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Summary

Terrestrial ecosystems are essential for human life, as they provide several key services, such as
food and water security, sequestration of anthropogenic carbon dioxide (CO2) and evaporative
cooling. Healthy ecosystems perform photosynthesis, during which the plants’ stomata, tiny
apertures on the leaf surface, are open to take up CO2 and evaporate water into the atmosphere,
thereby providing a cooling effect. At the Earth’s surface, all the energy that is available from
solar radiation that is not used to evaporate water, is used to heat near-surface air. Thereby,
ecosystems play a key role in connecting the energy and the water balance.

In Chapter 1, I introduce the energy and the water balance, which are linked through the
evaporation of terrestrial water by ecosystems. How much of the available energy is used to
evaporate water from the land surface, the evaporative fraction (EF), depends on water supply
(soil moisture); When the soil is too dry for plants to extract water from the soil, plants close their
stomata to prevent water loss. As the soil moistens, plants can access this water and increase their
transpiration with further soil moisture increases until the maximum EF is reached. At this point,
any additional soil moisture increases will no longer affect the EF, rendering the magnitude of
the evaporation of water, the terrestrial evaporation (ET), solely dependent on available energy.
The soil moisture and the corresponding terrestrial evaporation regime can dampen or amplify
heat waves and other extreme events. Therefore, distinguishing energy versus water-limited
conditions and accurately representing in Earth system models is essential.

The aim of this thesis is to study the relevance of water versus energy limited conditions and
associated regime transitions for weather, climate and related extremes under climate change. In
this data-driven analysis, a multitude of data streams is used, amongst which satellite observations,
in-situ observations, such as weather balloons, gridded machine-learning based data sets and
heavily constrained and unconstrained model output from Earth system models. Using such a
combination of data products provides a comprehensive perspective that allows to infer the role
of limitations in individual data products by comparing results between them.

In addition to research focusing solely on either energy or water, I introduce a novel index
in Chapter 2 that considers the relevance of both water and energy availability for terrestrial
evaporation. Using satellite observations over Europe, energy limitation is found in Northern
Europe and water limitation in the Mediterranean, separated by a transitional zone across Central
Europe. A soil moisture threshold, the critical soil moisture (CSM), which separates energy and



viii Summary

water-limited conditions, is determined at the continental and the grid cell scale. This transition
matters, as it separates water-limited conditions, where soil moisture can impact the near-surface
temperature through evaporation, from energy-limited conditions, where atmospheric dynamics
and related temperature and solar radiation impact the evaporation of water. The CSM is sensitive
to local climate, soil and vegetation characteristics, but is robust when determined using proxies
from other data products for energy availability and terrestrial evaporation.

As land-atmosphere interactions work both ways, land surface conditions can also be inferred
from an atmosphere perspective: In Chapter 3, atmospheric temperature and humidity mea-
surements from weather balloons are translated into landscape-scale surface fluxes using a
mixed-layer model. Juxtaposing these surface fluxes against satellite-observed surface soil
moisture, the CSM is estimated, which is then used to separate water versus energy-limited
conditions. Further, I find that afternoon atmospheric boundary layers (ABLs) are warmer, drier
and deeper over water-limited as compared to energy-limited surfaces.

In Chapter 4, future trends ecosystem water limitation trends are studied with model output
from a suite of state-of-the-art Earth system models, which (i) can complement data lacking
from observations (e.g. root-zone soil moisture) and (ii) allows to infer future climate conditions.
Ecosystem Limitation Index (ELI) trends based on historical simulations and future projections
reveal a widespread increase in ecosystem water limitation under climate change. Although
globally this is driven mostly by increasing energy availability, several hot spot regions are
identified where ecosystem water limitation increases particularly rapid owing to simultaneous
decreases in water availability. This shift towards ecosystem water limitation occurs in space, as
transitional zones shift northwards in Canada and northern Eurasia and northeastwards in the
Amazon, and in time through widespread lengthening of the water-limited season. Although net
surface radiation is the most dominant driver for ELI trends, a full range of eco-climate variables
is needed to understand local differences.

In previous chapters, I mainly focused on mean climate conditions, whereas the role of land-
atmosphere interactions for climate extremes is even more pronounced: In Chapter 5, I find
that in about half of the land area with active vegetation, vegetation productivity extremes
jointly occur with hydrometeorological hazards. The drivers of such vegetation extremes vary
in space: In the Northern Hemisphere, temperature-related hazards are found important above
50°N, whereas water-related hazards most strongly impact vegetation productivity below 50°N.
Further, several key regions are identified where vegetation productivity maxima are energy-
driven and minima are governed by water, which is characteristic for transitional regimes and
strong land-atmosphere coupling.

In Chapter 6, an ensemble of Earth system models is used to find that in 77% of the vegetated
land surface, maximum temperature is increasing more rapidly than mean temperatures under
climate change. In several hot spot regions, such temperature divergence increases occur
alongside shifts towards ecosystem water limitation and related reductions in evaporative cooling.
Whereas the magnitude of temperature divergence trends is largest in initially energy-limited and
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transitional regions, where ELI trends are strongest, the sensitivity is highest in initially water-
limited regions, where evaporative cooling is most strongly affected by increasing ecosystem
water limitation.

In Chapter 7, specific contributions, limitations and future research opportunities are synthesized.
In conclusion, a novel index was introduced that jointly considers the relevance of energy and
water availability for terrestrial evaporation. Typically, water-limited conditions are characterized
by dry soils and correspondingly low terrestrial evaporation and high sensible heating of near-
surface air. As such, ABLs are warmer and drier over water versus energy limitation, thereby
amplifying heat extremes. Hot spot regions are found where heat extremes are amplified by
reductions in evaporative cooling. Identifying such regions is essential to tailor adaptation
strategies, such as irrigation or tillage practices, city greening and afforestation, to mitigate
impact on human health and infrastructure. Further, these studies allow the comparison of
modelled and observed land-atmosphere coupling, which could inform model development and
lead to better weather and climate forecasts and accurate determination of land-atmosphere
coupling hot spots and associated extreme events.





Samenvatting

Terrestrische ecosystemen zijn van essentieel belang voor mensenleven, omdat zij verschillende
essentiële diensten leveren, zoals voedsel- en waterzekerheid, vastlegging van antropogene
kooldioxide (CO2) en verdampingskoeling. Gezonde ecosystemen voeren fotosynthese uit,
waarbij de huidmondjes van de planten, minuscule openingen op het bladoppervlak, open staan
om CO2 op te nemen en water de atmosfeer in te verdampen, waardoor een verkoelend effect
ontstaat. Aan het aardoppervlak wordt alle beschikbare energie van zonnestraling die niet wordt
gebruikt om water te verdampen, gebruikt om de lucht nabij het aardoppervlak te verwarmen.
Ecosystemen spelen dus een sleutelrol in de koppeling van de energie- en de waterbalans.

In Hoofdstuk 1 introduceer ik de energie- en de waterbalans, die met elkaar verbonden zijn via
de verdamping van landwater door ecosystemen. Hoeveel van de beschikbare energie wordt
gebruikt om water van het landoppervlak te verdampen, de verdampingsfractie (EF), hangt af van
de watertoevoer (bodemvochtigheid); wanneer de bodem te droog is voor planten om water aan de
bodem te onttrekken, sluiten planten hun huidmondjes om waterverlies te voorkomen. Naarmate
de bodem vochtiger wordt, krijgen planten toegang tot dit water en neemt hun transpiratie
toe naarmate de bodemvochtigheid toeneemt, totdat de maximale EF is bereikt. Op dit punt
heeft een verdere toename van de bodemvochtigheid geen invloed meer op de EF, zodat de
grootheid van de waterverdamping, de terrestrische verdamping (ET), uitsluitend afhankelijk
is van de beschikbare energie. De bodemvochtigheid en het bijbehorende verdampingsregime
kunnen hittegolven en andere extreme gebeurtenissen temperen of versterken. Daarom is het van
essentieel belang een onderscheid te maken tussen energie- en waterbeperkte omstandigheden en
deze accuraat weer te geven in aardsysteemmodellen.

Het doel van dit proefschrift is het bestuderen van de relevantie van water- versus energiebeperkte
omstandigheden en de bijbehorende regime-overgangen voor weer, klimaat en gerelateerde
extremen onder klimaatverandering. In deze data-gedreven analyse wordt een veelheid aan
datastromen gebruikt, waaronder satellietwaarnemingen, in-situ waarnemingen, zoals weerbal-
lonnen, machine-learning gebaseerde datasets en output van zwaar begrensde en onbegrensde
aardsysteemmodellen. Het gebruik van een dergelijke combinatie van gegevensproducten biedt
een alomvattend perspectief dat het mogelijk maakt de rol van beperkingen in individuele
gegevensproducten af te leiden door de resultaten tussen die producten te vergelijken.



xii Samenvatting

Naast onderzoek dat zich uitsluitend richt op energie of water, introduceer ik in Hoofdstuk 2 een
nieuwe index die rekening houdt met de relevantie van de beschikbaarheid van zowel water als en-
ergie voor de verdamping van landwater. Op basis van satellietwaarnemingen over Europa wordt
een energiebeperking aangetroffen in Noord-Europa en een waterbeperking in het Middellandse
Zeegebied, gescheiden door een overgangszone in Midden-Europa. Een bodemvochtdrempel,
de kritische bodemvochtigheid (CSM), die energie- en waterbeperkte omstandigheden scheidt,
wordt bepaald op continentale schaal en op de schaal van rastercellen. Deze overgang is be-
langrijk, omdat hij een scheiding vormt tussen watergelimiteerde omstandigheden, waarbij
bodemvocht de oppervlaktetemperatuur door verdamping kan beı̈nvloeden, en energiegelim-
iteerde omstandigheden, waarbij de atmosferische dynamiek en de daarmee samenhangende
temperatuur en zonnestraling de verdamping van water beı̈nvloeden. De CSM is gevoelig voor
lokale klimaat-, bodem- en vegetatiekenmerken, maar is robuust wanneer hij wordt bepaald
met behulp van proxies van andere gegevensproducten voor de beschikbaarheid van energie en
terrestrische verdamping.

Aangezien de interacties tussen land en atmosfeer in beide richtingen werken, kan de toes-
tand van het landoppervlak ook worden afgeleid vanuit het perspectief van de atmosfeer: In
Hoofdstuk 3 worden metingen van de atmosferische temperatuur en vochtigheid door weer-
ballonnen vertaald in oppervlaktefluxen op landschapsschaal met behulp van een mixed-layer
model. Door deze oppervlaktefluxen af te zetten tegen het vochtgehalte van de bodem dat door
satellieten is waargenomen, wordt de CSM geschat, die vervolgens wordt gebruikt om water-
versus energiebeperkte omstandigheden van elkaar te scheiden. Verder ontdek ik dat de atmos-
ferische grenslagen (ABL’s) ’s middags warmer, droger en dieper zijn over watergelimiteerde
oppervlakken in vergelijking met energiegelimiteerde oppervlakken.

In Hoofdstuk 4 worden toekomstige trends in de waterbeperking van ecosystemen bestudeerd
aan de hand van modeloutput van een reeks geavanceerde aardsysteemmodellen, die (i) gegevens
kunnen aanvullen die ontbreken in waarnemingen (bijv. bodemvocht in de wortelzone) en
(ii) het mogelijk maken om toekomstige klimaatomstandigheden af te leiden. Trends in de
ecosysteemlimitatie-index (ELI) op basis van historische simulaties en toekomstprojecties wijzen
op een wijdverspreide toename van de waterlimitatie van ecosystemen onder invloed van de
klimaatverandering. Hoewel dit wereldwijd vooral wordt aangedreven door een toenemende
beschikbaarheid van energie, zijn er verschillende ”hot spot”-regio’s geı̈dentificeerd waar de wa-
terbeperking voor ecosystemen bijzonder snel toeneemt als gevolg van een gelijktijdige afname
van de beschikbaarheid van water. Deze verschuiving naar waterbeperking voor ecosystemen
doet zich voor in de ruimte, aan de hand van overgangszones die naar het noorden verschuiven
in Canada en noordelijk Eurazië en naar het noordoosten in het Amazonegebied, en in de tijd
door een wijdverspreide verlenging van het waterbeperkte seizoen. Hoewel netto oppervlak-
testraling de meest dominante drijvende kracht is achter de ELI-trends, is een volledige reeks
eco-klimaatvariabelen nodig om lokale verschillen te begrijpen.
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In de voorgaande hoofdstukken heb ik me vooral gericht op gemiddelde klimaatomstandigheden,
terwijl de rol van land-atmosfeer interacties voor klimaatextremen nog groter is: In Hoofdstuk
5 stel ik vast dat in ongeveer de helft van het landoppervlak met actieve vegetatie, vegetatiepro-
ductiviteitsextremen samen met hydrometeorologische ontregelingen voorkomen. De drijvende
krachten achter dergelijke vegetatie-extremen variëren in de ruimte: Op het noordelijk halfrond
zijn temperatuurgerelateerde risico’s het belangrijkst boven 50°noorderbreedte, terwijl waterg-
erelateerde risico’s de vegetatieproductiviteit het sterkst beı̈nvloeden beneden 50°noorderbreedte.
Voorts zijn er verschillende sleutelregio’s geı̈dentificeerd waar de maxima van de vegetatiepro-
ductiviteit worden bepaald door energie en de minima door water, wat kenmerkend is voor
overgangsregimes en een sterke koppeling land-atmosfeer.

In Hoofdstuk 6 wordt een ensemble van aardsysteemmodellen gebruikt om te ontdekken dat
in 77% van het begroeide landoppervlak de maximumtemperatuur sneller toeneemt dan de
gemiddelde temperatuur onder invloed van de klimaatverandering. In verschillende hotspot-
regio’s gaan dergelijke stijgingen van temperatuurverschillen gepaard met verschuivingen in
de richting van waterbeperking voor ecosystemen en daarmee samenhangende verminderingen
van verdampingskoeling. Terwijl de grootte van temperatuur divergentie trends het grootst is
in aanvankelijk energie-beperkte en overgangsregio’s, waar de ELI trends het sterkst zijn, is de
gevoeligheid het hoogst in aanvankelijk waterarme regio’s, waar de verdampingskoeling het
sterkst wordt beı̈nvloed door de toenemende waterbeperking van het ecosysteem.

In Hoofdstuk 7 worden specifieke bijdragen, beperkingen en toekomstige onderzoeksmogeli-
jkheden samengevat. Tot slot werd een nieuwe index geı̈ntroduceerd die de relevantie van de
beschikbaarheid van energie en water voor de verdamping van land in beschouwing neemt. Typ-
isch worden waterarme omstandigheden gekenmerkt door droge bodems en een overeenkomstige
lage verdamping en hoge voelbare opwarming van de lucht aan het aardoppervlak. Als zo-
danig zijn ABL’s warmer en droger bij water- versus energiebeperking, waardoor hitte-extremen
worden versterkt. Hotspotregio’s worden gevonden waar hitte-extremen worden versterkt door
verminderde verdampingskoeling. Het identificeren van dergelijke gebieden is essentieel om
aanpassingsstrategieën, zoals irrigatie- of grondbewerkingspraktijken, stadsvergroening en be-
bossing, op maat te maken om de gevolgen voor de menselijke gezondheid en de infrastructuur
te beperken. Bovendien maken deze studies een vergelijking mogelijk van de gemodelleerde
en waargenomen koppeling tussen land en atmosfeer, hetgeen modelontwikkeling ten goede
kan komen en kan leiden tot betere weer- en klimaatvoorspellingen en een nauwkeurige bepal-
ing van de hot spots van de koppeling tussen land en atmosfeer en de bijbehorende extreme
gebeurtenissen.





Chapter 1

General introduction



2 General introduction

1.1 Background: Land-atmosphere interactions

The Earth system can be subdivided in several spheres: the lithosphere, hydrosphere, atmosphere
and the biosphere. Whereas this distinction is useful for classification purposes, the Earth
system can only be understood through the interactions between those spheres. Many of these
interactions occur at the Earth’s surface, where solar radiation provides the energy that is at
the base of a myriad processes that shape the weather we experience every day and that on
rare occasions result in extremes that can crucially impact life. How the weather is affected by
the Earth’s surface depends on its properties, including vegetation coverage and soil properties,
which in turn are influenced by the prevalent local climate. This thesis presents a study of
the Earth’s surface and how it modulates flows of energy and water between the land and the
atmosphere.

1.1.1 Surface water & energy balance

Figure 1.1: Schematic representation of the energy and water cycles. The land water balance is
depicted in the left panel and the energy balance in the right panel. The arrows represent fluxes of water
and energy. The meaning of the abbreviations is elaborated on in the text. Throughout this thesis, I will
refer to the total sum of evaporative processes at the land surface as terrestrial evaporation (ET) (E, left
panel) in mm d-1 or latent heat flux (LE) in W m-2. ET can be converted to the LE (or λE, right panel)
with the use of the latent heat of vaporization (λ ). Figure from Seneviratne et al. (2010).

Water and energy availability at the land surface are vital for fresh water reserves and healthy
ecosystems that provide food and evaporative cooling and sequester atmospheric carbon dioxide
(CO2) (Mekonnen and Hoekstra, 2016; Piao et al., 2010). To this end, taking stock of water and
energy fluxes is essential. Figure 1.1 schematically describes the most important processes for
the land water and energy balance occurring at the land surface. The land water balance (left),
excluding the lateral sub-surface exchange of water to adjacent soils, can be described in Eq.
1.1:
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dS
dt

= P−ET −Rn−Rg (1.1)

Where the water storage (dS/dt) in the considered soil layer (in mm d-1) results from the difference
between precipitation (P) and terrestrial evaporation (ET), drainage (Rg) and surface runoff (Rs).
Depending on the depth of the considered soil layer, dS/dt might encompass surface and root-
zone soil moisture or moisture stored in deeper layers that is unavailable to vegetation. As it
costs energy to evaporate water, ET is also present in the surface energy balance, as proposed in
Eq. 1.2:

dH
dt

= Rn−H−LE +G (1.2)

where dH/dt denotes the heat storage in the considered soil layer and the vegetation and Rn is
the surface net radiation in W m-2, or the amount of energy at the land surface that is available
for the sensible heat flux (H) and latent heat flux (LE) and the ground heat flux (G). As the land
surface is considered solely as the interface (an infinitesimally thin layer), dH/dt can be omitted
from the equation. On time scales longer than days, G averages out and is usually neglected.
What remains is that Rn either partitions into the sensible or latent heat flux. Further, the Rn also
results from the budget of all radiative components:

Rn = SWnet +LWnet (1.3)

Where SWnet and LWnet are the sum of incoming and outgoing shortwave and longwave radiation,
respectively. Whereas all fluxes in Figure 1.1 are important solely for their own respective
balance, ET (or LE) effectively links the energy and the water balance together, therefore
exerting influence both on heat and moisture input into the atmosphere. As such, ET is a crucial
variable to understand within climate sciences.

1.1.2 Evaporative processes

I discuss two perspectives that are relevant for quantifying the magnitude of ET and its drivers:
An atmospheric perspective and a land surface perspective.

An atmospheric perspective

Evaporation of water is only possible when sufficient energy is available for the phase transition
of water from liquid to vapor. Furthermore ET is driven by vapor pressure gradients, as all
turbulent transfer processes that transport a phyiscal quantity are driven by their respective
gradients. More specifically for ET at the land surface, the vapor pressure gradient denotes
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the difference between surface and atmospheric vapor pressure. Provided that sufficient energy
is readily available for evaporation, the highest evaporative rates are achieved with the largest
gradients between surface and atmospheric vapor pressures. The atmospheric vapor pressure can
be expressed as vapor pressure deficit (VPD), as follows:

V PD = esat(1−
RH
100

) (1.4)

The VPD denotes the difference between vapor pressure (e) and saturated vapor pressure (esat)
in kPa. The RH denotes the relative humidity (RH), which is a relative measure atmospheric
water vapor content, expressed as e over esat in % and therefore directly depends on specific
humidity (q). The esat has been derived empirically as proposed by the World Meteorological
Organization (WMO), as follows:

esat = 610.7
10(7.5Ta)/(237.3+Ta))

1000
(1.5)

Where air temperature (Ta) is in °C. From Eqs. 1.4 and 1.5 can be deduced that, from an
atmospheric perspective, any evaporative process at the land surface is tightly coupled to Ta, as
higher temperatures entail a larger atmospheric capacity to hold water vapor (esat), and to the
RH, which reflects the actual atmospheric water vapor content.

A land surface perspective

Evaporation of water from the land surface can be described using a conceptual piecewise-linear
framework, where the evaporative fraction (EF), which denotes ET that is normalized by Rn

to exclude (diurnal) radiation variability effects, is driven primarily by soil moisture (Budyko,
1974; Koster et al., 2009; Seneviratne et al., 2010), in Figure 1.2.

Figure 1.2: Conceptual framework showing the response of the evaporative fraction (EF) to soil
moisture, divided into regimes that express typical relationships. EFmax is the maximum capacity
of EF. Figure from Seneviratne et al. (2010).
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Conceptually, a piece-wise linear relationship between EF and soil moisture with two charac-
teristic terrestrial evaporation regimes can be distinguished: (i) the soil moisture-limited, or
water-limited, regime, where EF and ET are assumed to be limited by soil moisture, and (ii)
the energy-limited regime, where EF is at its maximum capacity (EFmax). The water-limited
regime can be subdivided into the dry and transitional regime. In the dry regime, where the soil
moisture content is below wilting point (θ wilt), the soil is too dry, such that no moisture can be
extracted for evaporation. In the transitional regime, whenever soil moisture would exceed the
θ wilt, water can be extracted from the soil and EF increases alongside soil moisture increases
until the EFmax is reached at the critical soil moisture (θ wilt), or the CSM. The θ wilt denotes the
transition between water- and energy-limited conditions. As the EF is already at its maximum
capacity, further increases in soil moisture are assumed to no longer increase EF, but ET is now
directly governed by Rn. As such, the value of EF does not necessarily reflect whether any
evaporation is actually occurring or not, as EF might be larger than zero, but no evaporation will
happen without surface available energy. This dictates that the ET always depends on both water
and energy availability. Within this context, the CSM is a crucial parameter; Whenever the soil
moisture is below the CSM, ET is mostly governed by the land surface (soil moisture), whereas
soil moistures above the CSM dictate that ET is limited by the atmosphere (Rn). Next to figure
1.2, there are other frameworks that can distinguish terrestrial evaporation regimes, such as a soil
water loss function supported by surface soil moisture observations (Akbar et al., 2018), as the
sensitivity of surface fluxes to soil moisture variability (Dirmeyer, 2011) or as a function of soil
moisture and atmospheric stability (Santanello et al., 2007).

Components

Up until this point, the bulk flux of all evaporative processes has been referred to as ET. However,
to understand spatiotemporal variability in ET, I should discuss the different components that
ET comprises, which includes (i) plant transpiration, (ii) bare soil evaporation and (iii) canopy
interception. As stated in equations 1.4 and 1.5, sufficient water and energy should be available
for the evaporation of water. However, different constraints apply to different evaporative
components.

Bare soil evaporation is the evaporation of water directly from the soil matrix of the surface soil
layer (top few cm). The soil moisture in the surface layer is generally available after precipitation
events and can be stored before it either evaporates or percolates to deeper layers. Whether
water can be extracted from the soil matrix depends on local soil characteristics, such as the soil
texture. Generally, the finer grained the soil is, the stronger the water can be held by the soil
matrix, thereby affecting the θ wilt and the θ wilt.

Plant transpiration, which is globally the largest component of ET (Berg and Sheffield, 2019b;
Good et al., 2015; Lawrence et al., 2007; Schlesinger and Jasechko, 2014), is also affected by
soil characteristics, as the maximum potential with which plants can extract soil moisture differs
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between vegetation types (Novák and Havrila, 2006; Teuling et al., 2009b), which also affects the
θ wilt and the θ wilt. Plant transpiration occurs as water vapor leaves the plants through stomatal
apertures, which are open when plants are photosynthetically active. Moreover, the processes of
photosynthesis and plant transpiration are tightly linked, effectively connecting the carbon and
the water cycles (Gentine et al., 2019; Humphrey et al., 2021). This coupling occurs through the
stomatal conductance (gs), which reflects the ease with which plants exchange water vapor with
the atmosphere, as gs tries to optimize photosynthetic activity given the apparent environmental
conditions:

(i) Photosynthetically Active Radiation (PAR); the light that is used by plants for photosyn-
thesis in the wavelengths between 0.4 and 0.7 µm, should be sufficiently available for
plants to open their stomata.

(ii) Leaf temperature; excessively low or high temperatures might lead to lower RuBisCO en-
zyme activity (Busch and Sage, 2017; Perdomo et al., 2017), which affects photosynthetic
activity and therefore gs.

(iii) VPD; The atmospheric water demand should not be too high, as high VPD related hot and
dry days lead to stomatal closure to prevent excessive water loss (Fu et al., 2022b; Novick
et al., 2016; Oren et al., 1999; Yuan et al., 2019)

(iv) Leaf water potential; The leaf water potential is governed by the influx and outflux of water
in the plant. The influx is related to soil moisture; when insufficient water is available to
maintain EFmax (soil moisture < θ wilt), plants can close their stomatal apertures to prevent
excessive water loss and to maintain turgor. The outflux is governed by the VPD and
corresponding atmospheric demand of water. High VPDs and associated plant transpiration
(outflux) poses additional difficulties for plants to maintain turgor, which leads to closing
stomatal apertures.

(v) Atmospheric CO2 concentration; Plants need CO2 for photosynthesis. Higher atmospheric
CO2 concentrations increase the influx of CO2 and the photosynthetic activity. However, if
the concentration and related influx of CO2 is higher than what is used for photosynthesis,
the plants’ internal CO2 concentration increases, which leads to closing of stomatal
apertures.

In response to physiological effects of rising atmospheric CO2 that testify beneficial conditions
(e.g. higher stomatal conductance), plants function more efficiently and consequently undergo
structural changes to keep up heightened photosynthetic activity. This so-called CO2 fertilization
tends to increase the leaf area index (LAI) and related proxies (Donohue et al., 2013; Ukkola
et al., 2016; Zhu et al., 2016), which reflects the area of leafs per unit area soil, in turn increasing
the surface area from which plants can transpire water (Wei et al., 2017). As LAI and related
proxies are projected to increase in the future alongside CO2 fertilization (Piao et al., 2020), albeit
with differences between natural and managed vegetation (Winkler et al., 2021). This could hint
at an increasingly important role for vegetation in the global carbon and water cycles. Due to the
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tight coupling between the carbon and the water balances (Gentine et al., 2019; Humphrey et al.,
2021) and plant transpiration being the dominant evaporative component globally, vegetation
indices such as gross primary productivity (GPP), sun-induced chlorophyll fluorescence (SIF),
Normalized Difference Vegetation Index (NDVI), LAI and enhanced vegetation index (EVI) can
be used as proxies for ET.

Canopy interception denotes the evaporation of water from plants’ leaves and therefore directly
depends on rainfall and LAI.

When considering the bulk of all evaporative components (ET), several factors should be kept in
mind: (i) The individual evaporative components might be governed by different environmental
drivers. (ii) Some of the drivers are connected: Ta and VPD, for example (through Eqs. 1.4 and
1.5). Also, Rn is connected to Ta, because Ta responds directly to sensible heating, which is
radiation driven through Eq. 1.2. (iii) The compound effect that environmental drivers might
have on separate evaporative components is difficult to disentangle; a higher VPD in principle
leads to higher evaporative rates, but it also leads to stomatal closure, which might restrain plant
transpiration.

Despite these complexities, it is still useful to look at the bulk of all evaporative processes,
because of the common denominators that are relevant for all evaporative processes: water (soil
moisture, precipitation) and energy (air temperature, surface net radiation) availability. Making
sense of spatiotemporal variability in ET is possible by considering different climate, soil and
vegetation characteristics.

1.1.3 The Atmospheric Boundary Layer ABL

ET has been established as the link between the energy and water cycles in Figure 1.1 and Eq.
1.1 and 1.2. As such, ET couples the land surface to the atmosphere, as ET plays a key role for
the heat and moisture input into the atmospheric boundary layer (ABL). In this context, the ABL
is lowest layer of the atmosphere and with a depth of usually a few meters to 1-3km it is directly
influenced both from the land surface and from upper-air processes in the troposphere. Hence,
the weather we experience at the land surface and which is introduced by large-scale circulation
patterns that affect the ABL from the top, is modulated by surface fluxes.

Land surface - ABL interactions

Figure 1.3 schematically depicts how surface and entrainment fluxes of heat and moisture
affect the temperature, humidity and depth of the ABL. Within the ABL, the LE is involved in
multiple feedback loops, of which three key components are water availability (soil moisture) and
atmospheric demand of water (VPD), which next to direct controls on LE, exert indirect influence
via the gs. The direct effects dictate that sufficient soil moisture should be available (soil moisture
> θ wilt, see Figure 1.2), such that water can be extracted from the soil. If ample soil moisture is
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Figure 1.3: Schematic depiction of how the land surface affects ABL quantities and vice-versa.
The relevant quantities in this figure are described in the text, between which there are either positive
(solid arrows) or negative (dashed arrows) effects. Figure from Helbig et al. (2020).

available, leaf water potential and turgor can be maintained, rendering the stomatal apertures
open (↑ gs). Next to that, a higher atmospheric demand of water (VPD) involves higher LE,
but at the same stomatal apertures close in response to high VPDs, decreasing gs and limiting
LE. All the surface available energy that is not used to evaporate water LE, is used for sensible
heating H. This partitioning of surface fluxes determines the heat and moisture input into the
ABL, and therefore exert great influence on the qABL and potential temperature (θ )ABL, that
together determine the VPD through Eqs. 1.4 and 1.5.

Further, H heats up near-surface air parcels, that become warmer and therefore more buoyant
than their surroundings and rise throughout the ABL, effectively mixing heat and moisture
from the land surface through the ABL, until they hit the top of the ABL: the atmospheric
boundary layer height (ABLH). From there, temperature increases with height, which prevents
air parcels to rise higher, effectively acting as a lid on top of the ABL. However, air parcels
overshoot this temperature inversion, thereby entraining warm and dry tropospheric air into the
ABL (Vilà-Guerau de Arellano et al., 2015), which are expressed as the entrainment latent heat
flux (LEE) and the entrainment sensible heat flux (HE), which in turn affect also affect qABL and
θ ABL.
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Diurnal evolution of the ABL

Figure 1.4: Typical diurnal evolution of ABL properties over dry and wet land surfaces. θ (a, in
K) and q (b, in kg kg-1) with respect to height (z, in m) on example wet (25-06-2014) and dry (07-
07-2012) days in Lincoln, IL, U.S. (89.33 W, 40.15 N). The crosses and stippling depict atmospheric
measurements from weather balloons from the IGRA data set (Durre et al., 2006). The colored lines
depict idealized profiles as computed by a mixed-layer model: CLASS4GL (Wouters et al., 2019).
Figure from Denissen et al. (2021).

It is clear from Figure 1.3 that soil moisture both directly and indirectly modulates heat and
moisture input into the ABL through the partitioning of surface heat fluxes and therefore exert a
great influence on ABL dynamics. Further, the role of dry and wet land surfaces for the diurnal
evolution of the ABL in terms of θ , q and the ABL depth is explored in Figure 1.4. The evolution
of the ABL starts at sunrise; At that time, the land surface starts warming due to incoming
radiation and sensible heating creates rising air parcels, deepening the ABL and thereby mixing
air above the land surface, which carries characteristics from the day(s) before. The θ and q of
the parcels originating from the land surface depend directly on the surface flux partitioning:
over dry land surfaces EF is low because of water limitation (Figure 1.2), which elevates H
and related θ and limits LE and q, leading to substantial warming (Figure 1.4a), drying (Figure
1.4b) and deepening of the ABL from morning to the afternoon. Over wet land surfaces and
corresponding energy limited conditions, the EF is generally higher, which involves less sensible
heating and more moisture input into the ABL through air parcels originating at the land surface,
which consequently heats (Figure 1.4a), dries (Figure 1.4b) and deepens less during daytime.
Interestingly, the ABL is drying during the daytime, despite relevant moisture input from the
land surface. This relates, next to the entrainment of dry free-tropospheric air (Vilà-Guerau
de Arellano et al., 2015), to the so-called moisture capacity of the ABL: As during the daytime
the volume in which air parcels that originate from the land surface are mixed is increasing,
this leads to a net drying effect (Panwar et al., 2019). The same concept applies to the heat
capacity of the ABL, but effects are typically less pronounced, as the ABL is heated from the top
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and bottom, whereas the only moisture input is LE at the land surface, leading often to a more
skewed vertical profile in terms of q than in terms of θ (Mahrt, 1991). In spite of such feedback
processes, the evolution of the ABL is characteristically different through typical surface flux
partitioning related to wet (energy limited) versus dry (water limited) land surfaces.

