WAGENINGEN

UNIVERSITY & RESEARCH

Making Licensing of Content and Data Explicit with Semantics and Blockchain

Information Management and Big Data - 8th Annual International Conference, SIMBig 2021, Proceedings
Gatta, David; Hinteregger, Kilian; Fensel, Anna
https://doi.org/10.1007/978-3-031-04447-2_25

This publication is made publicly available in the institutional repository of Wageningen University and Research, under
the terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne. This has been done with
explicit consent by the author.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is
entitled to make that work publicly available for no consideration following a reasonable period of time after the work was
first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa
implementation’ project. In this project research outputs of researchers employed by Dutch Universities that comply with the
legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online publication in the original
published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and / or
copyright owner(s) of this work. Any use of the publication or parts of it other than authorised under article 25fa of the
Dutch Copyright act is prohibited. Wageningen University & Research and the author(s) of this publication shall not be
held responsible or liable for any damages resulting from your (re)use of this publication.

For questions regarding the public availability of this publication please contact openscience.library@wur.nl

https://doi.org/10.1007/978-3-031-04447-2_25
mailto:openscience.library@wur.nl

)

Check for
updates

Making Licensing of Content and Data Explicit
with Semantics and Blockchain

David Gatta!, Kilian Hinteregger!, and Anna Fensel >
1 Department of Computer Science, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck,
Austria
{David.Gatta,kilian.hinteregger}@student.uibk.ac.at
2 Wageningen Data Competence Center and Consumption and Healthy Lifestyles Chair Group,
Wageningen University and Research, 6708 PB Wageningen, The Netherlands
anna. fensel@wur.nl

Abstract. Creation and reuse of content and data are on the rise. Tracing of
who, when and how has created and modified content and data in an explicit
manner becomes paramount for transparent, explainable, efficient and fair digital
ecosystems. We specifically address a challenge that there is currently no uni-
form method to link data and content with licenses explicitly, immutably and in
a traceable way (with authentication). Thus we have created a blockchain-based
method which makes it possible to attach semantic licenses with data and content.
Ethereum and the Data Licenses and Clearance Center - “DALICC”, a software
framework for automated clearance of rights, are used as a bases for our pro-
totype implementation for the license annotation (see: https://github.com/kilian
hnt/dalicc-license-annotator). Particular care is taken to ensure that the solution
remains generic. Its practical feasibility, such as compliance with requirements,
particularly, authentication, affordable deployment and usage costs, is positively
evaluated.

Keywords: Data - Content - Licenses - Semantics - Immutability - Blockchain -
Etherium

1 Introduction

Creation of derivative data works is often accompanied by legal uncertainty about usage
rights and high costs in the clearance of licensing issues. As one of the solutions to
lower the costs of rights clearance and stimulating the data economy, the Data Licenses
Clearance Center - DALICC project [1] has developed a software framework that sup-
ports automated clearance of rights issues in the creation of derivative data works. The
solution is based on semantic technology, to ensure explicitness in license representation
and decision making processes.

This paper addresses a further challenge, namely, that currently there is no uniform
method to link data and content with licenses in an explicit and traceable manner. Cur-
rently license information is often only available as a human-readable text, but in our
digitized world, it would be advantageous if computers could also read and interpret the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. A. Lossio-Ventura et al. (Eds.): SIMBig 2021, CCIS 1577, pp. 370-379, 2022.
https://doi.org/10.1007/978-3-031-04447-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04447-2_25&domain=pdf
http://orcid.org/0000-0002-1391-7104
https://github.com/kilianhnt/dalicc-license-annotator
https://doi.org/10.1007/978-3-031-04447-2_25

Making Licensing of Content and Data Explicit with Semantics and Blockchain 371

rights granted in order to clear license issues quickly, as enabled by DALICC. However,
DALICC, solutions on which it is built (such as ODRL, that can be also used to make
license information explicit [2]) and other potentially relevant solutions (such as PROV-
O [3] and SOLID [4], for assisting people to define how their data are managed) are not
providing a possibility to link assign semantic licenses to owners in an immutable and
traceable manner. The latter, however, is possible to make on blockchain, in a practical
manner for tracing the ownership and right information of primary and derivative works.
Therefore, this work aims to find such appropriate method to attach semantic licenses to
data and content. To achieve this, an approach with a blockchain was chosen to design
the entire system in a decentralized and therefore trustworthy manner. Inherent trace-
ability of a blockchain is especially important for the use cases such as content and data
creation and reuse. Specifically, the Ethereum platform was chosen for the implemen-
tation, because it is one of the most popular platforms for decentralized applications in
the world [5].

