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Itis not currently possible to quantify regional-scale fossil fuel carbon dioxide (ffCO,) emissions with high accuracy
in near real time. Existing atmospheric methods for separating ffCO, from large natural carbon dioxide variations
are constrained by sampling limitations, so that estimates of regional changes in ffCO, emissions, such as those
occurring in response to coronavirus disease 2019 (COVID-19) lockdowns, rely on indirect activity data. We present
a method for quantifying regional signals of ffCO, based on continuous atmospheric measurements of oxygen
and carbon dioxide combined into the tracer “atmospheric potential oxygen” (APO). We detect and quantify ffCO,
reductions during 2020-2021 caused by the two U.K. COVID-19 lockdowns individually using APO data from
Weybourne Atmospheric Observatory in the United Kingdom and a machine learning algorithm. Our APO-based
assessment has near-real-time potential and provides high-frequency information that is in good agreement
with the spread of ffCO, emissions reductions from three independent lower-frequency U.K. estimates.

INTRODUCTION

Fossil fuel combustion and industrial processes are responsible for
the majority of anthropogenic carbon dioxide (CO,) emissions,
more than 70% of which are emitted from cities and urban areas (1).
Despite their critical importance, our ability to evaluate reported
emissions and to monitor and inform on the effectiveness of
emissions reduction policies over the coming decades is currently
limited (2, 3). This limitation was recently highlighted by the 2020-
2021 pandemic of the coronavirus disease 2019 (COVID-19). To
mitigate the spread of the virus, many countries implemented social
distancing measures at national or regional scales, resulting in
sudden and severe temporary reductions in emissions of CO, from
fossil fuels (ffCO,) (3-6) and anthropogenic air pollutants (6-8).
While numerous studies have successfully reported on air pollutant
COVID-19 reductions as observed from atmospheric measure-
ments (6-8), determining ffCO, COVID-19 reductions in the
atmosphere has been substantially more challenging, owing to the
large variations in atmospheric CO, caused by terrestrial biosphere
fluxes (9).

The Paris Agreement invokes an increased imperative to report
anthropogenic CO, emissions accurately at the country and sub-
country scale with transparency and consistency (2) and to develop
methods for independent evaluation (10, 11). Currently, anthropogenic
CO, emissions are self-reported to the United Nations Framework
Convention on Climate Change using an indirect “bottom-up”
approach, based primarily on energy statistics and emission factors,
and an agreed methodology (12); however, large inconsistencies in
bottom-up approaches have been reported, arising from inaccuracies
in energy statistics and/or emission factors (13-15).
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The Global Carbon Budget 2020 (5) provided a detailed assess-
ment of the impact of COVID-19 on ffCO, emissions during 2020 at
global and regional scales, based on a range of bottom-up assessments,
including those that also incorporate recently available activity and
mobility tracking data, such as the Carbon Monitor product (4) and
the Priestley Centre estimate (6). Relative changes in emissions
during 2020 from this suite of bottom-up estimates reveal large
inconsistencies in many regions, such as the EU27 (the 27 member
states of the European Union), for which the reductions in ffCO,
are 9.6% [University of East Anglia estimate, hereafter “UEA” (3)],
12.9% (Priestly), 7.1% (Carbon Monitor), and 17% (Global Carbon
Budget) (5). Furthermore, since the suite of Global Carbon Budget
bottom-up estimates is not available in real time, year-to-date
projections were included, on the basis of forward extrapolation of
emissions reductions to the end of the year 2020, instead of using
emissions estimates based on actual lockdown measures (5). Never-
theless, this comparison of methods gives an indication of the
uncertainty in regional estimates based on indirect proxies.

Attempts to detect and quantify COVID-19-associated ffCO,
emissions reductions using more direct “top-down” methods, based
on atmospheric measurements and modeling, have largely been
unsuccessful so far, particularly at regional and country scales. In
the United Kingdom, a study based on atmospheric CO, data from
the Deriving Emissions linked to Climate Change network (16)
found that COVID-19 signals will only be detectable in daily CO,
mole fractions after at least 33 months of sustained emissions re-
ductions (9). Another study, using atmospheric CO; data from the
European Integrated Carbon Observing System network (https://
icos-cp.eu/observations/atmosphere/stations) and the Stochastic
Time-Inverted Lagrangian Transport model (STILT) (17), was
unable to detect COVID-19-related reductions in ffCO, associated
with the first wave of lockdown measures in Europe (https://icos-cp.
eu/sc2020/abstracts#152). In East China, a study using satellite CO,
retrievals was also unsuccessful (18). In all of these studies, COVID-19
ffCO, reductions were obscured by fluxes of CO, between the at-
mosphere and the terrestrial biosphere, which are typically much
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larger than ffCO, emissions. At Hateruma Island, Japan, atmo-
spheric measurements of CO, and methane (CH,4) were used to
infer COVID-19-related ffCO, reductions, mostly from wintertime
data (when biospheric activity is suppressed), and by assuming that
biospheric-related variability in CO,:CHj ratios was not different in
2020 compared to previous years (19).