Implications on extreme events

Through modulating the surface flux partitioning and corresponding diurnal ABL evolution, the
prevailing evaporative regime can impact weather and climate, particularly so during extreme
events like heat waves and droughts (Guillod et al., 2015; Hirschi et al., 2011; Koster et al.,
2016; Koster et al., 2004; Taylor et al., 2012), which have severe implications for human
health (Bogdanovich et al., 2022; Wouters et al., 2022). The other way around, the impact of
extreme events on the land surface can also be modulated by the evaporative regime at hand
(Hauser et al., 2016; Hirschi et al., 2011; Miralles et al., 2014b), such that a heat wave and a
corresponding drought over water-limited land surfaces might reduce ET or other proxies related
to vegetation functioning, but can be beneficial for energy-limited land surfaces (Flach et al.,
2018; Zscheischler et al., 2014a). As such, determining the evaporative regime is key to our
ability to estimate the impacts of extreme events.

1.1.4 Water versus energy-limited conditions

So far, I have established that (i) ET plays a key role in both energy and water balances (Figure
1.1), (ii) ET is critically governed by wet versus dry land surface conditions and can be separated
into water- and energy-limited regimes (Figure 1.2) and (iii) near-surface weather and respective
diurnal evolution (Figure 1.3 and 1.4) are affected by wet versus dry land surface conditions. The
question that remains unanswered is what water and energy limited conditions and the regime
transitions between them entail.

In water-limited conditions, the land surface (soil moisture) and related water availability exert
great influence on ET and therefore on near-surface weather. In energy-limited conditions, it
is the near-surface weather and related energy availability that can limit ET. Therefore, the
apparent evaporative regime denotes whether the land surface is driving the near-surface weather
or vice-versa (Orth, 2021). Subsequently, the transition between these regimes matters, because
it entails a change of causal direction (Santanello et al., 2018).

Regime shifts and the critical soil moisture

As the transition between terrestrial evaporation regimes denotes a switch in causal direction
between the land surface and the atmosphere, it is key to pinpoint when and where these
transitions occur. To this end, traditional pot experiments have been successful at relating soil-
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and vegetation-specific CSMs to characteristic matrix potentials (Genuchten, 1987). However,
these retrieved CSMs are difficult to apply in large-scale modelling practices, as grid cells
are composites of various soil and vegetation types and upscaling small-scale estimates of the
CSM is complicated due to non-linear relationships between soil moisture and matrix potentials.
To this end, the conceptual framework put forward by Seneviratne et al. (2010) in Figure 1.2
has been applied to derive large-scale CSM estimates (Haghighi et al., 2018; Schwingshackl
et al., 2017; Schwingshackl et al., 2018). Next to that, the CSM has been determined based
on satellite-observed diurnal temperature amplitudes (Feldman et al., 2019) or even based on
satellite-observed soil moisture drydowns (Akbar et al., 2018).

Spatiotemporal variability of terrestrial evaporation regimes

Variability with regards to the occurrence of terrestrial evaporation regimes exist both in space
and in time. Water-limited conditions apply where energy is abundant, which generally includes
areas with considerable solar radiation due to infrequently occurring cloud cover and related
precipitation. Energy-limited conditions prevail where ample water is available, but either cold
temperatures or frequent cloud cover limits terrestrial evaporation. However, the prevailing
evaporative regime is seldom stationary in time, as transitions between them can occur. Such
transitions can be induced seasonally, for example due to the strong seasonal cycle in incoming
radiation in the mid to high latitudes, or in water availability, due to rain seasons in the tropics. In
addition to seasonal changes, weather and climate extremes might introduce shifts in energy or
water limitation; A wet spell could temporally shift water-limited regions into energy limitation,
whereas a drought due to a lack of rainfall and accompanying clear skies in generally energy-
limited has the opposite effect (Hauser et al., 2016; Koster et al., 2009; Zscheischler et al., 2015).
Next to such (intra-)seasonal regime shifts, they can also be subject to long-term trends spanning
multiple decades, resulting from changes in water and/or energy availability due to climate
change (Berg and McColl, 2021; Greve et al., 2019). Such long-term trends are challenging
to disentangle, because they are complicated (i) by CO2 fertilization effects on ET (Piao et al.,
2020; Winkler et al., 2021), (ii) nutrient availability (Peñuelas et al., 2017) and (iii) land use
changes (Tollerud et al., 2020). Within this context, it is paramount to find a robust way to reveal
the complex spatiotemporal dynamics of terrestrial evaporation regimes and its drivers.

1.1.5 Relevant physical quantities within land-atmosphere interactions

The connection between the land surface and the atmosphere is shaped by the relations between
physical quantities indicated in Figure 1.2 and 1.3, which can vary between underlying terrestrial
evaporation regimes. Typically, these relations express the relevance of water availability (soil
moisture, precipitation) or energy availability (temperature, surface net radiation) for evaporative
processes (terrestrial evaporation, evaporative fraction) and related vegetation functioning proxies
(GPP, SIF, NDVI, LAI, EVI) (Akbar et al., 2018; Berg and McColl, 2021; Humphrey et al., 2021;
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Koster et al., 2009; Novick et al., 2016; Schwingshackl et al., 2018; Seneviratne et al., 2006;
Teuling et al., 2009a; Yuan et al., 2019; Zscheischler et al., 2015) or second-order conditions
that (in)directly relate to surface heat flux partitioning (temperature, precipitation) (Guillod
et al., 2015; Koster et al., 2004; Taylor et al., 2012; Vogel et al., 2018; Zhou et al., 2021).
Understanding interactions between those physical quantities can be achieved by implementing
them in Earth system models and trying to reproduce what is observed in the natural world. A
glimpse of the future might be obtained by subjecting these models to possible future scenarios.
This means that (i) we depend crucially on the quality of observations, as we rely on those for
model initialization and calibration and (ii) we need both observations and models to understand
the entirety of these interactions.

Observations

Observational data from different sources is available, ranging from satellite observations and net-
works of in-situ observations, including eddy covariance (EC) measurements, weather balloons
and station soil moisture observations, to observation-based machine-learning products.

Many vital physical quantities can be observed from space by satellites, amongst which: soil
moisture from the European Space Agency (ESA) Climate Change Initiative (CCI) (Dorigo et al.,
2017; Gruber et al., 2017; Liu et al., 2012) and the Soil Moisture Active Passive (SMAP) mission
(Entekhabi et al., 2010), NDVI, LAI and EVI from the Advanced Very High Resolution Radiome-
ter (AVHRR), which is part of the third generation Global Inventory Monitoring and Modeling
System (GIMMS) project (Zhu et al., 2013), SIF from Global Ozone Monitoring Experiment-
2 (GOME-2) (Köhler et al., 2015) or TROPOspheric Monitoring Instrument (TROPOMI) (Köhler
et al., 2018). While providing unprecedented spatial coverages and an abundance of observations,
there are some common issues with satellite observations that should considered. Satellite
observations of surface soil moisture can be used as a proxy for plant available water. However,
one would ideally consider root-zone soil moisture. This is problematic, as there is no such
observational data set, let alone one with global coverage. Moreover, one should consider the
rooting depth for root-zone soil moisture estimates, which differs across vegetation types and is
difficult to observe (Canadell et al., 1996; Fan et al., 2017; Jackson et al., 1996). As satellite
microwave measurements only penetrate the top few cm of the soil (Ulaby, 1982), they only
fully represent the root-zone for plants with shallow root systems. Further, these microwave
measurements can be erroneous over organic soils and/or densely vegetated land surfaces (Dorigo
et al., 2017; Ulaby, 1982). However, surface soil moisture is shown to be a reasonably proxy for
root-zone soil moisture (Ford et al., 2014; Qiu et al., 2014), notwithstanding substantial seasonal
variability, for example during dry-downs (Hirschi et al., 2014; Qiu et al., 2016). Another
relevant proxy is available from satellite observations: SIF reflects plant photosynthetic activity,
as it closely links to stomatal regulation and consequently to plant transpiration (Maes et al.,
2020). However, the GOME-2 SIF should be used with care, as (i) the early equator overpass
time of the satellite is 10:00 local solar time, which is well before vegetation reaches maximum
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daily photosynthetic activity (Köhler et al., 2015), (ii) SIF measurements are vulnerable to excess
cloudiness, inducing noise especially above the Amazon (Joiner et al., 2013; Köhler et al., 2015)
and (iii) satellites might drift and/or sensors might damage over time, which further deteriorates
the quality of the observations (EUMETSAT, 2017). Although satellite observations are subject
to numerous measurement errors, they are not biased by model assumptions and therefore serve
as an independent reference of the state of the land surface.

In-situ observations: (i) Surface carbon, energy and water fluxes can be measured at the ecosys-
tem scale with EC towers and have been collected in the FLUXNET2015 dataset (Pastorello
et al., 2020). (ii) Soil moisture station measurements are available from Internation Soil Moisture
Network (ISMN) (Dorigo et al., 2021). (iii) Atmospheric wind speed, temperature and humidity
measurements at the landscape scale are available from weather balloons and are organized
in the IGRA dataset (Durre et al., 2006). (iv) Station-observed daily climate variables at the
land surface are collected in the Global Historical Climatology Network (GHCN)-Daily dataset
(Menne et al., 2012), where precipitation is the variable that is most widely available across
stations. Although such measurements are distributed across the globe and therefore cover a
range of climate, soil and vegetation types, they are not evenly distributed, as the coverage
of most measurement networks is most dense in North America, Europe and Australia. To
compensate the uneven distribution of in-situ observations and to accomplish ground-breaking
global coverage, machine learning methods have been deployed successfully to exploit the wealth
of in-situ observations (Ghiggi et al., 2019; Jung et al., 2019; O and Orth, 2021). Even if these
datasets are observation-based, they should be applied carefully, as the performance of these data
sets is typically poorer in areas (the tropics/arctics and desert regions) or during times that are
undersampled (weather extremes) (Jung et al., 2020). However, these datasets prove essential for
climate research as they exploit in-situ measurements by learning relations between physical
quantities used as predictors.

Earth system models

Observations are vital for the initialization and validation and parameter calibration of an
array of different models, including Reanalysis models, Earth system models and, for example,
mixed-layer models that simulate the evolution of the ABL. Within this context, there are
coupled and uncoupled models. Whereas uncoupled models rely on observation-based external
forcing that elicits a response of a respective model diagnostic (ET response to air temperature),
coupled models allow for interactions in both directions (ET response to air temperature, which
consequently affects air temperature through changes in surface flux partitioning). Moreover,
coupled models can be heavily constrained by historical observations, whereas unconstrained
models can be used to project future climate conditions.

Uncoupled models can provide a great service in reducing the difficulty of model tasks by
computing only the interactions that are of interest and considering the other relevant physical
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quantities as external forcing. One example of this is Global Land Evaporation Amsterdam
Model (GLEAM), which estimates evaporative components and surface and root-zone soil
moisture relying solely on satellite observed data (Martens et al., 2017). Another example is
CLASS4GL, which uses weather balloons and other observation-based ancillary data to compute
the diurnal evolution of the ABL (Wouters et al., 2019). Although these models are extremely
useful to study how external forcing (climate) affects the model output, they do not capture how,
in turn, the model output affects the climate.

Numerous physical quantities are available from model output by coupled and heavily constrained
models like ERA5 and ERA5-Land (Hersbach et al., 2020; Muñoz-Sabater et al., 2021). These
models maximize their performance by constraining the model by assimilating any observation
that proves useful for historical simulations. Therefore, the variable-specific model performance
depends directly on the quality of the observations, which makes variables like air temperature
and net surface radiation better constrained than, for example, ET and GPP. Due to these
historical data assimilation techniques, such models can only provide historical simulations.
Unconstrained Earth system models, for example from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) ensemble (Eyring et al., 2016), are more flexible and can be used both
to simulate historical and to project future climate conditions (O’Neill et al., 2016). In order to
do this, assumptions are necessary on, amongst others, land use change, (anthropogenic) CO2

emissions and plant nutrient availability. Earth system models are the best tools currently at
our disposal to learn about and try to anticipate possible future climate conditions and related
extremes. As such, an accurate representation of the apparent evaporative regime in Earth system
models can aid weather and climate forecasts, such that future agricultural practices can be tailor
made, as well as, city greening, land cover management and afforestation to dampen the intensity
of future weather and climate extremes (Schwaab et al., 2021; Sillmann et al., 2017).

Dryness indices

A myriad of dryness indices, such as the Aridity Index (AI) (Transeau, 1905), Palmer Drought
Severity Index (PDSI) (Palmer, 1965) and the Standardized Precipitation Evapotranspiration
Index (SPEI) (Vicente-Serrano et al., 2010), have been developed to specifically reflect aspects
of the climate system, amongst which land-atmosphere coupling and corresponding terrestrial
evaporation regimes, atmospheric and hydrologic dryness. These indices are being applied to
reflect water availability for terrestrial evaporation or ecosystem functioning (Greve et al., 2017;
Scheff et al., 2021; Scheff et al., 2017), but recently aroused suspicion with respect to their
capability to do so (Scheff et al., 2021); As models consistently project decreases in these indices
(Feng and Fu, 2013; Naumann et al., 2018; Zhao and Dai, 2017), which would indicate increasing
water limitation, changes in plant available water (root-zone soil moisture) are ambiguous (Berg
and Sheffield, 2019b; Berg et al., 2017; Greve et al., 2019), while photosynthesis is even
projected to increase (Greve et al., 2017; Scheff et al., 2017). Evidently, these indices fail
to accurately estimate the water availability that is relevant for ecosystem functioning, which
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elicits the need for a more capable index. Currently, the way is being paved by indices that
evaluate the importance of either energy or water availability for vegetation functioning (Berg
and McColl, 2021; Zscheischler et al., 2015), but simultaneous evaluations of both energy and
water availability are lacking.

1.2 Principal research questions

The aim of this thesis is to determine how water versus energy limited vegetation modulates
climate climate and related extremes. Thereby, I optimally make use of a plethora of data
from different data streams, ranging from satellite and weather balloon observations, to heavily
constrained and unconstrained Earth system models, in order to compensate for shortcomings in
individual data products. More specifically, the following three research questions crystallized
that will be investigated and answered:

1. What is the role of soil moisture for terrestrial evaporation regimes?

2. How do terrestrial evaporation regimes vary regionally, across seasons and with climate
change?

3. How do terrestrial evaporation regimes affect climate extremes?

1.3 Thesis Overview

This thesis consists of 7 chapters, including the general introduction. The research questions
posed in the preceding section are investigated and answered in Chapter 2 through 6, as summa-
rized in Figure 1.5. These chapters have been published (2, 3 and 5), are in revision (4) or are
submitted (6) to peer-reviewed journals.

In Chapter 2, I introduce the Ecosystem Limitation Index (ELI): a novel correlative index that
can distinguish energy versus water-limited conditions and related transitions (CSM). I do so
by using (proxies for) energy and water availability and vegetation functioning from satellite
observations over Europe. The CSM is determined at the continental and grid-based spatial scale.
Further, the respective roles of various climate, soil and vegetation characteristics for the CSM
are tested, as well as its robustness when determined using different data sets and proxies for
energy and water availability.

In Chapter 3, I show that the influence of soil moisture on surface flux partitioning can be
measured in the ABL. Atmospheric temperature and humidity measurements from weather
balloons are translated at the hand of a mixed-layer model to estimate surface fluxes at the
landscape scale. Further, I distinguish differing diurnal evolution of the ABL over energy- versus
water-limited conditions.
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In Chapter 4, I show a widespread shift from ecosystem energy to water limitation with climate
change. To this end, the ELI is computed using data from a suite of state-of-the-art Earth system
models. I show shifts towards ecosystem water limitation and related regime shifts both in space
and in time. Further, I attribute these trends to trends of related eco-climate variables.

In Chapter 5, I analyze the spatially varying relevance of hydrometeorological hazards for
vegetation productivity extremes. I compare concurrent anomalies and respective extremeness of
hydrometeorological variables during SIF maxima and minima. In addition, I study the timing
of such extremes. An attribution analysis reveals the respective drivers and the influence of
underlying evaporative and related climate regimes. Finally, I investigate transitional areas where
between vegetation productivity controls shift between water and energy variables.

In Chapter 6, I show that increasing ecosystem water limitation fuels future heat extremes. In
this study, I use an ensemble of state-of-the-art Earth system models to compute ELI trends and
assess their relevance for mean versus maximum temperature trends. I define numerous hot
spots where heat extremes are amplified alongside shifts towards ecosystem water limitation and
investigate how this relation is modulated by the initial evaporative regime.

In Chapter 7, I conclude the main findings of the chapters by answering the research questions.
I discuss any overarching shortcomings of the analyses presented in the chapters and ideas for
analyses to overcome them. Finally, I elaborate on additional avenues that have emerged from
executing and discussing the analyses.



1.3 Thesis Overview 17

Ov
er

ar
ch

in
g

qu
es

tio
n:

 H
ow

 d
oe

s w
at

er
ve

rs
us

 e
ne

rg
y

lim
ite

d
ve

ge
ta

tio
n

m
od

ul
at

e
cl

im
at

e
an

d
re

la
te

d
ex

tr
em

es
?

Pa
pe

r 1
 -

Re
gi

m
e 

sh
ift

 fr
om

la
nd

 
su

rfa
ce

ob
se

rv
at

io
ns

(R
Q1

 &
 2

)
Pa

pe
r 2

 -
Re

gi
m

e 
sh

ift
 fr

om
at

m
o-

sp
he

ric
ob

se
rv

at
io

ns
(R

Q1
 &

 3
)

Pa
pe

r 3
 -

Fu
tu

re
re

gi
m

e 
sh

ift
s

(R
Q2

 &
 3

)
Pa

pe
r 5

 -
Te

m
pe

ra
tu

re
ex

tr
em

es
fu

el
ed

by
ec

os
ys

te
m

dr
yi

ng
(R

Q3
)

Pa
pe

r 4
 -

Re
gi

m
e 

sh
ift

sm
od

ul
at

e
ef

fe
ct

 o
f w

ea
th

er
ex

tr
em

es
fo

rv
eg

et
at

io
n

pr
od

uc
tiv

ity
(R

Q3
)

Sensibleheating

Evaporativecooling

Re
gi

m
e 

sh
ift

W
at

er
 li

m
ita

tio
n

En
er

gy
 li

m
ita

tio
n

Figure 1.5: Visual representation of the thesis. The left-middle panel describes the differences
between vegetation states in water- and energy-limited conditions, thereby affecting sensible heating
and evaporative cooling and consequently climate extremes. All surrounding panels depict the (shared)
first-author articles written during the thesis in Chapters 2 – 6 and which RQs they address, respectively.





Chapter 2

Terrestrial evaporation regimes from
satellite observations

This chapter is based on:

J. M. C. Denissen, A. J. Teuling, M. Reichstein, and R. Orth (2020). “Critical Soil
Moisture Derived From Satellite Observations Over Europe”. Journal of Geophysical Research:
Atmospheres 125.6, e2019JD031672
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Abstract

Terrestrial evaporation (ET) is a crucial quantity through which land surface conditions can
impact near-surface weather and vice versa. ET can be limited by energy or water availability.
The transition between water- and energy-limited regimes is marked by the critical soil moisture
(CSM), which is traditionally derived from small-sample laboratory analysis. Here, we aim
to determine the CSM at a larger spatial scale relevant for climate modeling, using state-of-
the-art gridded data sets. For this purpose, we introduce a new correlation-difference metric
with which the CSM can be accurately inferred using multiple data streams. We perform
such an analysis at the continental scale and determine a large-scale CSM as an emergent
property. In addition, we determine small-scale CSMs at the grid cell scale and find substantial
spatial variability. Consistently from both analyses we find that soil texture, climate conditions,
and vegetation characteristics are influencing the CSM, with similar respective importance.
In contrast, comparable CSMs are found when applying alternative large-scale energy and
vegetation data sets, highlighting the robustness of our results. Based on our findings, the state of
the vegetation and corresponding land-atmosphere coupling can be inferred, to first order, from
easily accessible satellite observations of surface soil moisture.
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2.1 Introduction

Terrestrial evaporation (ET) is a crucial variable in land-atmosphere interactions, since it affects
the carbon, energy, and water balances. Therefore, ET can potentially impact weather and
climate, especially during extreme events such as droughts and heat waves (Guillod et al., 2015;
Hirschi et al., 2011; Koster et al., 2016; Koster et al., 2004; Taylor et al., 2012). Conceptually,
we distinguish two evaporative regimes: (i) the water-limited regime, where ET is mainly
controlled by soil moisture availability, and (ii) the energy-limited regime, where ET is mostly
governed by energy (temperature and radiation) supply (Budyko, 1974; Seneviratne et al., 2010).
Consequently, regime shifts potentially induce changes in the causality of energy and water
availability for ET. This could dampen or amplify land-atmosphere interactions, like evaporative
cooling (Seneviratne et al., 2010). Therefore, the critical soil moisture (CSM) associated with
this regime shift in the conceptual framework is a crucial parameter.

Traditionally, specific CSM values have been associated with characteristic matric potentials for
particular vegetation and soil types (Genuchten, 1987). By doing so, the determination of CSMs
is straightforward in areas of homogenous soils and vegetation (Homaee et al., 2002). However,
the range of CSMs across soil and vegetation types is substantial: Teuling et al. (2009b) report
CSMs within one model ranging from 16.7 Vol-% for sandy soils to 42.4 Vol-% for clayey soils
based on pedotransfer functions. Additionally, there is considerable variation between CSMs
of different models. Novák and Havrila (2006) determine somewhat different CSMs ranging
from 2.7 Vol-% in a sandy soil to 13 Vol-% in a loamy soil, which they refer to as the critical soil
water content. These different values illustrate that even at smaller scales, there are discrepancies
between CSMs determined with various methods. Further, the uncertainty of the CSM, among
other soil hydraulic parameters, is enhanced by different pedotransfer functions and different
soil texture data sets (Van Looy et al., 2017). In addition, the dependency of the CSM on local
soil and vegetation conditions renders it difficult to derive large-scale estimates from previous
analyses and literature.

Besides its conceptual relevance, the CSM is an important parameter and/or emergent property
in land models, which are embedded into weather and climate (forecasting) models that serve
society. Land models have an inherent assumption of the above-mentioned water- and energy-
controlled evaporative regimes and of the transition between them, as marked by the CSM (Arora,
2002; Pitman, 2003; Sellers et al., 1997). As the determination of a large-scale CSM is lacking,
considerable difference exists between current model estimations of the CSM (Teuling et al.,
2009b), leading to inconsistent simulation results. Additionally, comparison of CSMs between
models is not straightforward, as absolute values of soil moisture are model dependent and do
not necessarily correspond with observed soil moisture (Koster et al., 2009). Further, as these
models operate at relatively large spatial scales, the simulation of the evaporative regimes is hard
to validate and a source of considerable uncertainty (Guillod et al., 2013).



22 Terrestrial evaporation regimes from satellite observations

Large-scale assessments of evaporative regimes have been performed previously based on
various metrics with both observational and modeled data sets; where in some of these studies
the determination of the CSM is lacking (Koster et al., 2009; Seneviratne et al., 2006; Teuling
et al., 2009a; Zscheischler et al., 2015) , other analyses have determined CSMs based on modeled
data sets, which reflect implemented relationships between soil moisture (SM) and evaporative
fraction (EF) (Schwingshackl et al., 2017). There are only a few recent studies that determine
observation-based CSMs at the regional-continental scale. Such large-scale analyses have only
recently become feasible thanks to the increasing availability of satellite-derived data sets (e.g.,
(Liu et al., 2012; Tramontana et al., 2016)). For example, Feldman et al. (2019) estimate the
CSM over Africa by assuming a piecewise linear model based on satellite observations of
surface soil moisture and diurnal temperature amplitude. Haghighi et al. (2018) determine the
CSM in a similar manner but using field observations of SM and EF over semiarid regions
outside of the growing season, effectively excluding the effects of plant transpiration from their
estimates. Finally, Akbar et al. (2018) determine the CSM over the contiguous United States by
assessing the characteristics of dry-downs from satellite surface soil moisture from the National
Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) mission
during three consecutive summers only.

In this study, we focus on determining regional-continental-scale CSMs from observational
data in Europe, as regime transitions are known to occur frequently in this region (Seneviratne
et al., 2006; Teuling et al., 2009a). Moving beyond the previous studies, we propose a novel
correlation-difference metric to characterize the CSM. This metric uses data on energy and
water availability, as well as vegetation functioning, and thereby determines the CSM based
on comprehensive Earth observations. We estimate the CSM at different spatial scales: (1) a
continental-scale estimate will serve as observational constraint for land surface models (large-
scale CSM), while (2) small-scale grid cell estimates will reflect the spatial heterogeneity of the
CSM (small-scale CSM). Further, we investigate the sensitivity of the CSM to climate, soil, and
vegetation characteristics, and its robustness when determined with different data sets.

2.2 Data and Methods

We propose a novel metric to evaluate water- versus energy-limited conditions in each grid
cell:

∆corr = corr(AE ,AV )− corr(AW ,AV ) (2.1)

where A indicates bimonthly (twice per month, concerning the first and second half of the month)
anomalies of particular energy (E), vegetation (V), or water (W) variables, and corr denotes a
temporal correlation between anomaly time series. The default ∆corr metric from Eq. 2.1 is
calculated using surface soil moisture (from the European Space Agency (ESA) Climate Change
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Initiative (CCI) program), surface temperature (from E-OBS), and ET (from FLUXCOM). We
note that FLUXCOM ET is not an observational product but derived from multiple data streams
using machine learning techniques. This data set is chosen because, unlike process-based models,
it does not involve any assumption or implementation of a SM-EF relationship. All time series
are linearly detrended, before anomalies are computed by subtracting the mean seasonal cycle.
To assure no confounding impacts of nonlinearities, Kendall’s rank correlations are computed.
∆corr > 0 indicates that vegetation anomalies correlate stronger with energy than with water
anomalies, such that the grid cell would be referred to as energy limited. Correspondingly,
∆corr < 0 indicates that a grid cell is water limited. When ∆corr ≈ 0, the magnitudes of energy
and water limitations are equal, thus, corresponding to frequent regime shifts and marking the
related CSM. Therefore, this metric enables a simple and straightforward determination of the
CSM.

All data sets employed in this study are listed in Table 2.A1. All energy, vegetation, and water
variables are aggregated to a common 0.5° x 0.5° spatial resolution. Thereafter, bimonthly
averages are calculated, to mitigate the effect of synoptic weather variability on our analyses
and because at this timescale the response of ET to soil moisture is the strongest (Boese et al.,
2019; Teuling et al., 2006). A bimonthly average is only calculated when at least 5 days per
2-week period are available, to account for gaps in the ESA CCI SM data set due to, for example,
snowy or extremely dry soil. Given the required concurrent availability of data sets, we consider
the time period 2007-2015, which meets the requirements for the minimum of 4-6 years of data
recommended for calculating land-atmosphere interactions metrics as in Eq. 2.1 (Findell et al.,
2015).
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Table 2.1: Data Sets Used in This Study.

Data set Version Variable(s) Spatial res. Temp. res. Derived from Reference

ESA CCI 04.4 Surface soil 0.5° x 0.5° Daily Satellite (Dorigo et al., 2017)
moistureW observations (Gruber et al., 2017)

(Liu et al., 2012)
E-OBS 17.0 Surface 0.25° x 0.25° Daily Station (Haylock et al., 2008)

temperatureE and observations
precipitation

FLUXCOM 2 Terrestrial evaporation 0.25° x 0.25° 8-daily Multiple (Tramontana et al., 2016)
ETV and gross datastreams
primary production processed
GPPV with machine

learning
techniques,
using eddy
covariance-
derived ET
observations
as target

ERA 2 Incoming shortwave 0.5° x 0.5° Daily Reanalysis (Dee et al., 2011)
radiationE, net model
shortwave radiation,
net longwave
radiation, and vapor
pressure deficitE

GIMMS3g 4 normalized 0.025° x 0.025° Bimonthly Satellite (Zhu et al., 2013)
difference observations
vegetation index
(NDVI)V

GOME-2 GFZ Sun-induced 0.5° x 0.5° 8-daily Satellite (Köhler et al., 2015)
chlorophyll observations
fluorescence (SIF)V

Soilgrids 0.5.1 Fraction clay, sand, 0.1° x 0.1° - Satellite (Hengl et al., 2017)
and silt observations

MCD12Q1 005 Fraction land cover 500m x 500m - Satellite (Friedl et al., 2010)
observations

We focus on the warm season in this study to exclude the impact of ice and snow and to focus
on active vegetation functioning. In this context, data will be considered only if the bimonthly
temperature exceeds 10°C. This can lead to a different number of bimonths filtered in different
grid cells. Correlations (Eq. 2.1) are calculated per grid cell, and per season. Using all available
bimonths from a particular season across all years ensures a meaningful amount of data points.
No seasonal correlation is computed if less than six data points are available.

2.3 Results and Discussion

Analyzing in a first step the summer (June-August) mean surface soil moisture we find a north-
south gradient across Europe (Figure 2.1a). Apart from this general pattern, soil moisture in
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Figure 2.1: Distribution of surface soil moisture and evapotranspiration regimes in Europe. (a)
Spatial variability of average surface soil moisture from the ESA CCI data set and (b) ∆corr in the
summer (JJA), computed according to Eq. 2.1 with soil moisture from ESA CCI, FLUXCOM ET, and
E-OBS surface temperature (see also Table 2.1). The ∆corr is only calculated if it is significant, that is,
within the 90% confidence interval.

panel (a) tends to be higher in mountainous regions such as the Alps or the Carpathian Mountains.
As expected, negative ∆corr in panel (b), indicating water-limited conditions, generally coincide
with lower soil moisture. Correspondingly, energy-limited conditions (positive ∆corr) occur
in regions where ample soil moisture is available. Insignificant ∆corr values occur in northern
Scandinavia due to a lack of available soil moisture data related to low surface temperatures and
in between water- and energy-limited regions across central Europe, marking the transitional
regions. Next to these spatial variations, Figure 2.A1 in the supporting information shows
seasonal variation of soil moisture in panel (a)-(c) and of ∆corr in panels (d)-(f). Winter is not
shown, because there are hardly any significant ∆corr values. Generally, water-limited conditions
coincide with dry soils and energy-limited conditions coincide with wet soils. From springtime
to summertime, conditions shift from energy limited to transitional in central Europe and parts
of the Mediterranean, likely due to a decrease in soil moisture content. In autumn, water-limited
conditions persist in the Mediterranean. This possibly reflects that, while surface soil moisture in
the Mediterranean is already replenished (panel c), the root zone, where vegetation extracts the
majority of its moisture, is still dry. This derived spatial pattern of ∆corr is an important result
as it is based solely on (satellite-)observable variables and can hence serve as a benchmark for
models, which mostly simulate these variables.

In a next step, we analyze the relation between soil moisture and ∆corr, as depicted in Figure
2.2. Each point in the scatterplot depicts soil moisture and ∆corr at a given grid cell and in a
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Figure 2.2: Sensitivity of ∆corr to soil moisture across all grid cells in Europe. Each dot represents
a particular grid cell and season. The black line is a moving average through the points, while the gray
ribbon indicates the 5% and 95% percentiles of moving averages through 1000 bootstrapped samples of
the data points. In addition, moving averages are also displayed for individual correlations from Eq. 2.1
where the individual points are not shown. The color imposed on the data points reflect the density of
data points.

given season (basically Figure 2.A1 soil moisture in (a)-(c) plotted against the ∆corr in (d)-(f))
and the coloring indicates the density of the data points. The red and blue moving average lines
indicate the governing processes in the respective evaporative regimes: When the soil moisture
content is low, ET is water limited, resulting in corr(AT,AET) < 0 and corr(ASM,AET) > 0. At
wetter soil moisture contents, ET is governed by energy supply, resulting in corr(AT,AET) > 0
and corr(ASM,AET) < 0. The negative corr(ASM,AET) at higher soil moisture contents might be
related to a confounding, negative correlation between surface temperature and soil moisture: A
wet soil moisture anomaly might result from a precipitation surplus, which tends to occur jointly
with a negative surface temperature anomaly.
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The difference between the moving averages of the individual correlations yields the moving
average of ∆corr (thick black line), of which negative values indicate water-limited conditions and
positive values indicate energy-limited conditions. These fitted lines are likely not representing
the behavior at every single grid cell but depict the general relationship. But this illustrates the key
advantage of the ∆corr metric over CSM estimation using actual and potential ET (Seneviratne
et al., 2010) or the relationship between SM-EF (Haghighi et al., 2018; Schwingshackl et al.,
2017): The CSM can be simply inferred from where the moving average switches sign, without
applying piecewise linear models with potentially poor fits. In Figure 2.2 we derive a large-scale
CSM at approximately 21 Vol-%. This value entails temporal and spatial variability, from
different seasons and grid cells, respectively. The ribbon around the moving average line reflects
the uncertainty in the moving average and illustrates the 5% and 95% percentiles of moving
averages based on 1,000 bootstrapped samples from the data points. This uncertainty is relatively
small thanks to the large amount of data used. The ribbon is narrowest between approximately
20 and 30 Vol-%, as the majority of the data points have soil moisture contents in that range, as
can be seen by the density of the points. Further, we test the potential role of confounding effects
for our analysis using partial correlations in Figure 2.A2. Accounting for the confounding effect
of soil moisture on the correlation between temperature and ET, as well as the confounding
effects of temperature on the correlation between soil moisture and ET, we find very similar
results as in Figure 2.2. This suggests that confounding effects do not significantly influence the
individual correlations that form ∆corr.

