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Abstract. Explainable machine learning and uncertainty quantification
have emerged as promising approaches to check the suitability and under-
stand the decision process of a data-driven model, to learn new insights
from data, but also to get more information about the quality of a specific
observation. In particular, heatmapping techniques that indicate the sen-
sitivity of image regions are routinely used in image analysis and interpre-
tation. In this paper, we consider a landmark-based approach to generate
heatmaps that help derive sensitivity and uncertainty information for an
application in marine science to support the monitoring of whales. Single
whale identification is important to monitor the migration of whales, to
avoid double counting of individuals and to reach more accurate popu-
lation estimates. Here, we specifically explore the use of fluke landmarks
learned as attention maps for local feature extraction and without other
supervision than the whale IDs. These individual fluke landmarks are
then used jointly to predict the whale ID. With this model, we use sev-
eral techniques to estimate the sensitivity and uncertainty as a function
of the consensus level and stability of localisation among the landmarks.
For our experiments, we use images of humpback whale flukes provided
by the Kaggle Challenge “Humpback Whale Identification” and compare
our results to those of a whale expert.
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1 Introduction

For many scientific disciplines, reliability and trust in a machine learning result
are of great importance, in addition to the prediction itself. Two key values that
can contribute significantly to this are the interpretability and the estimation of
uncertainty:

– An interpretation aims at the presentation of properties of a machine learn-
ing model (e.g., a decision process of a neural network) in a way that it is
understandable to a human [21]. One possibility to obtain an interpretation is
sensitivity analysis which provides information about how the models’ output
is affected by small or specifically chosen changes in the input [18].

– Uncertainty is the quantity of all possible changes in the output that result
from uncertainties already included in the data (aleatoric/data uncertainty)
or a lack of knowledge of the machine learning model (epistemic/model uncer-
tainty) [6].

Both uncertainty quantification and sensitivity analysis have become a broad
field of research in recent years, especially for developing methods to check the
suitability and to better understand the decision-making process of a data-driven
model [6,21,24]. However, so far, the two areas have usually been considered
separately, although a joint consideration has clear benefits, since the analysis
of sensitivity can often be considered as a part or first step towards uncertainty
quantification.

In this chapter, we will consider a use case from marine science to demon-
strate the usefulness of a joint use of sensitivity and uncertainty quantification
in landmark-based identification. In particular, we look at the identification of
whales by means of images of their fluke. Whale populations worldwide are
threatened by commercial whaling, global warming, and the struggle for food in
competition with the fishing industry [33]. A protection of whales is essentially
supported by the reconstruction of the spatio-temporal migration of whales,
which in turn is based on the (re)identification of whales. Individual whales
can be identified by the shape of their whale flukes and their unique pigmen-
tation [13]. Three features in particular play a crucial role for whale experts in
distinguishing between individual whales (see Fig. 1):

– Pigmentation-based features. These features correspond to coloured patches
on the fluke, forming unique patterns. They are very clearly visible to the
human eye. They can change significantly within the first few years of whale
life and in extremely cold water (for example, Antarctica, but also Greenland
and the North Atlantic). They may be partially obscured by heavy diatom
growth, characterized by a yellow-orange appearance of the fluke.

– Fluke shape. This feature is reliable and robust. The outer 20% of the tail may
become more distorted and change over time, but the inner 80% and V-notch
are reliable and stable. Although it is difficult to detect by the human eye, it
has proven to be very useful for machine learning-based approaches [14,15,25].
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Fig. 1. Important characteristics of a whale fluke.

– Scars. The surface of the fluke usually shows contrasting scars. However,
the contrast can vary greatly and the scars may change over time. Certain
scars grow with the whale, such as killer whale rake marks that form parallel
lines or barnacle marks that form circles. In addition, lighting conditions can
significantly affect the detectability of scars.

For whale monitoring, whale researchers often use geo-tagged photos with time
and location information to reconstruct activities. Since manual analysis is too
costly and thus a huge amount of data remained unused, current approaches
focus on machine learning [14,15,25].

Despite the accuracy observed in recent competitions [29], limited effort
has been devoted to actually quantify sensitivity in the prediction and identify
sources of uncertainty. We argue that uncertainty identification remains a cen-
tral topic requiring attention and propose a methodology based on landmarks
and their spatial sensitivity and uncertainty to answer a number of scientific
questions useful for experts in animal conservation. Specifically, we tackle the
following questions:

– Which parts of the fluke are more consistently useful to identify whales? A
whale fluke changes with time and therefore, characteristic features of a fluke
may no longer be present and therefore not visualized in the interpretation
tool results.