At the urban scale, where the contribution of ffCO, emissions
relative to biospheric CO, emissions is usually larger, detection of
COVID-19 signals has been possible in some locations using obser-
vations from satellites. A reduction in ffCO; emissions of 11.5% was
detected in China during January to April 2020 (compared to the
same months in 2019) using satellite-based nitrogen dioxide (NO>)
observations and CO;-to-NO, emission ratios from a bottom-up
estimate to formulate proxy ffCO, observations (20); however,
about half of the satellite grids were excluded from this analysis
owing to the prevalence of natural emissions in the observations,
which rendered the data unusable for ffCO, quantification. In
another study, CO, measurements from a high-density low-cost
sensor network in the San Francisco Bay Area were combined with
satellite measurements of solar-induced fluorescence (a proxy for
biospheric CO, emissions) and a high-resolution bottom-up ffCO,
emissions prior within an atmospheric inversion framework. The
authors found a 30% reduction in ffCO; emissions during a 6-week
period of the city’s “shelter-in-place” order, compared to the previous
6-week period (21). In both of these studies, the detection of a
distinct COVID-19 signal was only made possible owing to (i) the
use of proxy/“tracer” observations to separate the anthropogenic
and natural contributions to the total atmospheric CO; signal, (ii)
the availability of high-resolution emissions or emission ratio infor-
mation from bottom-up inventories, and (iii) the selection of
urban-based measurement locations, where ffCO, signals are com-
paratively larger [typically from 0 to 30 parts per million (ppm)]
than signals at non-urban sites (usually less than 10 ppm).

In addition to satellite-based proxies/tracers, natural and anthro-
pogenic signals in CO; can also be separated with ground-based
atmospheric measurements, using radiocarbon data (MC0,), carbon
monoxide data (CO), or a combination of both (22-29). 1*CO,, the
current “gold-standard” ground-based ffCO, tracer method, is a
high-precision measurement that has been recently used to success-
fully provide a top-down assessment of ffCO, emissions in the
United States (11). The main limitations of using 0, are twofold:
First, it is currently only possible to measure atmospheric '*CO,
with high accuracy from discrete samples (i.e., noncontinuously,
with relatively low temporal resolution), which are moreover ex-
pensive and laborious to analyze (30); second, in some regions, such
as the United Kingdom, '*CO, measurements can be severely
influenced by CO; emissions from gas-cooled nuclear power plants,
which obscure ffCO, signals in 1C0, data (31, 32). CO, a continuous
high-frequency ffCO, tracer that is easier to measure and is un-
affected by nuclear power plant emissions, can also be used, either
as an alternative to '*CO, sampling or in conjunction with '*CO,;
however, CO-based ffCO, is limited by poor precision and accuracy,
mostly arising from highly variable and inaccurate CO:ffCO,
emission ratio information, which is required for CO-based {fCO,
quantification (24, 25). Despite these limitations, ground-based
measurements are more precise and accurate than satellite-based
measurements; conversely, satellite-based measurements provide
higher spatial coverage than ground-based measurements. To date,
very few studies have been able to use ground-based atmospheric

Pickers et al., Sci. Adv. 8, eabl9250 (2022) 22 April 2022

measurements to provide a top-down assessment of COVID-19-
related ffCO, emissions reductions.

The rate of COVID-19-related emissions reductions during
2020-2021 was similar to the rate of long-term emissions reductions
required by the Paris Agreement to reach net zero emissions and
limit global temperature rise in the range of 1.5° to 2°C. COVID-19
has demonstrated that, despite the critical importance of ffCO,
emissions reductions for climate change policy, we do not currently
have systems in place—either bottom-up, top-down, or a combined
approach—to monitor and report ffCO, emissions at global, re-
gional, or country scales in near real time (3).

Here, we present a new ground-based measurement approach
for quantifying the regional ffCO, component of the atmospheric
CO; mole fraction (in parts per million) using atmospheric poten-
tial oxygen (APO) data. We demonstrate the potential of APO as a
ttCO, tracer by detecting and quantifying COVID-19 ffCO, reduc-
tions in the atmosphere associated with the first two waves of the
pandemic in the United Kingdom, using continuous data from the
Weybourne Atmospheric Observatory (WAO) in the United Kingdom
and a machine learning algorithm. The APO-based assessment we
present here separates biospheric and anthropogenic signals in
atmospheric CO, with high frequency (e.g., daily or subdaily scales)
and in near real time, which is an important first step toward robust
quantification of absolute ffCO, emissions using atmospheric data.
Our approach does not quantify absolute emissions, but, with the
use of machine learning, we are able to quantify relative changes in
emissions using APO data, which represents a major achievement
in top-down observation-based ffCO, emissions quantification
efforts. Using a combined APO and machine learning approach, we
have detected a local 1.6-ppm reduction in daily-mean ffCO,
observed at WAO during March to July 2020 compared to the non-
pandemic “counterfactual scenario” (i.e., compared to the expected
ffCO, during 2020 if the COVID-19 pandemic had not occurred),
and a 1.3-ppm daily-mean reduction during November 2020 to
January 2021. These two U.K. lockdown periods are separated by a
period of recovery, from August to October 2020, characterized by
little reduction in ffCO,. Our APO-based estimate is in good agree-
ment with the spread of ffCO, reductions determined from three
independent bottom-up emissions estimates for the United Kingdom.