Note that even though we employ observation-based soil moisture in our analysis, the derived
large-scale CSM of 21 Vol-% is somewhat model based. This is because the values of the
ESA CCI soil moisture are derived by scaling the satellite-observed temporal dynamics against
modeled data (Dorigo et al., 2017). Therefore, only analyses using the same soil moisture
product can make use of our absolute derived CSM values, while all other studies should rather
use it in a relative sense: 21 Vol-% is drier than 85% of the European grid cell seasonal mean soil
moistures. Another study based on satellite-derived surface soil moisture from NASA SMAP
mission reports a median of CSMs of 18 Vol-% over the contiguous United States (Akbar et al.,
2018). This result, as well as our estimate, is more to the dry side than currently assumed in
models, which often become water limited just below or at the field capacity (Teuling et al.,
2009b). Therefore, the large-scale CSM is an emergent property of the European land climate
system and thus can be used as a continental reference CSM.

It is known that soil, climate, and vegetation characteristics can locally influence the CSM
(Feldman et al., 2019; Haghighi et al., 2018; Novák and Havrila, 2006). To investigate this
on a large scale, moving average lines based on subselections of data representing particular
soil, climate, and vegetation types are shown in Figure 2.3: (a) soil types have been determined
using depth-weighted average soil texture fractions of the top meter from the SoilGrids data
set (Hengl et al., 2017). Across all grid cells in Europe, the 75% quantile has been calculated
for clay, silt, and sand fractions, respectively. Any grid cell exceeding this respective threshold
is classified as clay, sand, or silt, leaving a mixed soil class for the remaining grid cells, in
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Figure 2.3: Soil, climate, and vegetation effects on the large-scale mean CSM. Moving average
lines are calculated with subgroups of the data, based on, from left to right, different soil textures,
climate classifications, and vegetation types. The thick black lines are the same as in Figure 2.2.

Figure 2.3; (b) for the climate types, grid cells are classified according to their long-term average
surface temperature; and (c) vegetation types have been derived from the Moderate Resolution
Imaging Spectroradiometer land cover data set MCD12Q1 (Friedl et al., 2010). The forest class
in Figure 2.3 comprises evergreen/deciduous broadleaf/needleleaf and mixed forest categories.
Low vegetation includes closed/open shrublands, (woody) savannas, and grasslands. And crop
consists of all cropland land cover types. A grid cell is classified as forest, low vegetation, or
crop if the respectively considered land cover fractions exceed the European 75% quantile of the
respective vegetation type, leaving a mixed vegetation class for the remaining grid cells. Figure
2.3 shows that the large-scale CSM varies by few Vol-% in response to different soil textures,
climate conditions, and vegetation classes. These tested characteristics seem to have comparable
little influence on the CSM. They might be interdependent with, for example, colder surface
temperatures predominantly coinciding with forest. As for the soil types, the CSM for clay is
wetter than for all soil textures combined, which is expected because clay has a more negative
matric potential than coarser soil textures with dominant sand and silt fractions, and is in line
with earlier findings (Akbar et al., 2018; Feldman et al., 2019). The regions within the sand and
silt classes appear permanently energy limited. Concerning climate types, interestingly, regime
transition, is only observed for the second-warmest class. In contrast, colder climate regions are
generally energy-limited and warmer climate regions water limited. Forested regions are not
subject to regime transition either, as trees have deep-reaching roots which can access deep(er)
water reservoirs to avoid water limitation. Correspondingly, low vegetation and crop with shorter
root systems are more water limited, resulting in slightly different CSMs. In summary, in Europe
the CSM tends to be slightly wetter for (i) finer soils, (ii) warmer surface temperatures, and (iii)
shorter vegetation, which hampers advocation for a single, representative large-scale CSM.

In the previous analyses, ∆corr was calculated with anomalies from surface soil moisture (water),
surface temperature (energy), and ET (vegetation). The largest part of ET is accounted for
by plant transpiration (Good et al., 2015; Lawrence et al., 2007; Schlesinger and Jasechko,
2014)), associated with photosynthetic activity. Sun-induced chlorophyll fluoresence (SIF), gross
primary productivity (GPP), and Normalized Difference Vegetation Index (NDVI) are reflections
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Figure 2.4: Robustness of the large-scale mean CSM across different employed energy and vege-
tation products. The different panels reflect ∆corr based on anomalies of different energy variables,
from left to right: temperature (a), incoming shortwave radiation (b) and VPD (c). The different colored
moving averages imply different vegetation data sets. As in Figures 2.2 and 2.3, the thick black line in
the left panel (a) shows the reference moving average line, which is computed with bimonthly anomalies
of ET and surface temperature.

of photosynthetic activity and can therefore be regarded as reasonable proxies for ET. Next
to that, plants adjust their stomatal resistance in response to changes in atmospheric energy
availability in the form of leaf temperature, incoming shortwave radiation or vapor pressure
deficit. Figure 2.4 shows the corresponding results derived by substituting (a) surface temperature
anomalies with (b) incoming shortwave radiation in or (c) vapor pressure deficit anomalies in (c).
In addition, ET anomalies are replaced by NDVI, sun-induced chlorophyll fluorescence (SIF),
and gross primary production anomalies. Applying alternative data products yields similar CSMs,
generally deviating only a few Vol-% from the previously obtained 21 Vol-%. This highlights
the robustness of the ∆corr metric across various data products. Further, the choice of data
products affects the magnitude of ∆corr denoting the strength of the energy or water limitation,
respectively. Regardless of the applied energy variable, the strongest ∆corr signal is derived with
the FLUXCOM ET data set. This can be explained as ET represents a flux, which is expected to
respond quicker to changing water availability, yielding stronger ∆corr signals than one would
expect with state variables. In contrast, NDVI as a state variable responds more slowly, yielding
lower ∆corr amplitudes. Moreover, changing water use efficiency under dry conditions can affect
ET results in Figure 2.4. The weakest ∆corr signals are obtained with SIF. This is surprising as
SIF rather represent a flux as, for example, ET, and not a state. A reason for this could be the
relatively early equator overpass time of the GOME-2 satellite, 10:00 local solar time (Köhler
et al., 2015), which is when radiation and leaf temperature are usually not at their daily maxima
such that the vegetation is not yet most active. Table 2.A1 shows a systematic negative bias and
less robust values across energy and vegetation products of large-scale CSMs estimated from
corr(Aenergy,Aveg) in comparison with CSMs estimated from ∆corr.

In a next step, we further explore small-scale, grid cell CSMs. Whereas the large-scale CSM is
mostly inferred from soil moisture variations in space, the small-scale CSMs are estimated from
bimonth-of-year soil moisture variations in time. This allows to study the effect of year-to-year
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Figure 2.5: Estimation of the small-scale CSM based on linear regression between bimonth-of-
year average soil moisture and ∆corr. Light gray grid cells denote regions where no regime shifts
occurred. In dark gray regions regime shifts have occurred, but a p-value of the linear model exceeds
0.1. Black grid cells indicate that the value of the CSM falls outside of the local measured range of soil
moistures. White regions indicate missing data.

variability of each available bimonth. For this purpose, we focus on grid cells that experience
both water- and energy-controlled conditions, that is, where soil moisture crosses the CSM.
This is achieved by selecting grid cells where ∆corr is negative and positive for at least one
bimonth of year, respectively. In each of the grid cells where regime shifts occur, we fit a linear
regression on bimonth-of-year soil moistures and corresponding ∆corr values. The small-scale
CSM is then inferred from the regression line at ∆corr = 0. Several steps ensure a meaningful
estimation of the small-scale CSM: (1) There should be at least 10 data points (bimonths of
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year) where soil moisture and ∆corr are available. (2) The slope of the linear model should be
positive. (3) The p-value of the linear model should not exceed 0.1 to ensure a reasonably strong
linear relationship, given that there only 10-24 data points available per grid cell. (4) The CSM
needs to be within the range of observed soil moistures to ensure a physically possible CSM.
An example of the local estimation of the CSM is shown in Figure 2.A3. Figure 2.5 shows
the spatial distribution of the small-scale CSMs. Most of the CSMs are determined in central
and southern Europe within the range of 20-25 Vol-%, which is comparable to the previously
determined CSMs in Figure 2.3. Next to that, there are ample grid cells where (i) data availability
is insufficient (white grid cells), (ii) no regime shifts are occurring (light gray grid cells), (iii) the
linear relationship is too weak (dark gray grid cells), or (iv) the estimated CSM falls outside of
the range of observed soil moistures (black grid cells). A closer look at the distribution of the
range of CSMs is given in Figure 2.A4. We find similar soil, climate, and vegetation controls for
the small-scale CSMs (Figure 2.A5), confirming results from Figure 2.3.

2.4 Limitations

The ∆corr metric is computed using ESA CCI surface soil moisture, which is determined from
satellite observations. These are based on microwaves that penetrate only into the upper few
centimeters of the soil (Ulaby, 1982). The depth of the surface layer in this soil moisture product
is not well defined, since this soil moisture product is a composite of multiple microwave sensors
with different frequencies and hence slightly different penetration depths (Dorigo et al., 2017).
It is not fully representative of the vegetation-accessible soil moisture. However, there is no
root zone soil moisture data set with a spatial and temporal coverage comparable to that of the
ESA CCI data set. Assessing the potential effect of this shortcoming, we analyze reanalysis
and station-based soil moisture from multiple depths and find that surface soil moisture is a
reasonable proxy for root zone soil moisture, albeit with seasonal variations in their relationship
(Figure 2.A6). Similar results are reported for example by Hirschi et al. (2014) who find similar
surface and root zone soil moisture in mean climatological conditions, or Qiu et al. (2016) who
find differences only under extremely dry conditions. Some decoupling between surface soil
moisture and root-zone also emerges in Figure 2.A1, where similar surface soil moisture values
coincide with different ∆corr values. This is also reflected in the seasonal variability of ∆corr
results as shown in Figure 2.A7. This pattern can be explained with seasonal discrepancies
between surface and root-zone soil moisture: In springtime, root-zone soil moisture is generally
still readily available, but the surface soil moisture is generally lower due increased bare soil
evaporation. This means that ET could occur at its maximum rate, while lower surface soil
moistures are registered by satellites, resulting in a lower springtime CSM. This discrepancy
between surface and root-zone soil moisture causes the entire moving average to shift to the dry
end, as can be seen in Figure 2.A7. In autumn, the contrary is observed: As precipitation occurs
more frequently after summer, first, the surface layer is moistened, but it takes time to replenish
the moisture deficit in the root-zone, leading to a higher CSM (shift of the autumn moving
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average to the wet end). The seasonal variability in representativeness of surface soil moisture for
the root-zone can possibly impact the linear model which is used for the estimation of the local
CSM in Figure 2.5, as these linear models are based on maximally 24 data points. Further, surface
satellite soil moisture estimates have larger measurement uncertainties on densely vegetated
and/or organic soils (Dorigo et al., 2017; Ulaby, 1982).

While similar ∆corr values could in principle be derived with different combinations of the
individual correlations, Figure 2.A8 illustrates that ∆corr usually corresponds to unique combi-
nations, making it unambiguous. Further, there is a significant large scatter across data points in
Figure 2.2 and illustrated in Figure 2.A8. There are several reasons for this underlying uncer-
tainty, next to the limitations related to using satellite surface soil moisture: (1) Soil moisture is
known to have profound memory characteristics (Orth and Seneviratne, 2012), such that legacy
effects might play a role but are not considered here for simplicity, (2) confounding impacts
of soil moisture on corr(AT,AET), and of surface temperature on corr(ASM,AET), are also not
taken into account. The role of these confounding effects is investigated in Figure 2.A2 using
partial correlations. We find overall negligible impact of such effects on ∆corr. Finally, (3)
human influence on soil moisture and consequently vegetation through, for example, irrigation
or land use changes, can introduce non-natural variability into our analysis. Fortunately, none of
the limitations listed above affects all grid cells at the same time. Therefore, we are confident
that our large-scale analysis with thousands of grid cells employs enough information to derive
meaningful results despite the uncertainties introduced by the limitations.

2.5 Conclusions

In this study we build upon the conceptual frameworks of Budyko (1974) and Seneviratne et al.
(2010). We introduce a novel metric to infer energy- or water-limited conditions, which does not
rely on prior assumptions on the relationship between soil moisture and EF and uses observation-
based data sets, which describe water and energy availability and vegetation functioning. This
metric is applied to determine the CSM.

We derive a large-scale CSM representative for the European continent, as well as a range of
small-scale CSMs representative locally at particular grid cells. Within the large-scale analysis
we obtain spatial patterns of water versus energy limitation in Europe and respective dependency
on mean surface soil moisture. At this continental scale, the CSM is determined at 21 Vol-%.
This is more toward the dry end of the spatiotemporal European soil moisture distribution and
therefore in contrast to land models, which often assume water-limited conditions just below
or at the field capacity. This finding can help to improve soil moisture stress representations in
models. Application of the determined large-scale CSM directly as a land surface parameter
in land models, however, should be avoided due to dependency on the employed surface soil
moisture data set. Next to the large-scale CSM, we determine a range of small-scale CSMs and
find ample variability according to local soil, climate, and vegetation characteristics. With readily
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available satellite soil moisture information, the small-scale CSMs allow real-time diagnosis of
land-atmosphere interactions and their corresponding role during climate extremes, such as heat
waves or droughts.
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2.A Appendix

This appendix represents the supplementary materials of the presented publication.

Introduction

In the supporting material 7 figures and 2 tables are presented. Fig. S1 show the seasonal
variation of mean surface soil moisture and ∆corr, as an addition to Fig. 1. Fig. S2 shows the
effect of excluding the confounding variables surface temperature and surface soil moisture on
the ∆corr and its individual components. Fig. S3 until Fig. S5 present auxiliary information to
the local CSM as derived in Fig. 5. Fig. S6 illustrates the seasonality of the representativeness of
surface soil moisture for root-zone soil moisture. Fig. S7 shows moving averages per season.
Fig. S8 shows the relation between ∆corr and its individual components. Table 2.A1 provides
information about the bias between spatial CSMs derived with corr(Aenergy,Aveg) and ∆corr.
Table 2.A2 contains details about the soil moisture stations used in Fig. S3.

Table 2.A1: CSM as estimated through corr(Aenergy,Aveg) minus the CSM estimated through
∆corr for different energy and vegetation products. The CSM does not exist when calculated with
NDVI v4 and incoming shortwave radiation.

FLUXCOM ET FLUXCOM GPP NDVI v4 SIF GFZ
Temperature -0.02 -0.04 -0.04 -0.06
Incoming shortwave radiation -0.03 -0.05 - -0.05
vapor pressure deficit (VPD) -0.02 -0.02 -0.02 -0.03

Table 2.A2: Soil moisture stations used in Figure 2.A3 and corresponding details.

Station (country) Location (lat,lon) Data period Soil moisture measurement
depths (in cm)

Basel (CH) 47.5°N, 7.60°E Aug 2009 - Dec 2012 5, 10, 30, 50, 80
Creon ’d Armagnac (FR) 44.0°N, -0.6°E Jul 2007 - Dec 2015 5, 10, 20, 30
Falkenberg (DE) 52.10°N, 14.07°E Jan 2003 - Dec 2013 8, 15, 30, 45, 60, 90
Haapaveesi (FIN) 64.10°N, 25.40°E May 2001 - Oct 2006 10, 30, 50, 70, 90
Kehrigk (DE) 52.11°N, 13.57°E Jan 2003 - Dec 2013 10, 20, 30, 60, 90, 150
Kuusamo (FIN) 66.30°N, 29.40° Jun 2004 - May 2012 10, 30, 50, 70, 90
Oensingen (CH) 47.30°N, 7.70°E Jan 2002 - Dec 2007 5, 10, 30, 50, 80
Payerne (CH) 46.80°N, 6.90°E Aug 2008 - Dec 2012 5, 10, 30, 50, 80
Peyrusse (FR) 43.38°N, 0.13°E Jul 2007 - Dec 2015 5, 10, 20, 30
Suomussalmi (FIN) 64.90°N, 28.70° Jun 2004 - Apr 2011 10, 30, 50, 70, 90
Urgons (FR) 43.64°N, -0.43°E Jul 2007 - Nov 2015 5, 10, 20, 30
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Figure 2.A1: Distribution of surface soil moisture and evapotranspiration regimes in Europe.
Spatial variability of surface soil moisture (top) from the ESA CCI dataset and ∆corr (bottom), computed
according to Eq. (1) with soil moisture from ESA CCI, FLUXCOM ET and E-OBS surface temperature
per season, excluding winter. The ∆corr is only calculated if it is significant, with significance being
defined as when the ∆corr falls outside of its 90% confidence interval.
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Figure 2.A2: The confounding effects of temperature and soil moisture on the ∆corr. The solid
red and blue lines result from taking a moving average through data points with soil moisture on the
x-axis and the respective individual correlations on the secondary y-axis. The black solid line is the
difference between the solid red and blue lines. The dashed lines denote corr(AT,AET) excluding the
confounding role of soil moisture (red), corr(ASM,AET) excluding the confounding role of temperature
and the difference between the two (black).
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Figure 2.A3: The local estimation of the CSM in a grid cell in France. Bimonth-of-year values of
soil moisture and ∆corr values are shown.

Figure 2.A4: Distribution of the range of local CSMs. The dashed line denotes the median of the
full range of CSMs.



38 Terrestrial evaporation regimes from satellite observations

Figure 2.A5: Estimation of the influence of climate, soil and vegetation type on local CSM. The
x-axis shows the used subgroups, the y-axis shows the ratio between the standard deviation of the local
CSMs per subgroup data and the standard deviation of all local CSMs. The solid colored horizontal
lines are average ratios of subgroups combined as climate, soil and vegetation class. Low values indicate
a systematic influence of a respective subgroup on the local CSM.

Figure 2.A6: Spatial distribution of representativeness of surface soil moisture for root-zone soil
moisture. In colored grids the correlation between bimonthly anomalies of ERA-Interim/Land surface
soil moisture and root-zone averaged soil moisture per season over the time period 1979 - 2010. The
colored points denote the correlation between surface soil moisture and root-zone averaged soil moisture
for soil moisture station in Table 2.A2
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Figure 2.A7: Seasonal effect on the large-scale CSM. The thick black line is the same as in Fig. 2.
The colored moving averages are calculated based on different seasons, excluding winter. Data points
are only used in the calculation of the colored moving averages, when an average surface soil moisture
and ∆corr are available in all seasons, to ensure a fair comparison between seasons.

Figure 2.A8: The scatter of data points with regards to soil moisture and ∆corr. The thick
black line indicates the moving average line. The color scales indicate the corr(AT,AET) (left) and
corr(ASM,AET) (right).
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Vilà-Guerau de Arellano, and A. J. Teuling (2021). “Soil moisture signature in global weather
balloon soundings”. npj Climate and Atmospheric Science 4.1, 1–8



42 Terrestrial evaporation regimes from global weather balloon soundings

Abstract

The land surface influences the atmospheric boundary layer (ABL) through its impacts on the par-
titioning of available energy into evaporation and warming. Previous research on understanding
this complex link focused mainly on site-scale flux observations, gridded satellite observations,
climate modeling, and machine-learning experiments. Observational evidence of land surface
conditions, among which soil moisture, impacting atmospheric boundary layer (ABL) properties
at intermediate landscape scales is lacking. Here, we use a combination of global weather
balloon soundings, satellite-observed soil moisture, and a coupled land-atmosphere model to
infer the soil moisture impact on the ABL. The inferred relationship between soil moisture
and surface flux partitioning reflects distinctive energy- and water-limited regimes, even at the
landscape scale. We find significantly different behavior between those two regimes, associating
dry conditions with on average warmer (≈3 K), higher (≈400 m) and drier (≈1 kPa) afternoon
ABLs than wet conditions. This evidence of land-atmosphere coupling from globally distributed
atmospheric measurements highlights the need for an accurate representation of land-atmosphere
coupling into climate models and their climate change projections.



3.1 Introduction 43

3.1 Introduction

The diurnal evolution of the atmospheric boundary layer (ABL), the well-mixed layer between
the land surface and free troposphere, plays a key role in weather conditions and air quality at
the Earth’s surface. In particular, it can influence the magnitude of temperature and precipitation
extremes (Findell et al., 2011; Guillod et al., 2015; Miralles et al., 2014b; Prein and Heymsfield,
2020; Taylor et al., 2012) and various processes, such as cloud formation (Ek and Holtslag,
2004; Heerwaarden and Arellano, 2008; Lilly, 1968), air pollution (Li et al., 2017), diurnal
carbon dioxide (CO2) dynamics (Arellano et al., 2004), ecosystem carbon exchange (Lasslop
et al., 2010), soil respiration (Ekblad et al., 2005), the persistence of urban heat islands (Pal
et al., 2012), and even dune formation (Andreotti et al., 2009). ABL dynamics are sensitive to
heat and moisture inputs from the land surface, which are directly regulated by soil moisture
availability and its impact on the partitioning of surface energy fluxes (Seneviratne et al., 2010),
and by incoming solar radiation, which dictates the amount of energy available for partitioning
at the land surface. Next to that, the ABL is (in)directly influenced by vegetation, surface albedo,
and surface roughness, which are in turn linked to soil moisture (Bou-Zeid et al., 2004; Harman,
2012; Williams and Torn, 2015). By redistributing heat and moisture vertically, ABL dynamics
determine how fluxes of water and energy from the land surface combine with free-tropospheric
conditions to translate into near-surface temperature and humidity.

Per example, Figure 3.1 depicts the typical diurnal ABL evolution from weather balloon sound-
ings under convective conditions and weak synoptic flows over different land surface conditions
at a site in Lincoln, IL, USA. The ABL is influenced by the bottom (land surface) and top (free
troposphere) boundaries. At the land surface, available net radiation partitions into sensible heat
flux (H) and latent heat flux (LE), transferring heat and moisture into the ABL. Sensible heat
warms the air above the land surface, thus creating warm and buoyant, rising air parcels. At
the top of the ABL, the temperature inversion serves as a lid, preventing the air to rise higher.
However, sensible heat-driven air parcels can overshoot the inversion and entrain warm and
dry air from the free troposphere, thereby deepening, warming and drying the ABL during
daytime (Vilà-Guerau de Arellano et al., 2015). The ABL is generally less well-mixed in terms
of specific humidity than potential temperature, owing to the entrainment of dry air (Mahrt,
1991). Due to vertical convective mixing of air from the land surface to the top of the ABL, the
vertical temperature and humidity profiles integrate surface heterogeneity and free tropospheric
conditions over distances tens of times the ABL height. We refer to this as the landscape scale
throughout this study. In this context, soil moisture leaves its signature in the ABL by regulating
the partitioning of energy fluxes at the land surface: Over dry soils, evaporation is water-limited,
partitioning more energy into sensible heat than over wet soils, and consequently causing the
ABL to grow warmer, deeper and drier (Figure 3.1). Conversely, the distinct signature left by
soil moisture in the ABL can be exploited to infer land water availability using weather balloon
soundings.
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Figure 3.1: Diurnal ABL evolution over wet and dry soils, respectively. θ (a); in K) and q (b);
in kg water per kg air) versus height on characteristic dry (07-07-2012) and wet days (25-06-2014;
89.33 W, 40.15 N). The solid lines depict the idealized afternoon profile to which the ABL model
validated, inferred from balloon soundings in the data-screening steps (see ”Screening of weather
balloon sounding measurements” and ”Data” in Methods) from afternoon observations (points) while
crosses denote the morning ABL that the model is initialized with. Colored boxes and corresponding
arrows indicate the growth of the ABL and warming/drying during the day.

In previous research, the complex link between the land surface and the ABL was studied
across scales ranging from site scale using tower measurements or models (Findell et al., 2011;
Shuttleworth et al., 1989; Williams et al., 2012; Wilson et al., 2002), landscape-scale using
satellite observations and/or models, among which convection-resolving Large Eddy Simulations
(Brown et al., 2002; Heerwaarden and Arellano, 2008; Rieck et al., 2014; Robinson et al.,
2008; Taylor et al., 2011; Taylor et al., 2012), to regional and global scales using climate
models, satellite observations, and/or machine-learning techniques (Dirmeyer et al., 2006; Jung
et al., 2010; Koster et al., 2006; Prein and Heymsfield, 2020; Sellers et al., 1992). Spatial
heterogeneity of soils and vegetation requires parameterizations in these larger-scale studies,
inducing uncertainties. This was addressed in recent studies by estimating surface fluxes from
near-surface observations of temperature and humidity using mixed-layer theory (Gentine et al.,
2016; Salvucci and Gentine, 2013). However, these observations do not allow analyses at the
landscape scale, at which land-atmosphere coupling is expected to have more relevant impacts
(Robinson et al., 2008; Taylor et al., 2011).

In this study, we infer land-atmosphere coupling from an atmospheric perspective: we translate
weather balloon soundings with an ABL model, the Chemistry Land-surface Atmosphere Soil
Slab model for Global Studies (CLASS4GL), to make a global estimate of surface flux parti-
tioning at the landscape scale (Wouters et al., 2019). The weather balloon sounding data consist
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of ∼15 million soundings, available from 1905 to near real-time, and from > 2700 stations
distributed across the globe (see ”Data” in Methods). These comprehensive observations are
routinely used to constrain weather forecasts, but so far, their use to study land-atmosphere
coupling has been limited. Here, balloon soundings are filtered to select days with convective
warm conditions (see ”Preprocessing of weather balloon soundings” in Methods), excluding
days on which sublimation occurs, avoiding complexities related to frozen surface water and
substantial variation in the seasonal cycle of surface flux partitioning during the cold season
and focusing on days which are driven by sensible heat and therefore governed by surface flux
partitioning. Therefore, the data screening increases, but simultaneously potentially exaggerates,
the chance of land states affecting ABL dynamics (Santanello et al., 2018). We identify 4236
suitable sounding days distributed globally over 97 stations, which are used to initialize the ABL
model in the morning and to validate it in the afternoon, while the model computes concurrent
surface flux estimates. We implement a routine that adjusts the initial morning soil moisture, the
main remaining control on energy flux partitioning, in order to minimize the difference between
observed and model-estimated vertical temperature and humidity profiles (see ”Experimental
setup” in Methods). The surface flux partitioning is thus inferred from atmospheric measurements
which are interpreted and translated into surface fluxes through a model based on mixed-layer
theory, and hence largely independent of potentially uncertain ancillary data of land surface
characteristics, in contrast to climate models.

3.2 Results and discussion

3.2.1 Global patterns of energy flux partitioning

In a first step, we compare the flux partitioning inferred from balloon soundings using CLASS4GL
with several state-of-the-art gridded data products. Figure 3.2 shows the global distribution of
energy flux partitioning, expressed as an evaporative fraction (EF; the ratio between latent heat
flux and available energy), for three gridded products (a-c) and for CLASS4GL (d), focusing
on warm days (temperature > 278 K). Considerable differences exist between the gridded
products, as root-mean-square differences in the evaporative fraction (EF) are as follows: 0.12
(GLEAM-FLUXCOM), 0.1 (GLEAM-ERA5), and 0.15 (ERA5-FLUXCOM), highlighting the
ongoing challenges in surface flux estimation. The apparent differences across state-of-the-
art gridded products can be due to different model formulations or underlying land surface
parameterizations accounting for sub-grid heterogeneity. This problem can be overcome with
the balloon sounding-based flux estimations, as these are largely independent of land-surface
model assumptions.

There is reasonable agreement with the spatial patterns of the reference products: spatial
correlations of CLASS4GL estimated EF, weighted by the number of sounding days per location
and only including locations with more than 50 sounding days to avoid sampling biases, with
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Figure 3.2: Global estimates of mean surface flux partitioning. Colors denote the evaporative
fraction averaged over the timespan of the respective data product after filtering for warm days (ERA5
temperature > 278 K) and availability of all gridded data products: (a) GLEAM, 2003-2017, (b)
FLUXCOM 2001-2015, and (c) ERA5, 1981-2017 (see ”Data” in ”Methods”). d) Evaporative fraction
inferred from balloon soundings using CLASS4GL in colored circles, averaged over all stations from
the morning to the afternoon sounding for all stations within a 5.0° x 5.0° grid cell and all available
sounding days. The sizes of the circles correspond to the amount of available sounding days.

GLEAM, FLUXCOM, and ERA5 are 0.67, 0.75, and 0.68, respectively. The fact that these
values approach the correlations between gridded products calculated using similar methodology
0.89 (GLEAM-FLUXCOM), 0.88 (GLEAM-ERA5), and 0.93 (ERA5-FLUXCOM) is notable,
given different temporal (continuous vs. discontinuous time series and daily vs. sub-daily
averages) and spatial (1° x 1° grid cells vs. landscape-scale footprint from balloon soundings)
data characteristics between CLASS4GL (see ”Screening of weather balloon soundings” in
Methods) and the gridded products. Further, the mean EF from CLASS4GL is slightly below
the estimates of the gridded products. This can be explained by the difference in temporal
sampling; Whereas the EF for gridded products is averaged over the entire day, the EF from
CLASS4GL is averaged between morning and afternoon soundings, with most data available
between 08:00 and 14:00 local solar time, shortly after which heating tends to increase EF
(Heerwaarden et al., 2009). Finally, we go one step further down the Local Land-Atmosphere
Coupling (LoCo) process chain (Santanello et al., 2018), that presumably governs ABL dynamics
by validating the main control of EF (soil moisture), instead of directly validating EF. We find
that the adjusted initial soil moisture from CLASS4GL correlates well with European Space
Agency (ESA) Climate Change Initiative (CCI) soil moisture (0.73; Supplementary Figure
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3.A1), which validates both the land surface schemes applied in CLASS4GL and confirms that
soil moisture leaves a signature in the vertical profiles, as measured by balloon soundings, by
affecting the surface flux partitioning.

3.2.2 Distinguishing evaporative regimes

While it is known that EF and related land-atmosphere coupling changes between energy- and
water-limited conditions (Denissen et al., 2020; Feldman et al., 2019; Haghighi et al., 2018;
Seneviratne et al., 2010), the potential implications of these modes on the ABL remain unclear.
To distinguish these regimes, we use satellite-derived soil moisture observations (Dorigo et al.,
2017). Next, we investigate the control of soil moisture on the day-to-day variability of EF by
linking the inferred latent and sensible heat fluxes to remotely sensed soil moisture conditions,
which are independent of the soil moisture used in the flux estimation. Using remotely sensed
soil moisture induces noise in this relationship, as (i) surface soil moisture only represents part
of the depth that is relevant for evaporation, and (ii) surface and root-zone are known to decouple
in dry conditions (Qiu et al., 2016; Santanello and Carlson, 2001). Nevertheless, this product is
the only global observational soil moisture with an adequate time period available and has been
used successfully in similar applications before (Denissen et al., 2020; Orth et al., 2020). Figure
3.3a illustrates that the energy flux partitioning is strongly regulated by soil moisture, even at the
landscape scale, as the ratio between latent heat flux and surface available energy (the sum of
sensible and latent heat flux) changes from dry to wet soils. This apparent sensitivity of energy
flux partitioning to soil moisture is quantified by computing a least-squares regression fit for
each soil moisture class (Figure 3.3b). The linear slopes in Figure 3.3b are comparable over wet
soils, indicating that flux partitioning is insensitive to soil moisture (energy-limited conditions).
This changes toward drier soils, where the linear slopes decrease with soil moisture, reflecting an
increased sensitivity of flux partitioning to soil moisture (water-limited conditions). The point
data underlying the contour lines in Figure 3.3a and the linear models in Figure 3.3b are shown
in Supplementary Figure 3.A2. The moving medians in Supplementary Figure 3.A2 indicate that
the assumption of linearity for quantifying the relationships in Figure 3.3b is reasonable.