– Can landmarks together with uncertainty and sensitivity indicate the suit-
ability of images for identification? Suitability is influenced, for example, by
image quality, position, and size of the object, but also by the presence of
relevant features.

These goals are formulated from the perspective of whale research, but are
also intended to raise relevant questions from the perspective of machine learn-
ing, such as the usefulness of interpretation tools to improve models. In general,
the task of re-identifying objects or living beings from images and is a common
topic [2,16,26], and the approach and insights presented in this paper can also
be applied to similar tasks from other fields.
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2 Related Work

Self-explainable Deep Learning Models. Although the vast majority of
methods to improve the interpretability and explainability of deep learning mod-
els are designed to work post-hoc [19,28,32], i.e. the important parts of the input
are highlighted while the model itself remains unmodified, a few approaches aim
at modifying the model so that its inherent interpretability is enhanced, also
referred to as self-explainable models [23]. This has the advantage that the inter-
pretation is actually part of the inference process, rather than being computed a
posteriori by an auxiliary interpretation method, resolving potential trustworthi-
ness issues of post-hoc methods [22]. The visual interpretation can be obtained,
for example, by incorporating a global average pooling after the last convolu-
tional layer of the model [39] or by levering a spatial attention mechanism [36].
Our self-explainable method is inspired by [36] and [38], and learns a fixed set of
landmarks, along with their associated attention maps, in a weakly supervised
setting by only using class labels. To gain further insight, the landmarks can be
used for sensitivity analysis and uncertainty quantification.

Uncertainty Quantification. The field of uncertainty quantification has
gained new popularity in recent years, especially for determining the uncertainty
of complex models such as neural networks. In most applications, the predictive
uncertainty is of interest, i.e. the uncertainty that affects the estimation from
various sources of uncertainty, originating from the data itself (aleatoric uncer-
tainty) and arising from the model (model uncertainty). These sources are often
not negligible, especially in real-wold applications, and must be determined for a
comprehensive statement about the reliability and accuracy of the result. Several
works have been carried out such as [5,30], which explore Monte Carlo dropout or
quantify uncertainty analysing the softmax output of neural networks. [7,12,34]
give comprehensive overviews of the field, where [6] specifically focuses on the
applicability in real-world scenarios.

Sensitivity Analysis. This kind of analysis is usually considered in the context
of explainable machine learning. Here, a set input variables, such as pixel values
in an image region or a unit in some of the model’s intermediate representa-
tions [3,31], are perturbed, and the effect of such changes on the result is consid-
ered. This approach helps to understand the decision process and causes of uncer-
tainties, and to gain insights into salient features that can be spatial, temporal
or spectral. According to [21], sensitivity analysis approaches belong to inter-
pretation tools, as they transform complex aspects such as model behavior into
concepts understandable by a human [19,24]. Many approaches use heatmaps
that visualize the sensitivity of the output to perturbations of the input, the
attention map of the classifier model, or the importance of the features [11].
These tools are extremely helpful and have been used recently to infer new sci-
entific knowledge and discoveries and to improve the model [21,27,31]. Probably
the best known principle is study of the effects of masking selected regions of
the input, which is systematically applied in occlusion sensitivity maps [20]. For
more details, including specific types of interpretation and further implementa-
tion, we refer to recent studies [1,8,9].
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Sensitivity vs. Uncertainty. There are significant differences between the
analysis of uncertainties and sensitivity, and previous applications mostly con-
sider only one of the two. Sensitivity analysis focuses more on the input and
the effect of modifications on the predictions, while uncertainty quantification
focuses on the propagation of uncertainties in the model. Nevertheless, there
are also strong correlations, as shown in [18]. Sensitivity analysis, for example,
explores the causes and importance of specific uncertainties in the input data for
the decision, while uncertainty analysis describes the whole set of possible out-
comes. Both consider variations in the input and their influence on the output
to derive statements for decision-making. Our work is based on the preliminary
work of [14], in which occlusion sensitivity maps are created by systematically
covering individual areas in images of whale flukes in order to identify the char-
acteristic features of flukes for whale identification. Here, we propose to learn
a set of compact attention maps such that each specializes in the detection of
a fluke landmark. These learned landmarks are use to extend [14] by a com-
bined analysis of the sensitivity of the classification to each landmark and their
uncertainty.