RESULTS

Calculation of ffCO, from APO

APO is a tracer that combines oxygen (O,) and CO; observations
(APO = O; + 1.1 x CO;,) (33), where the value of 1.1 denotes the
mean —0,:CO, molar ratio of terrestrial biosphere-atmosphere
exchange (34). APO is therefore, by design, invariant to terrestrial
biosphere exchange processes. We calculate ffCO, from APO, which
we refer to as ffCO,[APO], according to

APO - APOgpp

ffCO, [APO]= Raro

(1)

where APOg; is the “baseline” APO value, which is determined sta-
tistically (see Fig. 1C and Materials and Methods), and Rapo is the
molar ratio (R) of APO:CO, for fossil fuel emissions, derived from
an emissions database product (35) (see Materials and Methods for
details). Both APO and APOg, have units of “per meg,” rather than
mole fraction units (such as parts per million) because O, is not a
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trace gas and its mole fraction is therefore affected by small changes
in other gases, such as CO; (36). While APO has typically been used
in the past to remove the influence of land biospheric exchange to
isolate air-sea O, and CO, fluxes (33, 37), here, we use APO to
isolate fossil fuel emissions by subtracting a baseline that includes
air-sea influences on APO (which mostly operate on long-term and
seasonal time frames; see Materials and Methods). The numerator
(APO-APOpg,) thus isolates short-term anomalies in APO, from which
ffCO,[APO)] is determined. We convert the units of APO-APOgg
from per meg to parts per million equivalent by dividing by 4.77
(38). A full derivation of Eq. 1 is provided in appendix SA of the
Supplementary Materials.

Figure 1 shows the atmospheric CO,, O, and APO record from
WAQO in the United Kingdom, and the resulting ffCO, calculated
from APO. Because of WAOQ’s rural location on the north Norfolk
coast, atmospheric transport variability exerts a substantial influ-
ence on the observed ffCO, signal (figs. S1 and S2). Air masses
arriving at the site from the North Sea and the Arctic Ocean are
generally associated with lower ffCO, compared to air masses
arriving from the direction of southern England, the Midlands, or
from the European continent. A cumulative plot of ffCO, for each
year during 2011-2020, shown in Fig. 2, reveals that there is no
apparent difference in the total ffCO, observed during 2020 com-
pared to previous years because the dominating influences of wind
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Fig. 1. Hourly atmospheric CO,, O,, and APO observations and calculated ffCO, from the WAO, 2011-2021. (A) Atmospheric CO, in parts per million. (B) Atmospheric
O, in per meg units. A 1-ppm change in CO; is equivalent to a 4.77-per meg change in O; (38). (C) APO, also in per meg units. The black points in (C) are the statistically
determined “baseline,”i.e., the APOg term in Eq. 1. (D) ffCO,, calculated from APO by removing the baseline signal in (C) from the APO observations and dividing by Rapo
as in Eqg. 1. The black dashed line denotes “zero” ffCO,, which is defined as the statistically determined baseline APO concentration. (A) to (C) show seasonality that is
driven mostly by terrestrial biospheric processes (CO, and O,) and oceanic processes (O, and APO). Shorter-term variability in all panels is driven by diurnal processes,
changes in meteorological conditions, synoptic-scale variability, and ffCO, emissions. Gaps in the data are caused by instrument downtimes. x axis tick labels denote the

beginning of the year shown.
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direction and atmospheric transport on the ffCO, signals at WAO
have not been accounted for.

COVID-19 ffCO, detection

We have applied the APO method to detect and quantify the reduc-
tion in ffCO,[APOQ] associated with the U.K. COVID-19 lockdown
restrictions, using an 11-year continuous APO dataset from WAO
and a random forest machine learning algorithm (39) to account
for the effects of weather and atmospheric transport processes on
APO (Fig. 3). A suite of 10 independent variables with hourly time
resolution (see Materials and Methods) was used to train the ma-
chine learning algorithm to model ffCO; for the period 2010-2019.
The algorithm was then used to predict the counterfactual case for
February 2020 to January 2021, that is, the expected ffCO,; that
would have been observed at WAO during this period had there
been no pandemic. Weekly differences are shown in Fig. 3A, which
indicate reductions in ffCO, relative to the counterfactual (non-
pandemic) prediction during periods when COVID-19 restrictions
were in place.

The COVID-19 influence on ffCO, detected at WAO is high-
lighted using the cumulative signal, shown in Fig. 3B, which accu-
mulates differences in the short-term variability of the daily values.
We find a sustained decrease in daily-mean ffCO,[APO] relative
to the counterfactual (nonpandemic) prediction of 1.6 ppm from
20 March to 31 July 2020, coinciding with the first period of
U.K. lockdown, a recovery period during August to October 2020
during which U.K. lockdown restrictions were eased and ffCO,[APO]
increased slightly by 0.2 ppm, and a second sustained decrease in
daily-mean ffCO,[APO] of 1.3 ppm from early November 2020
until the end of January 2021, during which a national lockdown

was reintroduced. We deem these sustained signals to be caused by
reductions in ffCO, emissions within the footprint of WAO, where
the term “footprint” denotes the sensitivity of measurements at
WAO to emissions located upwind of the site location (24). WAO is
influenced most by southwesterly winds, so the site predominantly
captures ffCO, signals from London and southern England over
emissions from other wind sectors. WAO is therefore not represen-
tative of the United Kingdom as a whole (signals at WAO can
also include emissions from continental Europe in addition to
U.K. emissions under certain atmospheric conditions).

For the full year 2020, we find an overall mean reduction of
0.7 ppm. This estimate is higher than the expected global CO, change
associated with COVID-19 emissions reductions [which is ~0.3 ppm
for an 8% reduction in 2020 annual emissions according to another
study (40)], most likely because the U.K. drop in COVID-19 emis-
sions was substantially larger than the global average (41).