The paper is structured as follows. The problem statement, our approach with func-
tional and non-functional requirements are discussed in the next section. Further, the
implementation section explains the chosen technologies and provides details about
backend and frontend of the implementation. Finally, the evaluation and the conclusion
sections conclude the paper.

2 Problem Statement

DALICC helps to determine which content and data can be shared with whom to what
extent under which conditions. There is yet currently no standardized way to license
digital content to allow both - machines and humans - to read and interpret the rights
granted. In this section, we discuss the requirements of an application that can address
this problem, continuing with the description of the technologies we chose to realize a
prototype of the application and finally our implementation and evaluation.

2.1 Functional Requirements

The following functional requirements are placed on the application to meet the given
problem by us. An unauthenticated user is a user who does not have any credentials.
Hence, an unauthenticated user must not be signed in to make some actions. In contrast,
an authenticated user is a user who has confirmed his/her identity so that each of his/her
actions can be assigned to him/her. A licensor is an authenticated user who has already
licensed data or content and is only referred to as the licensor in the context of these
data or content. The requirements, that relate to the basic functions of the solution, are
as follows (see also Fig. 1):

An authenticated user must be able to license a file.

The licensor of a specific file must be able to change the license of the file.

An authenticated user must be able to license the content of a URL

The licensor of a specific URI must be able to change the license of the URI.

An unauthenticated user must be able to get the license information associated with
a specific file.

372 D. Gatta et al.

e An unauthenticated user must be able to get the license information associated with
a specific URL

2.2 Non-functional Requirements

In addition to the above mentioned functional requirements, the application must meet
additional non-functional requirements. These are provided to ensure that the application
has a certain level of security and trustfulness:

e There must be no authority that can act independently and can falsify license
information, i.e. the representation of the licensor and the representation of the license.

e The license information must be publicly stored somewhere, so that anyone can see
it.

e The license information must be secured so that no one can change it, except the
licensor itself.

e To save storage, only a unique reference of the licensed data should be stored and not
the entire data.

e The licenses should be represented by a reference to a license in the DALICC License
Library [6].

e The whole licensing process should cost acceptably for the users (e.g. less than
1€) to ensure a realistic and practical solution for different industries (e.g. creative
industries).

retrieve license information of a file

o

authenticated user

X

licensor

o

unauthenticated user

retrive license information of an URI

Fig. 1. Functional requirements visualized using a use-case diagram.

3 Implementation

The source code of the implemented application, as it is detailed further, is published
openly on GitHub [7].

Making Licensing of Content and Data Explicit with Semantics and Blockchain 373

3.1 Technology Choices

According to Antonopoulos and Wood [8], a DApp is an application that is mostly
or entirely decentralized. Additionally, a DApp has no downtime and is continuously
available as long as the decentralized platform, which the application is using to provide
the service, is operating. Thus DApp is well suited for the backend of the application.
The application is mostly implemented using HTML, CSS and JavaScript.

Ethereum is a platform for building decentralized applications [9, 10]. It combines
the blockchain technology, introduced by Nakamoto [11] and a Turing-complete pro-
gramming language, to make it possible to execute computer programs called smart
contracts. These properties of the Ethereum network make it a solid base to meet the
application requirements.

The SHA-3 family consists of four cryptographic hash functions and was released
by the National Institute of Standards and Technology (NIST) in 2015 after nine years of
research [12, 13]. This hash algorithm is well suited for this application and its application
Vue. js, CryptoJS, web3.js, Bignumber.js and Axios are used from javascript libraries.

3.2 Backend and Frontend

Backend Logic. The backend logic of the application is built on top of the Ethereum
Platform. It is split up in three smart contracts, and is visualized in Fig. 2.

_
LICENSE
MANAGER ‘ LICENSE
N4
\ ethereum /
CORE
LICENSE

fie

Fig. 2. Simplified visualisation of the smart contracts and their relations.