3 Humpback Whale Data

3.1 Image Data

In this work, we use a set of humpback whale images from the Kaggle Challenge
“Humpback Whale Identification”. More specifically, we process their tails, called
flukes (see Fig. 1). The data set consists of more than 67.000 images, in which
10.008 different whale individuals, i.e., 10.008 different classes, are represented.
We pruned the dataset and used only the 1.646 classes that contained three or
more images in the training set of the challenge. For our experiments, we restrict
ourselves to use images in the training set because the test set does not provide
reference information, as it is generally the case for Kaggle challenges. We split
the images into a training set Xtrain = {x1, . . . ,xN} (9.408 images) and a test
set Xtest = {x1, . . . ,xT } (1.646 images, or one per class, i.e. a specific whale
individual). The number of images per set is given by N and T , respectively.
The set Xc = {x1, . . . ,xR} describes a subset that includes R images for one
specific class c.

3.2 Expert Annotations

A domain expert participated to the study and provided human annotation of
remarkable features helping in the discrimination of the whale individuals. For
each annotation the expert was provided with a pair of images and asked to
mark a set of features helping in discriminating whether the images were of
the same individual or not. Three features are generally used by the expert (per-
sonal communication), who therefore provided three features per image analysed.
Some examples are shown in Fig. 5a.
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4 Methods

4.1 Landmark-Based Identification Framework

Fig. 2. Given the image of a fluke, we extract the feature tensor Z using a CNN. A set
of compact attention maps A, excluding a background map, is then used to extract
localized features from Z. These features are then averaged and used for classification
into C classes, each corresponding to an individual whale.

We propose to learn a set of discriminant landmarks for whale identification such
that the model uses evidence from each one separately in order to solve the task.
The rationale behind this approach is twofold:

1. Each landmark will gather evidence from a different region of the image,
effectively resulting in an ensemble of diverse classifiers, each using a different
subset of the data. This independence between the different classifiers provides
an improved uncertainty estimation.

2. Since landmarks are trained to attend to a small region of the image, it
becomes very easy to visualize where the evidence is coming from with no
further computation, thus inherently providing an enhanced level of inter-
pretability.

In order to learn to detect informative landmarks without further supervi-
sion than the whale ID, we use an approach inspired by [38]. Likewise, we aim at
learning to detect a fixed set of keypoints in the image to establish at which loca-
tions landmarks are to be extracted. Unlike [38], we do not use an hourglass-type
architecture, but a standard classification CNN with a reduced downsampling
rate in order to allow for a better spatial resolution. Another major difference
is that we do not use any reconstruction loss and therefore need no decoding
elements.
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Given an image X ∈ R
3×MD×ND and a CNN with a downsampling factor

D, the H-channel tensor resulting from applying the CNN to X is:

Z = CNN(X; θ) ∈ R
H×M×N . (1)

We obtain the K + 1 attention maps, representing the K keypoints and
the background, by applying a linear layer to each location of Z, which is
equivalent to a 1 × 1 convolutional filter parametrized by the weight matrix
Wattn ∈ R

H×(K+1), followed by a channel-wise softmax:

A = softmax(Z ∗ Wattn) ∈ R
(K+1)×M×N . (2)

Each attention map Ak, except for the (K + 1)th, which captures the back-
ground, is applied to the tensor Z in order to obtain the corresponding landmark
vector:

lk =
M∑

u=1

N∑

v=1

Ak(u, v)Z(u, v) ∈ R
H . (3)

Each landmark lk undergoes a linear operation in order to generate the C
classification scores, where C is the total number of classes, associated to it:

yk = lkWclass ∈ R
C . (4)

We apply different losses to the classification scores y, the landmark feature
vectors l and the attention maps A. For the classification scores, we use a cross-
entropy loss, providing the only gradients for learning the weights of the linear
operator Wclass ∈ R

H×C :

Lclass(y, c) = − log
( exp(y(c))

exp(
∑

i y(i))

)
(5)

In addition, we make sure that landmark vectors are similar across images of
the same individual. We use a triplet loss for each landmark k, which is computed
on the landmark vector lak, used as anchor in the triplet loss, a positive vector
from the corresponding landmark stemming from an image of the same class, lpk,
and a negative one from a different class lnk :

Ltriplet(lak, l
p
k, l

n
k ) = max(‖lak − lpk‖2 − ‖lak − lnk‖2 + 1, 0) (6)

Regarding the losses applied to the landmark attention maps, which have
the role of ensuring learning a good set of keypoints for landmark extraction, we
apply two losses:

