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Abstract

Digital soil mapping (DSM) approaches provide soil information by utilising

the relationship between soil properties and environmental variables. Calibra-

tion of DSM models requires measurements that may often have substantial

measurement errors which propagate to the DSM outputs and need to be

accounted for. This study applied a geostatistical-based DSM approach that

incorporates measurement error variances in the covariance structure of the

spatial model, weights measurements in accordance with their measurement

accuracies and assesses the effects of measurement errors on the accuracies of

DSM outputs. The method was applied in the Western Cameroon, where soil

samples from 480 locations were collected and analysed for pH, clay and soil

organic carbon (SOC) using conventional and mid-infrared spectroscopy

methods. Variogram parameters and regression coefficients were estimated

using residual maximum likelihood under two scenarios: with and without

taking measurement errors into account. Performance of the spatial models in

the two scenarios was compared using validation metrics obtained with three

types of cross-validation. Acknowledging measurement errors impacted the

regression coefficients and influenced the variogram parameters by reducing

the nugget and sill variance for the three soil properties. Validation metrics

including mean error, root mean square error and model efficiency coefficient

were quite similar in both scenarios, but the prediction uncertainties were

more realistically quantified by the models that account for measurement

errors, as indicated by accuracy plots. There were relatively small absolute dif-

ferences in predicted values of soil properties of up to 0.1 for pH, 1.6% for clay

and 2 g/kg for SOC between the two scenarios. We emphasised the need of

incorporating measurement errors in DSM approaches to improve uncertainty

quantification, particularly when applying spectroscopy for estimating soil

properties. Further development of the approach is the extension to non-linear

machine learning regression methods.
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Highlights

• Errors in soil measurements are usually not accounted for and may affect

DSM results.

• Measurement error variances were incorporated in the geostatistical models

of three soil properties.

• Quantifying measurement errors in DSM allows to weigh measurements in

accordance with their accuracy.

• Accounting for measurement errors in DSM better assesses prediction

accuracy.
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1 | INTRODUCTION

Soil spatial information is crucial to address global issues
such as food security, climate change and land degrada-
tion (McBratney et al., 2003; Shepherd et al., 2015). Soil
information is also important at various scales in helping
policy makers, extension agents, and land users whose
decisions impact land management interventions, partic-
ularly those designed to support agricultural production
(Stoorvogel et al., 2015). The successes of digital soil map-
ping (DSM) in providing such information are ascribed to
recent technological and computational advances, avail-
ability of high-resolution remote sensing data, advance-
ment of proximal soil sensing (PSS), and the
development of machine-learning algorithms (MLA)
(Minasny & McBratney, 2016). The quest for large soil
datasets for the development and application of DSM
models, as well as the increasing demand for soil spatial
information to efficiently manage agronomic inputs such
as fertilisers (Stoorvogel et al., 2015), has led to the
increased use of PSS (Viscarra Rossel, Behrens,
et al., 2016). Diffuse reflectance spectroscopy is a rapid
and low-cost method to generate soil measurements for
use in DSM (Shepherd et al., 2015). Despite the potentials
of PSS in generating larger amounts of spatially explicit
soil data, soil spectral estimation of soil properties tends
to have larger measurement errors than wet chemistry
measurements that eventually propagate to DSM outputs
(Heuvelink, 2018; Somarathna et al., 2018).

One aspect of DSM that has received little attention
so far is the errors in soil measurements used for calibra-
tion and prediction. Although modellers may be aware
that measurements are not error-free, most DSM studies
ignore this fact and consider only the limited predictive
power of environmental covariates and spatial interpola-
tion error as sources of uncertainties. Analysis and

quantification of uncertainties in soil measurements is a
subject of interest and should be incorporated in DSM, to
weigh measurements in accordance with their accuracy
and provide end-users with reliable information about
the accuracy of the prediction maps (Arrouays
et al., 2017; Heuvelink, 2018). The lack of consideration
of uncertainties may lead to suboptimal models and sys-
tematic underestimation or overestimation of the uncer-
tainties of DSM outputs (Heuvelink, 2018; Poggio
et al., 2016). Decisions based on suboptimal models and
poor quality maps whose accuracy is overestimated may
have extensive and profound impacts on the design of
land management interventions (Takoutsing et al., 2017),
as well as on soil amendment practices, such as fertiliser
application. End-users may increase their investments in
obtaining accurate soil maps, for instance by increasing
soil sampling density or getting better covariates, if they
are reliably informed about the accuracy of the available
maps. Recent studies have demonstrated that measure-
ment errors may have significant impacts on subsequent
spatial analyses (Somarathna et al., 2018). However, to
the best of our knowledge, there are no published studies
that explicitly considered how uncertainty in PSS data
affects DSM outputs.

The recent expansion of DSM approaches has resulted
in the shift from geostatistics to machine learning (ML).
Although ML has overtaken kriging to become the most
popular DSM method due to its flexibility and tendency
to improve predictions (Hengl et al., 2015; Veronesi &
Schillaci, 2019), kriging has important advantages over
ML. First, kriging can better account for spatial autocor-
relation than ML, which is not a spatial model (Hengl,
Walsh, et al., 2018). Second, it yields an interpretable
parametric model of the soil spatial variation. Third,
kriging does not need as large a dataset as ML for calibra-
tion and can be used in a case of just 100 measurements

2 of 21 TAKOUTSING ET AL.



or more. Fourth, kriging does not only characterise the pre-
diction uncertainty using a prediction error variance, but it
also quantifies the spatial correlation in the kriging predic-
tion errors. At best, ML characterises the prediction error at
prediction locations, for example using Quantile Regression
Forests (Vaysse & Lagacherie, 2017), but not the spatial cor-
relation of that error, which is needed to quantify uncer-
tainties of spatial averages. Fifth, from a statistical
perspective, it is feasible to incorporate measurement errors
in model calibration and prediction with kriging (Chilès &
Delfiner, 2012; Knotters et al., 1995; Viscarra Rossel, Brus,
et al., 2016; Viscarra Rossel & Brus, 2018).

There is need for DSM approaches that account for
uncertainties in soil measurements generated using analyti-
cal and PSS methods. While geostatistical methods are
available to handle this in a realistic manner, they have not
so far been used. Therefore, the objectives of this study are
to quantify measurement errors in analytical and PSS soil
data, incorporate them into a state-of-the art geostatistical
method for spatial interpolation and compare the results
with a case in which measurement errors are ignored. We
illustrate the methods with a case study in which we map
pH, clay and soil organic carbon (SOC) for a study area in
the Western Highlands of Cameroon. More specifically, we
use regression kriging (RK) supported by restricted maxi-
mum likelihood (REML) parameter estimation.

2 | MATERIALS AND METHODS

2.1 | Study area

The study area covers parts of the West region of
Cameroon that spans 1053 km2 and features the major
characteristics of the highlands of Cameroon (Figure 1),
dominated by subsistence agricultural systems. The cli-
mate is of tropical humid mountain type with average
rainfall that varies from 1000 to 2000 mm per year. The
mean daily minimum and maximum temperatures are
18 and 30�C, respectively. The topography is undulating
with altitudes ranging between 600 and 1800 m above sea
level, and the vegetation is of savannah type with patches
of gallery and montane forests. The soils are predomi-
nantly Ferralsols, of volcanic origin and suitable for the
production of a range of annual and perennial crops,
though soil tends to be generally acidic (Takoutsing
et al., 2016).