Comparison with independent estimates

Both the timing of the onset and the shape of the cumulative ffCO,
signal from APO (Fig. 3B) agree with three bottom-up estimates of
the emissions decrease from COVID-19 lockdown measures for the
United Kingdom, based on indirect activity data (black lines in
Fig. 3B). The magnitudes of these estimates are not directly compa-
rable because the ffCO,[APO] top-down signal is in units of parts
per million x days and is not representative of the United Kingdom
as a whole, while the bottom-up COVID-19 signals are in megatons of
CO, and are U.K. totals. In addition, our ffCO,[APO] reduction
is relative to the counterfactual prediction for 2020, whereas the
bottom-up estimates are relative to emissions for 2019. Nevertheless,
for the period 1 February 2020 to 31 January 2021, we find a 23%
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Fig. 2. Cumulative daily ffCO, from APO in parts per million x days observed at WAO. Nonpandemic years (2011 to 2019) are shown by the thinner colored lines,
except for the year 2014, which is omitted because of large gaps in the data. The year 2020, during which the COVID-19 pandemic started, is shown by the thicker red line.
The influence of gaps on the cumulative signals have been accounted for by adjusting the ffCO, by the proportion of days that are missing data in each year. The
29 February has similarly been excluded where relevant, to allow a fair comparison between leap and nonleap years.
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Fig. 3. Reduction in WAO ffCO, associated with COVID-19 lockdowns. (A) Differences in ffCO, [as ffCO, determined from APO minus modeled ffCO, determined from
a random forest machine learning (ML) algorithm], shown as weekly differences. The first and second U.K. COVID-19 waves are indicated by the gray background shading.
Differences for the individual years 2011-2019 are show in blue. The period February 2020 to January 2021 is shown in red. All units are parts per million; x-axis major tick
marks denote the first day of the month. Uncertainties are omitted from this panel for clarity. (B) Same as (A), but shown as cumulative daily-averaged ffCO, in units of
parts per million x days. The thick blue line indicates the 2011-2019 mean. Uncertainties are as follows: The blue shading is the 26 (95%) SD of the 2011-2019 mean,
shown by the thick blue line, and represents the uncertainty of the training model (i.e., if the model performance was perfect, then the blue lines would all be zero), which,
in part, arises from the long-term decreasing trend in U.K. emissions over the period 2011-2019; ffCO, uncertainty for February 2020 onward is shown by the pale red
shading and arises from the poorer performance of the predictive model relative to the training model (see the “Analysis of uncertainties” section for details). For comparison
with our ffCO,[APQ] detected COVID-19 signal, we also show 2020-2019 differences from three bottom-up U.K. emissions estimates (black lines) on the right-hand axis
in units of MtCO; (see Materials and Methods). Only the UEA value (black dashed line) includes an estimate of uncertainty, shown by the vertical error bar.

reduction (range of 14 to 32%) from ffCO,[APO], compared to a
17% reduction from the U.K. BEIS (Department for Business, Energy,
and Industrial Strategy) national inventory. Estimates based on
proxy data give an 8% reduction from Carbon Monitor (4) and a
21% reduction (range of 13 to 30%) from the updated UEA estimate
(3). Uncertainty ranges are not available for Carbon Monitor and
U.K. BEIS estimates.

The spread in bottom-up estimates shown in Fig. 3B can in part
be accounted for by differences in international aviation and
shipping (IAS) emissions, which are included in the UEA estimate
but are not included in the U.K. BEIS estimate. The Carbon Monitor
estimate includes international aviation but not shipping. U.K. IAS
emissions reductions resulting from the COVID-19 pandemic are
estimated to be 17.3 MtCO; in 2020 (41), which would bring the

Pickers et al., Sci. Adv. 8, eabl9250 (2022) 22 April 2022

Carbon Monitor estimate closer to the UEA estimate but does not
account for all of the offset. A similar adjustment to the U.K. BEIS
estimate would shift it lower than the UEA value, so that even if IAS
is included in all three bottom-up estimates, a range of ~30 MtCO,
would still persist. In addition, since only the UEA estimate in-
cludes an estimate of uncertainty, it is likely that the spread between
bottom-up estimates would be substantially larger than this if
uncertainties were available for the U.K. BEIS and Carbon Monitor
estimates.

Analysis of uncertainties

We will show in this section that it is not required to quantify
uncertainty in ffCO,[APO] to calculate the uncertainty in relative
ffCO, emissions reductions from APO, but we nevertheless include
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detailed information in Materials and Methods on ffCO,[APO]
uncertainties for reasons of transparency and completeness. In
summary, ffCO,[APO] uncertainties are calculated for each of the
terms in Eq. 1: the Rypo value for WAO, the statistically derived
baseline uncertainty APOpy, and the uncertainty of the APO data
themselves. Total hourly ffCO,[APO] uncertainty can thus be
calculated by subtracting and dividing the absolute and relative
errors according to the rules of error propagation.

For our COVID-19 analysis, while the ffCO,[APO] values could
contain bias, either from inaccuracies in APOg;, or from an inaccurate
Rapo value, we do not expect such bias, if it exists, to translate into
error in our COVID-19-related relative ffCO, emissions reduction
estimate because the random forest algorithm is trained on simi-
larly biased ffCO,[APO] data (and since we calculate observation-
model differences, most bias should cancel). This assumption relies
on our ffCO;,[APO] error remaining the same during both the
training and predictive steps. For the APO measurement data and
APOg;, there is no indication in the diagnostic data that this is not
the case: Measurement performance during 2020-2021 was similar to
previous years, and there is no reason why the statistical baseline fitting
routine should be less accurate during this time period than previously
nor any evidence in the data to suggest that this is the case.