The linear slopes (EF*) reflect the sensitivity of the change in latent heat flux to changes in
available energy (assuming lines without a zero intercept). Therefore, the physical meaning of
EF* and EF is similar, because EF reflects the ratio of the change in latent heat flux to changes
in available energy (with a zero intercept). Both the sensitivity of EF* and EF to soil moisture
changes when transitioning between wet and dry soils. We use EF* here as it fits the data more
closely and consequently allows a clearer illustration of the contrast between water- and energy-
controlled regimes. We impose a piecewise-linear model to quantify this transition, similarly
to existing literature (Feldman et al., 2019; Seneviratne et al., 2010), which is marked by the
critical soil moisture (CSM, see ”Distinguishing evaporative regimes” in Methods). Separating
for environmental conditions is complex because the footprints of balloon soundings are time-
varying depending on height, wind speed, and direction; this footprint is also large enough to
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Figure 3.3: Soil moisture control on landscape-scale surface flux partitioning. (a) Surface energy
flux estimates from CLASS4GL. Point clouds illustrated through 80th percentile contour lines and
colored according to independent, satellite-derived soil moisture (SM) observations (Dorigo et al.,
2017). (b) Least-squares regression fits (full lines indicate statistical significance, p < 0.05), with
corresponding correlations (ρ) in the inset. (c) Relation between the slope of the linear models (EF*,
see text) with SM (full dots indicate statistical significance, p < 0.05). Error bars show the standard
deviation of EF*. Dark-grey solid lines result from a piecewise linear regression between SM and
EF* with according to breakpoint (dot-dashed) and interquartile range from bootstrapping (light-grey
ribbon).

integrate surface heterogeneity in terms of soil, vegetation, and climate characteristics. Different
environmental conditions across sites and decoupling between the surface and root-zone soil
moisture could, however, cause slightly different EF* for the same surface soil moisture values.
The dark-grey ribbon in Figure 3.3c reflects the sensitivity of the critical soil moisture (CSM)
to this uncertainty. As this ribbon is relatively narrow, it justifies the use of the breakpoint
as a sharp threshold to quantify the transition. We emphasize that it is not our intention to
determine the sensitivity of this transition to environmental conditions, but merely to find a
threshold to distinguish energy- and water-limited conditions that is valid for our data selection,
and can be used as a first-order distinction between water and energy-controlled conditions in our
subsequent analyses. Next to that, this first-order estimate is robust with respect to (i) different
soil moisture bin setups (Supplementary Figure 3.A3), and (ii) different surface soil moisture
products (Supplementary Figure 3.A4).
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3.2.3 Land surface effect on the atmospheric boundary layer

When classified based on CSM, ABL properties show distinct differences between water- and
energy-limited conditions (Figure 3.4). Figure 3.4b shows that EF, as produced by CLASS4GL,
is generally higher in energy-limited conditions than in water-limited conditions. Figure 3.4d-i
shows that, according to the CLASS4GL simulations, in water-limited conditions, the ABL
warms (2.72 K), dries (0.86 kPa) and, most notable, deepens (409 m) more during daytime
than in energy-limited conditions. Strong differences in height are found due to higher heat
capacities of deeper water-limited ABLs (Heerwaarden et al., 2009; Orth et al., 2020). Despite
higher moisture input through evaporation in energy-limited conditions, we find that diurnal
VPD increases driven by the temperature increase during the course of the day. In addition, the
daily ABL evolution is influenced by upper air processes driven by synoptic systems, which are
different between evaporative regimes, as can be seen from the tropospheric temperature lapse
rate (Figure 3.4c). Warm and dry days leading up to water-limited conditions are associated
with lower tropospheric lapse rates, favoring a rapid deepening of the ABL (Findell et al., 2011;
Panwar et al., 2019; Santanello et al., 2005). Further, the ABL’s relative humidity decreases
more strongly during daytime in water-limited conditions than in energy-limited conditions,
favored by the stronger entrainment of dry tropospheric air, which is mainly driven by surface
sensible heat in convective ABLs (Santanello et al., 2009). Next to that, entrainment of dry
air triggers contrasting upper air feedbacks in both evaporative regimes. In energy-limited
conditions, entrainment of dry air increases the moisture gradient between the land surface and
the ABL, thereby enhancing evaporation and leading to less sensible heat and shallower ABLs;
in water-limited conditions, this entrained dry air may further constrain evaporation due to the
influence of VPD on stomatal conductance under dry soils, and thus sensible heat is increased
and the ABL grows deeper.

In Figure 3.4, we effectively separate wet and dry regions using soil moisture data. We assess the
more direct effect of surface flux partitioning on the ABL by computing regimes based on EF
(Supplementary Figure 3.A5). As expected, the diurnal deepening of the ABL is even stronger
given the more direct influence of energy flux partitioning compared with that of soil moisture.
At the same time, warming and drying are less pronounced which is possibly due to the enhanced
heat capacity of the ABL. Interestingly, where the difference in morning ABL growth is greater
when the data is separated based on EF than on soil moisture (Figure 3.4), differences in θ and
VPD are less pronounced. This could be explained by the nature of the variables that are used
to separate the data: EF could theoretically vary from 0 to 1 during daytime hours, whereas
daytime variability in soil moisture is much lower. Therefore, the stronger the water-limited
conditions, the higher the probability that the days leading to these dry conditions have been
water-limited too, accompanied by higher morning θ and VPD differences in Figure 3.4d, f. As
EF responds on shorter timescales than soil moisture, days leading to low EF days need not be
water-limited and therefore morning θ and VPD differences in Supplementary Figure 3.A5d, f is
less pronounced. However, by separating on EF we ensure high sensible heat on low EF days,
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Figure 3.4: Global soil moisture influence on diurnal ABL evolution. (a) Surface soil moisture for
available sounding days. When soil moisture is below critical soil moisture (dot-dashed vertical line
in Figure 3.3c and here), we distinguish water-limited conditions (red), and energy-limited conditions
otherwise (blue). Evaporative fraction (b) and potential temperature lapse rate (c) from CLASS4GL
averaged between 08:00 and 14:00 local solar time. Potential temperature (d, g), ABL height (e, h), and
the vapor pressure deficit (f, i) from CLASS4GL at 08:00 and 14:00. Vertical blue and red lines denote
the medians from the respective distributions. Annotations show the difference between the medians
and the p values of the Kolmogorov-Smirnov test. Dark grey arrows indicate assumed causal relations
between variables.

growing the ABL from sunrise to 08:00. Some, but not all, stations transition between water-
and energy-limited conditions, due to the seasonal cycle in soil moisture. To isolate the role of
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seasonality in the results shown in Figure 3.4, we recompute the figure for regimes of available
energy, replacing the soil-moisture-derived regimes and instead of depicting seasonal variation
in the meteorological forcing (Supplementary Figure 3.A6). We consistently find smaller diurnal
changes in ABL characteristics in terms of warming, growth, and drying, confirming that our
results in Figure 3.4 are not an artifact of seasonal and latitudinal forcing variations, thereby
justifying the separation between evaporative regimes based on CSM.

In conclusion, we illustrate that soil moisture conditions are reflected in the ABL, enabling the
inference of energy flux partitioning from ABL-based measurements such as balloon soundings.
Benefitting from a comprehensive archive of balloon soundings covering locations across the
globe and spanning over decades, our approach can provide robust and largely independent EF
estimates at the impact-relevant landscape scale. More generally, the relevance of the ABL for
land-atmosphere coupling is increasingly recognized and has for example triggered efforts to add
continuous ABL measurements to existing flux towers (Helbig et al., 2020). Such an extension
would enable the application of our approach at these sites, and the reconciliation with local
energy fluxes. In summary, we present an observation-based assessment of the ABL response to
soil moisture variations worldwide and quantify the changes in ABL characteristics induced by
soil moisture.

3.3 Methods

3.3.1 CLASS4GL

We use the CLASS4GL framework (Wouters et al., 2019) (https://class4gl.eu/).
CLASS4GL initializes and runs a mixed-layer model (CLASS (Vilà-Guerau de Arellano et
al., 2015); http://classmodel.github.io/) with ancillary reanalysis, satellite, survey, and
weather balloon sounding data worldwide. CLASS uses the mixed-layer equations originally
proposed by Tennekes (1973) and later adapted by Tennekes and Driedonks (1981) to compute
the daytime evolution of the mixed-layer. The advantage of using mixed-layer equations is
that the mixed-layer, which is the well-mixed part of the ABL where potential temperature (θ ),
specific humidity (q), and wind components (u,v) are assumed to be constant with height due to
turbulent mixing, can be summarized with one value for θ and one for q. Therefore, CLASS
is computationally cheap, but at the same time, the mixed-layer theory on which it relies is
well-established through, amongst other basic physical laws, the conservation of mass and energy.
This way, CLASS represents the daily atmospheric boundary layer evolution and meteorological
processes at the landscape scale, and can efficiently be used to analyze thousands of sounding
days measured across the globe. In CLASS, available energy at the land surface is partitioned
into sensible and latent heat flux, which is influencing mixed-layer θ , q , and height (h) from the
bottom of the mixed-layer. The top of the mixed-layer is characterized by a θ and q inversion,
which separates the well-mixed layer from the warmer and drier free troposphere. In the free

https://class4gl.eu/
http://classmodel.github.io/
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troposphere, the θ and q lapse rates describe how θ and q change with height. At the top of
the mixed-layer, the heat and moisture that is entrained from free-tropospheric air is controlled
by the inversions of θ , q, and wind components. Recent developments in CLASS4GL include
dynamic free-tropospheric θ and q lapse rates according to the different (observed) vertical air
layers during the mixed-layer growth, which also change due to large-scale dynamic forcing
of advection and subsidence and entrainment by shear (Vilà-Guerau de Arellano et al., 2015;
Wouters et al., 2019). A mixed-layer representation of the ABL as assumed in CLASS approxi-
mates the idealized θ and q profiles in Figure 3.1. In selecting the appropriate observed vertical
profiles for our analysis, CLASS4GL is equipped with necessary filters and criteria to ensure that
the vertical profiles selected closely follow the convective (mixing) assumptions (see Figures 3.3
and 3.4 in Wouters et al. (2019) and Figure 3.4 in Heerwaarden et al. (2010)), represented by the
idealized profiles in Figure 3.1. Within these assumptions, the effect of entrainment on vertical
profiles is of second-order importance, as the entrainment flux is a generally agreed-upon fixed
fraction (0.2) of the surface kinematic heat flux. This constant holds for shear-free conditions,
supported by atmospheric observations (see Conzemius and Fedorovich (2006) for a compre-
hensive discussion). However, even while the mixed-layer theory is deemed well-established
and with appropriate data screening, deviations from well-mixed assumptions exist, slightly
more so in the case of q than θ . The main reason for this is that the q difference between the
mixed layer and the free troposphere can be of the same order of magnitude as the well-mixed
q value (Figure 3.1b), whereas the θ difference is much smaller (Figure 3.1a). Therefore, the
observed q-profile could slightly deviate from the well-mixed profile at the top of the ABL due
to entrainment of dry and warm free-tropospheric air, which in turn can be partially compensated
by evaporation from the land surface. Moisture skewness could also exist at the land surface
under high EF conditions. Where in reality the moisture gradient is reduced due to this skewness,
thereby reducing evaporation, this does not occur in CLASS4GL, because this skewness is mixed
throughout the ABL. Therefore, the moisture gradient is maintained accompanied by slightly
higher evaporation. However, we do not expect this to be the case often in our selection of
convective days, as in such conditions moisture is effectively mixed throughout the ABL. More
information on the original formulation of CLASS within the CLASS4GL framework and its
data sources, which are the main input parameters, their default values and the latest updates
can be found in the previous studies (Heerwaarden and Teuling, 2014; Heerwaarden et al., 2010;
Vilà-Guerau de Arellano et al., 2015; Wouters et al., 2019). We highlight one of several updates
within the CLASS4GL framework: bulk transfer coefficients of momentum and heat have been
calculated non-iteratively according to Wouters et al. (2019), which holds for stable and unstable
surface conditions, further reducing the computational cost of CLASS4GL.

3.3.2 Screening of weather balloon sounding measurements

Approximately, 15 million weather balloon sounding measurements from > 2700 stations
across the globe are available from the Integrated Global Radiosonde Archive (IGRA) data set
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(Durre et al., 2006), from as early as 1905 to near real-time. The radiosondes provide vertical
measurements of, amongst others, temperature, pressure, relative humidity, wind direction, and
speed.

Before data screening can take place, all the necessary mixed-layer properties to describe an
idealized vertical profile have to be calculated from the measurements: h is determined as the
height at which the Richardson number exceeds a certain threshold: 0.24 for strongly stable
conditions, 0.31 for weakly stable conditions and 0.39 for unstable conditions (Zhang et al.,
2014). The uncertainty range, used at a later step, can be derived from computing h across this
range of Richardson numbers. The mixed-layer average θ and q are the mean of the observations
between the land surface and h. The upper air conditions are linearly extrapolated between the
two measurement heights above h: First, the tropospheric lapse rate is calculated as the change
of θ and q with height. Second, the inversion is the difference between the mixed-layer θ and q
and the extrapolated θ and q from the tropospheric lapse rate.

Once the mixed-layer properties are calculated, they go through a series of data-screening steps,
which are largely the same as described Wouters et al. (2019). The screening of weather balloon
sounding measurements is necessary to ensure the selection of convective warm days, on which
the described mixed-layer theory assumptions are met. By doing so, we consider only convective
days that are driven by sensible heat flux, which is sensitive to land states (water- versus energy-
limited conditions), governing the surface flux partitioning and the entrainment flux of heat.
Therefore, the data screening yields days where the chances of land states being drivers for
surface flux partitioning and ABL dynamics are higher. However, vertical profiles from excluded
days also carry soil moisture signatures, albeit less pronounced due to larger influences of other
meteorological processes. The criteria are the following: (i) A morning profile needs to be
available before 12:00 local solar time. (ii) There should be at least 7 measurements below 3000
m. (iii) The uncertainty range of the determined h, as described above, should be smaller than
150 m. (iv) The mixed-layer should be well-mixed in terms of θ , ensured by omitting sounding
days where the root mean square deviation of observed θ within the mixed-layer exceeds 1.5
K. (v) θ > 278 K, to exclude the possibility of having freezing temperatures on sounding days.
(vi) An afternoon sounding, confirming to the same requirements as the morning sounding,
should be available between local noon and 1 h before local sunset. (vii) The growth of h should
be between 20 and 400 m h-1 and the mixed-layer should warm during daytime, to ensure a
reasonable daytime mixed-layer evolution. (viii) ESA CCI soil moisture should be available in
the 1° x 1° degree grid cell resolution at the same time and location as the sounding (Dorigo
et al., 2017). After the data screening procedure, the weather balloon sounding measurements
are eligible to use for estimating energy flux partitioning with CLASS.
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3.3.3 Experimental setup

We extend the existing framework of CLASS4GL with an additional routine that forces CLASS
to reproduce the afternoon mixed-layer average θ and q from observations within an acceptable
range of uncertainty. This routine iteratively scales modeled soil moisture, assuming identical
values for the surface and root-zone, and consequently, the energy flux partitioning to match the
estimated θ and q to afternoon mixed-layer averages from observations. This iterative converging
method has been used in earlier work, where Miralles et al. (2014b) matched Bowen ratios from
the Global Land Evaporation Amsterdam Model (GLEAM) ((Martens et al., 2017)) and Wouters
et al. (2019) matched EF from GLEAM to CLASS4GL produced values by iteratively adjusting
initial soil moisture. By iteratively scaling the initial soil moisture, we assume that a mismatch
in afternoon temperature or humidity results exclusively from the modeled soil moisture, and
that any mismatch due to entrainment of the warm and dry free troposphere, is indirectly driven
by soil moisture at multi-day timescales (Vilà-Guerau de Arellano et al., 2015). Two separate
procedures and at least two model runs are necessary to ensure the matching of both afternoon
mixed-layer average θ and q . We do this by first computing

fX =
XCLASS−XOBS

σXOBS

(3.1)

where X is either θ or q , σXOBS is the standard deviation of the respective variable with height
across the observations within the mixed-layer, XCLASS the mixed-layer average estimated from
running CLASS4GL from the morning to the afternoon sounding based on a converged modeled
soil moisture, XOBS the mixed-layer average based on balloon sounding observations and fX

the difference in standard deviations. CLASS4GL estimated θ or q matches the observations
adequately if fX < 0.5, otherwise the soil moisture is iteratively converged toward a value that
satisfies fX < 0.5, by combining two zero-finding algorithms: the bisection method (Burden
et al., 2016) and the secant method. If fX < 0.5 cannot be met within 10 iterations, the sounding
day will be discarded. The two resulting soil moistures from matching on θ and q should
be within a range of 0.05 from each other, to ensure that the resulting flux estimates from
observations of θ and q are consistent. If so, the average from the two soil moistures will be
used to initialize CLASS4GL in the morning and to compute the results used in this study.
Otherwise, the sounding day will be discarded. Energy fluxes are successfully estimated on 4236
sounding days distributed globally over 97 stations after the filtering procedure and matching
on afternoon mixed-layer average θ and q . Because we require ESA CCI soil moisture to be
available on a sounding day, the sounding days are available from 1981 to 2015, with the highest
data availability in the later years. CLASS4GL has been run with default settings and thereby
does not account for large-scale air circulation from subsidence and advection, and entrainment
by shear. Ample uncertainties are expected with this large-scale circulation, as these estimates
are based on 6-hourly values and validation is impossible. However, for our data selection, there
are hardly any differences in the evolution of the ABL during daytime for experiments with and
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without large-scale circulation from subsidence and advection, and entrainment by shear (not
shown). Moreover, our experimental setup secures that only sounding days are retained where a
satisfactory match between modeled and observed afternoon temperature and humidity is found.
When meteorological processes not accounted for in the model experiments could influence
observed vertical temperature and humidity profiles, this is compensated for by adjusting initial
soil moisture and consequently surface flux partitioning, thereby matching modeled vs. observed
afternoon temperature and humidity. As Supplementary Figure 3.A1 shows, the adjusted soil
moisture closely resembles the satellite-observed soil moisture with a correlation coefficient of
0.73, underlining the small importance of meteorological processes not accounted for in our
model experiments for soil moisture and consequently surface flux partitioning.

3.3.4 Data

Table 1 displays the data sets that are used for analysis outside of application in CLASS4GL.
All these gridded data sets are regridded to a 1° x 1° spatial grid cell resolution to more closely
resemble footprints from weather balloon soundings.

Table 3.1: All soil moisture data sets are used to infer the relation between soil moisture and
energy flux partitioning in Figure 3.3 and Supplementary Figure 3.A1-3.A4. Energy fluxes from
gridded data sets are used to validate the CLASS4GL estimated energy fluxes in Figure 3.2.

Data set Version Variable(s) Original Temp. Source Reference
spatial res. res.

ESA CCI 04.4 Surface soil moisture 0.5° x 0.5° Daily Satellite observations (Dorigo et al., 2017)
(Gruber et al., 2017)
(Liu et al., 2012)

GLEAM 3.4 Surface soil moisture, sensible- 0.5° x 0.5° Daily Land model constrained (Martens et al., 2017)
and latent heat flux by satellite observations

ERA5 - Soil moisture (layers 1-3), sensible- 0.1° x 0.1° Daily Reanalysis model (Hersbach et al., 2020)
and latent heat flux, 2-m temperature

FLUXCOM 2 Sensible- and latent heat flux 0.1° x 0.1° 8-daily Multiple data streams processed with (Jung et al., 2019)
(RS) machine learning, using eddy cov-

ariance-derived fluxes as target

3.3.5 Distinguishing evaporative regimes

In Figure 3.3b, we use CLASS4GL estimated surface energy fluxes in combination with satellite
observations of surface soil moisture from ESA CCI to distinguish the evaporative regimes and
the related transition between them. To this end, we compute linear least-squares regressions per
soil moisture class. A linear model is only computed if there is sufficient data available (more
than 30 sounding days) within the respective soil moisture class.

In Figure 3.3c, we apply a piecewise linear regression to expose the two distinctive evaporative
regimes and the associated transitions between them, marked by the CSM. This piecewise linear
regression is weighted by the number of sounding days per soil moisture class, to account for the
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uneven distribution of soil moisture values, which ranges from 43 (soil moisture < 0.1 m3 m-3)
to 1039 (0.14 < soil moisture < 0.18 m3 m-3). Finally, the slopes of the linear model’s EF* and
therefore the breakpoint in the piecewise linear regression are subject to uncertainty, potentially
related to differences between stations in terms of soil and vegetation conditions, decoupling
between surface- and root-zone soil moisture, and balloon sounding footprints varying with
height, wind speed and -direction. To account for these uncertainties that are reflected in the
standard deviation around EF*, we resample the EF* by drawing from a normal distribution with
the mean of the actual EF* and its standard deviation per soil moisture class. Subsequently, these
1000 resampled EF* were used to compute 1000 piecewise linear regressions and breakpoints
(CSM). Note that the CSM depends on soil and vegetation characteristics and is hence reflecting
the selection of sites used in this study (Denissen et al., 2020; Feldman et al., 2019; Haghighi
et al., 2018). We use it to distinguish water and energy-limited regimes across the sites, and
subsequently to study ABL characteristics, while different CSM values might be derived for
different (selections of) locations. The estimation of the CSM should be regarded as a first-order
estimate as (i) the varying soil and vegetation characteristics of grid cells contributing to each
soil moisture class considered in Figure 3.3 induce uncertainty to our CSM estimation, and (ii)
while root-zone soil moisture is regulating evaporation and surface flux partitioning, only surface
soil moisture is readily observed across the globe, which is known to decouple from root-zone
soil moisture, especially in extremely dry conditions (Qiu et al., 2016; Santanello and Carlson,
2001).
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3.A Appendix

This appendix represents the supplementary materials of the presented publication.

Figure 3.A1: Validation of soil moisture fitted with balloon sounding data. The x-axis displays
remotely sensed soil moisture from ESA CCI in the 1.0° x 1.0° grid cell where sounding data is
available. The y-axis displays the soil moisture that was fitted with balloon sounding data and CLASS.
The colors denote the density of the scatter points and the red line is the 1:1 line.
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Figure 3.A2: Energy flux partitioning per soil moisture class. Available energy (H + LE) and LE
estimates from all available balloon soundings across stations (points). Point clouds are summarized by
80th percentile contour lines and colored according to respective soil moisture. Least-squares regression
fits with corresponding 95% confidence intervals are shown in colored lines. The black lines denote the
moving median through the point cloud.
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Figure 3.A3: Robustness of EF* and piecewise linear regressions with respect to soil moisture
class bin width and soil moisture lower boundaries. Relation between the slope of the linear models
(EF*) with SM (full dots indicate statistical significance, p < 0.05). 4 different bin widths have been
used for SM classes: 0.04 m3 m-3 (a,e,i), 0.03 m3 m-3 (b,f,j), 0.02 m3 m-3 (c,g,k) and 0.015 m3 m-3(d,h,l).
Different lower boundaries of the SM classes have been used: .1 m3 m-3 (top), 0.092 m3 m-3 (middle)
and 0.108 m3 m-3 (bottom). Error bars show the standard deviation of EF*. Dark-grey solid lines result
from a piecewise linear regression between SM and EF* with the black dot-dashed line indicating the
breakpoint and the light-grey ribbon the respective interquartile range derived with bootstrapping.
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Figure 3.A4: Robustness of EF* and piecewise linear regressions according to different soil mois-
ture datasets. Relation between the slope of the linear models (EF*) with soil moisture from ESA CCI
(a), GLEAM (b) and ERA5 (c). Solid points depict EF* when p < 0.05. Error bars show the standard
deviation of the linear models. Error bars show the standard deviation of EF*. Dark-grey solid lines
result from a piecewise linear regression between SM and EF* with the black dot-dashed line indicating
the breakpoint and the light-grey ribbon the respective interquartile range derived with bootstrapping.



3.A Appendix 61

Figure 3.A5: Evaporative fraction control on diurnal ABL evolution. Data has been divided into
sounding days with a lower (orange) or higher (blue) evaporative fraction (EF) than the median. a)
Surface soil moisture for available sounding days from the ESA CCI data set (Dorigo et al., 2017). EF
b) and potential temperature lapse rate c) averaged between 08:00 and 14:00 local solar time. Potential
temperature (d, g), ABL height (e, h) and the vapor pressure deficit (f, i) at 08:00 and 14:00. Vertical
orange and blue lines denote the medians from the respective distributions. Annotations show the
difference between the medians and the p-values of the Kolmogorov-Smirnov test.
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Figure 3.A6: The effect of seasonality on diurnal ABL evolution. Data has been divided in sounding
days with more (brown) or less (green) available energy (H+LE) than the local median, thereby
accounting for latitudinal differences in H + LE. a) Surface soil moisture for available sounding days
from the ESA CCI data set (Dorigo et al., 2017). Evaporative fraction b) and potential temperature
lapse rate c) averaged between 08:00 and 14:00 local solar time. Potential temperature (d, g), ABL
height (e, h) and the vapor pressure deficit (f, i) at 08:00 and 14:00. Vertical brown and teal lines denote
the medians from the respective distributions. Annotations show the difference between the medians
and the p-values of the Kolmogorov-Smirnov test.
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4.1 Abstract

Terrestrial ecosystems are essential for food and water security, and carbon dioxide (CO2) uptake.
Ecosystem function is dependent on the availability of soil moisture, yet it is unclear how
climate change will alter soil moisture limitation on vegetation. Here we use an ecosystem index
that distinguishes energy and water limitation in Earth System Model simulations to show a
widespread regime shift from energy to water limitation between 1980-2100. This shift is found
both in space and time. While this is mainly related to a reduction in energy-limited regions
associated with increasing surface net radiation, the largest shift towards water limitation is
found in regions where net radiation increases are accompanied by soil moisture decreases. We
therefore demonstrate a widespread regime shift in ecosystem function that is stronger than
implied by individual trends in net radiation, soil moisture and terrestrial evaporation, with
important implications for future ecosystem services.
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4.2 Main Text

The provision of food and water, the uptake of carbon dioxide (CO2), and evaporative cooling
depend on a sufficient moisture supply to the land surface (Mekonnen and Hoekstra, 2016; Piao
et al., 2010). Climate change affects moisture supply, and in combination with rising atmospheric
CO2, affects ecosystem function (Ciais et al., 2005; Gampe et al., 2021; Green et al., 2019; Jiao
et al., 2021; Reichstein et al., 2013; Rockström et al., 2009). The water and carbon cycles are
coupled via vegetation, which assimilates CO2 during photosynthesis, while simultaneously
transpiring through the stomata. From an energy balance perspective, transpiration (T) cools the
surface air at the expense of energy which would otherwise contribute to surface heating (Budyko,
1974; Denissen et al., 2021; Seneviratne et al., 2010). Through this water-vegetation-climate
feedback, changes in soil moisture influence evaporative cooling and consequently surface
warming (Seneviratne et al., 2010). However, regional changes in water availability do not affect
ecosystem function uniformly. Ecosystem responses depend on whether the region is energy- or
water-limited (Ciais et al., 2005; Denissen et al., 2020; Flach et al., 2018; Kroll* et al., 2022). In
addition, rising atmospheric CO2 is expected to influence physiological processes that create
more favorable conditions for photosynthesis and consequently plant growth (Donohue et al.,
2013; Ukkola et al., 2016; Zhu et al., 2016) with contrasting impacts on plant transpiration and
therefore energy and water cycles (Donohue et al., 2013; Ukkola et al., 2016).

Fundamental to the future of the terrestrial carbon sink is the extent to which terrestrial ecosys-
tems are becoming more water limited (Berg and McColl, 2021; Berg and Sheffield, 2019a; Feng
and Fu, 2013; Green et al., 2019; Greve et al., 2014; Huang et al., 2016; Jiao et al., 2021; Jung
et al., 2010; Zhou et al., 2021). Agreement in trends of individual water-related variables such as
soil moisture and terrestrial evaporation (usually referred to as evapotranspiration (Miralles et al.,
2020)) is lacking. This extends to traditional drought or aridity indices, irrespective whether
observations (Albergel et al., 2013a; Dorigo et al., 2012; Huang et al., 2016; Mueller et al.,
2013), reanalyses (Mueller et al., 2013), climate model simulations (Mueller et al., 2013; Zhang
et al., 2016), or future climate projections (Berg and Sheffield, 2018; Böhnisch et al., 2021; Feng
and Zhang, 2015; Huang et al., 2016; Lian et al., 2021; Sherwood and Fu, 2014) are used. The
analysis of the ecosystem response to a changing climate is complicated by various processes
involved at different temporal scales and operating in different directions. For instance, while
the observed widespread vegetation greening in recent decades does not support the notion
of increased water limitation (Berg and Sheffield, 2019a; Donohue et al., 2013; Ukkola et al.,
2016; Zhu et al., 2016), it is mostly driven by CO2 fertilization which can at least temporarily
overshadow ongoing changes in water availability. Further, by controlling water availability
in water-limited regions, large-scale modes of variability (e.g., the El Niño Southern Oscilla-
tion) exert strong controls over interannual variability in ecosystem water limitation (Miralles
et al., 2014a). Reconciling the degree to which ecosystem water limitation can affect vegetation
through drought stress (Brodribb et al., 2020) , tree mortality (McDowell and Allen, 2015)
and lead to changes in surface properties including albedo (Lobell and Asner, 2002; Tollerud
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et al., 2020) and roughness (Anderegg et al., 2013) is crucial. Existing uncertainty is partly
related to differing approaches (Berg and Sheffield, 2018). Some studies analyzed water supply
through soil moisture (Berg and McColl, 2021; Green et al., 2019; Jiao et al., 2021; Jung et al.,
2010; Zhou et al., 2021), others focused on water demand by considering precipitation alongside
(potential) evaporation (Berg and Sheffield, 2019a; Feng and Fu, 2013; Huang et al., 2016).
These differing approaches can lead to different outcomes (Greve et al., 2019).

In contrast to the debate on water availability, increasing trends in energy availability are clear,
consistent and coincide with increasing temperatures (IPCC, 2021). This affects ecosystems in
multiple ways; The RuBisCO enzyme activity is crucial for photosynthesis and is sensitive to
increasing temperatures (Busch and Sage, 2017; Perdomo et al., 2017). Further, temperature
influences vapour pressure deficit (Novick et al., 2016; Sherwood and Fu, 2014; Yuan et al.,
2019); higher temperatures increase atmospheric evaporative demand, increasing ecosystem
water limitation, and potentially cause plants to close their stomata to prevent excessive water
loss (Cowan, 1977; Humphrey et al., 2021; Oren et al., 1999). This highlights the necessity
of considering energy and water variables together in a comprehensive characterization of
ecosystem water limitation (Green et al., 2019; Novick et al., 2016).

Here, we study ecosystem energy and water limitation together, to reconcile whether the sur-
face is drying or wetting from an ecosystem function perspective. We employ the Ecosystem
Limitation Index (ELI) (Denissen et al., 2020), Methods) that reflects the fundamental concepts
of water- and energy limitation. These typically focus on the sensitivity of ecosystem function
(represented through terrestrial evaporation anomalies) to water (soil moisture anomalies) and
energy availability (surface net radiation anomalies) in energy-limited conditions. Here, these
sensitivities are assessed statistically with correlations between anomalies of terrestrial evap-
oration with soil moisture (cor(SM’,ET’), typically positive in water-limited conditions) and
net surface radiation (cor(surface net radiation (Rn)’,ET’), typically positive in energy-limited
conditions (Denissen et al., 2020; Teuling et al., 2009a)), respectively. The ELI is then computed
as cor(SM’,ET’) - cor(Rn’,ET’), where the prime denotes monthly anomalies of soil moisture
(SM), terrestrial evaporation (ET) and surface net radiation (Rn), respectively. Positive ELI
values denote water-limited conditions and negative values indicate energy-limited conditions.
This way, the ELI moves beyond traditional drought indices based on meteorological information
by evaluating the functional ecosystem response to hydro-meteorological conditions. Further,
the ELI permits studying deviations from the seasonal cycle by using monthly anomalies. Within
the ELI, the terrestrial evaporation reflects the total ecosystem response, as it comprises bare
soil evaporation, canopy interception and plant transpiration. Soil moisture is used as it reflects
water available for terrestrial evaporation. Net surface radiation functions as the main proxy for
energy availability, as it drives the surface energy balance, therefore directly controlling ET. As
such, it has empirically been found as the main control of ET (Maes et al., 2019). In addition to
surface net radiation, we use air temperature as a simple and widely-available proxy for energy
availability. The ELI is calculated using historical and ’business as usual’ SSP5-8.5 simulations
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from the Coupled Model Intercomparison Project (CMIP6 (Eyring et al., 2016)) from 11 models
(Methods) for the period 1980-2100.

4.2.1 Continuation of present ecosystem limitation trends

We find a steady increase in ELI throughout 1980 - 2100, mainly reflecting a weakening
correlation between terrestrial evaporation anomalies and surface net radiation anomalies, but
also a strengthening correlation with soil moisture anomalies (Figure 4.1a). A comparable ELI
trend can be found when computed with anomalies of air temperature as an alternative energy
variable (Supplementary Figure 4.A1), due to high correlation of surface net radiation and air
temperature at the monthly time scale. A similar agreement between ELI trends from different
can be found when exchanging time on the x-axis for air temperature warming since 1980
(Supplementary Figure 4.A2), pointing to similar climate sensitivities between these models.
This comparison also indicates that beyond a global warming of 1.5°C, all considered models
agree on the increasing sign of the ELI change. The relatively small change in water limitation
corroborates the projections of hardly any dryland expansion as previously reported(Berg and
McColl, 2021). However, despite a larger contribution of energy limitation, the strong ELI trend
is a result of contributions of both components.