2.2 | Sampling design

The study area was sampled using a spatially stratified
and hierarchical sampling approach based on the

concept of 10 km � 10 km sentinel sites (Vågen &
Winowiecki, 2020). The soil sampling was limited to the
sentinel sites, which is suboptimal for kriging since parts
of the study area are poorly covered (Figure 1), but this
was done to save travel time and accessibility costs. The
site locations were established using convenience sam-
pling, while accounting for land cover/land use and
topography of the study area to capture the variation of
landscape conditions (i.e., feature space coverage). The
sampling design for establishing the sentinel sites was
initially conceived for a larger area that covers the entire
southern parts of the Republic of Cameroon, but for this
study, we used only three sites namely Bamendjou, Bana
and Kekem located in the study area. As explained in
detail in Vågen and Winowiecki (2013), each site was
subdivided into 16 square 2.5 km � 2.5 km tiles within
which random centroid locations for clusters within each
tile were generated, but buffered to avoid overlapping
with neighbouring tiles. Each cluster consists of 10 circu-
lar sampling plots (1000 m2 each) randomly located
within a 1 km2 circular area randomly placed within the
tile, giving 160 sampling plots per sentinel site.

Within each of the sampling plots, four subplots were
established, one at the centre of the plot and the three
others surrounding the centre plot at 12.2 m and disposed
at 120�. Topsoil (0–20 cm) samples (�500 g) were col-
lected at the four subplots, pooled together and thor-
oughly mixed to obtain a composite sample for each plot,
yielding 160 soil samples per site and 480 for the entire
study area.

2.3 | Soil data

Soil samples of 480 numbers were collected (10 samples
from each cluster, 160 samples from each site) between
2015 and 2017 within the framework of the Cameroon
land health project (Takoutsing et al., 2017). One out of
ten soil samples in each cluster were randomly selected
and subjected to conventional laboratory analyses for pH,
clay content and SOC and referred to as ‘reference sam-
ples’ (n = 48). Soil pH was determined using a pH meter
(1:2.5 soil to water ratio), clay by the hydrometer method,
and SOC concentration using the potassium dichromate
oxidation method.

Next, all samples (n = 480) were processed and
analysed by mid-infrared spectroscopy (MIRS), following
standard procedures described in Terhoeven-Urselmans
et al. (2010). The measured mid-infrared (MIR) reflec-
tances were first converted to apparent absorbance units
[log(1/Reflectance)] and then preprocessed with the
Savitzky–Golay smoothing method (Sila et al., 2016). The
reference samples were used for both calibration and
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validation of the prediction models. All spectral replicates
for each sample were averaged and regression models
were built to relate the processed spectra to the reference
samples using partial least squares regression (PLSR).
The PLSR used spectra data as independent variables and
the analytical data as dependent variables. The fitted
regression models were used to predict the targeted prop-
erties of all the samples.

All the 48 paired observations of analytical and spec-
tral data were used for the calibration of the PLSR model
and validation metrics were computed using leave-one-
out cross-validation. The accuracies of the models were
assessed using the mean error (ME), the root mean
squared error (RMSE) and the model efficiency coeffi-
cient (MEC). See Section 2.5.6 for definitions of these
accuracy metrics. The fitted PLSR models were applied to
obtain soil property predictions based on MIR data at all

480 locations. Soil measurements obtained through con-
ventional laboratory methods are referred to as analytical
data while predicted soil values using MIR spectroscopy/
PLSR are referred to as spectral data.

2.4 | Environmental variables

Soil spatial variation is influenced by environmental fac-
tors including climate (e.g., precipitation and tempera-
ture), organisms (e.g., land cover), relief (e.g., terrain
attributes), and parent materials (McBratney et al., 2003).
The study derived these factors from several spatial
datasets to effectively represent each key soil-forming
factor.

We initially considered an extensive stack of over
170 environmental layers downloaded from the

FIGURE 1 Map of Cameroon showing the study area. Soil sampling was done in three 10 km � 10 km sentinel sites. Each sentinel site

has 160 sampling locations (violet dots). Bottom-left panel zooms in on the most northern sentinel site (red dots represent spectral data, blue

dots analytical data)
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International Soil Reference and Information Centre
(ISRIC) repository. The relief represented by a digital ele-
vation model was obtained from Shuttle Radar Topogra-
phy Mission (SRTM), from which various topographic
parameters were derived (e.g., elevation, slope and topo-
graphic wetness index). Land use/cover classes were
obtained from the global land cover map (GlobeLand30)
for the year 2015. The MODIS near and mid-infrared
reflectance (NIR, MIR), and Enhanced Vegetation Index
(EVI) products were derived using a stack of MOD13Q1
products. Climatic data made up of annual temperature
and precipitation averages were obtained from the
CHELSA Bioclimatic images (https://chelsa-climate.org/
bioclim/). Landform classes (breaks/foothills, flat plains,
high mountains/deep canyons, hills, low hills, low moun-
tains, smooth plains) were based on the USGS's Map of
Global Ecological Land Units. Since the environmental
layers were from different sources, they were all res-
ampled to 250 m spatial resolution before they were used
as independent variables in the spatial models.

2.5 | Statistical modelling

The DSM model selection, calibration and prediction
were fully implemented in the R environment for statisti-
cal computing (R Core Team, 2016). The process con-
sisted of the following main steps (Figure S1): (1) model
definition, (2) quantification of measurement errors in
analytical and spectral data, (3) model selection, (4) model
calibration (parameter estimation), (5) spatial prediction
and (6) cross-validation. The sub-sections below explain
these six steps for two scenarios. In scenario 1, measure-
ment errors are ignored, while scenario 2 accounts for
measurement error variances.

2.5.1 | Model definition

In RK, the dependent variable is modelled as the sum of
a deterministic trend and a spatially correlated stochastic
residual as described in chapter 9 of Webster and
Oliver (2007)

Z sð Þ¼m sð Þþ ε sð Þ¼
Xp
j¼0

βj � xj sð Þþ ε sð Þ, s�A ð1Þ

Here, Z sð Þ represents the soil property of interest at
any location s in the geographic domain A, m is the
trend, taken as a linear combination of covariates xj
(j¼ 1,…,p), the βj are regression coefficients (β0 is the
intercept, by setting x0 sð Þ¼ 1 for all s�A), and ε is a

zero-mean, normally distributed, stationary stochastic
residual, whose spatial covariance structure is defined by
a variogram γ. The normal distribution and residual
stationarity are stringent assumptions that need to be jus-
tified and possibly adjusted in real-world applications.
For instance, in the case study we will apply log-
transformation to SOC before invoking the normal distri-
bution assumption.

We also have observations yi of the dependent vari-
able at a finite number of locations si (i¼ 1,…,n) in A.
These are interpreted as realisations of an observation
process:

Yi ¼Z sið Þþδi, i¼ 1,…,n, ð2Þ

where δi are measurement errors, assumed jointly nor-
mally distributed with zero mean and having an n�n
variance–covariance matrix V . Note that the zero-mean
assumption signifies that we ignore systematic errors in
soil measurements.

