0.18 (0.38) 0.82 82
Inter variaety  var. acephala var. sabellica -0.21(1.1) 0.82 (0.72) 1.2 62
var. sabellica var. acephala 0.09 (0.87) 0.58 (0.65) 0.76 50

the findings shown in Dobrescu ef al. (2017) and Giuffrida ef al. (2018). Although the two varieties
of kale exhibit difference in visual appearance, the model takes advantage of the fact that it is learning
trom a bigger set of images, making it more accurate. As such, PA goes to 82% (compared to 35%
and 40% for the two previous experiments respectively).

In the inter-variety experiment, the goal was to evaluate the generalizability of the model with the
kale dataset. Specifically, the trained models from the intra-species experiment (when trained with
one variety only) was tested with the other variety. For instance, the neural network was tested
with the var. sabellica using the model trained on var. acephala — and vice versa. The results of
these experiments are also reported in Table 1. As expected, the model trained on var. achephala
underperforms when tested against var. sabellica images. However, the PA has almost a 2-fold
improvement. This means that the network predicts the correct number of leaves in 62% of cases.
Consequently, when the network makes a prediction error, such an error is (on average) higher
(this justifies an MSE 1.2 compared to 1.0). When the network was tested against the var. acephala,
using the model trained on var. sabellica, the prediction error dropped significantly, compared to
the model both trained (and tested) on var. acephala — and the PA increased to 62%.

Other mobile phones and drone images

Smartphone imagery was tested using the model trained on both varieties. The Samsung SGH-T679
scored lower MSE for both varieties, PA being higher for the B. oleracea var. acephala compared to
the iPhone 6S (Table 2).

The iPhone 6S performed poorly because of the differences in image quality. Due to the increased
number of outlying predictions, the iPhone scored a high MSE and low PA for both varieties. B.
oleracea var. acephala showed significant differences (t(49)=-4.95, P<0.00001) between the observed
(M=4.74, SD=0.36) and the predicted values (M=5.54, SD=0.95). B. oleracea var. sabellica also
recorded a significant difference (t(49)=-2.21, P=0.15) comparing the observed (M=5.06, SD=0.67)
and predicted results (M=5.42, SD=0.66).

Table 2. Effect of smartphone model on leaf counting for B. oleracea var. acephala ‘Nero di Toscana’
and B. oleracea var. sabellica.

Model var. acephala var. sabellica

MSE PA MSE PA
iPhone 65 1.48 0.38 14 0.42
Samsung SGH-T679 0.46 0.72 0.44 0.31
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The Samsung SGH-T679 showed a high degree of PA. There were no significant differences between
the values for either variety. Thus, no significant difference (t(49)=-0.87, P=0.19) was observed for
B. oleracea var. acephala when comparing the observed values (M=4.9, SD=0.17) to those predicted
(M=5, SD=0.49). Furthermore, no significant differences (t(49)=-0.64, P=0.26) were recorded for B.
oleracea var. sabellica between the observed (M=5.08, SD=0.61) and predicted (M=5.16, SD=0.18)
values.

B. oleracea var. acephala ‘Nero di Toscana’ was tested using drone imagery, on the model trained on
both varieties. While PA was low, the MSE for both heights was below one. This demonstrates that
picture quality was satisfactory, the Parrot Anafi outperforming the iPhone 6S when comparing
MSE. Both MSE and PA scored poorer for the lower height (Table 3).

In all incorrectly predicted instances, the error margin was of one unit. This was probably due to
the plant changes that are introduced by the drone rotor wind speed. It was observed that lower
flying heights can interfere with the positioning of the leaves, ultimately corrupting the dataset.
In the current study, to avoid plant changes, images were taken from the side instead of the top.

Discussion

In contrast to that reported in the literature (e.g. Giuffrida ef al., 2018), testing the models with the
different variety of kale resulted in either a mild loss or a significant improvement of performance.
This phenomenon is mainly related to the quality of the images. Specifically, the hand-held device
used to acquire the standardized dataset took high-resolution images (approximately 4,600x3,400
pixels). However, the model cannot handle such big images due to memory constraints of the
graphics processing unit and, thus, it needs to be rescaled to 320x320 (Giufirida ef al., 2018). This
reduction of resolution is enough to guarantee robust predictions (as demonstrated in Table 1), but
dramatically reduces the details in the plants, making the two varieties look similar at that reduced
scale. For this reason, the inter-species experiment resulted in consistent results. This evidence is
partially in contrast to what is shown in Giuffrida ef al. (2018), although, in that case, the authors
dealt with the inter-species (e.g. different plant species), rather than inter-variety. In conclusion,
it can be said that the model presented gives robust results on var. sabellica when trained on the
var. acephala (and vice versa). However, to obtain the best performance, the network needs to be
trained with more data. As such, as demonstrated in Table 1, the network predicts the exact leaf
count in more than 80% of cases when trained on both varieties, which is in agreement with what
is shown in Dobrescu ef al. (2017).

A need for open-source datasets is often reported in the literature (Tsaftaris & Scharr, 2019).
Furthermore, data generalization is one of the current goals of the scientific community (Giuftrida ef
al., 2018). With the different devices used for testing plant imagery, this study advances the research
towards a general model. While not consistent, the mobile phones showed promising results. The
Samsung SGH-T69, a ten-year-old model, outperformed the newer phone on the market. This
represents an advantage for the farmer as older technology is not a barrier between them and
online plant phenotyping. Furthermore, a high MSE and low PA were noted for the iPhone 6S. The
differences within intrinsic camera settings, as well as hardware variations could be the reasons
why this smartphone was outperformed by the Samsung (Cobarzan et al., 2015). Image processing

Table 3. Parrot Anafi models for B. oleracea var. acephala ‘Nero di Toscana’.

Model MSE PA
Higher height 04 0.6
Lower height 0.9 0.1
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might have also altered the results, color saturation being shown to influence predictions (Castro ef
al.,2019). Previous studies showed the importance of minimizing differences between smartphone
devices for improved results (Pichon et al., 2020). Thus, using the leaf counting model, future studies
should explore participatory sensing by testing a larger number of smartphones. This will improve
the understanding of the differences between devices and how distinct smartphone generations
influence results. Aside from the turbulence issue influencing the positioning of the leaves, drone
imagery is a potential solution for the future of plant phenotyping. While having a low PA, the MSE
was below one for both varieties and heights. All predictions indicated a maximum inaccuracy of
one leaf. Collecting data using drones inside greenhouses can therefore be a fast and reliable option.
Further research is required to obtain a general model for leaf counting. The kale dataset is
available at https://doi.org/10.5281/zenod0.4315437 under the Creative Commons Attribution 4.0
International license.

Conclusions

The current study proposed an online tool for plant phenotyping for non-expert users. This was
achieved through an integrative framework which has a web application at its center. Through this
application, farmers can process the data gathered through participatory sensing. Different plant
phenotyping models can be used within the framework, the tool currently running a leaf counting
model. A plant dataset was obtained for two purposes: training the network based on the Pheno-Deep
Counter architecture and releasing the dataset as a standalone resource for future research. A leaf
counting model was tested using mobile phone and drone imagery. The results showed potential for
data generalization. Finally, drone imagery could be used in tomorrow’s plant phenotyping, drones
potentially being a fast solution for data collection inside greenhouses.
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