We find that the role of net surface radiation versus soil moisture is more pronounced when
comparing their respective global trends (Figure 4.1b,c). Widespread increasing net radiation
is associated with declining energy limitation, thereby increasing the ELI. Simultaneously, this
involves increasing atmospheric water demand associated with higher temperatures (Supple-
mentary Figure 4.A3c), as reflected in variables such as relative humidity or vapour pressure
deficit (Supplementary Figure 4.A3a,b (Lian et al., 2021; Novick et al., 2016; Yuan et al.,
2019)). This further increases ecosystem water limitation and consequently temperature through
the water-vegetation-climate feedback. In contrast to multi-model net radiation trends, global
changes in soil moisture are not significant (Figure 4.1c), with substantial uncertainty across
models. This uncertainty is related to inconclusive trends in precipitation ( (Orth et al., 2016) and
Supplementary Figure 4.A3d) and land surface dryness, which varies between regions and soil
depths (Berg et al., 2016), and differences between root-zone depths amongst the models.

Until approximately 2030 the CMIP6 models agree on a global terrestrial evaporation increase
(Figure 4.1d). From 2030 onwards, multi-model uncertainty increases substantially, as some
models show continued increases in terrestrial evaporation, while others suggest decreases. The
increase in uncertainty of terrestrial evaporation trends over time is also apparent for precipitation
(Supplementary Figure 4.A3d), which leads to a net zero change in water storage in the root-zone
with increasing uncertainties (Figure 4.1c). The sign and magnitude of global multi-model
terrestrial evaporation trends compare well with a sample of state-of-the-art datasets, suggesting
that CMIP6 models represent terrestrial evaporation reasonably and that terrestrial evaporation
from these models can be used to evaluate changes in land-atmosphere interactions.
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Figure 4.1: Past and projected global trends in climate and ecosystem variables. Global evolution
of a) Ecosystem Limitation Index (ELI) and its individual components cor(SM’,ET’) and cor(Rn’,ET’)
and related variables b) Surface net radiation (divided by the latent heat of vaporization and assuming a
density of 1000 kg/m3), c) Soil moisture, d) Terrestrial evaporation, e) Leaf Area Index and f) Aridity
Index. Dashed colored lines depict the globally and decadally averaged time series of all respective
variables per individual model. Solid lines with dots depict multi-model mean time series inferred from
the model-specific time series (the median is used in panel f), as aridity index can approach infinity in
regions with low precipitation), where the shaded regions cover +/- 1 multi-model standard deviation.
The y-axis denotes the change since. Global averages are calculated over land grid cells that have
complete time series for all models and variables and are weighted according to the surface area per
grid cell. Dot-dashed lines in panel d) denote reference terrestrial evaporation data sets (Jung et al.,
2010; Martens et al., 2017; Mueller et al., 2013; Zhang et al., 2016). This figure is created with the
ggplot2 package (Wickham et al., 2022).



4.2 Main Text 69

The consistent increase of leaf area index (LAI) during the study period, with increasing multi-
model spread, reflects the impact of CO2 fertilization (Donohue et al., 2013; Ukkola et al., 2016;
Zhu et al., 2016), (Winkler et al., 2021). Enhanced LAI in turn contributes to increased plant
transpiration (Supplementary Figure 4.A4c (Wei et al., 2017)). Combined with the levelling off
of increases in the multi-model mean of the sum of bare soil evaporation and canopy interception
around 2030 (Supplementary Figure 4.A4b), the fraction of transpiration with regards to terrestrial
evaporation increases in the future too (T/ET; Supplementary Figure 4.A4a,c,d). This suggests
an increasing influence of vegetation for the land water and energy balances. Additionally, when
only considering plant transpiration anomalies for ELI (ELIT) instead of terrestrial evaporation
anomalies (default ELI), we find a similar but slightly weaker signal (Supplementary Figure
4.A5). While energy limitation in ELI and ELIT are very similar, water limitation is stronger
in ELI, which corroborates earlier findings (Berg and Sheffield, 2019b). This is not solely due
to plant transpiration relying mostly on root-zone soil moisture with large uncertainties (Figure
4.1c), but also to plant transpiration being parametrized differently by models and it being likely
more uncertain than terrestrial evaporation due to a lack of observations (Wei et al., 2017). The
higher values for cor(SM’,ET’) can be related to, and confounded by, canopy interception, as
precipitation evaporates from leaves instead of infiltrating into the root zone (Berg and Sheffield,
2019b). In this context, we use partial correlations cor(SM’,ET’| Rn’) and cor(Rn’,ET’| SM’)
for computing an alternative ELI to exclude confounding effects of energy on water limitation
and vice versa, and show that the ELI trend remains similar, but slightly weaker (Supplementary
Figure 4.A6). This is similar to earlier observation-based findings in Europe (Denissen et al.,
2020). Pure water limitation is more sensitive to confounding energy effects than vice versa,
due to the globally consistent net radiation trend (Figure 4.1b) as opposed to the more uncertain
global soil moisture trend (Figure 4.1c).

Finally, the long-term land surface dryness as expressed by the multi-model mean Aridity
Index (unit-normalized net radiation divided by precipitation) tends to increase (Figure 4.1f),
but less consistently than the ELI. This i) suggests that the ELI trend cannot be explained
without considering those ecosystem feedbacks that amplify water limitation and ii) shows the
importance of comprehensively analyzing regime shifts from an ecosystem perspective. Further,
we compare the trends across all considered variables that are normalized by the interannual
standard deviation of the respective detrended time series (Supplementary Figure 4.A7). Here,
the normalized ELI trend is most notable, even more than its individual components. This
underlines the importance of the combined effect of changes in energy and water availability
alongside respective ecosystem feedbacks. We note that the uncertainties shown for the trends
of net radiation, terrestrial evaporation and particularly soil moisture do not directly affect the
estimation of the ELI. The ELI is computed from detrended and de-seasonalized data (see
Methods) where this pre-processing is done separately for each model and grid cell such that
different trends and seasonal cycles are removed. The remaining uncertainty between the
(interplay) of the anomalies induces the observed inter-model spread in the estimation of the ELI
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as shown in Figure 4.1a; however, this only concerns the magnitude of the increasing ELI trend,
not the trend itself which is apparent from all individual models.

4.2.2 Expansion of ecosystem water limitation

Figure 4.2: Global distribution and trends of ecosystem water limitation. a) Trend in the multi-
model mean of ELI (dots indicate significance: p < 0.05 based on Kendall’s tau statistic). The dashed
boxes indicate regions of interest to aid easier cross-comparisons with other maps. The top inset displays
the fraction of the warm land area that is drying or wettening according to ELI trends (p < 0.05 is hued
darker). The bottom inset displays area-weighted average ELI trends for regions with different tree
fractions based on six CMIP6 models (Methods). b) Multi-model mean ELI between 1980-2100. c)
Same as b), but derived with Ta instead of surface net radiation anomalies. d) Timing of regime shift
from energy to water limitation as indicated by ELI values becoming positive. The inset shows the
global time series of the water-limited fraction of the warm land area (Methods). This figure is created
with the ggplot2 package and the country borders using the maptools package (Bivand et al., 2022;
Wickham et al., 2022).
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As shown in Figure 4.2a, we find increasing ELI trends across approximately 73% of the warm
land area (all grid cells with a sufficient number of months with Ta > 10°C in at least 4 models,
see Methods). Positive ELI trends are more widespread than negative trends: p < 0.05 in 38%
of the warm land area for positive trends in contrast to 4% for negative trends. We defined
regions of interest (dashed boxes) around those areas with the strongest ELI trends: North
America (NAM), South America (SAM), Central Europe (CEU), Northern Eurasia (NEU) and
East Asia (EAS). As shown in the inset, ELI increases tend to be strongest over regions with
large tree coverage. The increasing drought stress, particularly in these regions in northern
latitudes, has substantial implications for the magnitude, and potentially sign, of CO2 exchange
(Gampe et al., 2021; Keenan et al., 2014). The ELI trends of the individual CMIP6 models
show similar spatial patterns (Supplementary Figure 4.A8) and agree well with the sign of the
multi-model mean ELI trend (Supplementary Figure 4.A9a), particularly in the regions of interest.
This agreement between individual CMIP6 models emerges despite the relatively high standard
deviation between trends of individual CMIP6 models in the regions of interest (Supplementary
Figure 4.A9b), illustrating that CMIP6 models generally agree on the sign of the ELI trend, but
less on the magnitude. Elaborating further on the individual contributions of water and energy
limitation on regional ecosystem regime shifts (Figure 4.1), we show that particularly in the
regions of interest, the ELI trend is driven by both an increasing water limitation and a decreasing
energy limitation (Supplementary Figure 4.A10).

Figure 4.2b shows that in the regions of interest, current conditions are either slightly energy
limited or transitional, hinting at an expansion of water-limited area from 1980 to 2100. We also
observe further shifts towards ecosystem water limitation in current water-limited regions, such
as parts of South America, North Africa, Australia and the west of North America. Interestingly,
not all tropical regions are consistently subjected to increasing ELI. For example, there is a
contrast between South America and tropical Africa because soil moisture is decreasing across
large parts of South America (Supplementary Figure 4.A10b), while for Central Africa the
CMIP5 ensemble estimates increasing soil moistures related to projected precipitation increases
(Collins et al., 2013). Spatial patterns of ELI (trends) computed with air temperature anomalies
are comparable (Figure 4.2c), with SAM and Central Africa being slightly less energy limited.
This indicates a higher sensitivity of tropical ecosystems to incoming radiation due to typically
dense cloud cover making radiation a limiting factor for terrestrial evaporation (Nemani et al.,
2003).

Next, we assess the timing of shifts of energy-limited to water-limited regions over the study
period (Figure 4.2c). We detect the time of regime shifts as the first decade after which the ELI
is of positive sign. We find that transitional regions are migrating in space throughout 1980 -
2100, most notably in the Northern Hemisphere (NAM and NEA). This causes the water-limited
fraction of the warm land area to expand from 82% to 88% (inset), representing approximately
an additional 6 million km2 in 2100 as compared to 1980. ELI increases occur continuously
over time and in similar ways across different regions of interest (Supplementary Figure 4.A12).
This foreshadows a further expansion of areas in water deficit, continuing an observed trend over
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1982 - 2015 (Jiao et al., 2021). Further, this indicates that global ELI trends (Figures 1a, 2a) are
not simply strengthening (weakening) pre-existing water-limited (energy-limited) conditions, but
lead to actual regime shifts. We find similar ELI trends when applying air temperature anomalies
as a proxy for energy availability (Supplementary Figure 4.A13a), but since especially the tropics
show a lower sensitivity to temperature anomalies, spatial shifts in the transitional regions are
particularly different in SAM (Supplementary Figure 4.A13b).

Figure 4.3: Lengthening of water-limited periods across the globe from 1980 to 2100. The central
panel displays trends of the number of water-limited months-of-year expressed as Theil-Sen slope across
decades (dots indicate significance: p < 0.05 based on Kendall’s tau statistic, Methods). Grey denotes
regions where no significant changes in the length of the water-limited season were detected. Side
panels show the multi-model mean month-of-year ELI evolution in the regions of interest (Methods).
White color denotes cold months (Ta < 10°C). This figure is created with the ggplot2 package and the
country borders using the maptools package (Bivand et al., 2022; Wickham et al., 2022).

In addition to assessing ELI trends in space, we show trends in water-limited months-of-year to
investigate ELI changes in time across seasons (Figure 4.3). In 45% of the warm land area and
particularly in our regions of interest, we detect an increase in the duration of the water-limited
season by up to 6 months, as opposed to a decrease in water-limited months in 4% of the warm
land area. This corresponds with observational analyses that found the period during the year
associated with water surplus is diminishing (Jiao et al., 2021). The side panels in Figure
4.3 show the changes over time in the duration of the water-limited season. For NAM, NEA,
CEU and EAS the warm season length (months-of-year with temperature > 10°C) increases
while in SAM it already covers all months. In all regions, the water-limited season expands to
earlier and/or later months which were previously energy-limited or cold. Further, the maximum
water-limitation intensifies.
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4.2.3 Attribution of trends towards ecosystem water limitation

Figure 4.4: Attribution of ELI trends to land-atmosphere variables. Colors indicate the variables
that best predict the decadal ELI dynamics calculated using multivariate linear regression with a set of
equally well-performing models, across which the most meaningful predictor is selected (Methods).
Stippling indicates grid cells where only one linear model performs well (adjusted R2 > 0.5) and
contains only a single explanatory variable. Grey color denotes grid cells without any model with
reliable performance (adjusted R2 < 0.5). Insets show the total fraction of warm land area controlled by
respective variables (top) and the fraction of ELI trends controlled by net radiation per region of interest
(bottom). This figure is created with the ggplot2 package and the country borders using the maptools
package (Bivand et al., 2022; Wickham et al., 2022).

Attributing ELI trends to land-atmosphere variables, in Figure 4.4 we identify relevant variables
in approximately 59% of the warm land area, where sufficient variance of the ELI time series (12
decadal values) can be explained by the optimal combination of hydrological, meteorological
and ecological predictors. Figure 4.4 does not necessarily rely on one multiple linear model only;
all possible combinations of predictors are attempted and we consider all similarly performing
multiple linear models (adjusted R2 > 0.5, see Methods). By doing so, we effectively exclude
predictors that carry similar information, which means that if multiple predictors are included in
the best model, they must carry different information about ELI variability. Net radiation is the
most important ELI predictor and is dominant in 20% of the warm land area. The other predictors
are less dominant (9-11% of the warm land). Clearly, net radiation is relatively most important
in terms of the area where it can predict ELI trends, but the full set of variables is required to



74 Ecosystem water limitation under climate change

explain the trends globally as evidenced by the few grid cells that only have one predictor, which
confirms earlier attribution analyses based on observations and model simulations (Humphrey
et al., 2021; Jiao et al., 2021). Similar results are obtained with different thresholds for model
performance (adjusted R2 > 0.3 or adjusted R2 > 0.7, Supplementary Figure 4.A14).

The scattered pattern in Figure 4.4 underlines the relevance of local climate, vegetation and/or
soil characteristics and by extension land use changes in inducing shifts in ELI. We therefore
extend the analysis in Figure 4.4, by expanding the number of considered predictors in the
multivariate linear regression by including the time series of crop and tree fraction as proxies for
land use change (Supplementary Figure 4.A15). The importances of changes in crop and tree
fraction does not exceed the other variables. Moreover, the global average adjusted R2 across the
considered well-performing multivariate linear models in all grid cells is similar (0.42 versus
0.43 in the default analysis) indicating that the additional predictors are not important at the
large spatial scales investigated here. Finally, the robustness of the multi-model mean attribution
analysis is further confirmed by net radiation emerging as the most important predictor for most
of the individual Earth system models (Supplementary Figure 4.A16).

Across the regions of interest, net radiation is the most relevant predictor in 27-60% of the
respective regional areas where well-performing linear models could be fitted. Net radiation is
the most important predictor across almost regions of interest, apart from CEU (Supplementary
Figure 4.A17). This is corroborating the widespread alleviating energy limitation pushing
ecosystems towards water limitation (Figure 4.1a, Supplementary Figure 4.A10b). The trends in
the individual variables confirm that within the regions of interest, both increasing net radiation
and decreasing soil moisture contribute to increasing ecosystem water limitation (Supplementary
Figure 4.A11). In addition, increasing CO2 and favorable energy- and water availability cause
plants to increase their LAI and consequently terrestrial evaporation rates. LAI is increasing
in regions close to transitioning between water- and energy-limited conditions and particularly
at the northern latitudes: Plants may compete for light when water is abundant (and light is
limiting) by allocating part of the increased carbon uptake to growing more leaves (Heijden et al.,
2013).

While our study presents clear evidence of globally increasing ELI and physical mechanisms
behind the changes, the accuracy of the analyses is intrinsically limited due to inherent uncertain-
ties in the models. For example, different representations of some processes that are relevant for
ecosystem function cause uncertainty in CMIP6 model simulations including the expected effects
of CO2 fertilization on LAI (Winkler et al., 2021; Zhu et al., 2016), water use efficiency (Dono-
hue et al., 2013; Ukkola et al., 2016) and the implementation of dynamic vegetation (Methods).
Some models have also been shown to be over-sensitive to CO2 fertilization (Kolby Smith et al.,
2016). Other processes, such as the development of deeper roots in response to increased water
(or nutrient) demands (Fan et al., 2017; Smith-Martin et al., 2020), are typically not represented.
Further, models have difficulty capturing evaporative regime changes (Best et al., 2015; Dirmeyer
et al., 2018; O et al., 2020a) which can arise from different representations within the complex
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coupled land-atmosphere system. This affects the multi-model spread, both with respect to the
ELI trends and means, that are largest in the regions of interest (Supplementary Figure 4.A7).
Finally, next to energy and water limitation, nutrient limitation on plant transpiration potentially
plays an increasingly important role in the future (Peñuelas et al., 2017). We do not consider
nutrient limitation; it is difficult to validate models given the sparsely available observational
data and uncertainties associated with human involvement in the phosphorus and nitrogen cycles
(Peñuelas et al., 2013). Despite these shortcomings, the multi-model mean terrestrial evaporation
closely resembles state-of-the-art data sets. We suggest that these uncertainties may influence
the magnitude but not the sign of ELI trends (Supplementary Figure 4.A9). Finally, we have
established the ability of the ELI to reflect spatiotemporal variability in water-limited conditions
by using a conceptual soil moisture model, within which the concept of water limitation is imple-
mented through a soil moisture stress function. Using model output, we successfully validate
the ELI against the number of days that soil moisture is drier than the critical soil moisture,
effectively reflecting water-limited conditions, in a number of grid cells spanning from energy-
to water-limited conditions (Supplementary Material and Supplementary Figure 4.A20).

Our study reveals a widespread regime shift from ecosystem energy to water limitation which can
be attributed to a large extent to global warming. The strongest regional ELI trends are attributed
to a combination of reduced energy limitation and exacerbated water limitation. Moreover, we
find that net radiation is the most important predictor for the trend towards ecosystem water
limitation, but not exclusively so, as global patterns can only be explained using a wider range of
variables, including soil moisture, terrestrial evaporation, LAI and Aridity Index.

The ongoing debate on the importance of energy versus water limitation for terrestrial evaporation
and ecosystem productivity (Green et al., 2019; Humphrey et al., 2021; Humphrey et al., 2018;
Jung et al., 2010; Jung et al., 2017) can therefore be resolved by simultaneously considering
energy and water limitation trends for ecosystem function. While globally soil moisture is
important for making ecosystems water or energy-limited (Budyko, 1974; Denissen et al., 2020;
Seneviratne et al., 2010), net radiation trends prove more consistent and dominate trends in
ecosystem function.

Our analysis demonstrates a globally increasing ecosystem water limitation over 73% of the warm
land area. This has implications for food and water scarcity, land degradation, disruption of CO2

sequestration by terrestrial ecosystems, reduction in biodiversity and the duration, intensity and
frequency of extreme events. By simultaneously considering both energy and water limitation,
a fuller explanation of regional changes in ecosystem function, and a clearer view of future
changes in these systems, can be obtained.
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4.3 Methods

4.3.1 Ecosystem Limitation Index

The Ecosystem Limitation Index (ELI) is based on the correlation-difference index introduced
by Denissen et al. (2020):

ELI = cor(SM′,ET ′)− cor(R′n,ET ′) (4.1)

For which Kendall’s rank correlation is used to avoid assuming linear relationships between
variables and where ’ denotes monthly anomalies of soil moisture (SM), terrestrial evaporation
(ET) and surface net radiation (Rn), respectively, which are derived by removing long-term
trends and mean seasonal cycles (see ”Data pre-processing”). We use monthly time resolution to
mitigate the influence of synoptic weather variability. The ELI combines information on water
(cor(SM’,ET’)) and energy availability cor(Rn’,ET’) for a considerate estimate of ecosystem
function. The choices of the variables representing energy (surface net radiation) and water
availability (soil moisture) and ecosystem function (terrestrial evaporation) are motivated in the
introduction.

The purpose of ELI is to distinguish water and energy-limited regimes (Supplementary table
1). With the soil moisture content below the wilting point (wilting point (SMwilt)), no water
can be extracted from the soil for evaporation, neither for plant transpiration nor bare soil
evaporation. The associated extremely low variability in terrestrial evaporation leads to near-zero
cor(SM’,ET’), cor(Rn’,ET’) and ELI.

In water-limited regions, typically ELI > 0, cor(SM’,ET’) > 0 and cor(Rn’,ET’) is either close
to zero or negative. In these regions, the soil moisture is typically between the wilting point and
the critical soil moisture content (critical soil moisture (SMcrit)), which is defined as the soil
moisture content above which plants can sustain their maximum evaporative fraction9-11. So
when SMwilt < SM < SMcrit, positive soil moisture anomalies tend to increase the terrestrial
evaporation, while negative soil moisture anomalies achieve the contrary (cor(SM’,ET’) >

0). Further, a positive soil moisture anomaly arises from precipitation; Alongside, the related
cloudiness prevents radiation from reaching the land surface, which leads to a negative net
radiation anomaly (cor(Rn’,ET’) < 0).

In energy-limited conditions, typically ELI < 0, cor(Rn’,ET’) > 0 and cor(SM’,ET’) is either
close to zero or negative. When the soil moisture content exceeds the critical soil moisture,
the maximum evaporative fraction can be sustained and any soil moisture anomaly will not
affect terrestrial evaporation directly (cor(SM’,ET’) ≈ 0). Next to water, ample energy should
be available in the form of adequate surface net radiation. Therefore, any positive (negative)
radiation anomalies will increase (decrease) terrestrial evaporation cor(Rn’,ET’) > 0.
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Table 1 explains that, according to average soil moisture conditions, soil moisture anomalies
play an obvious role for terrestrial evaporation. But in energy limitation, surface net radiation
anomalies dictate terrestrial evaporation. Therefore it is important to consider energy availability
cor(Rn’,ET’) alongside water availability cor(SM’,ET’) when assessing ecosystem function.
Note that the ELI is a correlative index, which cannot prove causality.

Table 4.1: Conceptual typical behavior of ELI (cor(SM’,ET’) - cor(Rn’,ET’)) and its individual
components cor(SM’,ET’) and cor(Rn’,ET’) across soil moisture regimes.

SM < SMwilt SMwilt < SM < SMcrit SM > SMcrit

Regime dry water limitation energy limitation
cor(SM’,ET’) ≈ 0 > 0 < 0 or ≈ 0
cor(Rn’,ET’) ≈ 0 < 0 or ≈ 0 > 0
ELI ≈ 0 > 0 < 0

The different combinations of individual correlations in Supplementary table 2 reveal character-
istic local temporal dynamics that could lead to either general energy limitation (ELI < 0) or
water limitation (ELI > 0). For example, water limitation is concluded when ELI > 0, which
follows when cor(SM’,ET’) > cor(Rn’,ET’) is satisfied. The opposite is true for energy-limited
conditions: when ELI < 0, cor(SM’,ET’) < cor(Rn’,ET’). Supplementary table 2, which summa-
rizes the most common combinations of the individual correlations to conclude water-limited
(ELI > 0), or energy-limited conditions (ELI < 0), shows that the most common combination
across all models and decades (see ”Data pre-processing”) is when both individual correlations
are of opposing sign (84% of the water-limited warm land area and 58% for energy limitation),
indicating that almost if not all months in that respective decade are consistently water or energy
limited. Positive correlations of the same sign indicate that that decade is characterized by both
intermittent energy and water limitation. Slightly negative individual correlations might co-occur,
but are usually insignificant and therefore excluded.

Table 4.2: Overview of signs of individual correlations of the ELI typically associated with water
and energy-limited conditions, respectively. All values denote the median area fraction of water-
limited or energy-limited warm land area that satisfies the combinations; within brackets the interquartile
range.

water limitation (ELI >0) energy limitation (ELI <0)
cor(SM’,ET’) > 0 & cor(Rn’,ET’) < 0: 84% (7) cor(SM’,ET’) < 0 & cor(Rn’,ET’) > 0: 58% (10)
cor(SM’,ET’) > 0 & cor(Rn’,ET’) > 0: 15% (5) cor(SM’,ET’) > 0 & cor(Rn’,ET’) > 0: 40% (10)

4.3.2 Coupled Model Intercomparison Project Phase 6 (CMIP6) Data

We use publicly available simulations from 11 models included in the Coupled Model Inter-
comparison Project (CMIP6; (Eyring et al., 2016)), of which the most important aspects are
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summarized in Table 3. For the historical period, we use the model simulations from 1980 to
2015. From the future scenario (2015 - 2100), we use simulations from the ’business as usual’
SSP5-8.5 scenario from ScenarioMIP (O’Neill et al., 2016), which combines the 2100 forcing
level of 8.5 Wm-2 of the CMIP5 Representative Concentration Pathways simulations (RCP8.5)
with newly defined Shared Socioeconomic Pathways simulations for fossil-fueled development
(SSP5). We do so assuming that this worst-case scenario will give insight into the potential
implications on ecosystem function. All data is downloaded at the monthly time scale and
aggregated to a common 2x2 degree grid cell spatial resolution.

Table 4.3: An overview of the CMIP6 models used in this study. For all models, variables tem-
perature (tas), root-zone soil moisture (mrso), terrestrial evaporation (hfls), Leaf Area Index (lai),
precipitation (pr) and in- and outcoming short- and longwave radiation (rlds,rsds,rlus,rsus) have been
downloaded; here, all variables are abbreviated according to CMIP6 standardized names. *models
that additionally provide variables evaporation from the canopy (evspsblveg) and near-surface relative
humidity (hurs). **models that additionally provide variables crop fraction (cropFrac) and tree fraction
(treeFrac) . ***CAMS-CSM1-0 does not contain output for the year 2100, which is copied from 2099,
and TaiESM1 does not contain data from December 2100, which is copied from November 2099.
Dynamic vegetation reflects whether or not plant functional traits (PFT) can vary in time, responding to
competition for resources. However, the resources considered in this context vary between models.

Institution Model Member Version Dynamic Citation
National oceanic and GFDL-CM4 r1i1p1f1 v20180701 yes (Guo et al., 2018a; Guo et al., 2018b; Held et al., 2019)
Atmospheric Administration
(NOAA) Geophysical Fluid
Dynamics Laboratory (GFDL)*
Centre National de Recherches CNRM-ESM2-1 r1i1p1f2 v20191021 no (Seferian, 2018; Séférian et al., 2019; Voldoire, 2019)
Meteorologiques (CNRM)*/**
Beijing Climate Center (BCC) BCC-CSM2-MR r1i1p1f1 v20190314 no (Wu et al., 2018; Wu et al., 2019; Xin et al., 2019)
EC-Earth-Consortium */** EC-Earth3-Veg R2i1p1f1 v20200226 yes (Consortium (EC-Earth), 2019; Consortium (EC-Earth), 2020; Döscher et al., 2021)
Met Office Hadley UKESM1-0-LL R2i1p1f2 v20190507 yes (Good et al., 2019; Sellar et al., 2019; Tang et al., 2019)
Centre (MOHD)*
Institute for Numerical INM-CM4-8 r1i1p1f1 v20190603 no (Volodin et al., 2018; Volodin et al., 2019a; Volodin et al., 2019b)
Mathematics (INM)
Chinese Acadamy of Meteo- CAMS-CSM1-0 R2i1p1f1 v20190924 yes (Rong, 2019a; Rong, 2019b; Rong et al., 2019)
rological Sciences (CAMS)***
National Center for Atmos- CESM2 r4i1p1f1 v20200528 yes (Danabasoglu et al., 2020; Danabasoglu, 2019a; Danabasoglu, 2019b)
pheric Research (NCAR)
Commonwealth Scientific ACCESS-ESM1-5 r1i1p1f1 v20191115 yes (Ziehn et al., 2020; Ziehn et al., 2019a; Ziehn et al., 2019b)
and Industrial Research
Organisation (CSIRO)**
Fondazione Centro Euro- CMCC-CM2-SR5 r1i1p1f1 v20200622 yes (Cherchi et al., 2019; Lovato and Peano, 2020a; Lovato and Peano, 2020b)
Mediterraneo sui
Cambiamenti (CMCC)*/**
Research Center for TaiESM1 r1i1p1f1 v20200901 no (Lee and Liang, 2019; Lee and Liang, 2020; Lee et al., 2020)
Environmental
Changes (AS-RCEC)***

4.3.3 Data pre-processing

After acquiring the data, a series of steps is taken to compute the ELI from the raw time series of
the respective variables, which we have illustrated for two typically water- and energy-limited
grid cells, respectively (Supplementary Figure 4.A18 and 4.A19). Per individual CMIP6 model,
the entire 120-year period is divided into 12 decades (top row). Detrending is done per decade
by removing linear regression fits (left panel middle row), to minimize biases in the anomaly
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estimation that relate to assuming trend linearity over the entire 120-year period. Alongside, the
seasonal cycle is calculated per decade as the month-of-year average of the respective variable
(middle panel middle row). The anomalies result from subtracting the seasonal cycle from
the detrended time series (right panel middle row). From the resulting time series we exclude
all months colder than 10°C to remove periods with presumably inactive or sparse vegetation
and frozen soils (dashed lines right panel middle row), at the same time ensuring that there is
sufficient variability in terrestrial evaporation for computing the correlations that constitute the
ELI. Thereafter, we compute the ELI for each decade and model. Thereby, we ignore grid cells
with less than 30 data points. Whereas we use model data in this analysis to study potential
long-term shifts in ecosystem water limitation, we highlight that this methodology can also be
used in near-real time to monitor climate change in observational data with a trailing period of a
decade. In addition, trends could be obtained by applying a moving window of a decade.

The warm land area as referred to in the manuscript then constitutes all grid cells that have full
ELI time series from 1980 - 2100 for at least 4 models. The decadal month-of-year ELI time
series (Figure 4.3) are only calculated when in the respective decade and month-of-year all 10
data points are available (temperature is warmer than 10°C).

The saturated vapour pressure was calculated with temperature and relative humidity as:

V PSAT =
610.7∗10(7.5Ta)/(237.3+Ta))

1000
(4.2)

where Ta is air temperature in °C. Then, the vapor pressure deficit (VPD) is:

V PD =V Psat(1−
RH
100

) (4.3)

where RH is the relative humidity.

The sum of bare soil evaporation and canopy interception was calculated by subtracting plant
transpiration from terrestrial evaporation (ET - T).

4.3.4 Computing Theil-Sen slopes and slope significance

The trends shown in Figures 4.2 and 4.3 and Supplementary Figures 4.A8, 4.A10, 4.A11 and
4.A13 are based on Theil-Sen slopes (Sen, 1968; Theil, 1992). This approach is insensitive
to statistical outliers, as the median slope from a range of possible slopes is selected as the
best fit. The significance of these slopes is determined based on Kendall’s tau statistic from
Mann-Kendall tests.
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4.3.5 Multi-model inference using the Akaike Information Criteria

We assess the skill of a range of predictors (Table 4) to predict decadal ELI time series by using
multivariate linear regression in combination with the dredge function in the MuMin package
in R (Barton, 2018; Burnham and Anderson, 2004), thereby adopting a similar methodology to
Fernández-Martı́nez et al. (2020). This function tries all possible combinations of predictors
and ranks them based on the Akaike Information Criterion (AIC), allowing the selection of a
range of similarly well-performing multivariate linear models with respect to model performance
(likelihood) and complexity (number of parameters). From this, we select all models whose
difference in AIC with the best ranked model is smaller than 4, which results in 1 to a maximum
of 15 similarly performing multivariate linear models per grid cell. Only multivariate linear
models with sufficient predictive power (adjusted R2 > 0.5) are considered in the attribution
analysis. In the case that there is only 1 model with one explanatory variable, this is assumed the
most important predictor in that respective grid cell. Given just one multivariate linear model
with multiple predictors, the most important variable is determined according to the variance
explained per variable according to the ’lmg’ metric in the ’relaimpo’ R package (Groemping,
2007). When there are multiple multivariate linear models with multiple predictors, the most
important predictor is picked according to the average variance explained across all multiple
linear models, weighted by the Akaike weights assigned to all models.

Table 4.4: Indicates which predictors have been applied for which figures. From which models the
predictors are available can be found in Table 3. *A denotes a Supplementary figure.

Predictors Used for Figure*
Surface net radiation, soil moisture, 4.4, 4.A14–4.A16
terrestrial evaporation, Leaf Area Index,
Aridity Index
Crop & tree fraction 4.A15
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4.A Appendix

4.A.1 Figures

This appendix represents the supplementary materials of the presented publication. All figures
are created with the ggplot2 package and, if applicable, the country borders using the maptools
package (Bivand et al., 2022; Wickham et al., 2022).