The components are interacting as follows when performing their core functions:

e Creation of the Core-License contract. Once the Core-License Contract is created, it
also creates the License-Manager contract. The constructor of the License-Manager
contract is called and as the parameter, the address of the Core-License contract is
passed. This address later serves to check whether the call comes from the Core-
License contract or not.

e Licensing some data or content. To license some data first the SHA3-256 hash of
these data must be calculated. Then the function licenseData (uint hashValue, string
memory licenseUri) of the Core-License contract must be called, which takes the
hash value of the data as the first parameter and the URI of a license as the second
parameter.

374 D. Gatta et al.

e Changing the license of some data or content. Changing the license of certain data
can be done in the same way as described in the previous step. It should be noted that
only the licensor itself can change the license.

Frontend. The frontend of the application was realized as mentioned above as a web
application using Vue.js. The connections between the technologies are as follows
web3.js is used to communicate with the Ethereum backend. The backend is set up
before the application is published and the address of the Core License contract gets
inserted into the slot provided in the code of the frontend. Bignumber.js is used to work
with the hash values created by CryptoJS and to submit them to the backend using
web3.js. The license titles and URD’s get retrieved using an AJAX request from the
DALICC License Library. In Fig. 3 we can see a simplified overview of the interactions
between the frontend and the backend when a user licenses a file.

%
User t
select to license a file |
and selectalicense 7| :
o |
|
|

Upload file |

retrieve license information

license information

license information and
<

submitted data

confirm submitted data i
license file - wussnl ge!
licensor or file
oK oK has no license
< : ”
A o monmmmnn s ik information

————

Fig. 3. Simplified sequence diagram for licensing a file.

The workflow for using the solution is as follows. To license a file or retrieve its
license information, the user is guided through various steps. First, the user is prompted
to choose if he/she wants to license content (step 1, 2 and 3), named as “license your
work”, or to retrieve license information about content (step 1 and 2), named as “retrieve
license information”, as shown in Fig. 4. This selection is made by clicking on the
respective button. Subsequently, he/she has to follow these steps:

1. The user gets asked to choose whether he/she want license an URI or a file. If the user
wants to license a URI or a file, then he/she can select a license from the DALICC
License Library using an autocomplete combobox. The licenses are loaded from the
DALICC License Library with an AJAX request. If the DALICC License Library
is not reachable, the user gets displayed a warning and a predefined collection of
licenses from the DALICC License Library. If the user only wants to retrieve the
license information, the licenses do not get retrieved from the DALICC license
library and the user cannot select a license.

Making Licensing of Content and Data Explicit with Semantics and Blockchain 375

2. In this step, the user must enter a URI in a text box or select a file using a file input
field. Subsequently, he/she confirms his/her request by pressing a button. Then the
SHA3-256 hash value of the URI or the file content is calculated which is used to
retrieve the license information from the backend. To require no authentication and
thus, a DApp able browser, the web3 provider Infura [14] is used. Now the license
information is displayed to the user if it exists. If the user is the licensor or if the
content is not already licensed then the user can continue with step 3. Otherwise, the
user cannot continue with the process. To check if the user is the licensor the address
given in the injected web3 API is compared with the licensors address retrieved from
the backend.

3. Start licensing: in the last step the user can check his/her submitted data and then
he/she can confirm and start the process by pressing the “start licensing” button. The
SHA3-256 hash value is calculated and passed by the contract to the web3 Javascript
interface. Depending on the user’s DApp Browser, he/she receives a notification
about the incoming transaction which he/she has to confirm. If he/she confirms the
transaction, in our application the returned hash is displayed.

Py DALICC
CC BACKEND v LICENSE ANNOTATOR
e-hereum

\4

FRONTEND

Fig. 4. Frontend positioning and entry page (licensing and license retrieval).

4 Evaluation

Building the application as a decentralized application on top of the Ethereum platform
helped to meet the TRADE principles from the FAIR TRADE Framework [15]. Here, the
property “Autonomous” of the FAIR TRADE Principle is not fully fulfilled, because the
data in the blockchain is immutable and cannot be deleted. The blockchain is distributed
and published all over the world and thus the data saved there can be accessed globally
by anyone [8]. Since the only information that gets saved in the Ethereum network is
the Ethereum address of a licensor, the hash value of the licensed data and the URI of a
license, it does not get in conflict with the requirements. The licensor still has the choice
of whether to remain anonymous behind the Ethereum address or indicate that he/she is
the licensor.
Moreover, there are five cases, where the cost differs:

376 D. Gatta et al.

1) Deploying of the smart contract system, which has to be done only once.