2.5.2 | Quantification of measurement errors
in analytical and spectral data

In this study, we considered errors in the measurement
of analytical and spectral data of the soil samples. By
assuming that measurement errors of different soil sam-
ples are uncorrelated, the variance–covariance matrix
V reduces to a diagonal matrix so that errors in soil mea-
surements are completely summarised by their variances.
These variances were assumed constant for a given mea-
surement method but were different for analytical and
spectral measurements. They were assessed as follows.
Let ZT be the ‘true’ value of the soil property, ZA the
value of the soil property obtained through laboratory
analysis and ZS the value of the soil property obtained
using PSS (i.e., the spectroscopy model predictions of ZA).
We now have:

σ2S ¼ var ZS�ZTð Þ¼ var ZS�ZAþZA�ZTð Þ
¼ var ZS�ZAð Þþ var ZA�ZTð Þ
þ2 cov ZS�ZA,ZA�ZTð Þ

¼ var ZS�ZAð Þþ var ZA�ZTð Þ, ð3Þ

where the latter equality holds because the PLSR fitting
error is not correlated with the laboratory measurement
error.

For laboratory data, the measurement error variances
σ2A ¼ var ZA�ZTð Þ were derived using laboratory repeat-
ability procedures (Libohova et al., 2019). In this context,
repeatability describes the variation of a mean result
obtained in successive measurements of the same sample
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analysed in the same laboratory under the same condi-
tions (Libohova et al., 2019). For this study, soil samples
were analysed following standard processing procedures
for pH (10 duplicates), clay (33 duplicates) and SOC
(10 duplicates). Next, the SD of the analytical measure-
ment error σA was estimated from the differences
between the measurements on the same sample. We
found unrealistic values (outliers) for clay which might
be caused by other sources of errors (i.e., blunders, gross
errors). These outliers were removed before computing
the estimate of σA so that our focus remained on real
measurement errors.

For spectral data, the measurement error variances σ2S
were obtained using Equation (3) by adding up σ2A and
var ZS�ZAð Þ. The latter was estimated from the residual
variance of the PLSR models. For the case of SOC that
showed positive skewness, the analytical data were first
log-transformed (logSOC) before running the PLSR. The
PLSR residual variance was estimated using:

var Zs�ZAð Þffi 1
n

Xn
i¼1

zA sið Þ�bzA sið Þð Þ2, ð4Þ

where bzA sið Þ¼ zS sið Þ is the PLRS predicted soil property
at location si and n is the number of paired observations
of analytical and spectral data (i.e., n¼ 48 in the case
study). Both the analytical and spectral measurement
error variances estimated above were incorporated in the
kriging model as shown in the sections below.

2.5.3 | Model selection

Based on literature, pedological information, and their
relevance to specific soil properties, 50 layers were
selected out of 170 initial layers, to represent key soil-
forming factors. These covariates were processed and
overlaid with sample locations to construct a matrix of
covariate values for each sample point. Initially, a corre-
lation analysis was performed to reduce redundancy
between the selected layers. Some pairs of environmental
variables were highly correlated with each other. For sta-
tistical models it is preferred that environmental vari-
ables retained are weakly correlated with each other,
because it increases the potential for fitting a combina-
tion of environmental variables to explain the variation
in the soil properties. Only layers with a correlation coef-
ficient ≤0.75 with all other layers were retained for subse-
quent analysis (Hanchuan et al., 2005). For each pair of
covariates correlated above the set threshold, we arbi-
trarily retained the first one in alphabetical order for
inclusion in the model. This reduced the number of

covariates to 23. Next, the best combination of covariates
for each soil property was selected by combined forward
and backward stepwise regression using the Bayesian
Information Criterion (BIC) (Gao & Song, 2010). Regres-
sion models, their coefficients and p-values were exam-
ined to derive quantitative data on the relative roles and
behaviour of each covariate in the model. During the
model selection procedure, measurement errors in soil
data and spatial correlation were ignored.

2.5.4 | Model calibration by REML method

Using matrix notation for compactness, Equations (1)
and (2) combined can be written as Y ¼X �βþ εþδ,
where Y is an n-vector, X an n� pþ1ð Þ matrix, β a vec-
tor of pþ1 regression coefficients, and ε and δ vectors
containing the stochastic residual and measurement
errors at the n observation locations, respectively. The
parameters of this model are β, the parameters of the
variogram γ (i.e., the nugget, sill and range, assuming a
known shape), and the error variance–covariance matrix
V (i.e., σ2A and σ2S). Estimation of σ2A and σ2S was explained
in Section 2.5.2. The variograms were all fitted with expo-
nential models. Note that the measurement error param-
eters were estimated and fixed prior to estimation of
other parameters through REML.

It is a common practice in geostatistics to estimate γ
using the method of moments. However, this is sub-
optimal and has additional bias problems in case of RK,
where β also needs to be estimated (Lark et al., 2006). For
this study, variogram parameters and regression coeffi-
cients were estimated using REML. We give a brief
description and refer to section 9.2.1 in Webster and
Oliver (2007) for details. REML is computationally
demanding in a case of large datasets but was quick in
our case study, where we have 480 observations.

Since all stochastic components of the model are nor-
mally distributed, Y has a multivariate normal distribu-
tion, with probability density:

f Y yð Þ¼ 2πð Þ�n=2 � CþVj jÞ�1=2

� exp �1
2
y�Xβð ÞT CþVð Þ�1 y�Xβð Þ

� �
, ð5Þ

where y is the vector of observations yi (i¼ 1,…,n) and C
is the variance–covariance matrix of ε, derived from the
variogram γ and the distances between the observation
locations. The idea of maximum likelihood is to choose
the model parameters (i.e., β and the nugget, sill, and
range of γÞ such that the probability density f Y yð Þ is max-
imised. REML is a particular form of maximum
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likelihood estimation that estimates the model parame-
ters in two steps. First the variogram parameters are esti-
mated by maximising a conditional likelihood, in which
the dependence of the variogram parameters on the
regression coefficients is removed (Lark & Cullis, 2004).
For this a numerical optimisation technique is used. In a
second step the regression coefficients are estimated, con-
ditional on the already estimated variogram parameters.
This can be done analytically, because given the
variogram parameters, the maximum likelihood estimate
of the vector of regression coefficients equals the conven-
tional generalised least squares solution:

bβ¼ XT CþVð Þ�1X
� ��1

XT CþVð Þ�1y ð6Þ

Note that the model calibration returns only estimates
of the ‘true’ regression coefficients and variogram param-
eters. To simplify the subsequent analysis, we will ignore
these estimation errors and assume that all model param-
eters are perfectly known. While it is not difficult to
include estimation errors of regression coefficients in
kriging (Brus & Heuvelink, 2007), it is much more diffi-
cult to account for variogram estimation errors in
prediction.

2.5.5 | Spatial prediction

Our aim is to predict Z s0ð Þ given the measurements yi
and the covariates xj s0ð Þ. Note that the prediction loca-
tion s0 could be any location in the study area for which
covariates are available. In practice, the prediction loca-
tions are the nodes of a fine grid that are visited one by
one. Under the assumptions made, the best prediction
(i.e., the one that has the smallest expected squared pre-
diction error) is the conditional mean:

bZ s0ð Þ¼E Z s0ð ÞjY ¼ y½ � ¼ x0
Tβþ cT0 CþVð Þ�1 y�Xβð Þ,

ð7Þ

where x0 is a pþ1ð Þ-vector of covariates at s0 and c0 is
the vector of covariances between Z s0ð Þ and the Z sið Þ.
The prediction is unbiased and has prediction error
variance:

σ2K s0ð Þ¼Var bZ s0ð Þ�Z s0ð Þ
� �

¼ c00� cT0 CþVð Þ�1c0, ð8Þ

where c00 is the variance of Z s0ð Þ (i.e., the sill of γ). Note
that regression coefficient estimation errors are ignored
in Equations (7) and (8).