Figure 4.A1: a) Past and projected global trends in ELI based on air temperature anomalies and
b) cor(Ta’,ET’). Dashed colored lines depict the globally and decadally average time series of all
respective variables per individual model. Solid lines with dots depict multi-model mean time series
inferred from the model-specific time series, where the shaded regions cover +/- 1 multi-model standard
deviation. The y-axis denotes the change since 1980 in respective units. Global averages are calculated
over land grid cells that have complete time series for all models and variables and are weighted
according to the surface area per grid cell.
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Figure 4.A2: : Past and projected global trends in ELI for model-specific air temperature warm-
ing levels. Dashed colored lines depict the globally and decadally average time series of ELI per
individual model.
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Figure 4.A3: Past and projected global climate trends. Global trends of a) relative humidity, b)
vapour pressure deficit, c) air temperature and d) precipitation from 1980 - 2100 for 7 models only
(Methods). Solid lines with dots depict the multi-model mean time series of the respective variables
inferred from model-specific globally and decadally averaged time series, where the shaded regions
cover +/- 1 multi-model standard deviation. The y-axis denotes the change since 1980 in respective
units. Global averages are calculated over land grid cells that have complete time series for all models
and variables and are weighted according to the surface area per grid cell.
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Figure 4.A4: Past and projected global trends of evaporative components. Global trends of a)
terrestrial evaporation, b) plant transpiration (Methods), c) ET - T, effectively the sum of bare soil
evaporation and canopy interception, d) fraction plant transpired water (plant transpiration over terrestrial
evaporation) from 1980 - 2100 for 7 models only (Methods). Solid lines with dots depict the multi-
model mean time series of the respective variables inferred from model-specific globally and decadally
averaged time series, where the shaded regions cover +/- 1 multi-model standard deviation. The y-axis
denotes the change since 1980 in respective units. Global averages are calculated over land grid cells
that have complete time series for all models and variables and are weighted according to the surface
area per grid cell.
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Figure 4.A5: Global trends of Ecosystem Water Limitation Index and its individual components
with terrestrial evaporation and transpiration for 7 models only (Methods). Individual compo-
nents consist of the correlation between anomalies of either surface net radiation (Rn) or soil moisture
(SM) with either terrestrial evaporation (solid lines) or transpiration (dashed lines). Global averages
are calculated over land grid cells that have complete time series for all models and variables and
are weighted according to the surface area per grid cell. Solid and dashed lines with dots depict the
multi-model mean time series of the variables displayed in the legend inferred from model-specific
globally and decadally averaged time series, where the shaded regions cover +/- 1 multi-model standard
deviation. All y-axes denote changes since 1980.
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Figure 4.A6: Confounding effects of energy on water control and vice versa on the Ecosystem
Water Limitation Index and its individual components. Solid and dotted lines with dots depict the
multi-model mean time series of the variables displayed in the legend inferred from model-specific
globally and decadally averaged time series, where the shaded regions cover +/- 1 multi-model standard
deviation. Global averages are calculated over land grid cells that have complete time series for all
models and variables and are weighted according to the surface area per grid cell. Solid lines with dots
are the ELI from Figure 4.1a) (black) and components (red, blue), where the dotted lines with dots are
the ELI based on partial correlations. All y-axes denote changes since 1980.

Figure 4.A7: Past and projected global climate and vegetation trends normalized by natural
variability (standard deviation of respective detrended decadal time series per variable; solid
dotted lines). Solid lines with dots denote ELI and its individual components, the other line types
denote other variables displayed in the legend. All lines with dots depict the multi-model mean time
series of the variables displayed in the legend inferred from model-specific globally and decadally
averaged time series. The y-axis denotes the change since 1980 in standard deviations (sd). Global
averages are calculated over land grid cells that have complete time series for all models and variables
and are weighted according to the surface area per grid cell.
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Figure 4.A8: Ecosystem Water Limitation Index trends calculated per individual model. The
trend in the multi-model mean time series of ELI (dots indicate significance: p < 0.05) is based on
Kendall’s tau statistic. The dashed boxes indicate regions of interest. The inset displays the fraction of
the warm land area that is drying or wettening according to ELI trends.
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Figure 4.A9: Comparison between trends of individual CMIP6 models from 1980 - 2100 (Sup-
plementary Figure 4.A5) a) The percentage of models (from models that actually have a value in
the respective grid cell) for which their respective ELI trends agree with the sign of the multi-model
mean (Figure 4.2a). b) The standard deviation (σELI) between individual slopes of CMIP6 models
(Supplementary Figure 4.A4).
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Figure 4.A10: Mapping of the trends of individual components of ELI, cor(SM’,ET’) (a) and
cor(Rn’,ET’) (b) from 1980 to 2100. The trends are based on Kendall’s tau statistic (dots indicate
significance: p < 0.05). The dashed boxes indicate regions of interest. Inset plots display the fraction
of warm land area with a decrease or increase in energy or water control (p < 0.05 is hued darker).
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Figure 4.A11: Trends based on multi-model mean time series of land-atmosphere variables from
1980 to 2100. The trends are based on Kendall’s tau statistic (dots indicate significance: p < 0.05).
The dashed boxes indicate regions of interest. Inset plots display the fraction of warm land area with
negative or positive trends of all respective variables (p < 0.05 is hued darker).

Figure 4.A12: Trends in water-limited area fraction across the globe and regions of interest.
Colored lines depict the globally and decadally average time series of water-limited fraction of the
warm land area, averaged over all individual models.
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Figure 4.A13: Global distribution and trends of ecosystem water limitation derived with air
temperature (Ta) instead of surface net radiation (Rn) anomalies. a) Trend in the multi-model
mean of ELI (dots indicate significance: p < 0.05 based on Kendall’s tau statistic). The dashed boxes
indicate regions of interest, which allow easier cross-comparisons with other maps. The top inset
displays the fraction of the warm land area that is drying or wettening according to ELI trends (p < 0.05
is hued darker). The bottom inset displays area-weighted average ELI trends for regions with different
tree fractions based on 6 CMIP6 models (Methods). b) Timing of regime shift from energy to water
limitation as indicated by ELI values becoming positive. The inset shows the global time series of the
water-limited fraction of the warm land area (Methods).
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Figure 4.A14: Attribution of ELI trends to land-atmosphere variables with different thresholds
for explanatory power of the multiple linear models. Adjusted R2 > 0.7 a) and adjusted R2 > 0.3 b).
Colors indicate the variables that best predict the decadal ELI dynamics calculated using multivariate
linear regression with a set of equally well-performing models, across which the most meaningful
predictor is selected (Methods). Stippling indicates grid cells where only one linear model performs
well (exceeding the respective adjusted R2 threshold) and contains only a single explanatory variable.
Grey color denotes grid cells without any model with reliable performance (not exceeding the respective
adjusted R2 threshold). Inset plots indicate the total fraction of warm land area controlled by respective
variables (top) and the fraction of ELI trends controlled by temperature per region of interest.
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Figure 4.A15: Attribution of ELI trends to land-atmosphere variables including proxies for land
use change, crop and tree fraction (for 6 CMIP6 models only; Methods). Dots indicate that there
is only one linear model that is significant (adjusted R2 > 0.5) and contains only one single explanatory
variable, and grey warm land area lacking any significant multivariate linear model (adjusted R2 < 0.5).
Inset plots indicate the total fraction of warm land area governed by respective variables.
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Figure 4.A16: The importance of land-atmosphere variables per CMIP6 model. Area fraction of
grid cells with adjusted R2 > 0.5 that is governed by a respective variable. Box-and-whisker plots
display the median (horizontal bar), 25th and 75th percentiles (hinges) and largest and smallest values
that do not exceed 1.5 * of the inter-quartile range.
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Figure 4.A17: The importance of land-atmosphere variables per region of interest. Area fraction
of grid cells within regions of interest with adjusted R2 > 0.5 that is governed by a respective variable.
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Figure 4.A18: Illustration of procedure of computing the ELI in a water-limited example grid
cell (29°N and 101°W). The colored lines in the top panel show, from top to bottom, the raw time
series for the 120-year study period for soil moisture (SM), terrestrial evaporation (ET) and surface net
radiation. Vertical dashed lines separate the time series into decades, within which we determined the
linear trends (black solid lines) we use for detrending. The grey shading indicates the decade that we
use to illustrate the computation of the monthly anomalies. The left panel in the middle row shows the
same as the top panel, but just for 1980-1990. The middle panel in the middle row shows the detrended
time series (colored lines) imposed on the seasonal cycle (black), revealing the monthly anomalies
(shaded region between colored and black lines). The colored lines in the right panel in the middle
row show the anomalies, where dashed lines indicate monthly temperatures colder than 10 °C. Only
the data in months with temperature exceeding 10°C (solid lines) are used to compute the correlations
that constitute the ELI. The bottom panel shows, from top to bottom, cor(SM’,ET’), cor(Rn’,ET’) and
the ELI. The arrows in the figure indicate step-wise computation of the ELI. All results are from the
INM-CM4-8 model (Supplementary table 3).
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Figure 4.A19: Similar to Supplementary Figure 4.A17 but for an energy-limited example grid
cell (49°N and 75°W).
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4.A.2 Validation of ELI with conceptual model

Our motivation for the application of ELI to indicate water- versus energy-limited conditions
was explained in the introduction. Here, we establish the ability of ELI to reflect water-limited
conditions by using a conceptual soil moisture model, which is forced by the potential ET
(ETp) and precipitation, and computes actual ET, leakage from the root-zone (Qleakage) and soil
moisture (SM). The actual ET is computed as a function of ETp and SM, as follows:

ET = ETp ∗βSM (4.4)

where the soil moisture stress function (βSM) can be defined with three linear relationships:

βSM =

{ 0 i f SM < SMwilt
SM−SMwilt

SMcrit−SMwilt i f SMwilt < SM < SMcrit

1 i f SMcrit < SM < SMsat

(4.5)

where SMwilt is the wilting point, SMcrit the critical soil moisture and soil moisture content at
saturation (SMwilt) the soil moisture content at saturation. Soil parameters were adopted from the
HTESSEL model (SMwilt = 0.171, SMcrit = 0.323 and SMwilt = 0.472). ETp is computed using a
simplification of the Priestley-Taylor method (as previously done by Lofgren et al. Lofgren et al.
(2011), Milly and Dunne Milly and Dunne (2016) and Maes et al. Maes et al. (2019)):

ETp = αMD ∗Rn (4.6)

Here, ETp is assumed to be a fraction (αMD = 0.8) of the surface net radiation. The Qleakage is
based on Clapp and Hornberger Clapp and Hornberger (1978) and Buitink et al. Buitink et al.
(2021):

Qleakage = LSMT −LSMsat

[
SMt

SMsat

−2b−2
+

(2b+2)ks∆t
SMsatL

]− 1
2b+2

(4.7)

where L denotes the rooting depth (1000mm), SMt the soil moisture content at time t, ks is the
hydraulic conductivity (50mm/d), ∆t is the length of time step and b an empirical constant (taken
as 5.39). Using Equations 1-4, the root-zone soil moisture is prognosed by solving the water
balance, as follows:

SMt+1 = SMt +
1
L
(P−ET −Qleakage) (4.8)

where P is total precipitation. The concept of water limitation is straightforward through the
implementation of the soil moisture stress function in Eq. (2) in the model, which renders this
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model suitable to validate the ability of ELI to reflect water limited conditions. In climate models,
water limitation is more complex as it is related to several interacting processes and resulting
complex soil moisture stress functions are not readily available as model output, warranting the
application of a more descriptive index, such as the ELI. Here, we define an index that computes
the fraction of days where water-limited conditions prevail (when SM < SMcrit, although it
should be noted that this is just one definition of water limitation used here for illustration
only).

We solve this set of equations using surface net radiation and total precipitation from ERA5 at the
daily time scale at a 0.5 x 0.5 degree grid cell resolution from 1981-2016 (Hersbach et al., 2019;
Hersbach et al., 2020). The fraction of days where SM < SMcrit is computed for every 5-year
time interval. In concert, the ELI is computed as described in the Methods section. We modify
this methodology by computing the ELI i) with the net radiation from ERA5 that is used as model
input and the soil moisture and terrestrial evaporation directly computed by the conceptual model
(Equations 4.4 and 4.8) and ii) for every 5-year time interval to obtain a reasonable time sample,
excluding data where there are fewer than 15 data points with temperatures above 10°C.

Figure 4.A20: Validation of the ability of ELI to reflect water-limited conditions. Time series of a)
fraction of days where SM < SMcrit and b) ELI and c) fraction of days where SM < SMcrit versus ELI
with data from the conceptual model (points). The solid black line in c) denotes a linear regression with
a 95% confidence interval. Colors denote different grid cells, selected across the globe and different
climate regimes. Conditions above and right of the dashed lines are assumed water-limited.

Time series of the fraction of days where SM < SMcrit and the ELI are shown in Supplementary
Figure 4.A20a and b for a number of grid cells distributed across the globe. Note that grid
cells have been selected to reflect a wide range of average climate conditions; from energy- to
water-limited conditions. The order of the time series in both panels are similar, suggesting
comparable spatial variability between the two indices. Further, all grid cells show ample
temporal variability; Whereas the magnitude of the temporal variability is not as straightforward
to compare between a) and b), the sign of the changes in time of both indices match well. Also,
the high correlation between ELI and the conceptual water balance estimates of water limitation
shown in Supplementary Figure 4.A20c confirms the similarity between these two indices and
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validates, at least for this selection of grid cells, that the ELI is able to reflect water-limited
conditions.



Chapter 5

Hydrometeorological drivers of vegetation
productivity extremes

This chapter is based on:

J. Kroll*, J. M. C. Denissen*, M. Migliavacca, W. Li, A. Hildebrandt, and R. Orth
(2022). “Spatially varying relevance of hydrometeorological hazards for vegetation productivity
extremes”. Biogeosciences 19.2, 477–489, [*These authors contributed equally to this
work]
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Abstract

Vegetation plays a vital role in the Earth system by sequestering carbon, producing food and
oxygen, and providing evaporative cooling. Vegetation productivity extremes have multi-faceted
implications, for example on crop yields or the atmospheric carbon dioxide (CO2) concentration.
Here, we focus on productivity extremes as possible impacts of coinciding, potentially extreme
hydrometeorological anomalies. Using monthly global satellite-based sun-induced chlorophyll
fluorescence (SIF) data as a proxy for vegetation productivity from 2007-2015, we show that
vegetation productivity extremes are related to hydrometeorological hazards as characterized
through ERA5-Land reanalysis data in approximately 50% of our global study area. For
the latter, we are considering sufficiently vegetated and cloud-free regions, and we refer to
hydrometeorological hazards as water- or energy-related extremes inducing productivity extremes.
The relevance of the different hazard types varies in space; temperature-related hazards dominate
at higher latitudes with cold spells contributing to productivity minima and heat waves supporting
productivity maxima, while water-related hazards are relevant in the (sub-)tropics with droughts
being associated with productivity minima and wet spells with the maxima. Alongside single
hazards compound events such as joint droughts and heat waves or joint wet and cold spells also
play a role, particularly in dry and hot regions. Further, we detect regions where energy control
transitions to water control between maxima and minima of vegetation productivity. Therefore,
these areas represent hotspots of land-atmosphere coupling where vegetation efficiently translates
soil moisture dynamics into surface fluxes such that the land affects near-surface weather.
Overall, our results contribute to pinpointing how potential future changes in temperature and
precipitation could propagate to shifting vegetation productivity extremes and related ecosystem
services.
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5.1 Introduction

Vegetation is a crucial component of the Earth system because it provides ecosystem services
like food and oxygen production, carbon dioxide (CO2) sequestration and evaporative cooling.
Therefore, the effects of changes in vegetation productivity are diverse; it influences crop yields
(Orth et al., 2020), cloud formation (Freedman et al., 2001; Hong et al., 1995), precipitation
(Pielke et al., 2007), atmospheric pollution (Otu-Larbi et al., 2020) and heat wave intensity (Li
et al., 2021a).

Photosynthesis requires a sufficient water (soil moisture) and energy (incoming short-wave
radiation) supply. In regions that are water-limited (energy-limited), plants usually benefit
from water (energy) surpluses and suffer from respective deficits. Many studies confirm that,
depending on the evaporative regime, vegetation productivity follows the temporal evolution of
influential variables such as soil moisture or temperature which summarize the water or energy
dynamics (Beer et al., 2010; Denissen et al., 2020; Li et al., 2021b; Madani et al., 2017; Orth,
2021; Piao et al., 2020; Seddon et al., 2016).

Correspondingly, hydrometeorological hazards, such as temperature and precipitation extremes,
have implications on vegetation productivity. Many studies investigated the influence of such
hazards on vegetation productivity, highlighting their impact on the biosphere (Ciais et al., 2005;
Flach et al., 2018; Qiu et al., 2020; Wang et al., 2019; Zhang et al., 2019; Zhao and Running,
2010; Zscheischler et al., 2014a; Zscheischler et al., 2014b; Zscheischler et al., 2013). However,
usually these studies focus on particular types of hydrometeorological hazards such as droughts
or heat waves, or they use vegetation productivity data from models or other proxies rather than
the recent satellite-derived sun-induced chlorophyll fluorescence (SIF) data (Frankenberg et al.,
2011; Joiner et al., 2013).

In this study, we re-visit the relationship between vegetation productivity and hydrometeorologi-
cal hazards by analysing the implications of both single and compound hazards on vegetation
productivity extremes, as has been highlighted before (Sun et al., 2015; Zhou et al., 2019). How-
ever, to our knowledge for the first time, we do so comprehensively by approximating variable
importance during vegetation productivity extremes inferred from SIF data on a global scale.
This analysis is done from an impact perspective; we first detect impacts (productivity extremes)
before relating them to coinciding, potentially extreme hydrometeorological anomalies (Smith,
2011). Finally, we investigate where the full vegetation productivity range between minima and
maxima involves transitions from energy to water controls. In regions where this occurs, the
feedback of the land surface on the climate can be stronger, as the water-controlled vegetation
translates soil moisture dynamics through its energy and water fluxes to affect the boundary layer
and consequently also near-surface weather. Hence, our vegetation-based analysis can indicate
hotspots of land-atmosphere coupling (Guo and Dirmeyer, 2013; Koster et al., 2004).
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In Sect. 5.3.1 we investigate the co-occurrence of vegetation productivity extremes and hydrom-
eteorological hazards. Further, we show the timing of such vegetation productivity extremes in
Sect. 5.3.2. Additionally, we determine the main drivers of vegetation productivity extremes
and assess the influence of underlying evaporative regimes in Sect. 5.3.3. We summarize our
results across climate regimes in Sect. 5.3.4 and investigate regions with vegetation productivity
controls switching between water and energy variables in Sect. 5.3.5.

5.2 Data and methods

In order to characterize vegetation behaviour, we use SIF and enhanced vegetation index (EVI)
data in this study. SIF is used as a proxy for vegetation productivity. We employ satellite-observed
SIF data retrieved from the Global Ozone Monitoring Experiment (GOME-2; (Köhler et al.,
2015)). In the derivation of this SIF product, multiple corrections for varying solar zenith angles,
differences in overpass times and cloud fraction have been applied to yield reliable SIF estimates.
In addition to vegetation productivity, we also study changes related to vegetation greenness
by using satellite-observed EVI data from the Moderate Resolution Imaging Spectroradiometer
(MODIS; (Didan, 2015)).

As for the hydrometeorological variables, representing energy and water availability, we consider
2m temperature, short-wave incoming radiation, vapour pressure deficit, soil moisture from four
layers (1: 0–7 cm, 2: 7–28 cm, 3: 28–100 cm and 4: 100–289 cm) and total precipitation, all from
the ERA5-Land reanalysis data (Muñoz Sabater, 2019). In addition to this and to validate the
robustness of our results, we use an alternative soil moisture product, SoMo.ml, which provides
data for three layers (1: 0–10 cm, 2: 10–30 cm and 3: 30–50 cm) and which is derived through a
machine learning approach that is trained with in situ soil moisture measurements from across
the globe (O and Orth, 2021). All datasets used in this study are summarized in Table 1.

Table 5.1: Data Sets Used in This Study. GLEAM: Global Land Evaporation Amsterdam Model.
GFZ: German Research Centre for Geosciences. VCF: vegetation continuous fields.

Variables Dataset Version Application Reference
Sun-induced chlorophyll GOME-2 GFZ Vegetation productivity proxy (Köhler et al., 2015)
fluorescence
Enhanced vegetation index MOD13C2 V006 Vegetation greenness proxy (Didan, 2015)
Soil moisture layer 1–4, ERA5- Hydrometeorological variables indicating (Muñoz Sabater, 2019)
short-wave incoming radiation, Land energy and water availability
temperature, vapour pressure,
deficit
Precipitation, net solar ERA5 Computation of aridity to evaluate (Hersbach et al., 2020)
radiation, net thermal radiation resulting patterns
Soil moisture layer 1–3 SoMo.ml 1 Alternative soil moisture dataset (O and Orth, 2021)
Fraction of vegetation VCF5KYR 1 Evaluation of resulting patterns with (Hansen and Song, 2018)
cover respect to vegetation characteristics
Evapotranspiration GLEAM 3.3b Vegetation productivity proxy (Martens et al., 2017)
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The workflow applied to these datasets is illustrated in Figure 5.1. At first, all data are pre-
processed for comparability by (i) aggregating it to the monthly temporal and the 0.5° x 0.5°
spatial resolution and by (ii) focusing on the time period 2007–2015. Next, we compute anomalies
by removing linear trends and the mean seasonal cycle from the data for both the vegetation
and hydrometeorological variables. In each grid cell, we disregard months with an absolute SIF
value below 0.5 mW m-2 sr-1 nm-1 to focus on times with sufficiently active vegetation (as in Li
et al. (2021b)). Additionally, grid cells with a fractional vegetation cover < 5% are excluded
from the analysis. Finally, we assure the necessary data availability by considering only grid
cells with > 15 monthly anomalies across the study period remaining after the filtering. Out of
the identified suitable months in each grid cell, we determine the five strongest negative and five
strongest positive monthly SIF anomalies. The sum of all grid cells for which five SIF maxima
and minima can be detected is referred to as the total study area.

Figure 5.1: Schematic representation of our methodological approach. *Filtering for sufficiently
active vegetation is explained in Sect. 5.2.

After this filtering, we follow two approaches in our analysis. In the first approach, we check for
hydrometeorological hazards coinciding with the determined extreme vegetation productivity
events. Thereby, we consider air temperature and soil moisture layer 2, as these variables were
previously found to be globally most relevant for vegetation productivity (Li et al., 2021b). At
first, we average the monthly temperature and soil moisture anomalies across the 5 months of
maximum and minimum SIF anomalies. Then, a series of steps is taken to test if the coinciding
hydrometeorological anomalies during SIF extremes are actually hazardous. (i) We randomly
sample 5 months with sufficiently active vegetation and average the soil moisture and temperature
anomalies, respectively, across them. (ii) We repeat this 100 times to obtain a distribution from
which we determine the 10th and 90th percentile. (iii) A hydrometeorological hazard is detected if
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the actual, averaged temperature and/or soil moisture anomalies associated with the SIF extremes
are below the 10th (cold spell or drought) or above the 90th percentile (heat wave or wet spell) of
the distribution of randomly sampled averaged anomalies. Note that with this approach we can
detect both single and compound hydrometeorological hazards.

Complementing this analysis, in the second approach we analyse the temporal co-variation
between SIF extremes and hydrometeorological anomalies. For this purpose, we correlate the
five SIF extreme anomalies with anomalies of all considered hydrometeorological variables in
each grid cell. We include respective SIF and hydrometeorological data from the surrounding
grid cells to yield a larger data sample consisting of 5 x (8 + 1) = 45 data pairs. We disregard
negative and insignificant (p value > 0.05) correlations, as we assume these do not indicate
actual physical controls but rather represent the influence of noise or confounding effects such
as low precipitation during times of high radiation. This also serves to deal with uncertainty in
the SIF dataset. When systematic patterns emerge from either of the approaches with adequate
significance, they are unlikely confounded by underlying SIF patterns: as we focus solely on
either SIF maxima or minima, statistically significant relations only emerge when concurrent hy-
drometeorological anomalies of an appropriate magnitude exist. Finally, the hydrometeorological
variable that yields the highest correlation coefficient with the extreme SIF anomalies is regarded
as the main SIF-controlling variable during vegetation productivity maxima or minima.

5.3 Results and discussion

5.3.1 Hydrometeorological hazards and vegetation productivity extremes

Figure 5.2 shows which hydrometeorological hazards are associated with SIF extremes as
inferred with approach 1 described in Sect. 5.2 and in Figure 5.1 In approximately 50%
of the global study area, we find that vegetation productivity extremes are associated with
hydrometeorological hazards. This is in line with previous research (Zscheischler et al., 2014a).
For both maximum and minimum vegetation productivity, we find spatially coherent patterns of
associated hydrometeorological hazards. In the Northern Hemisphere, SIF maxima (minima) at
high latitudes relate to heat waves (cold spells), where in mid latitudes they occur jointly with wet
spells (droughts). This suggests that hydrometeorological hazards associated with SIF extremes
vary systematically according to energy and water control of the local vegetation. Thereby, the
boundary between both regimes and the respectively determined relevant hydrometeorological
hazards is surprisingly sharp, for example in North America and in eastern Europe and Russia
(Flach et al., 2018).

Further, single hydrometeorological hazards (either an extreme temperature or soil moisture
anomaly) are relevant in more areas than compound hazards (combination of extreme temperature
and extreme soil moisture anomaly). Compound hazards seem to be particularly important in
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Figure 5.2: Hydrometeorological hazards co-occurring with (a) SIF maxima and (b) SIF minima.
Colours denote the type of hydrometeorological hazard. Bar plots indicate the area affected by each
hazard type relative to the total study area.

the sub-tropics on both hemispheres. Differences also exist between maximum and minimum
vegetation productivity extremes, the latter being slightly more associated with compound
hazards.

Overall, the most frequent hazards during vegetation productivity minima are droughts and cold
spells. Previous studies have reported the relevance of drought in this context (Zscheischler et al.,
2014a; Zscheischler et al., 2014b; Zscheischler et al., 2013) even though for different vegetation
productivity proxies. On the contrary, the importance of cold spells is not analysed, probably
because vegetation productivity in boreal regions is comparably smaller than in e.g. tropical
regions (Li and Xiao, 2020).

The results in Figure 5.2 are based on averages of the 5 months with strongest SIF anomalies in
each grid cell. Supplementary Figure 5.A1 in the Supplement shows co-occurring hydrometeoro-
logical hazards separately for each of the five SIF maxima and minima. The patterns are similar
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to those in Figure 5.2; we consistently find temperature-related hazards to be relevant in energy-
controlled regions and water-related hazards in water-controlled regions across all five individual
SIF extremes. Weaker SIF extremes tend to be less associated with hydrometeorological hazards.
This could be because the signal-to-noise ratio is decreased for weaker extremes, or other factors
such as disturbances (fire or insect outbreaks) play a more prominent role for these productivity
extremes. As mentioned, soil moisture layer 2 is used here to detect droughts and wet spells, but
similar results are obtained with soil moisture layers 1 and 3, respectively (not shown).

5.3.2 Timing of strongest SIF extremes

To further understand the spatially varying relevance of hydrometeorological hazards, we show
the months of the year associated with the strongest SIF extreme in each grid cell in Figure 5.3.
The spatial pattern is quite different from that in Figure 5.2; for example the sharp transitions
between regions with energy- and water-related hydrometeorological hazards are not present
in Figure 5.3. Hence, this transition is apparently not related to SIF extremes occurring in
different seasons and might be rather related to different evaporative regimes which will be further
investigated in Sect. 5.3.3. The spatial variability in Figure 5.3 is lower at high latitudes compared
with (sub-)tropical regions. At high latitudes the growing season is short and constrained by
energy availability. In the tropics, we find an increased smaller-scale variability, presumably
due to the weak seasonal cycle of hydrometeorological variables. Most SIF extremes in North
America and Eurasia occur in the early growing season, presumably when either vegetation starts
to grow or growing is limited due to energy or water control. While here we show the months
of the year associated with the strongest SIF extreme, in Supplementary Figure 5.A2 we show
similar patterns in the timing of the second to fifth strongest SIF extremes, indicating that each
of the remaining SIF extremes occurs in similar months of the year.

5.3.3 Hydrometeorological drivers of vegetation productivity extremes

After showing the co-occurrence of hydrometeorological hazards with SIF extremes, we ap-
ply a correlation analysis (approach 2 in Sect. 5.2) to characterize the co-variability between
extreme SIF anomalies and concurrent hydrometeorological anomalies. Figure 5.4 shows the
hydrometeorological variable that correlates strongest with SIF during months of extreme veg-
etation productivity, indicating respective controls. At high latitudes and in the tropics SIF
extremes are generally energy-controlled, while in the mid latitudes and sub-tropics they are
water-controlled. Overall, we find similar spatial patterns as in Figure 5.2, demonstrating consis-
tent results across the co-occurrence and co-variability of SIF extremes and hydrometeorological
hazards. This coherence suggests that hydrometeorological hazards play a key role in inducing
SIF extremes.

The bar plot insets in Figure 5.3 indicate that SIF maxima are equally controlled by energy and
water variables, while SIF minima are overall more water-controlled. Even though weaker, this
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Figure 5.3: Global distribution of the month of the year in which the strongest SIF (a) maximum
and (b) minimum anomaly occur. Data gaps (grey) are caused by filtering for active vegetation and
excluding insignificant and negative correlations.

shift is also present in Figure 5.2. This difference can be explained with transitional regions,
which have energy-controlled SIF maxima but water-controlled SIF minima. This is illustrated
for example by the northward shift of the transition between energy and water control in Russia
when comparing the results for maximum and minimum SIF. These transitional regions will be
further investigated in Sect. 5.3.5.

We repeated this analysis with SoMo.ml soil moisture and found similar spatial patterns of
energy- and water-controlled regions (Supplementary Figure 5.A3), underlining that our results
are robust with respect to the choice of the soil moisture product. Furthermore, we repeat our
co-variability analysis for EVI instead of SIF in Supplementary Figure 5.A4, which allows us to
contrast to some extent the behaviour of vegetation physiology (SIF) and vegetation structure
(EVI). Similar to the spatial patterns of energy- and water-controlled vegetation in Figure 5.4,
EVI shows predominant energy control at high latitudes, while the mid latitudes are largely
water-controlled. Further, as in Figure 5.4 for SIF, EVI minima are more associated with water
variables than EVI maxima.
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Figure 5.4: Global distribution of hydrometeorological controls of sun-induced chlorophyll fluo-
rescence (SIF) (a) maxima and (b) minima in respective colours, as assessed from the strongest
correlations. The inset bar plot indicates the area controlled by each variable relative to the total study
area. Dark-grey colour denotes the study area in which correlations are negative/insignificant.

However, the overall extent of water-controlled areas is clearly larger in the case of EVI compared
with the SIF results. This could (i) be partly related to the fact that EVI, being less dynamic
than SIF because it is more related to vegetation greenness and structure, tends to vary at
timescales more in line with that of soil moisture (Turner et al., 2020), which can support
stronger correlations, or (ii) be due to confounding effects of the changing soil/vegetation colour
between dry and wet states on the EVI signal.

5.3.4 Hydrometeorological controls across climate regimes

In addition to analysing the spatial variation of the main drivers of vegetation productivity
extremes, we attempt to further understand the large-scale patterns along temperature and aridity
gradients. To this end, we bin grid cells by their climate characteristics as denoted by long-term
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mean temperature and aridity (the ratio between unit-adjusted net radiation and precipitation).
The results in Figure 5.5 illustrate which hydrometeorological variable most often has the highest
correlation with SIF anomalies in each climate regime.

Figure 5.5: Hydrometeorological controls of vegetation productivity extremes summarized
across climate regimes: (a, b) sun-induced chlorophyll fluorescence (SIF) extremes and (c, d) enhanced
vegetation index (EVI) extremes. (e, f) Hydrometeorological hazards co-occurring with the sun-induced
chlorophyll fluorescence (SIF) extremes. Box colour denotes the main controlling hydrometeorological
variable; the second most important variable is indicated in the smaller squares’ colour, while its size
represents the ratio between the highest and second highest number of grid cells.

Figure 5.5a and b show that vegetation productivity extremes in humid regions (aridity < 1;
(Budyko, 1974)) are mostly energy-controlled, with temperature controlling in cold regions
(long-term average temperature < 10 °C) and radiation controlling in warm regions (long-
term temperature > 10 °C). In contrast, productivity extremes in arid regions (aridity > 2;
(Budyko, 1974)) are mainly water-controlled, with soil moisture layers 2 and 3 as the most



112 Hydrometeorological drivers of vegetation productivity extremes

important water controls. The main difference between maximum and minimum sun-induced
chlorophyll fluorescence (SIF) results is detectable in semi-arid regions (1 < aridity < 2).
While for maximum sun-induced chlorophyll fluorescence (SIF) those climate regimes show
mostly energy control, sun-induced chlorophyll fluorescence (SIF) minima in these regimes are
largely water-controlled. From this, we deduce that semi-arid regions represent the transitional
regime, as the main drivers change from energy to water variables from sun-induced chlorophyll
fluorescence (SIF) maximum to sun-induced chlorophyll fluorescence (SIF) minimum.

Supplementary Figure 5.A5 indicates that hydrometeorological anomalies do elicit not only
immediate but also lagged vegetation responses. A clear difference between water- and energy-
controlled conditions is already visible when correlating hydrometeorological anomalies of the
preceding month with the respective sun-induced chlorophyll fluorescence (SIF) extreme. Energy
and water surpluses and deficits establish over time, which is most clearly EVIdenced in arid
regions, where precipitation and shallow soil moisture of the preceding month is found to be
the most important variable. With time, deeper soil moisture becomes more important (Figure
5.5a,b), as in the case of sun-induced chlorophyll fluorescence (SIF) maxima, where precipitation
needs time to infiltrate the soil, and in the case of sun-induced chlorophyll fluorescence (SIF)
minima, where the soil dries most rapidly from the top down.