Lconc(A) =
∑K

k=1 σ2
u(Ak) + σ2

v(Ak)
K

, (7)

which aims at encouraging each attention map to be concentrated around its
center of mass by minimizing the variances of each attention map, σ2

u(Ak) and
σ2
v(Ak), across both spatial dimensions and
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Lmax(A) =
∑K

k=1 1 − max(Ak)
K

, (8)

which ensures that all landmarks are present in each image.
These four losses are combined as a weighted sum to obtain the final loss:

L = λclassLclass + λtripletLtriplet + λconcLconc + λmaxLmax, (9)

where λclass, λtriplet, λconc are scalar hyperparameters.

4.2 Uncertainty and Sensitivity Analysis

Patch-Based Occlusion Sensitivity Maps. Determining occlusion sensitiv-
ity maps is a strategy developed by [37] to evaluate the sensitivity of a trained
model to partial occlusions in an input image. The maps visualize which regions
contribute positively and which contribute negatively to the result. The approach
is to systematically mask different regions for a given input image, choosing a
rectangular patch in our case. Two parameters, namely patch size p and step
size, are chosen by the user, and the choice affects the result in terms of preci-
sion and smoothness. In the area around position u occluded by the patch, the
pixel-wise results of the classifier for each class are compared with the results
obtained after part of the image was occluded. For the expected class c, the score
s is predicted for the corresponding position u of the patch. The difference δscu
is given by.

δscu = sc - s̃cu (10)

where the original predicted score for each class is denoted by sc and the pre-
dicted score based on occlusion is given by s̃cu. Performing this for the entire
image yields a heat map of occlusion sensitivity.

Landmark-Based Sensitivity Analysis. Similarly to the patch-based occlu-
sion sensitivity maps presented previously, landmark-based sensitivity analysis
eliminates individual landmarks, by setting all the elements in the corresponding
feature vector lk to zero, in order to analyze their effect on the output, allowing
to understand the impact that each landmark has on the final score. In addition
to this, we also measure the impact that removing a landmark has on the accu-
racy across the validation set. In both cases, the same landmark k is removed
for all images in the test, thus preventing it from contributing to the final score.
This allows us to probe the importance of each landmark across the whole test
set.

Landmark-Based Uncertainty Analysis. Due to occlusions, unreliable fluke
features or wrongly placed landmarks, different groups of landmarks in the same
image may provide evidence for conflicting outputs. Similarly, each individual
landmark detector may receive conflicting signals from the previous layer about
where to place the landmark on the image. This disagreement can be used to
In order to measure this disagreement, we perform two experiments applying
different types of Monte Carlo dropout (i.e. test time dropout) to the landmarks.
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Class Uncertainty Through Whole Landmark Dropout. We randomly choose half
of the landmarks and use them to obtain a class prediction yr. We perform this
operation R times to obtain a collection of class predictions R = {y1, . . . , yR}.
The agreement score a is then computed as the proportion of random draws that
output the most frequently predicted class:

a =
1
R

R∑

r=1

[yr = mode(R)]. (11)

Landmark Spatial Uncertainty Through Feature Dropout. In this case we apply
standard dropout to the feature tensor Z, thus perturbing the landmark atten-
tion maps A. Landmarks that have not been reliably detected will be more
sensitive to these perturbations, resulting in higher spatial uncertainty.

5 Experiments and Results

Our experiments address landmark detection focusing on the uncertainty and
sensitivity of landmarks, and compare to previous results from patch-based
occlusion sensitivity maps from [14] by means of whale identification. Further-
more, the landmarks and occlusion sensitivity maps are compared to the domain
knowledge of an expert.

Our method allows to easily reach conclusions at both the dataset level and
the image level. For one particular image, due to the spatial compactness of
the landmark attention maps, we can visualize the contribution of each land-
mark to the final classification score. In addition, the fact that each landmark
tends to focus on the same fluke features across images allows us to analyze the
importance of each landmark at the dataset level.

5.1 Experimental Setup

We use a modified classification CNN, a ResNet-18 [10], with reduced downsam-
pling, by a factor of four, in order to preserve better spatial details. For the final
loss we used the same weight for each of the sub-losses λtriplet = λconc = λmax =
λclass = 1. We use Adam as an optimizer, with the ResNet-18 model starting
with a learning rate of 10−4, while Wattn and Wclass are optimized starting with
a learning rate of 10−2. After every epoch, the learning rates are divided by 2
if the validation accuracy decreases. No image pre-processing is used. The top-1
accuracy reaches 86% on the held-out validation set. For comparison, we trained
the same base model without the attention mechanism, obtaining an accuracy of
82%, showing that the landmark-based attention mechanism does not penalize
the model’s performance.