Spatial interpolation techniques such as kriging are
sensitive to skew distributions due to the high impact of
extreme values on variogram parameter estimation that
may render outputs unstable. From the summary statis-
tics presented in Section 3.1, soil pH and clay satisfacto-
rily met the assumption of a normal distribution. SOC
exhibited a positively skewed distribution, and the nor-
mal distribution assumption was made after a log-
transformation to logSOC. The back-transformed esti-
mate of SOC and local variance for each interpolated
location was obtained as described in section 8.10 of
Webster and Oliver (2007) and in Laurent (1963). RK
uses the regression model and the variogram parameters
to estimate the values of soil properties at all locations
and generate maps of kriging predictions, and those of
the kriging SDs for both scenarios. The kriging SD was
obtained by taking the square root of the kriging vari-
ance. In addition, we subtracted the final prediction
results of scenario 1 from scenario 2 using raster calcula-
tion and generated the prediction difference maps
between the two scenarios. Recall that scenario 1 ignores
measurement errors. In other words, it uses the model
calibration and prediction approach described above but
enforces that both σ2A and σ2S are zero.

2.5.6 | Cross-validation

Because the sampling locations were clustered in three
sentinel sites within the study area, a conventional cross-
validation might produce overoptimistic results (Roberts
et al., 2017). The accuracy of the model predictions was
therefore assessed using leave-one-out, leave-cluster-out
and leave-sentinel-site-out cross-validation. Density scat-
ter plots were used to compare the predicted values in
the two scenarios at validation points. For each soil prop-
erty, we derived three validation metrics: the ME, the
RMSE and the MEC (Janssen & Heuberger, 1995). The
MEC is equal to one minus the ratio between the residual
sum of squares and the total sum of squares, as defined
in Equation (11). In hydrology it is known as the Nash-
Sutcliffe Model Efficiency (Nash & Sutcliffe, 1970). The
MEC equals 1 in case of a perfect model, while it is 0 for
a model that is as good as taking the mean of all observa-
tions as a prediction. MEC can be negative for models
that are severely biased. To evaluate the kriging SD, the
prediction interval coverage probability (PICP) was com-
puted and used to derive accuracy plots for the leave-one-
out cross-validation case. The section below describes
how these cross-validation metrics were computed in
case of uncertain validation data.

As before, let zT sð Þ be the true value of the soil prop-
erty at location s, and let zM sð Þ be the value of the soil
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property at s obtained through a measurement (using
either laboratory or spectral analysis). Note that we use
lower-case notation here because we now treat these as
the actual values, not as random variables. Let bz sð Þ be the
prediction of the soil properties obtained using RK in
cross-validation mode and σ2K sð Þ be the associated kriging
variance. In other words, bz sð Þ and σ2K sð Þ are derived as
explained in Section 2.5.5, using that part of the measure-
ments that were not put aside for validation. This is done
for all measurement locations si, i¼ 1, ::,n.

Given n validation locations we derive the ME as

ME¼ 1
n

Xn
i¼1

bz sið Þ� zT sið Þ

¼ 1
n

Xn
i¼1

bz sið Þ� zM sið Þð Þþ 1
n

Xn
i¼1

zM sið Þ� zT sið Þð Þ

≈
1
n

Xn
i¼1

bz sið Þ� zM sið Þð Þ, ð9Þ

where the latter approximation holds because we assume
that the measurement method has no systematic error.

For the mean squared error (MSE) we get

1
n

Xn
i¼1

bz sið Þ� zM sið Þð Þ2

¼ 1
n

Xn
i¼1

bz sið Þ� zT sið Þþ zT sið Þ� zM sið Þð Þ2

¼ 1
n

Xn
i¼1

bz sið Þ� zT sið Þð Þ2þ 1
n

Xn
i¼1

zT sið Þð

�zM sið ÞÞ2þ 2
n

Xn
i¼1

bz sið Þ� zT sið Þð Þð

� zT sið Þ� zM sið Þð ÞÞ

≈
1
n

Xn
i¼1

bz sið Þ� zT sið Þð Þ2þ 1
n

Xn
i¼1

zT sið Þð

�zM sið ÞÞ2,

ð10Þ

where the latter approximation holds because the kriging
prediction error and the measurement error are
uncorrelated. Equation (10) shows that an estimate of the
MSE¼ 1

n

Pn
i¼1 bz sið Þ� zT sið Þð Þ2 is obtained by subtracting

the measurement error variance (i.e., a weighted average
of σ2A and σ2S, with weights equal to the fraction of analyt-
ical and spectral validation measurements, respectively)
from the MSE computed on error-contaminated valida-
tion data. In practice, we are more interested in the
RMSE than the MSE. This is derived by taking the square
root after the measurement error variance has been

subtracted from the MSE computed on error-
contaminated validation data.

Similarly, the MEC under uncertain validation data
can be derived as

MEC¼ 1�
Pn
i¼1

bz sið Þ� zT sið Þð Þ2

Pn
i¼1

zT sið Þ� zTð Þ2
≈ 1

�
Pn
i¼1

bz sið Þ� zM sið Þð Þ2�Pn
i¼1

zM sið Þ� zT sið Þð Þ2

Pn
i¼1

zM sið Þ� zMð Þ2�Pn
i¼1

zT sið Þ� zM sið Þð Þ2
,

ð11Þ

where zT ¼ 1
n

Pn
i¼1

zT sið Þ and zM ¼ 1
n

Pn
i¼1

zM sið Þ and where as
before

Pn
i¼1

zT sið Þ� zM sið Þð Þ2 is derived from a weighted
average of σ2A and σ2S.

The PICP evaluates how often the validation data are
within a 1�αð Þ prediction interval for various values of α
(Shrestha & Solomatine, 2006). Assuming a normal distri-
bution for the kriging prediction error and analytical
error, these prediction intervals can be derived from the
variances of both errors. Since:

ZM sð Þ¼ bZ sð Þþ ZM sð Þ�ZT sð Þð Þþ ZT sð Þ� bZ sð Þ
� �

ð12Þ

and measurement and kriging errors are uncorrelated we
have that ZM sð Þ should lie between bZ sð Þ� z1�α=2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2M þσ2K sð Þp

and bZ sð Þþ z1�α=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2M þσ2K sð Þp

in 1�αð Þ�
100% of all cases. Here, z1�α=2 refers to the 1�α=2 qua-
ntile of the standard normal distribution. Note that σ2M
equals σ2A in the case of analytical measurements and
equals σ2S in the case of spectral measurements. A plot of
PICP against α boils down to an accuracy plot which
visualises the assessment of quality of the estimated
prediction uncertainty (Goovaerts, 2001; Wadoux
et al., 2018).

3 | RESULTS

3.1 | Mid infrared spectroscopy models

Figure 2 shows PLSR predictions against wet chemistry
observations for the 48 soil samples where both types of
analysis were carried out. Note that SOC data were log-
transformed to logSOC prior to running the PLSR (see
also Section 3.2). Accurate predictive models were
obtained for soil pH (ME = 0.004, RMSE = 0.219,
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MEC = 0.87, clay (ME = 0.216, RMSE = 5.47,
MEC = 0.83) and logSOC (ME = 0.006, RMSE = 0.192,
MEC = 0.82). Note that these metrics were computed on
only 48 observations and are only approximations of the
population validation metrics.