For Rapo, a shift in this value associated with COVID-19 lock-
downs would potentially bias our results because we used a mean
Rapo value of 0.37 throughout the whole 2010-2021 period; however,
it is unlikely that any COVID-19-related Rpo shift occurred, since
bottom-up estimates have shown that the reduction in ffCO, emis-
sions is mostly in aviation and surface transport (3, 4). The former
should not have a large impact on our APO-based analysis because
WAO is not situated near any airports. We do not expect the latter
to substantially bias Rypo because surface transport emissions are
predominantly from liquid-based fuels, with Rapo values of ~0.34,
which sit approximately in the middle of the Rypo range between
solid- and gas-based fuel types (35). A 36% reduction in surface
transport, as found by Le Quéré et al. (3), would correspond to a
bias in the Rapo value of +0.02, which would have a very small
impact on ffCO,[APO]. In addition, we have calculated Rypo using
the U.K. BEIS inventory (fig. S3), which shows a change in Rapo during
the COVID-19 lockdown periods of only +0.01. During 2011-2019,
Rapo does not change substantially except during 2012-2015, when
the value changes by —0.05 because of reduced coal emissions. Rapo
returns to its original 2011 value in 2016 due to increases in gas
usage, which counteracts the previous influence of coal on Rapo. Thus,
there is no requirement to account for ffCO,[APO] uncertainties in
our COVID-19 analysis, although these do exist (see Materials and
Methods) and may need to be considered carefully in potential
follow-up studies.

It is, however, necessary to consider the performance of the
machine learning algorithm and its associated uncertainty, which
we assess as follows. First, we evaluate the performance of the model,
as shown in Fig. 4. The model underestimates the true range of vari-
ability of the APO-based ffCO, but generally performs well with a
relatively small bias (—0.05 + 2.34 ppm; see Fig. 4A and fig. S4). The
impact of the imperfectly trained model performance on our ability
to robustly detect COVID-19 reductions in ffCO, is shown by the
blue lines in Fig. 3B, which would all be zero if the trained model
was perfect. The spread in these lines also includes the decreasing
trend in U.K. emissions (-22% during 2011-2019, from BEIS data),
which is not captured by the machine learning algorithm because
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bottom-up emissions are deliberately not used in the model training
as a variable. By examining the partial dependencies of the indepen-
dent variables (Fig. 4B), which shows the relationship between each
variable and ffCO; for the training model, we can also see whether
the model performs as we would expect. We find that high ffCO, at
WAQO is associated with lower air temperatures (during winter),
higher atmospheric pressure and lower wind speeds (during more
stable conditions), higher radon-222 activity (more influence from
ground-based sources and/or lower planetary boundary layer height),
and when clustered trajectories from the Hybrid Single Particle
Lagrangian Integrated Trajectory (HYSPLIT) model (fig. S5) originate
from the south, especially the southeast (i.e., from the European
continent). Low ffCO, at WAQ is observed during opposite conditions,
such as during the summer months and when the wind direction is
northerly (from the ocean). A ranking of the importance of each
independent variable for the model training is shown in fig. S6.
These results collectively indicate that the trained machine learning
model provides a physically realistic representation of ffCO, at WAO.

Second, we recognize that the model prediction is less robust
than the trained model, and an additional uncertainty (+40%; pale
red shading in Fig. 3B) is assigned to the 2020-2021 counterfactual
case to account for this. This £40% model prediction uncertainty
was estimated by quantifying the difference between the predicted
counterfactual from a separate model that was trained on 2010-
2018 data and used to predict the period 1 January to 31 December
2019 ffCO,, to the trained data from the original model for the
period 1 January to 31 December 2019. Using the model to predict
tfCO; during previous nonpandemic years does not result in
erroneous COVID-19-type signals, which should occur if the model
prediction is consistently prone to overestimation.

Third, to ensure that the random forest prediction is not overly
sensitive to the data at the beginning of the period (i.e., to so-called
“end effects”), we examined ffCO; reductions from a variety of
predictions run with differing start dates (fig. S7). Although the
choice of start date does have a small impact on the magnitude of
the pandemic ffCO, signals, all predictions still show similar patterns
associated with the two COVID-19 lockdown periods with a period
of lockdown easing during summer 2020. None of the differences
are outside of the uncertainties, except for during the first few months,
when the uncertainties are small. The sensitivity of the random
forest prediction to other parameters, such as the Rypo value used
to calculate ffCO, from APO, and the stiffness of the APO baseline
fit were also tested, but no notable differences were found.