For comparison, we use our previously computed occlusion sensitivity maps
presented in [14], which were based on the data and scores of the classification
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framework of the second winner solution1 of the Kaggle Challenge. For pre-
processing, the framework applies two steps to the raw image. First, the chosen
framework automatically performs image cropping in order to reduce the image
content to the fluke of the whale. The cropped images are resized to an uniform
size of 256 px × 512 px. In the second step, the framework performs standard-
normalization on the input images. The architecture is based on ResNet-101 [10]
utilizing triplet loss [35], ArcFace loss [4], and focal loss [17]. With this model,
we reach a top-5 accuracy of 94.2%.

5.2 Uncertainty and Sensitivity Analysis of the Landmarks

Fig. 3. Left: Average score and standard deviation by randomly selecting an increas-
ing number of landmarks. Right: Expected accuracy as a function of two different
confidence scores: the highest class score after softmax, and the agreement between
100 landmark dropout runs.

Figure 3 (left) shows the uncertainty of the predicted score, i.e. how much the
result score varies when a certain number of landmarks is used. It can be seen
that the uncertainty becomes smaller the more landmarks are used. The reason
for this is that usually several features are used for identification - by the domain
expert as well as by the neural network - and with increasing number of land-
marks the possibility to cover several features increases. Figure 3 (right) displays
the expected accuracy for varying levels of confidence estimates. We compare
two estimates: the maximum softmax loss, in blue, and the agreement between
100 runs of MC landmark dropout with a dropout rate of 0.5, in orange. We can
see that the latter follows more closely the behaviour of an ideally calibrated
estimate (dashed line).

1 2nd place: https://github.com/SeuTao/Humpback-Whale-Identification-Challenge-
2019 2nd palce solution.

https://github.com/SeuTao/Humpback-Whale-Identification-Challenge-2019_2nd_palce_solution
https://github.com/SeuTao/Humpback-Whale-Identification-Challenge-2019_2nd_palce_solution
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Fig. 4. Top: Average sensitivity heatmap rendered on the landmark locations of one
image, representing the average reduction in the score of the correct class after removing
each landmark. Bottom: Average loss in accuracy, in percent points, after removing
each landmark. Photo CC BY-NC 4.0 John Calambokidis.

5.3 Heatmapping Results and Comparison with Whale Expert
Knowledge

Figure 4 shows the mean landmark sensitivity (top), as well as the loss of accu-
racy after removing landmarks (bottom), calculated over the complete data set.
When compared to the landmarks near the fluke tips, it can be seen that the
landmarks near the notch change the score the most, and flip the classification
towards the correct class the most often. This is consistent with the fact that
the interior of a fluke changes rather little over time, while the fluke tips can
change significantly over time. Also, the pose and activity of the whale when
the images are captured might explain this behavior. It is worth noting that all
the attention is concentrated along the trailing edge of the fluke. This may be
due to the fact that it is the area of the fluke that is most reliably visible in the
images, since the leading edge tends to be under water in a number of photos.

In the following, we examine the landmark-based and patch-based tools in
terms of the features considered as important by the whale expert on individual
images. We show the results on two pairs of images such that each pair belongs
to the same individual. Figure 5a highlights the main areas the expert focused
on in order to conclude whether they do belong to the same individual or not
after inspecting both images side-to-side. Note the tendency of the expert of
annotating just a small number of compact regions.

The heatmaps obtained using patch-based occlusion are shown in Fig. 5b.
Although the fluke itself is recognised as being important to the classification,
no particular area is highlighted, except for one case where the whole trailing
edge appears to be important. In addition, some regions outside of the fluke
seem to have a negative sensitivity, pointing at the possibility of an artifact
in the dataset that is being used by the model. This was observed in previous
publications [14], where authors concluded that patch-based occlusion was using
the shape of the entire fluke, rather than specific, localised patterns.