The soil analytical and spectral data put together con-
stitute the dataset for the study. For samples analysed
with both conventional and MIRS, only analytical data
were retained, resulting in 48 analytical and 432 spectral
observations and making a total of 480 observations.
Although the accuracies of the predictive models are
acceptable, spectrally soil estimated data are not as accu-
rate as the analytical data because the PLSR prediction
error adds to the uncertainty.

3.2 | Descriptive statistics

The basic statistical parameters for both datasets and
the merged dataset are summarised in Table 1. Con-
sidering the total dataset, soil pH was low and varied
from strong acidity to near neutral (3.54 to 6.91) with
a mean of 5.23, which falls within the optimum range
for the production of priority crops in the tropics,
such as maize (i.e., pH between 5.5 and 6.5). Textural
analysis revealed that the study area is dominated by
clay-rich soils with a mean of 65.5% and values rang-
ing from 37.9% to 100%. SOC concentrations ranged
from 6.7 to 84.5 g/kg with a mean of 26.4 g/kg. The
analysis of the distribution of the soil properties indi-
cates that pH and clay approximated normality, while
SOC values were positively skewed (skewness coeffi-
cient of 1.12), as shown by the histogram (Figure S2).
SOC was therefore log-transformed to logSOC, which
had a much more symmetric distribution. The statisti-
cal modelling hereafter was applied to pH, clay and
logSOC.

3.3 | Quantification of measurement
errors in analytical and spectral data

The measurement error SDs for the analytical and spec-
tral data were obtained using the methodology described
in Section 2.5.2 and are given in Table 2. The estimated
analytical measurement error SD for pH was 0.083, for
clay 3.33% and for logSOC 0.038. The PLSR prediction
error variance was added to the analytical error variance
to get a total measurement error SD for spectral data of
0.234, 6.40%, and 0.196 for pH, clay and logSOC, respec-
tively. As expected, the PLSR prediction errors for the
three soil properties had substantially larger SDs than the
analytical data (Table 2).

3.4 | Model selection

The stepwise model selection procedure using BIC
resulted in the selection of 9 variables for pH, 4 variables
for clay and 5 variables for SOC. A brief description of
the 12 covariates retained for the three models is
summarised in Table 3. pH and logSOC were primarily
influenced by precipitation, terrain morphology, land-
form classes, MODIS net productivity and land cover.
The selected covariates for clay were climate variables
and landform classes.

3.5 | Model calibration

The linear regression models fitted using REML showed
significant correlations between soil properties and the
retained covariates. The relationships were of moderate
statistical strength for pH (R2 = 0.60) and logSOC
(R2 = 0.49) and of weak statistical strength for clay con-
tent (R2 = 0.21). The model residuals had a symmetric

FIGURE 2 Scatter plots of PLSR predictions against observations: (a) pH, (b) clay, (c) logSOC. Red dashed lines represent the 1:1-line
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distribution and were fairly normally distributed
(Figure S3).

The regression coefficient estimates without (scenario
1) and with (scenario 2) accounting for measurement

errors, as well as the accompanying p-values computed
using Wald tests and the relative change in coefficient
estimates between scenarios are presented in Table 4.
Note that the coefficients represent the mean change in

TABLE 1 Summary statistics of soil

properties for the analytical (n = 48),

spectral (n = 432) and merged data

sets (n = 480)

Variable Min. Mean Max. SD CV (%) Skewness

pH

Analytical 3.96 5.21 6.48 0.61 11.7 0.13

Spectral 3.54 5.23 6.91 0.56 10.8 0.43

Analytical + spectral 3.54 5.23 6.91 0.57 10.9 0.37

Clay (%)

Analytical 37.9 65.4 97.3 13.3 20.3 �0.01

Spectral 41.7 65.4 100.0 10.9 16.7 0.36

Analytical + spectral 37.9 65.5 100.0 11.2 17.1 0.33

SOC (g/kg)

Analytical 9.0 24.7 52.0 11.1 45.1 0.64

Spectral 6.7 26.8 84.4 12.9 48.1 1.15

Analytical + spectral 6.7 26.4 84.4 12.6 47.9 1.12

Abbreviation: CV, coefficient of variation.

TABLE 2 Standard deviation of

analytical and spectral soil

measurement errors

Soil properties σA PLSR prediction error standard deviation σS

pH 0.083 0.219 0.234

Clay 3.33 5.47 6.40

LogSOC 0.038 0.192 0.196

TABLE 3 Description of environmental variables (covariates) used in the stepwise linear regression models

Covariate codes Descriptions Sources pH Clay logSOC

1 CLM_CHE_PYRSUM Total annual precipitation CHELSEA (Karger et al.,
2016)

+ + +

2 CLM_MOD_CCYRAVG Mean annual cloud cover EarthEnv (Wilson &
Jetz, 2016)

+ � +

3 CLM_MOD_LSTDYRAVG Mean annual surface temperature MODIS (Wan, 2006) � + �
4 MOR_MRG_CRU DEM-parameters: local upslope

curvature
SRTM (Rabus et al., 2003) + � �

5 MOR_MRG_TPI DEM-parameters: Topographic Position
Index

SRTM (Rabus et al., 2003) + � �

6 MOR_MRG_VDP DEM-parameters: valley depth SRTM (Rabus et al., 2003) + � +

7 MOR_USG_F02 Landform class: flat plains USGS (Sayre et al., 2014) + + �
8 MOR_USG_F04 Landform class: hills USGS (Sayre et al., 2014) � � +

9 MOR_USG_F06 Landform class: low mountains USGS (Sayre et al., 2014) + + �
10 SAT_L07_B4NIR14 Band 4 (NIR) for year 2014 Landsat (Zanter, 2019) + � �
11 LUC_GFC_BARLY10 30 m global land cover: bare soil ESA (Hansen et al., 2013) � � +

12 VEG_MOD_NPPY00 Net primary productivity in 2000 MODIS (Savtchenko et al.,
2004).

+ � �

Note: The plus (+) and minus (�) signs indicate whether a covariate was selected for a soil property.
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the dependent variable for one unit of change in the
covariate while holding other covariates in the model
constant.

Precipitation, cloud cover, valley depths and net pri-
mary productivity had negative regression coefficients for
pH, indicating that areas with high rainfall and rich in
biomass tend to have lower pH. This is typical for soils of
humid climates which are commonly acidic. Increase in
precipitation contributes in leaching many of the alkaline
basic cations from the topsoil, leading to soil acidification
(Chytrý et al., 2007). Clay was also negatively influenced
by precipitation and tends to be lower in hills and low
mountains. Cloud cover positively influenced logSOC,
attesting high values of SOC in areas with high vegetation
cover rate. Since SOC is related to organic matter content,
areas rich in biomass, humus and associated organisms
responsible for biological activities tend to have higher
SOC values (Lei et al., 2019; Takoutsing et al., 2018).

The inclusion of measurement errors modified the
regression coefficient estimates. Particularly for pH, coef-
ficients changes were of up to 29% for some of the
covariates. This may be because pH has the largest num-
ber of covariates and is more sensitive to incorporation of
measurement error SDs, because of collinearity effects
(Figure S4).