COVID assessment from WAO atmospheric CO, data

We also applied the random forest machine learning algorithm to
WAO atmospheric CO; data instead of APO data (Fig. 5) but found
that a signal that could potentially be ascribed to ffCO; reductions
only emerges from about mid-September 2020 onward, 6 months
after lockdown restrictions were first introduced. The timing of this
potential signal is not consistent with the timing of the United
Kingdom’s second lockdown, and it is not possible to separate the
observed CO, reduction into ffCO, emissions reductions versus
changes (either reduction or enhancement) in biospheric CO,
emissions. It is more likely that the initial reduction in CO, during
the late summer of 2020 is caused by an anomaly in biospheric CO,
fluxes, perhaps caused by the heatwave in the late summer; hence,
no quantitative assessment of the impacts of COVID-19 on ffCO,
can be made using the atmospheric CO; data.
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Fig. 4. Evaluation of random forest machine learning model. (A) Scatter plot of hourly observed versus modeled ffCO, from the random forest model (2010-2019
only), showing the mean of the differences +1c SD. The plot is created using data from the model test set only, which are withheld from model training. The black line
represents a 1:1 relationship. Observed ffCO, is calculated using the APO approach (see Materials and Methods). The model underestimates the true range of variability
of the APO-based ffCO, but generally performs well. A histogram of the differences is shown in fig. S4. (B) Partial dependence plot of the key independent variables of the
trained random forest model. The plots show the relationship between each independent variable and modeled ffCO, (from the trained model) and therefore provide
insight into how variables are being used in the predictive model (39). See fig. S5 for the HYSPLIT cluster key.
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Fig. 5. Results of the random forest prediction using atmospheric CO, data. The years 2011-2019 are shown by the black lines. The year 2020 is shown by the red line,
with +40% uncertainty of the machine learning prediction indicated by the red shading. The uncertainty of the daily CO, observations themselves is not shown, since this

is extremely small (typical hourly uncertainties are less than £0.1 ppm).

DISCUSSION

We have used APO, a derived tracer that can separate natural and
anthropogenic contributions to regional atmospheric CO, variations,
to quantify the reduction in ffCO; associated with the COVID-19
lockdowns in the United Kingdom during 2020-2021. Detection of
COVID-19 signals is only possible owing to the high frequency of
the APO measurements (which produce continuous, hourly data)
and when combined with a machine learning algorithm that
accounts for the influence of atmospheric transport variability on
the observed ffCO,. It should be noted that although the machine
learning algorithm allows the comparison of ffCO, in the atmosphere
between different years, it does not account for how atmospheric
mixing translates CO, fluxes into atmospheric mole fractions. We
also acknowledge that training a statistical model for predictive
purposes using trending data is likely to be inappropriate unless
the trend is first removed. For our study, while there has been a
decreasing trend in U.K. ffCO, emissions since 2010, this trend is
not visible in the APO-based ffCO, at WAO (as shown in Fig. 2),
due to the dominating influence of atmospheric transport variability
on the ffCO, signal compared to a relatively smaller decreasing
trend; thus, in our case, there is no requirement to account for any
ffCO; emissions trend before training.

It might be feasible to replicate our machine learning-based
analysis using a discrete, low-frequency ffCO, tracer, but only with
much larger uncertainty, since the random forest algorithm relies
on having a considerable number of high-frequency (e.g., hourly)
ffCO; values. In this case, the timely detection of COVID-19 signals
at WAO is only made possible by the availability of a continuous
ffCO, tracer combined with a method to remove the effects of
atmospheric transport on the ffCO, signal, such as the machine
learning algorithm we have applied here.

Our COVID-19 signal, detected directly from atmospheric mea-
surements as a mean decrease of 0.7 ppm in daily observed ffCO,
from March to December 2020, is in broad agreement with three
U.K. bottom-up emissions estimates, based on indirect energy and

Pickers et al., Sci. Adv. 8, eabl9250 (2022) 22 April 2022

activity data. We refer to atmospheric measurement-based top-
down estimates as direct and bottom-up estimates as indirect,
because what matters from a climate change perspective is the change
in radiative forcing in the atmosphere, caused by changes in atmo-
spheric greenhouse gas concentrations, which top-down methods
are able to measure directly. Our APO-based analysis is able to
resolve the two U.K. lockdown periods individually, which are
separated by a period of recovery during the summer of 2020 when
lockdown restrictions were eased. This APO analysis, using data
from a single U.K. measurement station, indicates that a network of
continuous APO measurement sites would have strong potential
for providing top-down estimates of ffCO, emissions at regional
scales, which corroborates the results of a recent modeling analysis
(42). Furthermore, since the WAO APO data are measured and
calibrated in situ and in real time, APO data could be highly benefi-
cial in providing timely top-down ffCO, estimates in the future.

The APO network of stations is currently sparse with few
measurement sites ideally situated to capture anthropogenic emissions
signals. Thus, using APO as a tool for top-down ffCO, emissions
quantification efforts at scale will require investment in precise and
accurate atmospheric O, and CO, measurements, which are techni-
cally challenging, and improved knowledge of Rapo from emissions
inventories.

MATERIALS AND METHODS

Measurements and calculations of CO,, O,, APO,

and ffCO,[APO] at the WAO, United Kingdom

WAO is situated on the north Norfolk coast (53°N) in a rural part
of the United Kingdom. Atmospheric O, is measured every two
minutes with a Sable Systems International Inc. “Oxzilla II” electro-
chemical fuel cell analyzer, and CO, is measured with a Siemens
Corporation “Ultramat 6E” nondispersive infrared analyzer (43).
O, measurements are reported on the Scripps Institution of
Oceanography, USA O; scale (44) and CO, measurements are reported
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on the World Meteorological Organization CO, X2007 scale (45).
Atmospheric O, measurements are reported as §(O,/N,) ratios in
per meg units, rather than mole fractions, because O, is not a trace
gas, and its mole fraction is therefore affected by small changes in
other gases, such as CO; (36).