2) License data or content when the smart contract for the license was not already
created.

3) License data or content when the smart contract for the license was already created.

4) Modifying the license of some data or content when the smart contract for the new
license was not already created.

5) Modifying the license of some data or content when the smart contract for the new
license was already created.

These five cases were tested using the Rinkeby test network [16], an Ethereum test
network that simulates the conditions of the main Ethereum network, so that developers
can test their smart contracts for free, approaching the real life deployment settings. We
have received the following results:

1. The smart contract system was deployed three times and each time the Gas (refers
to the fee, or pricing value, required for the execution of code on the Ethereum
platform) used was 1521249.

2. This case was tested five times with the results shown in Table 1.

Table 1. Gas costs for licensing where the license contract does not exist.

License URI Hash value | Gas used
1 609177
https://www.dalicc.net/license-library /GnuFreeDocumentationLicense 2 609081
https://www.dalicc.net/license-library /BSD-4 3 587853
4
5

https://www.dalicc.net/license-library/ CreativeCommonsAttribution20 Austria

https://www.dalicc.net/license-library/ GNU_GPL._v3 587913
https://www.dalicc.net/license-library/MIT 587829

3. Also this case was tested five times with the results shown in Table 2.

Table 2. Gas costs for licensing where the license contract exists.

License URI Hash value | Gas used
https://www.dalicc.net/license-library /CreativeCommonsAttribution20Austria 10 78788
https://www.dalicc.net/license-library / GnuFreeDocumentationLicense 11 78692
https://www.dalicc.net/license-library /BSD-4 12 77782
https://www.dalicc.net/license-library/GNU_GPL_v3 13 77842
https://www.dalicc.net/license-library /MIT 14 77758

4. This case was tested five times with the results shown in Table 3.

Making Licensing of Content and Data Explicit with Semantics and Blockchain 377

Table 3. Gas costs for modifying the license of some data where the new license contract does
not exist.

License URI Hash value | Gas used
https://www.dalicc.net /license-library/Cc010Universal 10 570487
https://www.dalicc.net /license-library/OdcOpenDatabaseLicense 11 570583
https://www.dalicc.net /license-library/TheZlibLibpngLicense 12 570559
https://www.dalicc.net /license-library / Wtfpl 13 570379
https://www.dalicc.net /license-library/EclipsePublicLicense20 14 570583

5. This case was tested five times with the results shown in Table 4.

Table 4. Gas costs for modifying the license of some data where the new license contract already
exists.

License URI Hash value | Gas used
https://www.dalicc.net/license-library /MIT 10 60284
https://www.dalicc.net/license-library/CreativeCommonsAttribution20 Austria 11 61314
https://www.dalicc.net/license-library/ GNU_GPL_v3 12 60368
https://www.dalicc.net /license-library /BSD-4 13 60308
https://www.dalicc.net /license-library /GnuFreeDocumentationLicense 14 61218

Assuming a Gas price of 3 Gwei and assuming that 1 Ether has a value of 111
Euro, we get the prices shown in Table 5. Those results show us that we can expect that
the cost will be acceptable for businesses (under 1€) and therefore, the non-functional
requirements are met.

Table 5. Prices for interaction with the smart contract system.

Action Price
Deploying contract 0.50657€
Licensing data with not existing license contract around 0.20€
Licensing data with existing license contract around 0.03€
Modifying License of data with not existing license contract | around 0.20€
Modifying License of data with existing license contract around 0.02€

Finally, we must check if the implemented application also meets the functional
requirements. Confirming these, we have ensured that the licensing attachment pro-
cesses through the app are executable, in a user-friendly manner. As described in the
implementation of the frontend, the user has the option of specifying a URI or selecting

378 D. Gatta et al.

a file, then retrieving the license information of the data, licensing the data or changing
the license of the data, if he/she is allowed to. Since Infura is used as a web3 provider
to retrieve the license information, the user does not need a DApp-enabled browser and
hence, does not need to authenticate for retrieving license information. Now also the
functional requirements have been met, so all the requirements that have been placed on
the application are met.