The variogram parameters estimated using REML in
both scenarios are presented in Table 5. The
fitted variograms are shown in Figure 3. While the
variograms in both scenarios exhibited similar struc-
tures and patterns, the nuggets and sills are much
smaller in scenario 2. This is because the nugget repre-
sents only spatial variation at short distances and does
not include measurement error variance (Chilès &
Delfiner, 2012). Part of the observed variation in soil
properties is therefore explained by measurement
errors, meaning that the spatial variation of the true

TABLE 4 Estimated regression coefficients for the environmental variables under scenarios 1 and 2

Covariates

Scenario 1 (without measurement
errors)

Scenario 2 (with measurement
errors)

Changes per
covariate (%)

Estimate p-value Estimate p-value

pH

Intercept 7.27 5.99E-09 7.6 6.74E-09 �4.5

CLM_CHE_PYRSUM �8.172E-04 5.45E-06 �8.244E-04 5.82E-06 �0.9

CLM_MOD_CCYRAVG �1.446E-04 1.10E-01 �1.804E-04 1.13E-01 �24.8

MOR_MRG_CRU 8.370E-05 4.04E-01 5.917E-05 4.06E-01 29.3

MOR_MRG_TPI �3.759E-04 4.78E-03 �3.517E-04 4.81E-03 6.4

MOR_MRG_VDP �1.132E-04 2.67E�10 �1.102E-04 2.93E�10 2.7

MOR_USG_F02 -1.567E-03 1.41E-02 -1.936E-03 1.43E-02 �23.5

MOR_USG_F06 1.289E-03 3.11E-02 1.413E-03 3.13E-02 �9.6

SAT_L07_B4NIR00 1.845E-02 7.21E-04 1.867E-02 7.13E-04 �1.2

VEG_MOD_NPPY00 �4.133E-05 1.20E-01 �4.664E-05 1.20E-01 �12.9

Clay

Intercept 653.5 3.64E-12 694.9 3.70E-12 �6.3

CLM_CHE_PYRSUM �8.691E-03 3.22E-01 �8.585E-03 3.21E-01 1.2

CLM_MOD_LSTDYRAVG �1.918E-01 6.04E-12 �2.058E-01 6.15E-12 �7.3

MOR_USG_F02 �5.544E-02 1.30E-02 �5.592E-02 1.31E-02 �0.9

MOR_USG_F06 �2.668E-02 1.30E-01 �2.758E-02 1.32E-01 �3.4

logSOC

Intercept 3.547 6.57E-03 3.568 6.71E-03 �0.6

CLM_CHE_PYRSUM �5.592E-04 8.12E-04 �5.637E-04 8.38E-04 �0.8

CLM_MOD_CCYRAVG 1.361E-04 2.09E-01 1.344E-04 2.12E-01 1.2

LUC_GFC_BARLY10 �4.213E-02 5.32E-02 �4.316E-02 5.33E-02 �2.5

MOR_MRG_VDP �8.827E-05 5.84E-09 �8.804E-05 6.71E-09 0.3

MOR_USG_F04 1.340E-04 6.37E-01 1.384E-04 6.39E-01 �3.3
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(error-free) soil properties is lower than that of the
observations.

All residual variograms indicated presence of spatial
structure, which means that there is added value in resid-
ual kriging. The range parameters for clay slightly
increased from 1.57 to 1.64 km from scenario 1 to sce-
nario 2, while those of pH (3 km) and logSOC (3 km)
remained constant and were not affected by the incorpo-
ration of measurement errors. Note that the effective
variogram range, which is about three times the range
parameter for the exponential model (Webster &
Oliver, 2007, section 5.2.2), is fairly small compared to
the extent of the study area for all three soil properties. In
other words, the residual spatial structure is somewhat
limited and residual kriging will only improve prediction
in the neighbourhood of measurement locations.

3.6 | Model validation

Three validation methods were used in this study: leave-
one-out (LOO), leave-cluster-out (LCO) and leave-site-
out (LSO) cross-validation. Validation metrics computed
for both scenarios show that the models in general pro-
vided good (acceptable) predictive ability except for clay
(Table 6). ME values were close to zero for the three soil

properties. Among the soil properties, clay content was
poorly modelled with the lowest MEC value, as also rev-
ealed by the lowest coefficient of determination of the
regression models (see Section 3.5).

RK was able to explain the spatial variation between
68 and 83% for pH, between 18% and 62% for clay, and
between 53% and 72% for logSOC. RMSE values
increased while MEC values decreased from LOO to LCO
to LSO cross validation, especially for clay. The decrease
in model performances from LOO to LCO to LSO cross
validation is as expected and due to the decrease in
neighbouring values used when making predictions in
each case. For LSOCV, this effectively led to spatial
extrapolation rather than spatial interpolation, which is
more challenging and susceptible to larger prediction
errors. In all cases, validation metrics were practically the
same between scenarios, attesting no significant change
with the incorporation of measurement uncertainty.

As revealed by the PICP plots shown in Figure 4,
which were based on LOO cross-validation, the curves
deviate from the 1:1 line and show that both scenarios
tend to overestimate the prediction interval widths. How-
ever, the deviation from the 1:1 line is much larger for
scenario 1 than for scenario 2. For example, for pH, we
find that for scenario 1, 64% of the observations is
included in the 50% prediction interval, while it is only

TABLE 5 Parameters of exponential variogram models of pH, clay and logSOC fitted using REML for scenarios 1 and 2

pH Clay logSOC

Model parameters Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2

Nugget (C0) 0.077 0.037 51.98 18.34 0.067 0.039

Partial sill (C) 0.08 0.08 61.78 59.93 0.07 0.07

Total sill (C0 + C) 0.157 0.117 113.76 78.27 0.137 0.109

C0/(C0 + C) (%) 49.04 31.62 45.69 23.43 48.91 35.78

Range parameter (m) 3000 3000 1577 1644 3000 3000

FIGURE 3 Residual variograms for (a) pH, (b) clay and (c) logSOC. Red lines represent scenario 1, where measurement errors are not

explicitly modelled. Blue lines represent scenario 2, where measurement uncertainty is accounted for. Red dots are the sample variogram

values
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57% for scenario 2. This indicates that scenario 2 has a
more realistic assessment of prediction uncertainty than
scenario 1. For clay, scenario 2 has a negligible deviation
from the 1:1 line as compared to other soil properties.

Overall, both scenarios are similar in their predictive
performance (Table 6), but the prediction uncertainty is
more realistically quantified in scenario 2 than in scenario
1. The best modelling approach would therefore be the one
that accounts for measurement errors in soil observations.

3.7 | Spatial prediction

The fitted parameters of the regression models (covariates
and regression coefficients) and the variograms (nugget,
sill and range) were used by RK to predict the values of
the soil properties at all locations. The logSOC

predictions and prediction error SDs were back-
transformed to SOC values following Laurent (1963). The
differences between the predicted values in both scenar-
ios assessed by the scatter density plots (Figure 5) showed
no systematic differences between predictions. The abso-
lute differences were never bigger than 0.1, 1.6% and 2 g/
kg for pH, clay and SOC respectively.