APO is calculated from measurements of atmospheric O, and

CO; (33) according to

APO =~ §(0,/N,) +1.1/0.2094 x (350 — CO,) 2)
where the value of 1.1 denotes the mean —0,:CO, molar ratio of
terrestrial biosphere-atmosphere exchange (34), 0.2094 is the stan-
dard mole fraction of O, in dry air, and 350 is an arbitrary reference
value for CO; in parts per million, based on the CO, mole fraction
of cylinders that define zero on the Scripps Institution of Oceanography
calibration scale. By summing O, and CO, observations in this way,
APO becomes invariant to terrestrial biosphere exchange by defini-
tion. Variability in APO therefore reflects mostly ocean-atmosphere
exchange (on seasonal and long-term time scales) and fossil fuel
combustion (on short- and long-term time scales). Our calculation
of APO is approximate because it does not account for the influences
of CHy and CO (33), which have a negligible effect on APO at WAO.

The stoichiometry of O, and CO; exchange between the atmo-
sphere and terrestrial biosphere has been shown to be robust on a
global scale. Atmospheric O, and CO, observations from a range of
locations sampling well-mixed tropospheric air have consistently
found —0,:CO; ratios to be within 1.10 + 0.05, with very little
temporal or spatial variability observed. An extensive range of sur-
veys have found that all major organic pools on land have —0,:CO,
values ranging from 1.0 to 1.2 (46), while the —0,:CO; exchange
ratio of unpolluted air at WAO has previously been shown to lie
within 1.10 + 0.05 (47).

We calculate the regional fossil fuel component of atmospheric
CO;, mole fractions (ffCO,) in units of parts per million at WAO
using hourly averaged APO data as shown in Eq. 1. APOg;, the
hourly APO “baseline” values (i.e., values that are representative of
the well-mixed troposphere of the wider region), was determined
using a statistical baseline fitting method (48), because there is not
presently a suitable up-wind station with APO data from which we
can obtain a measured baseline; thus, we sometimes obtain negative
ffCO; values. Rapo is the hourly APO:CO, combustion ratio for
fossil fuel emissions, calculated by converting —0,:CO, molar ratios
for fossil fuel combustion (ag) from the “COFFEE” (CO, release
and oxygen uptake from fossil fuel emission estimate) database (35)
into —APO:CO, molar ratios according to

RApo =op-1.1 (3)
where 1.1 is the —O,:CO, molar ratio of terrestrial biosphere-atmosphere
exchange as mentioned above. For our COVID analysis, we use a
mean Rapo value at WAO of 0.37, obtained from STILT (17), which
is run using gridded ar values from the COFFEE database.

APO has historically been used to attribute variations in atmo-
spheric O, due to oceanic processes [e.g., (33, 37, 49, 50)]; however,
we estimate the effects of oceanic influences on our APO ffCO,
estimates to be minimal, because oceanic influences on APO mostly
occur on seasonal or longer time scales, with short-term variations
in APO dominated by fossil fuel emissions, and because the influence
of short-term ocean-related variability on O, at WAO has been
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estimated to be only ~6% (51); thus, the majority of oceanic in-
fluences in APO are incorporated into APOgy and are excluded
from ffCO,[APO].

Calculation of hourly ffCO,[APO] uncertainties

We include here information about how to account for the sources
of hourly uncertainty associated with each term in Eq. 1 as follows.
Uncertainty in the APO data is calculated from typical +16 SDs in
the hourly CO; and O, measurements at WAO during stable atmo-
spheric conditions with low natural variability. In this manner, we
incorporate uncertainty in analyzer performance and routine
calibrations, as well as any uncertainty introduced by the measure-
ment system, in pumping outside air from the tower, drying it, and
passing it to the O, and CO; analyzers. Our APO data uncertainty
also incorporates an estimate of the uncertainty associated with
the —0,:CO, molar ratio of terrestrial biosphere-atmosphere ex-
change, for which we use +0.05 (34). We obtain a typical hourly APO
uncertainty of approximately +2 per meg or 0.4 ppm equivalent
units. Using a mean short-term range of observed APO variability
of 49 per meg, the relative APO measurement uncertainty is there-
fore +4.1%. The APO range is used rather than the mean APO value
because APO is a quantity defined relative to an arbitrary reference.

Determination of a “true” atmospheric baseline concentration is
complicated and poorly defined for almost all atmospheric green-
house gases and pollutants. Ideally, one would use other stations to
directly measure an appropriate baseline from clean-air/up-wind
sites; however, it is rare that atmospheric measurement networks
are sufficiently dense or optimized to allow this method of baseline
determination. Since there is currently no upwind O2 measure-
ment site for WAO, we use “rfbaseline,” a statistical baseline es-
timation technique with a smoothing window of approximately 1
week, which is fitted to the WAO APO data themselves and
which tracks values deemed to be unaffected by local influences
(48). Uncertainty of the baseline is estimated by recalculating
tfCO,[APO] with varying “stiffness” in the fitting routine, using
span values of 0.03, 0.06, and 0.12, representing smoothing win-
dows of approximately 1, 2, and 4 weeks, respectively. The choice of
baseline stiffness mostly affects the magnitude of the ffCO; ob-
tained, not the variability, which is determined by variability in the
APO data. We estimate an APOpy, uncertainty of +2.81 per meg,
or +0.6 ppm equivalent units, calculated from the mean differences
between the 1- and 4-week smoothed baselines compared to the
2-week smoothed baseline. As a relative uncertainty, we find APOg,
to be +28%, based on a mean short-term range of APOg|, variability
of 10 per meg.