The results for EVI show similar patterns despite an increased overall water control as seen
earlier in the global maps (Supplementary Figure 5.A4). For example, where in humid regions
sun-induced chlorophyll fluorescence (SIF) extremes are mainly energy-controlled, EVI extremes
are more often water-controlled, which is also reflected in the global maps in Supplementary
Figure 5.A4.

Supplementary Figure 5.A6 illustrates similar controlling hydrometeorological variables for
sun-induced chlorophyll fluorescence (SIF) and terrestrial evaporation (ET) extremes. This
suggests that carbon and water cycles are sensitive to similar hazards, which in turn enhances
their impact on the land climate system via both carbon and water pathways. This further
demonstrates the usefulness of sun-induced chlorophyll fluorescence (SIF) observations for
reflecting plant transpiration (Jonard et al., 2020). Further, Supplementary Figure 5.A6 shows
that GLEAM ET extremes relate much more strongly to surface soil moisture than GOME-2
sun-induced chlorophyll fluorescence (SIF) extremes. This could be due to the part of ET that
partitions into an unproductive part, bare-soil evaporation, which evaporates water from the
surface layer directly, and a productive part, which is connected to carbon uptake and therefore
sun-induced chlorophyll fluorescence (SIF). Surface soil moisture affects the unproductive part
while overall enhancing the role of surface soil moisture for ET.

Figure 5.5e and f show the results of Figure 5.2 binned according to their long-term climate
characteristics. In humid regions, both sun-induced chlorophyll fluorescence (SIF) extremes
are co-occurring with temperature hazards. In contrast, in arid regions water-related hazards
co-occur with maximum and minimum sun-induced chlorophyll fluorescence (SIF). Thereby,
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Figure 5.5 underlines once more the similarity of the results obtained with approaches 1 (Figure
5.2) and 2 (Figure 5.4).

To additionally explore the influence of different vegetation types and their respective plant
physiological differences on the main controls of vegetation productivity, we bin the grid cell
results by the respective fraction of tree cover of the entire vegetation cover and by aridity
in Supplementary Figure 5.A7. We find that the radiation control of sun-induced chlorophyll
fluorescence (SIF) extremes in humid regions is mostly associated with forests and that the
water control in semi-arid regions largely occurs for shorter vegetation, with presumably more
shallow root systems, while productivity extremes in more forested semi-arid regions tend to be
energy-controlled. In very strong droughts, tall trees with deep rooting systems are particularly
prone to suffer hydraulic failure (Brum et al., 2019). However, in our analysis we consider
five events in a 15-year time period such that we likely do not exclusively capture very strong
droughts that might results in tree mortality. Generally, hardly any changes in the most important
variables can be seen with variations in tree cover, suggesting that on a global scale plant
physiological differences only have a limited effect on determining the most important control
for sun-induced chlorophyll fluorescence (SIF) extremes. As in Figure 5.5, similar patterns are
found for EVI extremes with an overall increased relevance of water variables particularly in
short vegetation-dominated regions.

5.3.5 Switching hydrometeorological controls between sun-induced chlorophyll fluores-
cence (SIF) maxima and minima

In a final step, we focus on shifts between energy and water control when moving from sun-
induced chlorophyll fluorescence (SIF) maxima to sun-induced chlorophyll fluorescence (SIF)
minima. The respective transitional regions represent hotspots of land-atmosphere coupling
such that (i) in these regions the land surface (soil moisture) affects near-surface weather at
least during productivity minima (therefore also influencing transpiration) and (ii) this effect
can be significant, as transpiration (variability) is relatively high compared with drier regions
where vegetation productivity would be water-limited across its entire range from minimum to
maximum. The results are depicted in Figure 5.6, which illustrates these emerging transitions
from water to energy control (yellow) and vice versa (blue, denoting land-atmosphere hotspots).
Grid cells that stay within water or energy control, even with a change between the water or
energy variables, respectively, are shown in black, indicating no transition. Figure 5.6a reveals
many regions with no transition. Transitions are found mostly in northern Eurasia and North
America. Globally, a change from energy control during maximum sun-induced chlorophyll
fluorescence (SIF) to water control during minimum sun-induced chlorophyll fluorescence (SIF)
occurs more often (7% of the study area) than the opposite transition (4%).

Figure 5.6b and c display the percentage of grid cells in each climate regime changing from
water to energy control and vice versa with grid cells binned with respect to long-term climate
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Figure 5.6: Changing hydrometeorological controls between vegetation productivity maxima
and minima. (a) Global distribution of changing controls: in panels (b) and (c) grid cells are binned by
their long-term climate characteristics. Panel (b) indicates the percentage of grid cells in each climate
regime switching from water to energy control; panel (c) denotes the percentage of grid cells changing
from an energy-controlled maxima to a water-controlled minima.

conditions, similar to Figure 5.5. The highest fraction of grid cells in each climate regime would
show no change, but as we focus on transitioning grid cells, only they are displayed. Transitions
from water to energy control between sun-induced chlorophyll fluorescence (SIF) maxima
and sun-induced chlorophyll fluorescence (SIF) minima happen most often in cold, humid
regions. This deviates from the prevailing energy control in these climate regimes and is probably
related to local-scale features and/or micro-meteorological conditions. Figure 5.6c indicates
that changes from energy control during maximum sun-induced chlorophyll fluorescence (SIF)
to water control during minimum sun-induced chlorophyll fluorescence (SIF) most frequently
occur in the semi-arid transitional regions. These are land-atmosphere coupling hotspots as
described above. The transition from energy to water limitation could be caused by energy-
controlled maxima in spring, when presumably soil water resources are available after being
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replenished during autumn and winter. With sufficient water supply, energy surpluses could
induce vegetation productivity maxima. During summer, soil moisture could be depleted for
example by the high vegetation demand and therefore take over the sun-induced chlorophyll
fluorescence (SIF) control of photosynthesis that is reflected into the sun-induced chlorophyll
fluorescence (SIF) dynamics.

5.3.6 Limitations

Our results are obtained at and valid for relatively large spatial (0.5°) and temporal (monthly)
scales. Previous studies have shown differences in the vegetation-climate coupling across
scales (Linscheid et al., 2020), suggesting it would be worthwhile to repeat our analysis for
different spatiotemporal scales in the future, possibly with new satellite data products. In this
context it should be noted, however, that while the relationship between sun-induced chlorophyll
fluorescence (SIF) and gross primary productivity (GPP) as actual vegetation productivity is
strong for large spatiotemporal scales (Frankenberg et al., 2011; Guanter et al., 2012; Joiner
et al., 2013), it can deteriorate towards smaller scales (He et al., 2020; Magney et al., 2020;
Maguire et al., 2020; Marrs et al., 2020; Wohlfahrt et al., 2018). The spatiotemporal range within
which there is an acceptable sun-induced chlorophyll fluorescence (SIF)-GPP relationship is not
entirely clear yet.

As a second source of uncertainty, sun-induced chlorophyll fluorescence (SIF) data with their
relatively large spatial footprint are more vulnerable to cloud contamination compared to finer-
scale satellite products (Joiner et al., 2013). Also, especially across South America the sun-
induced chlorophyll fluorescence (SIF) data quality is decreased to additional noise (Joiner
et al., 2013; Köhler et al., 2015). In our study, many grid cells in these regions and other
tropical, cloud-dominated regions exhibit insignificant or negative correlations between sun-
induced chlorophyll fluorescence (SIF) and hydrometeorological anomalies, which is why no
hydrometeorological controls can be determined there (Figure 5.4). Confirming the validity of
our results for the tropical grid cells where results can be obtained, we find mostly consistent
and physically meaningful results, e.g. radiation being a main driver of vegetation productivity,
as the cloud cover limits radiation (reported similarly for non-extreme conditions by Green et al.
(2020), and Li et al. (2021b).

Next to the sun-induced chlorophyll fluorescence (SIF) data, there is also noteworthy uncertainty
in the soil moisture data from ERA5. While data quality of surface soil moisture benefits from
(satellite) data assimilation, the soil moisture dynamics in deeper layers are more model-based,
which somewhat contradicts the observational character of our study. Therefore, we use soil
moisture data from SoMo.ml as an independent dataset, which is not based on physical modelling
and the related assumptions and parameterizations, as it is derived with machine learning applied
to in situ measurements from different depths. Overall, the similar results obtained with ERA5-
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Land and SoMo.ml soil moisture confirm the robustness of our results despite uncertainties in
the soil moisture data.

Finally, the use of correlation methods for inferring causal relations is potentially insufficient
and under debate (Krich et al., 2020). We want to emphasize that in our study when referring
to ”drivers” or ”controls” of vegetation productivity, we simply base this on correlation and
do not imply causality. Nevertheless, we try to filter out confounding effects by disregarding
negative and insignificant correlations. Additionally, testing our methodology (approach 2)
for non-anomalous vegetation productivity (Supplementary Figure 5.A8), which allows for
comparing results with those of Li et al. (2021b), reveals similar results, while they use a
different methodology based on random forests and Shapley Additive Explanations (SHAP)
values, which are more robust against confounding effects. Next to this, in our study we apply
two different methodologies in approaches 1 and 2 and find similar results, further underlining
the robustness of our conclusions.

5.4 Conclusion

In this observation-based study, we quantify that vegetation productivity extremes are related to
hydrometeorological hazards in about 50% of the global land area that is sufficiently vegetated
and cloud-free. The most relevant hazards for vegetation productivity extremes vary along
climate gradients. For vegetation productivity maxima the most relevant hydrometeorological
extremes are heat waves in northern latitudes above 50° N and wet spells in latitudes below 50°
N. For productivity minima, drought and cold spells are globally most detrimental to large-scale
photosynthesis and carbon uptake. The results of our impact-centric analysis are similar to and
complement more traditional climate-centric studies (Ciais et al., 2005; Flach et al., 2018; Qiu et
al., 2020). Compound extremes also play a role in 15%-20% of our study area; they are somewhat
more relevant for productivity minima than for the maxima, with joint drought-heat extremes
being most important. Semi-arid, grass-dominated ecosystems tend to transition between water
and energy control within the range of their productivity variability. This results in a sensitivity
to both water- and energy-related hazards. Thereby, we illustrate how global land-atmosphere
coupling hotspots (Koster et al., 2004), where the land surface affects near-surface weather, can
be verified using novel vegetation productivity data.

Overall, this study highlights the profound role of (compound) hydrometeorological hazards
for global vegetation productivity extremes. Understanding these complex, climate-dependent
relationships with present-day observational data is a starting point to more reliably foresee
respective changes in a changing future climate with e.g. fewer cold spells but probably more
droughts.
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5.A Appendix

This appendix represents the supplementary materials of the presented publication.

Figure 5.A1: Hydrometeorological hazards co-occurring with each of the five sun-induced
chlorophyll fluorescence (SIF) maxima and minima (1st is the strongest extreme, 5th the weakest
one). Temperature and soil moisture anomalies are considered as extreme if they are below/above the
10/90th percentile of 100 randomly sampled temperature and soil moisture anomalies.
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Figure 5.A2: Global distribution of the month-of-year in which each of the four remaining sun-
induced chlorophyll fluorescence (SIF) maxima and minima occurred (2nd is the second strongest
extreme, 5th the weakest one).
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Figure 5.A3: Global distribution of hydrometeorological controls (with soil moisture from
SoMo.ml) of sun-induced chlorophyll fluorescence (SIF) (a) maxima and (b) minima. The dis-
played variable correlates strongest with sun-induced chlorophyll fluorescence (SIF) in the extreme
months, considering only significant and positive correlations. The bar plot indicates the area controlled
by each variable relative to the total land area.
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Figure 5.A4: Global distribution of hydrometeorological controls (ERA5 land) of EVI (a) max-
ima and (b) minima. The displayed variable correlates strongest with EVI in the extreme months,
considering only significant and positive correlations. The bar plot indicates the area controlled by each
variable relative to the total study area.
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Figure 5.A5: Hydrometeorological controls (ERA5 land) of different climate regimes with a lag
time of 1 month. Grid cells are grouped by their long-term temperature and aridity (unit-adjusted net
radiation/precipitation). The hydrometeorological variables of the month preceding the sun-induced
chlorophyll fluorescence (SIF) extreme have been used in the computation of most important variable.
The variable which is important for most of the grid cells for vegetation productivity maxima (a) and
minima b), inferred using sun-induced chlorophyll fluorescence (SIF), in one climate regime is used to
color the box. The second most important variable colors the smaller squares. Their ratio is denoted in
the size of the squares.

Figure 5.A6: Hydrometeorological controls (ERA5 land) of different climate regimes on ET
from GLEAM. Grid cells are grouped by their long-term temperature and aridity (unit-adjusted
net radiation/precipitation). The variable which is important for most of the grid cells for vegetation
productivity maxima (a) and minima b), inferred using ET, in one climate regime is used to color the
box. The second most important variable colors the smaller squares. Their ratio is denoted in the size of
the squares.
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Figure 5.A7: Hydrometeorological controls (ERA5 land) of different vegetation regimes. Grid
cells are grouped by their fraction of tree cover and aridity (unit-adjusted net radiation/precipitation).
The variable which is important for most of the grid cells for vegetation productivity extremes (a) and
b) sun-induced chlorophyll fluorescence (SIF); c) and d) EVI) in one vegetation regime is used to color
the box. The second most important variable colors the smaller squares. Their ratio is denoted in the
size of the squares.
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Figure 5.A8: Global distribution of hydrometeorological controls of non-anomalous sun-induced
chlorophyll fluorescence (SIF). The displayed variable correlates strongest with sun-induced chloro-
phyll fluorescence (SIF) in 5 randomly chosen months (from 25-75% range of the sun-induced chloro-
phyll fluorescence (SIF) anomaly distribution), which have a similar variation as the 5 maximum
sun-induced chlorophyll fluorescence (SIF) months. Only significant and positive correlations are
considered. The bar plot indicates the area controlled by each variable relative to the total study area
(which is slightly different here compared with Figure 5.4 as non-extreme sun-induced chlorophyll
fluorescence (SIF) anomalies with similar variability might not be found in every grid cell).
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6.1 Abstract

Heat extremes have severe implications for human health, ecosystems and the initiation of
wildfires. Whereas they are mostly introduced by atmospheric circulation patterns, the intensity
of heat extremes is modulated by vegetation functioning associated with soil moisture availability.
Thereby, vegetation provides evaporative cooling through transpiration, which can be reduced
under water stress. While it has been shown that ecosystem water limitation is projected to
increase in the future (Denissen et al., 2022b), the respective repercussions on heat extremes are
unclear.

In this study we use projections from Earth system models to show that future changes in heat
extremes are amplified by increasing ecosystem water limitation in regions across the globe.
We represent ecosystem water limitation with the Ecosystem Limitation Index (ELI, (Denissen
et al., 2020)), and quantify temperature extremes through the differences between warm-season
mean and maximum temperatures. We identify hotspot regions in tropical South America and
across Canada and Central Europe where relatively strong trends towards increased ecosystem
water limitation translate into amplified heat extremes. This is governed by the magnitude of
the ELI trends and the present-day ELI which denotes the land-atmosphere coupling strength
determining the temperature sensitivity to evaporative cooling. Many regions where vegetation
functioning is predominantly energy-limited in present climate exhibit strong trends towards
increasingly occurring water limitation, inducing the strongest increases in heat extremes in these
areas. Therefore, considering the ecosystem’s water limitation is key for assessing the intensity
of future heat extremes and their corresponding impacts.



6.2 Main Text 127

6.2 Main Text

6.2.1 Introduction

Heat extremes affect ecosystems and society through their implications on human health, crop
yields and tree mortality, and the initiation of wildfires (Anderegg et al., 2013; Goulart et al.,
2021; McDowell and Allen, 2015; O et al., 2020b; Orth et al., 2022; Ruffault et al., 2020). In the
recent past, temperature extremes increased in intensity, duration and frequency; these changes
are related to climate change (Seneviratne et al., 2021) and they even accelerated in recent years
in some regions (Seneviratne et al., 2014). In the future, heat extremes are projected to intensify
further, alongside the ongoing global warming (Seneviratne et al., 2021).

Hot temperatures can be fueled by dynamic and thermodynamic processes (Harrington et al.,
2019; Trenberth et al., 2015). The relevance of atmospheric dynamics for recent heat waves has
been highlighted for the case of large-scale blocking patterns which support heat accumulation
across consecutive dry days (Cassou et al., 2005; Jézéquel et al., 2018) as well as the entrainment
of warm air aloft (Miralles et al., 2014b). Also, large-scale circulation patterns advecting
warm air, or air from regions with dry soils, have been suggested to contribute to heat waves
(Schumacher et al., 2019). Additionally, thermodynamic processes can amplify heat extremes;
the land surface determines the partitioning of incoming radiative energy into sensible heating
and latent heat (Seneviratne et al., 2010). Changes in this flux partitioning can be induced
through soil moisture drying as water-stressed vegetation tends to reduce transpiration; this
way, a larger fraction of the incoming energy is available for sensible heating which leads to
higher temperatures (Budyko, 1974; Denissen et al., 2021; Vogel et al., 2017). As a consequence,
circulation-induced rainfall deficits are translated by ecosystem water limitation to reduced
evaporative cooling and amplified local temperatures (Miralles et al., 2012; Quesada et al., 2012;
Teuling et al., 2010; Ukkola et al., 2018).

It has been shown that climate change may involve long-term trends in soil moisture and land-
atmosphere coupling in some regions (Berg and Sheffield, 2018; Berg et al., 2017; Denissen et al.,
2022b; Seneviratne et al., 2021; Sippel et al., 2017) and that these can contribute to amplified heat
extremes (Lorenz et al., 2016; Seneviratne et al., 2006; Vogel et al., 2017) especially in the case
of depletion of soil moisture preceding the warm season (Rasmijn et al., 2018; Stegehuis et al.,
2021). However, the representation of land-atmosphere coupling and ecosystem water limitation
in Earth system models is uncertain (Greve et al., 2019; Vogel et al., 2018). This is because the
vegetation’s response to soil moisture drying is difficult to capture due to heterogeneous soil
and vegetation characteristics and limited observational constraints for rooting depths and soil
moisture dynamics in respective soil layers. For these reasons, we revisit the response of heat
extremes to long-term changes in land-atmosphere coupling using the latest generation of Earth
System models from the Coupled Model Intercomparison Project Phase 6 (CMIP6, (Eyring et al.,
2016)).
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In this study, we jointly assess trends in ecosystem water limitation and heat extremes in fully
coupled CMIP6 simulations from five state-of-the-art Earth system models at the monthly time
scale and 2° x2° spatial resolution from 1980 - 2100 (Eyring et al., 2016). For this purpose,
we use novel indices to describe ecosystem water limitation and the magnitude of heat waves,
respectively. For analyzing heat extremes, we focus on the difference between warm-season
average and maximum temperatures, hereafter referred to as maximum daily temperature (Tmax)
divergence. While the maximum temperature is known to be affected by land-atmosphere
coupling (Dirmeyer et al., 2021; Donat et al., 2017; Lorenz et al., 2016; Schwingshackl et al.,
2018; Seneviratne et al., 2006; Sippel et al., 2017; Ukkola et al., 2018; Vogel et al., 2017),
the average temperatures are largely driven by large-scale circulation (Cassou et al., 2005;
Miralles et al., 2014b; Schumacher et al., 2019). This way, by focusing on the divergence
between mean and maximum temperatures, we can isolate the thermodynamic component from
the dynamic component in heat wave development. Tmax divergence is computed for each
grid cell and decade as the difference between the means of (i) the 10 warm-season average
temperatures from the individual years and (ii) the 10 temperature maxima in the individual years
(see Methods). Next to this, we assess ecosystem water limitation with the Ecosystem Limitation
Index (ELI, (Denissen et al., 2020)) which is computed as the difference of the correlations
of terrestrial evaporation (ET) with (i) water supply (represented through soil moisture, SM)
and (ii) energy availability (air temperature (Ta) and surface net radiation (Rn)) (Methods).
Positive ELI is indicative of water-limited conditions, whereas negative ELI denotes energy
limitation. Therefore, the ELI captures the interplay of water and energy controls on evaporative
cooling.

6.3 Materials and Methods

6.3.1 Ecosystem Limitation Index

The Ecosystem Limitation Index (ELI), referred to as the correlation-difference metric (Denissen
et al., 2020), is formulated as follows:

ELI = cor(SM′,ET ′)− cor(T ′a,ET ′) (6.1)

The prime denotes monthly anomalies of soil moisture (SM), terrestrial evaporation (ET) and
air temperature (Ta). In Figure 6.4 and 6.A10, we considered net surface radiation (Rn) as a
different proxy for energy availability alongside air temperature anomalies. Between energy-
and water-limited conditions, the ELI expresses different typical sensitivities to energy and water
supply: High and positive cor(Ta’/Rn’,ET’) is indicative of energy-limited conditions, whereas
high and positive cor(SM’,ET’) concerns water-limited conditions. The ELI combines both the
relevance of energy and water supply for evaporative cooling by taking the difference between
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those two correlations, so that positive values denote water-limited conditions and negative
values indicate energy-limited conditions. Thereby, the ELI can be used to pin-point transitional
areas, where ELI is approximately zero. Further, in contrast to other traditional indices such as
the Aridity Index that rely on climatological means, the ELI can be used to study (parts of) the
seasonal cycle. For a more extensive assessment of air temperature or net surface radiation and
soil moisture as the choices for energy and water proxies as well as a detailed elaboration on the
interpretation of ELI, we refer to Denissen et al. (2022b).

6.3.2 Coupled Model Intercomparison Project Phase 6 (CMIP6) data

We use historical (1980 - 2015) and ’business-as-usual’ SSP5-8.5 (2015 - 2100, (O’Neill et al.,
2016)) simulations from five different fully coupled models that provide the necessary variables
at 2° x2° spatial and monthly temporal resolution from the Coupled Model Intercomparison
Project (CMIP6, (Eyring et al., 2016)). The most important information on the used data is
summarized in Table 1. By taking the SSP5-8.5 scenario we intend to focus on the climate
scenario most influenced by human activity and related emissions of greenhouse gasses, with
presumably the hottest temperature extremes with the biggest impacts.

Table 6.1: Important details related to the model output used in this study. The following variables
have been downloaded from all the models: temperature (tas), root-zone soil moisture (mrso), terrestrial
evaporation (hfls), maximum daily temperature (tasmax) and in- and outcoming short- and longwave
radiation (rlds,rsds,rlus,rsus). *: the first number denotes the version of the historical simulation,
whereas the second number concerns the SSP5-8.5 simulation.

Institution Model Member Version* Citation
National oceanic and GFDL-CM4 r1i1p1f1 v20180701 & (Held et al., 2019)
Atmospheric Administration v20180701
(NOAA) Geophysical Fluid
Dynamics Laboratory (GFDL)
Centre National de Recherches CNRM-ESM2-1 r1i1p1f2 v20181206 & (Séférian et al., 2019)
Meteorologiques (CNRM) v20191021
Beijing Climate Center (BCC) BCC-CSM2-MR r1i1p1f1 v20181126 & (Wu et al., 2019)

v20190314
Met Office Hadley UKESM1-0-LL r2i1p1f2 v20190627 & (Sellar et al., 2019)
Centre (MOHD) v20190726
Institute for Numerical INM-CM4-8 r1i1p1f1 v20190530 & (Volodin et al., 2018)
Mathematics (INM) v20190603

6.3.3 Pre-processing data

After data acquisition, several steps are taken to assure a meaningful selection of data for the
analysis: i) To assure vegetated conditions during the warm season, which would allow the
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vegetation to respond to anomalies in energy and water supply and consequently affect the surface
flux partitioning, all months with Ta < 10°C and LAI < 0.5 are excluded from the analysis. ii)
To pin-point the hottest heat extremes, we additionally focus on the three hottest months a year
(warm season), defined as the 3 months-of-year with the highest maximum daily temperature
averaged decadally. This selection of data results in what we refer to in this manuscript as the
”warm vegetated land area”, which includes the spatiotemporal mask where data is available
after filtering. This data is then used to compute decadal time series of the desired diagnostics,
which are ELI, EF and Tmax divergence. The advantage of considering only the warm season
lies in the comparison of concomitant trends of ELI, EF and Tmax divergence, as these might be
subject to seasonal variability. EF is computed as the fraction of the net surface radiation (the
sum of all radiative components) that is used to evaporate water. In order to compute Tmax, we
consider first all the yearly temperature maxima, which we average decadally. Tmax divergence
results from excluding background mean climate warming (subtracting mean temperature from
Tmax).

6.3.4 Computing Theil-Sen slopes and slope significance

The trends shown in Figure 6.1 and 6.4 and Supplementary figures 6.A1, 6.A2, 6.A6, 6.A9,
6.A10 are based on Theil-Sen slopes (Sen, 1968; Theil, 1992). This approach is insensitive
to statistical outliers, as the median slope from a range of possible slopes is selected as the
best fit. The significance of these slopes is determined based on Kendall’s tau statistic from
Mann-Kendall tests.

6.3.5 Regional bootstrapping

For the regional correlation estimates (Supplementary Figure 6.A9a, c), the grid-specific time
series of Tmax divergence and ELI are bootstrapped; They are based on a hundred different
selections of grid-specific time series of Tmax divergence and ELI.

6.3.6 Results

We identify increased Tmax divergence trends across over 77% of the warm vegetated land
area (Figure 6.1a, Methods). Model confidence is higher for increasing than for decreasing
Tmax divergence (inset plot Figure 6.1a), as in more than half of the area with increasing Tmax

divergence at least four out of five CMIP6 models agree, while this is less than a third for
decreasing Tmax divergence (see also Supplementary Figure 6.A1). This reveals high confidence
in an accelerated increase of heat extremes compared with warm-season average temperatures.
We define four regions of interest where Tmax divergence increases are particularly rapid and
spatially coherent, as denoted in Figure 6.1a: North and South America (NAM and SAM),
Central Europe (CEU) and Northern Asia (NAS).
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Figure 6.1: Similarity of global patterns of change in maximum temperature divergence and
ecosystem water limitation. Multi-model means of trends based on decadal time series per respective
CMIP6 model of a) normalized temperature extremes Tmax divergence; Methods) and b) Ecosystem
Limitation Index (ELI, Methods). c) Multi-model means of Kendall’s rank correlation coefficient
between model-specific time series of ELI and Tmax divergence. The insets display the fraction of the
warm land area that with positive or negative trends or correlations, respectively (at least 4 out of 5
models agreeing on the sign of the trend or correlation are hued darker). Stippling indicates that at least
4 out of 5 CMIP6 models agree on the sign of the trend or correlation. All trends and correlations are
calculated over the warm season (see Methods). The dashed boxes indicate regions of interest.

Similar to the Tmax divergence trends, there is an increase of ELI in more than 70% of the warm
vegetated land area, signaling widespread shift towards water limitation (Figure 6.1b). This
widespread increase is confirming results from a recent study focusing on the growing season
(Denissen et al., 2022b). Interestingly the ELI increases found here are stronger, suggesting a
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particularly rapid shift towards ecosystem water limitation in the warmest months. Especially in
the regions of interest, except for CEU, ELI increases are robust across models (Supplementary
Figure 6.A2).

Spatial patterns of trends in Tmax divergence and ELI are very similar. Areas with highest Tmax

divergence trends (>0.1 K/10yr) are predominantly characterized by ELI increases (found in
90% of these areas). More importantly, also the temporal evolution of decadal time series of Tmax

divergence and ELI is similar in many regions. This is evidenced by significant correlations in
many areas (Figure 6.1c, Supplementary Figure 6.A3), suggesting that increasing ELI contributes
to hotter temperature extremes. We also find regions with insignificant correlations such as
tropical Africa, India and western North America. There, ELI is apparently not affecting
Tmax divergence which might instead be affected by alternative processes such as (changes in)
advection of warm air masses through large-scale circulation patterns.

While the use of temperature as energy variable in the computation of the ELI is established
(Denissen et al., 2020), we note that this prevents ELI from being fully independent from Tmax

divergence. Therefore, we repeat the analysis in Figure 6.1c using net radiation as an energy
variable in the ELI computation (Supplementary Figure 6.A4a). The resulting spatial patterns
are very similar, underlining the usefulness of ELI in its original temperature-based formulation
in our context. Further, we investigate the role of net radiation as a potential confounding effect
influencing both ELI and Tmax divergence to create a spurious correlation between them. This
is done by computing a partial correlation (Supplementary Figure 6.A4b) which again yields
similar spatial patterns supporting the notion of ELI physically affecting Tmax divergence.

Furthermore, in order to illustrate the physical link between ELI and Tmax divergence, which
presumably is through evaporative cooling, we analyze terrestrial evaporation normalized by
net surface radiation. The resulting evaporative fraction (EF) links the surface energy and
water balances. The EF is generally decreasing in all regions of interest with high agreement
between individual models (Figure 6.A5a). Moreover, EF is generally significantly correlated
with both Tmax divergence and ELI, respectively, establishing the physical link between these
quantities. This way, in more than 80% of the warm vegetated land area, trends in EF fraction
are negatively correlated with Tmax divergence, meaning that a decreasing (increasing) trend
in EF, renders more (less) energy available for sensible heating, which elevates (reduces) heat
extremes (Supplementary Figure 6.A5b). In about two thirds of the warm vegetated land area, the
correlation between EF and ELI is negative (Supplementary Figure 6.A5c), verifying that a shift
towards ecosystem water limitation jointly occurs with the expected decreases in evaporative
cooling. Some regions exhibit insignificant or even negative correlations pointing to other
processes such as irrigation or land use changes.

Next, we compare the temporal evolution of Tmax divergence and ELI averaged across the regions
of interest and the entire warm vegetated land area between historical and future time periods.
Figure 6.2a shows a steady global increase of Tmax divergence, with heat extremes experiencing
an additional 0.5K warming with respect to the average warm-season warming over 1980 -
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Figure 6.2: Changes in global and regional maximum temperature divergence in line with in-
creasing ecosystem water limitation. Temporal evolution of a) Tmax divergence and of b) Ecosystem
Limitation Index (ELI) globally and for the regions of interest. Solid lines depict multi-model mean
time series, where shaded regions cover +/- 1 multi-model standard deviation. Global averages are
calculated over land grid cells that have complete time series for all models and variables and are
weighted according to the surface area per grid cell.

2100. In the regions of interest, Tmax divergence is increasing twice as fast. Even though the
shaded regions denote an increasing uncertainty in the Tmax divergence, the models agree that
both globally and regionally Tmax will increase faster than the mean warm-season temperature
(Supplementary Figure 6.A6a).

ELI trends differ more strongly in magnitude across the regions of interest as the Tmax divergence
trends (Figure 6.2b), even though they are also robustly positive across individual models
(Supplementary Figure 6.A6b). This indicates different contributions of the ELI to the observed
Tmax divergence trends; while the ELI contribution is particularly strong in NAS and SAM, as
can also be seen from the correlations in Figure 6.1c, it is weaker but still considerable in CEU
and NAM where probably other processes play a role such as changes in large-scale circulation
patterns or boundary layer dynamics.

Further, the effect of ELI trends on Tmax divergence is even more clear when only regions are
included where at least 80% of CMIP6 models agree on the sign of the Tmax divergence trends.
This is evidenced by a stronger increase of ELI in regions with robust trends Tmax divergence
trends (Supplementary Figure 6.A7). ELI trends are even larger for regions with robust and
positive Tmax divergence trends. At the same time no clear trends in ELI are found for regions
with robust and negative Tmax divergence trends. This suggests that factors other than evaporative
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cooling, such as changes in circulation, render the Tmax divergence trends negative in these
regions.

Figure 6.3: Relation between maximum temperature divergence and ecosystem water limitation.
a) Multi-model means Ecosystem Limitation Index (1980 - 2010). Solid lines depict the time series of
multi-model means inferred from globally (black) and regionally (colored) decadally averaged model
simulations for a) Tmax divergence and b) Ecosystem Limitation Index, where shaded regions cover +/-
1 multi-model standard deviation. The classification is defined based on the model-specific mean ELI
over 1980 - 2010 (Supplementary Figure 6.A8): Energy limited (ELI < -0.2), transitional (-0.2 < ELI
< 0.2) and water limited (ELI > 0.2). d) Points denote the global (black) and regional (colored) decadal
multi-model means of ELI (x-axis) and Tmax divergence (y-axis), expressed as change since 1980. The
lines denote linear regressions, with a shaded colored 95% confidence interval. Only land grid cells that
have complete time series for all models and variables are considered. Global and regional averages are
weighted according to the surface area per grid cell.
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To test this hypothesis, we classify all grid cells based on their respective mean ELI over 1980 -
2010 (Figure 6.3a) to define energy-limited (ELI < -0.2), transitional (-0.2 < ELI < 0.2) and
water-limited (ELI > 0.2) conditions. We analyze Tmax divergence trends across these three
regimes and find that over initially water-limited areas they are below the global average, while
trends over initially transitional or energy-limited areas are above the global average (Figure
6.3b). This is against our initial expectation but can be explained by the corresponding ELI
trends which are much more pronounced in energy-limited regions (Figure 6.3c), leading to
more often occurring water-limited conditions in these areas. Moving beyond trends we also
analyze the sensitivity of decadal Tmax divergence with respect to ELI and find the strongest
relationship in the case of water-limited regions (Figure 6.3d). This confirms that the relatively
weak impact of ELI trends on Tmax divergence trends in these regions are related to the small
ELI trends rather than a lack of physical coupling.