The maps of the predicted values for the three soil
properties at 250 m spatial resolution, as well as maps of
the kriging SDs for scenarios 1 and 2 are presented in
Figures 6 and 7, respectively. Generally, there are similar-
ities in the spatial distribution of predicted values as the
maps showed comparable ranges of predicted values, and
similar spatial patterns and features such as areas of low
and high concentrations. Therefore, only the maps of sce-
nario 2 and the maps differences between scenarios are
presented.

FIGURE 4 Accuracy plots for (a) pH, (b) clay and (c) logSOC obtained using leave-one out cross validation. Red line represents scenario

1, blue line scenario 2

TABLE 6 Statistical validation metrics obtained by leave-one-out, leave-cluster-out and leave-site-out cross-validation

Cross-validation methods

Scenario 1 (without measurement errors) Scenario 2 (with measurement errors)

ME RMSE MEC ME RMSE MEC

pH

LOO �0.001 0.213 0.834 �0.002 0.214 0.832

LCO 0.012 0.428 0.695 0.010 0.428 0.696

LSO �0.029 0.435 0.675 �0.031 0.434 0.678

Clay

LOO 0.020 5.73 0.621 0.021 5.73 0.621

LCO 0.177 11.69 0.297 0.160 11.68 0.300

LSO �0.495 12.11 0.182 �0.458 12.11 0.184

logSOC

LOO 0.000 0.217 0.729 0.001 0.218 0.729

LCO �0.004 0.375 0.594 �0.003 0.374 0.594

LSO 0.015 0.388 0.536 0.018 0.387 0.537

Abbreviations: LCO, leave cluster out cross validation; LOO, leave one out cross validation; LSO, leave site out cross validation.
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FIGURE 5 Scatter density plots of predicted values for scenario 1 and scenario 2 for (a) pH, (b) clay, and (c) SOC. The dashed red line is

the 1:1 line

FIGURE 6 Maps of soil property

predictions and prediction differences:

(a) pH scenario 2, (b) difference

between pH scenario 1 and pH

scenario 2, (c) clay scenario 2 (%),

(d) difference between clay

scenario 1 and clay scenario 2 (%),

(e) SOC scenario 2 (g/kg), (f) difference

between SOC scenario 1 and SOC

scenario 2 (g/kg). Prediction maps of

scenario 1 not shown because these are

very similar to those of scenario 2
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The kriging SD maps for pH and clay clearly showed
the spatial sampling design that was used, which was
expected from the fairly small effective variogram ranges,
which implies that the kriging SD is small only close to
measurement locations (Figure 7). For SOC, the spatial
sampling design does not appear in the SD map because
after back-transformation this map is more influenced by
the logSOC prediction than the logSOC SD.

We observed relative differences in SDs in some areas
of the study area between the two scenarios of up to 0.08
for pH, 2.7% for clay and 0.5 g/kg for SOC between the
two scenarios (Figure 4). The pH and clay SD maps for
scenario 2 had lower values than those for scenario 1 for

the entire study area, and this corroborates well with the
results obtained using the accuracy plots (Figure 4). For
SOC the SD differences between scenarios 1 and 2 are
both positive and negative.

4 | DISCUSSION

4.1 | Measurement errors and
implications for spatial modelling

The primary aim of this study was to quantify the uncer-
tainty in soil measurements, incorporate measurement

FIGURE 7 Maps of kriging SDs and differences: (a) pH scenario 1, (b) pH scenario 2, (c) difference between pH scenario 1 and pH

scenario 2, (d) clay scenario 1 (%), (e) clay scenario 2 (%), (f) difference between clay scenario 1 and clay scenario 2 (%), (g) SOC scenario

1 (g/kg), (h) SOC scenario 2 (g/kg), (i) difference between SOC scenario 1 and SOC scenario 2 (g/kg)
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error variances in the covariance structure of spatial
models and evaluate the influence of this on the predic-
tion and prediction uncertainties. We illustrated the
methodology and applied it to a case study, where we
mapped three soil properties using soil data obtained
using conventional laboratory analytical methods (ana-
lytical data) and MIRS (spectral data).

Among the three soil properties, the clay content
model had poor performance compared with pH and
SOC, with the lowest MEC value. This could be attrib-
uted to one or a combination of the following: (a) the spa-
tial resolution of some of the environmental variables
was not detailed enough to capture the variation (Maleki
et al., 2020); (b) the set of covariates retained was not
suitable and other environmental variables need to be
included; or (c) the sampling protocol was too clustered
to capture variability across the study area, since observa-
tions were taken from three main clusters and various
processes operate at different spatial scales (Hendriks
et al., 2021).

Results showed that taking measurement uncertainty
into account had a small to moderate effect on the esti-
mated regression coefficients of the RK model (Table 4)
and a large effect on the residual variograms (Figure 3),
which had much smaller nugget variances and sills when
measurement errors were explicitly accounted for. This is
as expected because measurement error variance was
separately modelled in scenario 2 and hence not included
in the residual variogram.

Depending on the soil property and the type of cross-
validation used (leave-one-out, leave-cluster-out and
leave-site-out), the amount of variance explained varied
between 18 and 83% and showed that resulting maps are
useful in assessing the spatial variation in pH and SOC
and provided a first approximation for clay. Large differ-
ences were observed between the three types of cross-
validation applied, particularly for clay, with
LOO > LCO > LSO cross-validation. This is largely due
to the decrease in the number of nearby available obser-
vations as we move from one type of cross-validation to
another (Lagacherie et al., 2020; Loiseau et al., 2021). The
reduction in the number of observations may have also
weakened the relationships between environmental vari-
ables and soil properties in LSO cross-validation. LOO
cross-validation likely gives a too optimistic view of
model performance, especially when the data are spa-
tially clustered as in our case study, while LSO cross-
validation is likely too pessimistic, because it applies spa-
tial extrapolation instead of interpolation. LCO cross-
validation may be the best compromise for evaluating
prediction performance in this study. But there is a need
to investigate how best to carry out cross-validation in
the case of clustered data, to get a realistic estimate of

model performance that does not lead to biased estimates
of the validation metrics (Chartin et al., 2017; Poggio
et al., 2021; Roberts et al., 2017; Styc & Lagacherie, 2021).

Spatial models with and without measurement errors
were comparable in predictive performance (Table 6).
The ME, RMSE and MEC values between scenarios were
quite similar, and so were the kriging prediction maps
(Figure 6). This was contrary to our expectations, also
taking into consideration the influence of the measure-
ment error variances on the model parameters and
regression coefficients. The insignificant differences
between the validation metrics and prediction maps of
the two scenarios could perhaps be explained as follows.
If all observations had the same measurement error vari-
ance, then the same performance would have been
achieved because in such case all observations would
carry equal weight and scenarios 1 and 2 are effectively
the same. In this study we used data from two different
sources (analytical and spectral) with very different mea-
surement error variances. The analytical data had much
smaller measurement error variances than the spectral
data, and therefore get much larger weights in the esti-
mation of regression coefficients and in kriging. How-
ever, analytical data represented only 10% of the data set,
and the spatial distribution of the analytical data was
similar to that of the spectral data. As shown in Figure 1,
the analytical data were in the same clusters (one obser-
vation per cluster) as the spectral data. If the analytical
and spectral data had been located in different parts of
the study area, we likely would have obtained larger dif-
ferences between the two scenarios (Meyer et al., 2018).
The results that we obtained refer to just one case study,
and it is worthwhile to investigate the sensitivity of the
DSM models and maps to incorporation measurement
errors in other studies and in other contexts.