The results of the landmark-based approach, in Fig. 5c, show more expert-
like heatmaps, with the evidence for and against a match always located on the
fluke and generally around the trailing edge and close to the notch. In each case,
only a few small regions are responsible for the evidence in favor of assigning
each pair to the same individual. However, although both the expert and the
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(a) Expert annotations (b) Occlusion-based (c) Landmark-based

Fig. 5. Heatmaps of attribution. Dark blue/red areas highlight the regions that are
estimated to provide evidence for/against the match. The top two pairs are matching
pairs (same individual) while the bottom one is not a match. (Color figure online)

landmark-based method have a tendency of pointing at the same general areas
around the trailing edge with compact highlights, we do not observe a consistent
overlap with the expert annotated images. This may be due to constraints in both
the expert and the landmark-based highlights. Unlike the expert, the landmark-
based approach tends to focus, by design, in the areas of the fluke that are most
reliably visible. The expert, on the other hand, explores all visible fluke features
and highlights them in a non-exhaustive manner. On the top image pair, a region
that is also annotated by the expert on the left fluke provides most of the positive
evidence, but a feature close to the leading edge is ignored. This is probably due
to the model learning that the leading edge is less reliable, since it is under water
in a large number of photos. On the middle pair, the area to the left of notch
is assigned a negative sensitivity while being annotated as important by the
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Fig. 6. Spatial uncertainty of each landmark on different whales determined by means
of 500 dropout runs on the feature tensor Z. Each disk represents the location of
a landmark in one run and each of the ten landmarks is colored consistently across
images. Top: The test images with the lowest uncertainty. Bottom: The test images
with the highest uncertainty. (Color figure online)

expert. On the bottom pair we see that only the landmarks closest to the notch
are used by the model to decide that the images do indeed belong to different
individuals, while the expert has also annotated a region close to the fluke tip,
which the landmark-based model systematically ignores, likely due to the fact,
as with the leading edge, that the tips are less reliably visible in the images.

5.4 Spatial Uncertainty of Individual Landmarks

The visualizations in Fig. 6 display the six images in the test set with the lowest
and with the highest uncertainty, each on a different individual. The colored
disks represent the positions of each landmark across 500 random application
of dropout, with a dropout probability of 0.5, to the feature tensor Z. The col-
ors are consistent (e.g. landmark 5, as seen in Fig. 4 is always represented in
dark blue). The top rows tend to contain images with clearly visible flukes in
a canonical pose. As we can see, the detected keypoints do behave as land-
marks, each specializing in a particular part of the fluke, even if no particu-
lar element of the loss was designed to explicitly promote this behaviour. The
bottom rows contain images with either substantial occlusions or uncommon
poses. This shows how the spatial uncertainty uncovered by MC dropout can be
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used to detect unreliably located landmarks, which in turn can be used to find
images with problematic poses and occlusions that are likely to be unsuitable for
identification.

6 Conclusion and Outlook

In this work, we explore the use of landmark detection learning using only class
labels (i.e. whale identities) and apply it to gain insights into which fluke parts are
relevant to the model’s decision in the context of cetacean individual identifica-
tion. Our experiments show that, compared to patch-based occlusion mapping,
our approach highlights regions in the images that are systematically located
along the central part of the trailing edge of the fluke, which is the part most
reliably visible in the images. At the same time, the landmarks highlight com-
pact regions that are much more expert-like than the baseline OSM heatmaps.
In addition, we show that the agreement of random subsets of the landmarks is
a better estimate of the expected error rate than the softmax score. However,
there seems to be little agreement between the specific regions chosen by the
expert and the landmark-based highlights.

The use of landmarks makes it easy to match them across images, since each
landmark develops a tendency to specialize on a particular region of the fluke.
This allowed us to study their average importance for the whole validation set,
leading us to conclude that the areas of the trailing edge right next to the notch
tend to be the most relied upon. This is probably due to the to the higher
temporal stability of the region around the notch, which is less exposed and
thus less likely to develop scars, and to the fact that the trailing edge is the
part of the fluke most often visible in the photos. Is also worth noting that the
proposed method is inherently interpretable, thus not only guaranteeing that the
generated heatmaps are relevant to the model’s decision, but also doing so at a
negligible computational cost, requiring to perform inference once and not using
any gradient information. In addition, the accuracy obtained is noticeably higher
than a model with the same base architecture but no attention mechanism.

In spite of these advantages, we also observed an inherent limitation of the
method when compared to the expert annotations. Our landmark-based model
requires to find all landmarks on each image, resulting in a tendency to only
focus on the areas of the fluke that are most reliably visible and discarding those
that are often occluded, such as the tips and the leading edge. Designing a model
that is free to detect a varying number of landmarks is a potential path towards
even more expert-like explanations.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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