Uncertainty in the gridded fossil fuel emission ratio estimates of
Rapo are not provided in COFFEE; instead, we use the +16 SD
(i.e., the variability) around the mean STILT-COFFEE Rapo value
of 0.37 as a proxy for uncertainty in Rapo at WAO, giving an
absolute value of +0.11. The relative uncertainty in Rypo is there-
fore £31% (+1c divided by the mean, multiplied by 100). The
uncertainties of both ap and the O,:CO, molar ratio of terrestrial
biosphere-atmosphere exchange are included in our total Rypo
uncertainty as per Eq. 3.

Converting the absolute uncertainty of each term in Eq. 1 into
relative uncertainties allows the total hourly ffCO,[APO] uncer-
tainty to be calculated using the rules of error propagation. We esti-
mate a mean hourly ffCO,[APO] uncertainty of +42%, which is
dominated by our estimate of uncertainty in Rapo, followed by our
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estimate of uncertainty in APOg;. At WAO, during the period
2010-2021, the mean ffCO,[APO] detected is 3.4 + 1.4 ppm. We
reiterate that our estimate of Rypo uncertainty, while being the largest
term, is only a proxy for the actual uncertainty owing to a lack of
available information and that future work on using APO to
quantify ffCO, should focus on refining Rapo values and their
uncertainties. Uncertainty in APOg|, can likely be reduced with
denser networks of APO data, which may allow APOg to be calcu-
lated from other sites, instead of having to rely on statistical fitting
methods that likely have a higher uncertainty.

Machine learning analysis and COVID-19 signal detection
To account for the influence of atmospheric transport on our
ffCO,[APQ] dataset, we use the “rmweather” R package (version
0.1.51) (52, 53), which has previously been used with air pollution
datasets (39, 53, 54). The rmweather package uses random forest,
an ensemble decision tree machine learning method (55) that splits
observations using a binary algorithm into two homologous groups,
known as branches, repeating the process until the “tree” is fully
grown [“node purity” is achieved (54)]. Decision trees are prone to
overfitting (56), but random forest mitigates this by growing many
individual decision trees from a training set in a process called bagging
(bootstrap aggregation), which creates a forest of decorrelated trees,
since each has been grown on different subsets of the training set.
Using rmweather, we train a random forest model of 300 trees
at WAO for the period 2010-2019 using 10 independent variables:
hourly meteorological observations (wind speed, wind direction, air
temperature, relative humidity, and atmospheric pressure), which
are measured in situ at WAO; temporal factors (day of the year, day
of the week, and hour of the day); hourly atmospheric radon-222
activity, a tracer for atmospheric mixing that has been measured at
WAQO since April 2018 using an Australian Nuclear Science and
Technology Organisation monitor (57); and hourly 24-hour-long
HYSPLIT (https://ready.noaa.gov/HYSPLIT.php) model (58)
backward-run trajectories, clustered into eight groups (see fig. S5)
using k-means clustering and the openair package in R (59) (https://
davidcarslaw.github.io/openair/). For the dependent variable, we use
hourly ffCO,[APO], calculated using Eq. 1. Meteorological data are
cross-checked against an independent (but colocated) dataset operated
by the U.K. Met Office as a quality control measure. The training set
consists of 80% of the data, with 20% reserved for testing.
Performance of the trained model was assessed for bias and
goodness of fit, as shown in Fig. 4. We use the model, trained on the
2010-2019 data to predict the counterfactual ffCO, that would have
been observed at WAOQ during the time period 1 February 2020 to
31 January 2021, if the COVID-19 pandemic had not occurred.
This counterfactual prediction is then compared to the observed
ffCO,[APOQ] values over the same time period to estimate the
impact of COVID-19 lockdown measures on ffCO, at WAO. We
calculate the relative percent change in emissions, E, by taking the
ratio of the cumulative ffCO,[APO] and cumulative ffCO, counter-
factual signals shown in Fig. 3B according to

E = (1 — ffCO, [APO] cumulative
ffCO; [counterfactual] cymulative

> x 100% 4)

As mentioned in the “Analysis of uncertainties” section (see Results),
the uncertainty range we report on the COVID-19 ffCO, relative
emissions reductions shown in Fig. 3B is based solely on the
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uncertainty associated with the machine learning algorithm (calcu-
lated from the difference in model performance between training
and predictive results), since the APO-based uncertainties cancel.

Comparison with bottom-up inventory estimates

We compare our COVID-19 signal detected from ffCO,[APO] data
to three bottom-up inventory estimates for the United Kingdom,
which quantify COVID lockdown emissions reductions by comparing
2020 emissions to those from 2019. These are the following: inland
energy consumption statistics from the U.K. BEIS, which we con-
vert to CO; emissions estimates in units of megatons using coal, gas,
and oil conversion factors and by tuning to annual emissions from
previous years; an updated version (March 2021) of the UEA esti-
mate (3), based on a combination of energy, activity, and policy data;
and an estimate from Carbon Monitor, based on fuel consumption
and activity data (4). Only the Carbon Monitor emissions have daily
resolution; the UEA and U.K. BEIS estimates are monthly. We exclude
the 29 February from all estimates (bottom-up and top-down) to
enable a comparison of leap years to nonleap years. At the time of
publication, only the UEA estimate fully includes emissions from IAS.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl9250
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