5 Conclusion

A solution to explicitly attach licenses to data and content has been created and published
as an open source, basing on the DALICC License Library. For this purpose, an app-
roach using the Ethereum platform was designed and implemented to keep the system
trusted, autonomous, distributed and decentralized. Thus, a licensing system has been
created which preserves the integrity of the license information and also provides a high
availability of that information. We also paid attention to usability during the implemen-
tation and tried to keep the learning curve flat. To do this, the user is guided through
the licensing process step by step and unnecessary steps have been automated. We have
also evaluated the costs for the user, identifying them as being acceptable for typical
possible usage purposes. One limitation here is that we evaluated the simplest scenar-
ios (one-step processes of license management): in more elaborated real life settings it
would be necessary to study aggregated costs of multiple transactions (modifications
of licensing, multiple files, etc.) typical of data publication scenarios. Further investi-
gations may address the integration of the solution into practical settings, e.g. defining
the authorities set up managing such traceable explicit licensing, as well as associated
workflows and responsibilities. This may vary from domain to domain, and handled
differently in different cases: some may be more centralized (e.g. insurance data, with
few parties) and some more distributed (e.g. smart cities, with multiple parties).

Acknowledgements. This work is supported by the smashHit European Union project funded
under Horizon 2020 (grant number: 871477) and by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) DALICC project (grant number: 855396).

References

1. Pellegrini, T., Mireles, V., Steyskal, S., Panasiuk, O., Fensel, A., Kirrane, S.: Automated rights
clearance using semantic web technologies: the DALICC framework. In: Hoppe, T., Humm,
B., Reibold, A. (eds.) Semantic Applications, pp. 203-218. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-662-55433-3_14. DALICC project: www.dalicc.net

2. Steyskal, S., Polleres, A.: Defining expressive access policies for linked data using the ODRL
ontology 2.0. In: Proceedings of the 10th International Conference on Semantic Systems,
pp- 20-23 (2014)

3. Lebo, T., et al.: PROV-O: the PROV ontology. W3C Recommendation (2013)

4. Buyle, R., et al.: Streamlining governmental processes by putting citizens in control of their
personal data. In: Chugunov, A., Khodachek, 1., Misnikov, Y., Trutnev, D. (eds.) EGOSE
2019. CCIS, vol. 1135, pp. 346-359. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-39296-3_26

https://doi.org/10.1007/978-3-662-55433-3_14
http://www.dalicc.net
https://doi.org/10.1007/978-3-030-39296-3_26

10.

11.
12.

13.
14.
15.

16.

Making Licensing of Content and Data Explicit with Semantics and Blockchain 379

ADApp Statistics. https://www.stateofthedapps.com/stats

Panasiuk, O., Steyskal, S., Havur, G., Fensel, A., Kirrane, S.: Modeling and reasoning over
data licenses. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 218-222.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-5_41

DALICC License Annotator. https://github.com/kilianhnt/dalicc-license-annotator
Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts and DAPPs.
O’Reilly Media, Newton (2018)

Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project
Yellow Paper 151(2014), 1-32 (2014)

Buterin, V.: A next-generation smart contract and decentralized application platform. White
paper 3.37 (2014). https://github.com/ethereum/wiki/wiki/White-Paper

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

Dworkin, M.J.: Sha-3 standard: permutation-based hash and extendable-output functions.
Technical report (2015)

NIST: NIST releases Sha-3 cryptographic hash standard (2015). https://www.nist.gov/news-
events/news/2015/08/nist-releases-sha-3-cryptographic-hash-standard

Infura. https://infura.io

Domingue, J., Third, A., Ramachandran, M.: The fair trade framework for assessing decen-
tralised data solutions. In: Companion Proceedings of the 2019 World Wide Web Conference,
pp. 866-882. ACM (2019)

Rinkeby Test Network. https://www.rinkeby.io

https://www.stateofthedapps.com/stats
https://doi.org/10.1007/978-3-319-98192-5_41
https://github.com/kilianhnt/dalicc-license-annotator
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.nist.gov/news-events/news/2015/08/nist-releases-sha-3-cryptographic-hash-standard
https://infura.io
https://www.rinkeby.io

	Making Licensing of Content and Data Explicit with Semantics and Blockchain
	1 Introduction
	2 Problem Statement
	2.1 Functional Requirements
	2.2 Non-functional Requirements

	3 Implementation
	3.1 Technology Choices
	3.2 Backend and Frontend

	4 Evaluation
	5 Conclusion
	References