While differences in prediction maps and cross-
validation metrics of predictions did not differ much
between the two scenarios, we did get substantial differ-
ences in prediction error SD maps and in the evaluation
of the prediction uncertainty. As shown by the accuracy
plots (Figure 4), ignoring measurement error variances
led to a large deviation from the 1:1 line. The line for sce-
nario 1 was much above it, which indicates that the
kriging prediction error SDs were unrealistically high.
Though we obtained deviations in both scenarios, the
problem is much more pronounced for the variance
models in scenario 1, when measurement errors are
ignored. Prediction intervals were larger in scenario
1 than in scenario 2, attesting that the quantification of
uncertainties had significantly improved and was more
realistic when measurement errors were accounted for.

The kriging SDs maps for pH and clay in scenario
2 had lower values than those in scenario 1, and this

16 of 21 TAKOUTSING ET AL.



corroborates well with the findings derived from compar-
ison of the accuracy plots. Accounting for measurement
errors decreased the kriging variance because the ‘true’
soil properties had less spatial variation than the mea-
sured soil properties, which means that they are easier to
predict, even in case of presence of measurement errors
(Chilès & Delfiner, 2012). For SOC this did not occur,
even though the logSOC kriging SDs were all smaller for
scenario 2 than for scenario 1 (results not shown). This
was because the back-transformation of logSOC not only
depends on the kriging SDs of logSOC but also on
the logSOC predictions (Laurent, 1963; Webster &
Oliver, 2007).

In practice, the usefulness of DSM lies in its ability to
quantify and map prediction uncertainties (Malone
et al., 2015), and ignoring measurement errors leads to
poor assessment of the accuracy of digital soil maps
(Takoutsing et al., 2017). Soil scientists have made con-
siderable efforts in quantifying prediction uncertainties
in their work, much more than in other disciplines, but
this has not always been as systematic as it should be
(Piikki et al., 2021). Whenever uncertainties are quanti-
fied with SD maps, one of course has to make sure that
these are realistic assessments of the map error. In this
study, this does not happen in scenario 1, while scenario
2 does it much better. In other words, this stressed the
importance of taking measurement error into account to
accurately quantify the prediction uncertainties. It is
unfortunate that most end-users of DSM products are
only interested in the prediction maps from which soil
information are extracted, often ignoring the uncertainty
maps, meanwhile prediction maps with large errors could
have important economic and environmental conse-
quences for the design and implementation of land resto-
ration initiatives (Styc & Lagacherie, 2021; Takoutsing
et al., 2017).

The results of this study overall indicate that the addi-
tional investment in quantification of measurement error
variances and the incorporation in the spatial models is
worth the effort, as shown by the improvement in the
quantification of the prediction uncertainties. There is a
need to create awareness among end-users on the impor-
tance of realistic and reliable uncertainties of the maps
they intend to use, so that in case of large uncertainty,
investments can be made to obtain more accurate soil
information (Heuvelink, 2014).

4.2 | Limitations and recommendations
for future research

Despite the successful incorporation of measurement
error variances in RK and the improvement in the

quantification of prediction uncertainties, there are sev-
eral aspects worthy of attention and further development.

The soil sampling design used was not initially
intended for geostatistical mapping, but rather to provide
a biophysical baseline, and a monitoring and evaluation
framework for assessing processes of land degradation
and the effectiveness of rehabilitation measures (Vågen &
Winowiecki, 2013). Consequently, the design was not
optimised to properly account for spatial dependence
over large distances (Brus et al., 2011). In Africa, cluster
sampling is often favoured due to accessibility problems
and limited resources; however, the method is prone to
biases and large prediction errors in unsampled areas.
For future sampling, it is highly recommended to com-
bine cluster sampling with other sampling methods to
account for variation at both short and larger distances.
Moreover, sampling should also cover the feature space
well (Brus & Heuvelink, 2007; Wadoux et al., 2019).

One important motive that measurement errors vari-
ances have not been systematically incorporated in DSM
is the challenge in their quantification in laboratories.
These are rarely reported systematically with the results
of analyses, probably due to the lack of interests from cli-
ents (Li et al., 2019). In this study, we had one sample
analysed in duplicate under the same conditions to quan-
tify the measurement error variances of analytical data.
We assumed constant measurement error variances for
each of the soil properties, but in many practical cases
measurement errors are proportional to the measured
values (Libohova et al., 2019). Since measurement error
variance for SOC was estimated on logarithmic scale, we
assumed a proportional error model for SOC, but not for
pH and clay. Quantification of measurement errors in
analytical data can be improved if laboratories pay more
attention and systematically quantify the uncertainties of
their measurements and benchmark against standards to
minimise systematic bias.

There are many sources of errors that propagate dur-
ing the DSM process, and each contributes to uncertainty
in the final prediction (Robinson et al., 2015). The fact
that this study focused on the uncertainty in soil observa-
tions does not mean that the influence of other sources of
errors can be ignored. From the modellers and end-users
perspectives, possible improvements would be to quantify
these other sources of errors and assess their implications
so that measures are taken to improve the uncertainties
of the DSM. Efforts have already been made in this line
and error quantification methods have already been
broadly discussed for some of the sources in Nelson
et al. (2011); Bishop et al. (2015); Robinson et al. (2015).

This study used resampled environmental variables at
250 m resolutions as covariates, which might be too
coarse and not able to capture some of the variation
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across the study area (Taylor et al., 2013). The use of high
spatial resolution covariates that can provide more
detailed information and reflect the distribution character-
istics of the targeted soil properties, particularly for small
study area is recommended (Samuel-Rosa et al., 2015).

This study has shown that it is relatively easy to
incorporate measurement error variances in RK once
these are quantified. Further development of the
approach is the extension to machine learning DSM
models (Hengl, Nussbaum, et al., 2018; Wadoux, 2019).
This is critical because of the rapid uptake for the ML
algorithms in DSM that is transforming the process of
spatial modelling and generating more accurate predic-
tions (Wadoux et al., 2020).

5 | CONCLUSION

We applied a geostatistical DSM approach to derive pre-
diction and prediction uncertainty maps after quantify-
ing and incorporating measurement error variances in
the covariance structure of the spatial model. Account-
ing for measurement errors resulted in changes in
regression coefficients of up to 29% and influenced the
variogram parameters by reducing the nuggets and sill
variances. Validation metrics were quite similar in the
two scenarios, but prediction uncertainties were more
realistically quantified by the models that account for
measurement errors, as indicated by accuracy plots. Pre-
diction maps were similar between scenarios, but we
observed slight differences in predicted values in some
parts of the study area of up to 0.1 for pH, 1.6% for clay
and 2 g/kg for SOC. Differences in regression kriging
SDs were up to 0.08 for pH, 2.7% for clay and 0.5 g/kg
for SOC. For pH and clay the kriging SDs were system-
atically smaller when measurement errors were explic-
itly accounted for.

The study stressed the importance of quantifying predic-
tion uncertainties, particularly when the issue of uncer-
tainty propagation in the modelling processes becomes
essential. This will help end-users to be aware of the real
prediction uncertainties and their implications for the
design and implementation of land restoration interven-
tions. It is advised that the methodology used in this work
is also tested in other case studies and further developments
of the approach should include its extension to non-linear
ML regression methods, such as Random Forest.
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