To quantify the strength of the relationships displayed in Figure 6.3d we compute correlations for
the relationships shown for the three regimes, respectively (Supplementary Figure 6.A9a). This
highlights again the stronger link between ELI and Tmax divergence in initially energy-limited
areas resulting from the strong ELI trends moving these areas towards water-limitation. In order
to study the relevance of spatial variability across the grid cells that are initially energy- or
water-limited or transitional for the correlation estimates, the grid-specific time series of Tmax

divergence and ELI are bootstrapped (Methods) and displayed as boxplots in Supplementary
Figure 6.A9a, with overall similar results. Substantial variability exists across model-specific
correlations (Supplementary Figure 6.A9b,c). Although they generally agree on the sign of the
correlations, the magnitude of ELI contribution to Tmax divergence differs strongly, possibly
relating to different representations of land-atmosphere coupling and resulting differences in
initial ELI states and trends (Figure 6.2 and 6.A8).

In order to further analyze the role of the magnitude of ELI trends for the coinciding Tmax

divergence trends, we group the global grid cells with respect to their ELI trends and show
the multi-model mean and model-specific Tmax divergence trends (Figure 6.4). Higher Tmax

divergence trends correspond with stronger increasing ELI trends. Such strong increases in
ELI indicate more often occurring water-limited conditions, potentially also during heat wave
events, such that Tmax divergence gets more sensitive to ELI. Analyzing results from individual
models shows that stronger ELI trends are associated with stronger trends in Tmax divergence
in almost all models, albeit with substantial variability between individual models, owing to
different representations and strength of land-atmosphere coupling. Again, we re-compute ELI
using surface net radiation instead of air temperature in this context (Figure 6.A10) and find very
similar results, underlining the existence of an actual rather than spurious relationship between
trends in Tmax divergence and ELI.
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Figure 6.4: Maximum temperature divergence trends increase with stronger trends in ecosystem
water limitation. The bars denote the multi-model mean and model-specific Tmax divergence trends
(y-axis) binned according to their respective ELI trends (x-axis) for the multi-model mean trends (black)
and all individual models (colors). The numbers display the fraction of warm vegetated land area in
which respective Tmax divergence and ELI trends occur and do not add up to 100%, because there might
be ELI trends outside of the defined classes.

6.3.7 Discussion

While the link between ELI and heat wave temperatures is robust across models, we find
substantial differences between individual models in terms of the strength of this link (e.g. Figure
6.4 and Supplementary Figures 3, 6, 9, 10). This is related to a different representation of
land-atmosphere interactions in general, which is related to e.g. different vegetation water stress
functions, soil moisture layers and depths, as well as different underlying soil and vegetation types
and related traits. Another reason is that measurements of soil moisture and terrestrial evaporation
are scarce, such that large-scale observational constraints for these key quantities have been
lacking and are only recently available following the advent of machine-learning techniques to
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efficiently interpolate global gridded datasets from the available in-situ measurements (Jung
et al., 2019; O and Orth, 2021). On the other hand, surface air temperature extremes from
CMIP5 and CMIP6 compare well with observation-based data sets, albeit with model-specific
performance that varies in space and time (Thorarinsdottir et al., 2020).

However, despite the apparent difficulty that Earth System Models experience with representing
soil moisture trends and related trends in land-atmosphere processes (Albergel et al., 2013b;
Berg and Sheffield, 2018; Berg et al., 2017; Greve et al., 2019), widespread shifts towards water
limitation are robustly projected (Figure 6.1; (Denissen et al., 2022b)). Further highlighting the
complex nature of land-atmosphere interactions, we note that ecosystem water limitation is not
only affected by climate, but also by changes in vegetation physiology (e.g. stomatal regulation)
and structure (e.g. LAI) in response to increasing carbon dioxide (CO2) (CO2 fertilization;
(Donohue et al., 2013; Ukkola et al., 2016; Zhu et al., 2016)), which has also been shown to
modulate heat extremes (Lemordant and Gentine, 2019). This way, changes of both CO2 and
climate jointly affect ELI which in turn influences heat wave magnitudes. Given this situation,
future research should focus on the link between ELI and heat wave intensities using observation-
based datasets, particularly as longer-term interpolations or reconstructions of key variables
become available. This can help to corroborate our model-based findings, and to constrain the
variable relevance of ELI across models.

Finally, we focus on the intensity of the heat extremes by considering temperature only rather than
more impact-relevant indices. Heat stress for humans is dependent not only on temperature, but
also on wind speed and humidity (Buzan and Huber, 2020; Matthews, 2018). Through reduced
evaporative cooling and increased entrainment of dry air above the atmospheric boundary layer,
the lethality of heat extremes above dry soils can be reduced (Wouters et al., 2022). In this
study, we find an increasing Tmax divergence alongside increasing EF in 20% of the warm
vegetated land area (Supplementary Figure 6.A6b), which suggests potentially higher heat stress
than reflected by temperature alone as terrestrial evaporation can increase humidity and related
lethality. On the other hand, combined hot and dry conditions can lead to increased wildfires (O
et al., 2020b) and can be associated with severe impacts on agriculture and infrastructure. In that
perspective, our results on the correspondence between increased ecosystem water limitation and
amplified heat waves confirm findings from Teuling (2018) indicating that droughts in Europe
will become hotter under future warming. This is in line with future projections, suggesting that
concurrent hot and dry extremes will continue to increase in future (Seneviratne et al., 2021;
Vogel et al., 2020).

In conclusion, we show an increased relevance of the land surface to modulate the intensity
of future heat waves. In this context we focus on novel indices by focusing on ecosystem
water limitation and the temperature divergence between warm-season mean and maximum
temperatures. This way, we find a widespread increase in Tmax divergence in ∼77% of our
study area. We identify several regions of interest where Tmax divergence is increasing more
rapidly than the global mean. These increases are partly related to trends towards ecosystem
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water limitation which lead to reduced evaporative cooling. Thereby, the relevance of trends
in ecosystem water limitation for trends in Tmax divergence depends on (i) the magnitude of
the ELI trends, which is largest in initially energy-limited and transitional areas, and (ii) the
initial ELI regime as (maximum) temperatures are more sensitive to evaporative cooling in
a water-limited regime. These findings corroborate earlier research which demonstrated the
relevance of soil moisture to (future) heat extremes via its control on surface flux partitioning
based on idealized Earth system model experiments in which long-term soil moisture trends
are artificially compensated (Fischer et al., 2007; Schwingshackl et al., 2018; Seneviratne et
al., 2006; Vogel et al., 2017; Vogel et al., 2018). While our analysis cannot disentangle the
direction of causality between land surface dynamics and heat extremes to the same extent, it
benefits from fully coupled simulations with unperturbed water balances, such that it effectively
complements the existing body of research. Finally, identifying regions where ELI trends
and related evaporative cooling are important for future heat extremes can inform long-term
adaptation strategies. Human activities play a key role here, as we can implement agricultural
practices and/or tillage, irrigation and land cover management, afforestation and city greening to
mitigate the impact of heat extremes (Schwaab et al., 2021; Sillmann et al., 2017).
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6.A Appendix

This appendix represents the supplementary materials of the presented publication.

Figure 6.A1: Trends of maximum temperature divergence for individual CMIP6 models. The
model-specific trends across decadal Tmax divergence time series (dots indicate significance: p < 0.05
based on Kendall’s tau statistic).
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Figure 6.A2: Trends in ecosystem water limitation for individual CMIP6 models. The models-
specific trends across decadal ELI time series (dots indicate significance: p < 0.05 based on Kendall’s
tau statistic).

Figure 6.A3: Kendall’s rank correlation coefficient between ecosystem water limitation and max-
imum temperature divergence per individual CMIP6 model.
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Figure 6.A4: Kendall’s rank correlation coefficient between multi-model mean decadal time
series of ecosystem water limitation and maximum temperature divergence. a) The ELI has been
calculated with anomalies of surface net radiation instead of air temperature. b) The confounding effect
of surface net radiation has been excluded from the correlation between Tmax divergence and ELI.
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Figure 6.A5: Global multi-model mean distribution and trends of Evaporative Fraction (EF).
Multi-model mean of trends based on decadal time series per respective CMIP6 model of a) EF and
b) Ecosystem Limitation Index (ELI). c) Multi-model mean of Kendall’s rank correlation coefficient
between model-specific time series of ELI and Tmax divergence. The insets display the fraction of the
warm land area that with positive or negative trends or correlations, respectively (at least 4 out of 5
models agreeing on the sign of the trend or correlation are hued darker). Stippling indicates that at
least 4 out of 5 CMIP6 models agree on the sign of the trend or correlation. All trends and correlations
are calculated over the three hottest months-of-year, defined as the 3 months-of-year which have the
highest average temperature over 1980 - 2100. The dashed boxes indicate regions of interest.
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Figure 6.A6: Model-specific changes in global and regional maximum temperature divergence
in line with increasing ecosystem water limitation. Temporal evolution of a) Tmax divergence and of
b) Ecosystem Limitation Index (ELI) globally and for the regions of interest. Solid lines depict global
and regional time series, where shaded regions cover +/- 1 multi-model standard deviation. Global
averages are calculated over land grid cells that have complete time series for all models and variables
and are weighted according to the surface area per grid cell.
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Figure 6.A7: Contrasting trends of ecosystem water limitation from areas with different robust-
ness of maximum temperature divergence. All lines depict multi-model mean time series inferred
from the model-specific time series, where shaded regions cover +/- 1 multi-model standard deviation.
The solid black line is the same as in Figure 6.2b. The colored dashed lines only consider grid cells
where at least 4 out of 5 CMIP6 models agree on Tmax divergence trends of either sign (black), positive
(red) or negative (blue).

Figure 6.A8: Model-specific initial ecosystem water limitation. Model-specific initial ELI averaged
across 1980 - 2010.
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Figure 6.A9: Model-specific global and regional correlations between maximum temperature
divergence and ecosystem water limitation. a) Correlations between decadal multi-model and re-
gionally averaged time series of Tmax divergence and ELI, where crosses denote the correlation based
on the original data and the box plots denote the uncertainty as obtained from bootstrapping (Methods).
b) Barplots of correlations between decadal regionally averaged time series of Tmax divergence and ELI.
c) The same as panel b), but with a hundred estimates obtained from bootstrapping. The regions are
defined based on the mean ELI (1980 - 2010; Supplementary Figure 6.A8): Energy limited (ELI <
-0.2), transitional (-0.2 < ELI < 0.2) and water limited (ELI > 0.2).
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Figure 6.A10: Maximum temperature divergence trends increase with stronger trends in ecosys-
tem water limitation. Note that the ELIRn has been calculated with surface net radiation anomalies
instead of air temperature. The bars denote the multi-model mean and model-specific Tmax divergence
trends (y-axis) binned according to their respective ELI trends (x-axis) for the multi-model mean trends
(black) and all individual models (colors). The numbers display the fraction of warm vegetated land
area in which respective Tmax divergence and ELI trends occur.
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7.1 Introduction

Vegetation plays a vital role in the global carbon, energy and water cycles through stomatal
regulation of plant transpiration (Berg and Sheffield, 2019b; Gentine et al., 2019; Good et al.,
2015; Humphrey et al., 2021; Lawrence et al., 2007; Schlesinger and Jasechko, 2014). As such,
the interplay between vegetation activity and its dominant drivers, the availability of energy
and water, is a key component to understand the land-atmosphere interactions that affect our
weather and climate (Guillod et al., 2015; Hirschi et al., 2011; Koster et al., 2016; Koster et al.,
2004; Taylor et al., 2012; Zhou et al., 2021) and related extremes (Hauser et al., 2016; Hirschi
et al., 2011; Miralles et al., 2014b). Classical drought indices, such as the widely-used Aridity
Index, do not accurately capture the role of water availability for vegetation activity (Greve et al.,
2019; Greve et al., 2017; Scheff et al., 2021; Scheff et al., 2017) and fail to represent at all the
role of energy availability, which closely relates to atmospheric water demand (Novick et al.,
2016; Yuan et al., 2019). As the debate on the importance of energy versus water limitation for
vegetation activity has not yet been settled (Green et al., 2019; Humphrey et al., 2021; Humphrey
et al., 2018; Jung et al., 2010; Jung et al., 2017), it expresses the need for a new perspective on
the interactions between energy, water and vegetation and their underlying terrestrial evaporation
regimes (Berg and Sheffield, 2018).

In this thesis, I build upon a classical conceptual framework first introduced by Budyko (1974)
and later adapted by Koster et al. (2009) and Seneviratne et al. (2010) and move beyond recently
introduced inventive indices by Zscheischler et al. (2015) and Berg and McColl (2021) by
presenting a novel index, the Ecosystem Limitation Index (ELI), that considers respective
relevances of energy and water supply for vegetation activity. This index can be used at the
bi-weekly to monthly time and at any spatial scale to distinguish terrestrial evaporation regimes
in space and time, both seasonally and in the long-term, spanning decades. Within this context,
I highlight the role of soil moisture, as below a certain soil moisture threshold, the critical
soil moisture (CSM), the ELI denotes water-limited conditions, both at a continental and the
landscape scale. Using various data streams at varying spatial scales underlines the robustness
of the ELI with respect to spatial heterogeneity. Soil moisture modulates the surface flux
partitioning between these terrestrial evaporation regimes and feeds back into the atmospheric
boundary layer (ABL). This can be measured by weather balloons all across the globe, effectively
demonstrating characteristic differences between diurnal evolution of the near-surface weather in
response to water versus energy limited land surfaces, for the first time, at the landscape scale. At
the same time, this emphasizes the need to consider land surface conditions for extreme events,
as the prevailing evaporative regime modulates impacts of hydrometeorological hazards on
vegetation activity. Finally, I note the importance of land-atmosphere coupling for the magnitude
of future heat extremes. In the following sections, I discuss first the specific contributions of
the chapters presented in the thesis by answering the research question posed in Chapter 1 and
put these findings in context by comparing with other literature. Thereafter, I discuss which
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difficulties are overcome in this thesis and which challenges remain. Further, I suggest several
exciting opportunities for future research that emerge from this thesis.

7.2 Specific contributions of this thesis

The specific contributions of this thesis will be explained at the hand of the research questions
introduced in Chapter 1 based on the analyses in Chapter 2–6.

7.2.1 What is the role of soil moisture for terrestrial evaporation regimes?

In Chapter 2, I explore the role of soil moisture for terrestrial evaporation regimes by introducing
a novel index, the ELI, that distinguishes water versus energy-limited regimes and transitions
between them. This index arises from the fundamental concepts of water and energy limitation;
Under strong water limitation, there is by definition a high sensitivity of terrestrial evaporation
(ET) to water availability and a low sensitivity to energy availability. The ELI reflects this by
taking correlation as a measure of sensitivity, and moves beyond traditional drought indices
through the inclusion of functionally relevant variables (bi-weekly anomalies of soil moisture,
air temperature and terrestrial evaporation). I evaluate the ELI at the seasonal time scale using
observation-based data over Europe. Both at the landscape and the continental scale, a soil
moisture threshold, the CSM, emerges, below which the seasonally averaged ELI denotes water-
limited conditions. The CSM is modulated by apparent climate, soil and vegetation characteristics.
In itself, estimating the CSM not novel (Akbar et al., 2018; Feldman et al., 2019; Haghighi et al.,
2018; Schwingshackl et al., 2017; Schwingshackl et al., 2018; Seneviratne et al., 2010), but it has
not been done before based solely on observation-based data by considering simultaneously the
relevance of soil moisture and air temperature for ET. Equipped with this threshold and readily
available satellite soil moisture measurements, real-time first-order monitoring of terrestrial
evaporation regimes, and consequently the land surface driving the atmosphere or vice-versa, is
easily achieved.

The implications of soil moisture and corresponding terrestrial evaporation regimes reach into the
ABL, as I show in Chapter 3. In this chapter, I use vertical temperature and humidity profiles
to initialize a mixed-layer ABL model, Chemistry Land-surface Atmosphere Soil Slab model
for Global Studies (CLASS4GL) (Wouters et al., 2019), in the morning and validate it in the
afternoon, thereby computing concurrent surface fluxes that reflect heat and moisture input into
the ABL and therefore directly affect vertical profiles. I do so by adjusting the morning soil
moisture, effectively modulating the partitioning of surface heat fluxes, to match the modeled to
the observed vertical profiles of temperature and humidity in the afternoon. I find that (i) the
retrieved surfaces fluxes show similar spatial patterns as other state-of-the-art data sets and (ii)
that the scaled soil moistures compare well against satellite-observed surface soil moisture, which
validates the land surface schemes applied in CLASS4GL and its findings. As such I provide
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an additional method to estimate surface fluxes at the landscape scale, thereby underlining the
potential of atmospheric measurements to reflect land surface conditions, which has recently
been noted by the eddy covariance (EC) community (Helbig et al., 2020).

7.2.2 How do terrestrial evaporation regimes vary regionally, across seasons and with
climate change?

In Chapter 2, I apply the ELI together with observation-based data and find a gradient from
energy limitation in Northern Europe to water limitation in the Mediterranean, separated by a
transitional zone across Central Europe. Especially, the transitional regime is of importance, as it
denotes conditions where the evaporative fraction (EF) responds to soil moisture, establishing
strong land-atmosphere coupling and related hot spots that can modulate the impact of climate
extremes (Koster et al., 2004; Koster et al., 2006; Santanello et al., 2018; Schwingshackl et al.,
2018; Seneviratne et al., 2010; Seneviratne et al., 2006). Seasonally, transitional conditions shift
from the Mediterranean in the spring to Central Europe in the summer and autumn, as typically
soils dry out and energy is abundant due to increasingly long summer days and corresponding
gains of incoming radiation.

Widening the focus of variability of terrestrial evaporation regimes to the global and long-term
(1980 - 2100) scale, I compute trends of ELI in Chapter 4 with historical simulations and
future projections from a suite of state-of-the-art Earth system models from the Coupled Model
Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016; O’Neill et al., 2016). Whereas it
is fairly certain that these future conditions entail consistently increasing energy availability, in
line with global warming (IPCC, 2021), future water availability remains uncertain (Berg and
Sheffield, 2018; Berg et al., 2017; Greve et al., 2019; Scheff et al., 2021). Using these CMIP6
data, I find a widespread shift of ecosystem energy to water limitation with climate change,
thereby continuing increasing water constraints on vegetation from observations over recent
decades (Gampe et al., 2021; Jiao et al., 2021). I identify hot spots with particularly strong
trends over forested regions in Northern Eurasia, Canada, the Amazon and Central Europe. In
the Northern Hemisphere and in the Amazon, this actually converts energy- into water-limited
areas, thereby shrinking even further the energy-limited area across the globe. Further, this
uncovers migrations of transitional areas, involving in many areas a shift from energy to water
limitation, rendering surface flux partitioning in those areas dependent on soil moisture rather
than air temperature or surface net radiation. In addition to this, shifts towards ecosystem water
limitation are also induced seasonally, increasing the length of the water-limited season. An
attribution analysis suggests a dominant role for air temperature as predictor, but only a full range
of variables can explain regional reductions in energy limitation alongside exacerbations of water
limitation. This underlines that vegetation functioning and associated terrestrial evaporation
regimes are not exclusively influenced by soil moisture. As such, it is critical to reflect respective
roles of both energy and water availability. This adds to existing research on determining (future
changes in) spatiotemporal variability of terrestrial evaporation regimes (Berg and McColl, 2021;
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Koster et al., 2004; Koster et al., 2006; Santanello et al., 2018; Schwingshackl et al., 2018;
Seneviratne et al., 2010; Seneviratne et al., 2006), by simultaneously considering energy and
water availability for vegetation functioning based on observations, thereby offering a holistic
explanation of regional changes in ecosystem function. Generally there is a widespread increase
in ecosystem water limitation, but particularly so for several hot spots regions. Identifying these
regions is key for developing adaptation strategies, as increasing ecosystem water limitation
has far-reaching implications for carbon dioxide (CO2) sequestration by terrestrial ecosystems,
biodiversity losses, shrinking water and food provisions, land degradation and intensity, frequency
and duration of extreme events.

7.2.3 How do terrestrial evaporation regimes affect climate extremes?

In Chapter 3, I established that diurnal evolution of the ABL develops differently over energy
and water limited land surfaces by constraining an ABL model with global weather balloon
soundings. More specifically, the afternoon ABL over a water-limited area is on average
approximately 3K warmer, 400m higher and 1 kPa drier than over an energy-limited area. As
such, local land-atmosphere interactions have implications for the magnitude of temperature and
precipitation extremes (Findell et al., 2011; Guillod et al., 2015; Miralles et al., 2014b; Prein and
Heymsfield, 2020; Taylor et al., 2012; Vogel et al., 2018).

As plant transpiration is globally the most dominant evaporative process (Berg and Sheffield,
2019b; Good et al., 2015; Lawrence et al., 2007; Schlesinger and Jasechko, 2014), I analyze the
role of hydrometeorological hazards for vegetation productivity in Chapter 5, where hydrome-
teorological hazards are defined as water- and/or energy-related extremes inducing vegetation
productivity extremes. Whereas other studies tend to focus particularly on singular extreme
events, such as heat waves or droughts, and corresponding vegetation productivity reductions
and/or use data from models (Ciais et al., 2005; Qiu et al., 2020; Wang et al., 2019; Zhang et al.,
2019; Zhao and Running, 2010; Zscheischler et al., 2014a; Zscheischler et al., 2014b; Zscheis-
chler et al., 2013), I use a satellite-observed proxy for vegetation productivity (sun-induced
chlorophyll fluorescence (SIF); (Frankenberg et al., 2011; Joiner et al., 2013)) to comprehensively
approach these extreme climate-vegetation interactions from an impact perspective: I focus
on both minimum and maximum vegetation productivity extremes and check for co-occurring
single and compound hydrometeorological hazards, as compound events impose greater risk for
terrestrial ecosystems (Sun et al., 2015; Zhou et al., 2019). I find that in about half of the land
area with active vegetation, vegetation productivity extremes and hydrometeorological hazards
occur simultaneously. More specifically, vegetation productivity extremes in the higher latitudes
are temperature-dominated, as minima relate to cold spells and maxima to heat waves. In the
(sub-)tropics, vegetation productivity extremes are similarly driven by water-related hazards.
Further, I detect areas where vegetation productivity maxima are water-related, but minima
are energy-related, which is indicative of frequent transitioning between underlying terrestrial
evaporation regimes and corresponding hot spots of strong land-atmosphere coupling (Koster
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et al., 2004; Koster et al., 2006; Santanello et al., 2018; Schwingshackl et al., 2018; Seneviratne
et al., 2010; Seneviratne et al., 2006). As such, vegetation productivity could have a contrasting
response to hydrometeorological hazards, depending on the timing of such an event and the
underlying evaporative regime. I provide an observation-based reference of climate-vegetation
interactions during extremes, which could serve as a starting point for studies analyzing how
such interactions are affected by climate change.

I show such an analysis in Chapter 6, where I investigate the role of increasing ecosystem water
limitation and corresponding reductions of evaporative cooling for future heat extremes (1980 -
2100) with historical and projected data from the CMIP6 ensemble of Earth system models. In
general, heat extremes are influenced by (thermo)dynamical processes (Harrington et al., 2019;
Trenberth et al., 2015). Mesoscale weather systems introduce heat extremes through large-scale
blocking patterns involving heat accumulating over consecutive dry days (Cassou et al., 2005;
Jézéquel et al., 2018). These heat extremes can be further exacerbated by warm and dry air
advected from adjacent areas with dry land surfaces and/or entrained from the free-tropospheric
above the ABL (Miralles et al., 2014b; Schumacher et al., 2019). In addition, local land-
atmosphere interactions exert a crucial influence on the magnitude of heat extremes (Miralles
et al., 2012; Quesada et al., 2012; Seneviratne et al., 2010; Teuling et al., 2010; Ukkola et al.,
2018; Vogel et al., 2017; Vogel et al., 2018). As such, changes in mean versus maximum daily
temperature (Tmax) are driven by different processes; whereas mean temperatures are generally
driven by large-scale circulation (Dirmeyer et al., 2021; Donat et al., 2017; Lorenz et al., 2016;
Schwingshackl et al., 2018; Seneviratne et al., 2006; Sippel et al., 2017; Ukkola et al., 2018;
Vogel et al., 2017), maximum temperatures could be capped by evaporative cooling (Cassou et al.,
2005; Miralles et al., 2014b; Schumacher et al., 2019). In this study, I disentangle these processes
by normalizing maximum with mean temperatures: Tmax divergence. I juxtapose the long-term
trends of Tmax divergence to ELI and identify hot spots with accelerated heating of maximum
versus mean temperatures, alongside increasing ecosystem water limitation and corresponding
reductions in evaporative cooling across Canada, in the Amazon and in Central Europe. The
correlation between Tmax divergence and ELI is most robust in initially energy-limited and
transitional areas, where ELI trends are most consistent. Conversely, the largest sensitivity of
Tmax divergence to ELI is found in initially water-limited regions, as there evaporative cooling is
most strongly affected by a shift towards ecosystem water limitation, reflected by the ELI.

To summarize, terrestrial evaporation regimes can affect climate and related extremes in different
ways: In energy-limited conditions, a heat wave could be dampened by evaporative cooling as a
result of this surplus of energy. Consequently, these beneficial conditions can lead to vegetation
productivity increases. This is not the case in water-limited conditions, where this surplus
of energy does not lead to enhanced evaporative cooling and might further reduce vegetation
productivity. In the long-term, I report widespread shifts towards ecosystem water limitation and
associated reductions in evaporative cooling, which lead to intensification of heat extremes across
several hot spot regions. In these hot spot regions, human interventions, such as agricultural
practices and/or tillage, irrigation, land cover management, afforestation and city greening could
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help to artificially sustain elevated evaporative cooling to mitigate the worst of the heat extremes
to come (Davin et al., 2014; Schwaab et al., 2021; Sillmann et al., 2017).

7.3 Discussion

The following sections put the findings of this thesis into context, reflect on some of the limitations
found in the thesis and summarize the efforts made to reconcile these limitations.

7.3.1 Shortcomings of applied data streams

In this thesis, I use a wealth of data from various data streams, including satellite observations
(Chapter 2, 3 and 5), in-situ observations, such as station soil moisture (Chapter 2) and weather
balloons (Chapter 3), gridded datasets upscaled with machine learning from in-situ observations
(Chapters 2, 3 and 5), historical simulations from heavily constrained Earth system models
(Chapters 2, 3 and 5) and future projection from Earth system models (Chapter 4 and 6)).
Although using this plethora of different data products prevents from drawing conclusions based
on a limited set of (model) assumptions, these data sets involve several limitations. I discuss here
how I overcame several limitations and which remain.

Satellite observations

In Chapter 1 I stress several implications of using satellite observations. There, I emphasize that
some shortcomings related to satellite observations are data product and variable-specific. In the
case of satellite-observed surface soil moisture, for example, this introduces uncertainty in the
estimation of the CSM in Chapter 2, which is affected directly, because it is based on surface
soil moisture and indirectly, as surface soil moisture is used as a proxy for water availability in
the estimation of ELI. In that study, I show that surface soil moisture is a reasonable proxy for
root-zone soil moisture using data from soil moisture stations (Dorigo et al., 2021) and reanalysis
models (Dee et al., 2011), which is in line with other findings (Ford et al., 2014; Qiu et al.,
2014), albeit with substantial seasonal variability, particularly so during dry conditions (Hirschi
et al., 2014; Qiu et al., 2016). Even though I note that variability in the regional average of
CSM could exist because of seasonality in climate and vegetation characteristics, it could be
amplified by using surface soil moisture: During spring, root-zone soil moisture in Europe is
generally abundant after a dark and wet winter, while the surface layer starts drying out due to
increased energy availability. As I use surface soil moisture, the CSM is underestimated due
to spring drying of the surface layer. The opposite is true in the autumn, when the root-zone is
depleted of soil moisture, while precipitation starts occurring more frequently and days become
shorter, leading to an overestimation of the CSM based on surface soil moisture. I advise to
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use these CSM estimates only on similar spatial scales exclusively based on European Space
Agency (ESA) Climate Change Initiative (CCI) surface satellite soil moisture observations.

In Chapter 5, I determine vegetation productivity extremes and respective drivers based on
satellite-observed SIF. Cloud contamination induces enough noise to prevent any spatially
coherent drivers to emerge over the Amazon. In the few grid cells that a statistically relevant
driver can be obtained, I find that SIF extremes are radiation-driven, which is in line with other
findings for non-extreme vegetation productivity (Green et al., 2020; Li et al., 2021b; Nemani
et al., 2003). Further, I apply different vegetation productivity indices such as Global Inventory
Monitoring and Modeling System (GIMMS) enhanced vegetation index (EVI) to circumvent
this problem, finding a similar pattern of hydrometeorological drivers across climate regimes.
The satellite data products applied in these studies are currently the best trade-off between data
quality of an observational character and sufficiently long data records. More recent satellite
initiatives, such as soil moisture from the Soil Moisture Active Passive (SMAP) mission and SIF
from the TROPOspheric Monitoring Instrument (TROPOMI) are promising in that they provide
high-resolution observations and, as their records grow longer, will soon be the state-of-the-art
(Entekhabi et al., 2010; Köhler et al., 2018).

In-situ observations and gridded upscaled data products from machine learning

The analysis in Chapter 3 could only be carried out with sites where balloon sounding measure-
ments were actually available. The amount of sounding days available per station varies between
1 and 268 out of a total of 4236. The determination of the breakpoint in the piecewise-linear
regression, the CSM, is biased in the first place towards the stations with available balloon
soundings and in the second place to the stations and their respective climate, soil and vegetation
characteristics that deliver more sounding days. Other uncertainties include variability in balloon
sounding footprints, due to varying wind speeds- and directions between stations and sounding
days. To prevent the CSM estimation to be biased by the soil and vegetation characteristics at
the few stations with the majority of the soundings, the entire collection of sounding days is
randomly resampled a 1000 times, leading to 50% of the CSM estimates falling within the range
of .19–.23 m3 m-3.

In Chapter 2, I use FLUXCOM ET to distinguish terrestrial evaporation regimes and the CSM
in Europe, focusing on the warm season (air temperature > 10°C). As such, erroneous data
related to cold extremes and regions with less densely EC distributed towers are excluded from
the analysis (Pastorello et al., 2020). Extremely dry and hot conditions are still retained in
the analysis, but are outweighed by mean-climate conditions. Even so, there might be other
limitations specifically relevant for FLUXCOM ET, which are reconciled by applying other
proxies for ET, such as satellite-observed Normalized Difference Vegetation Index (NDVI) and
SIF, yielding similar CSMs. I address a similar issue in Chapter 5, where I use reanalysis
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alongside and machine-learning based estimates of surface and root-zone soil moisture, finding
similar results (Muñoz-Sabater et al., 2021; O and Orth, 2021).

Earth system models

In Chapter 4 and 6, I use historical simulations and future projections from several Earth system
models (1980 - 2100) and find spatial patterns of shifts towards ecosystem water limitation,
identified by increasing trends of ELI, and related amplification of heat extremes across large
areas. The purpose of using an ensemble of Earth system models is to prevent a unique set
of model assumptions to bias our findings. Still, validation of our findings based on model
simulations is necessary. Whereas there is no way to validate the future projections, this is
possible for the spatial patterns from historical simulations. I only partly resolve this by deriving
spatial ELI patterns using a similar methodology based on satellite observations over Europe
(Chapter 2), albeit at the 0.5° x 0.5° spatial scale and using bi-weekly anomalies from 2007
- 2015, which roughly confirm model-based spatial patterns of terrestrial evaporation regimes
in Europe. Performance varies between models and depends on respective implementation of
dynamic vegetation, CO2 fertilization effects (Kolby Smith et al., 2016; Winkler et al., 2021;
Zhu et al., 2016), water use efficiency (Donohue et al., 2013; Ukkola et al., 2016), development
of deeper root systems (Fan et al., 2017; Smith-Martin et al., 2020) and nutrient availability
(Peñuelas et al., 2017; Peñuelas et al., 2013). Because of these and other factors, Earth system
models struggle to accurately represent transitions between terrestrial evaporation regimes (Best
et al., 2015; Dirmeyer et al., 2018; O et al., 2020a), which calls for more comprehensive
research. In addition to validation of model-based spatial ELI patterns, direct validation of heat
extreme amplification is lacking in this thesis, although (i) temperature variables from Earth
system models are typically better constrained, such that surface air temperature extremes from
CMIP5 and CMIP6 models compare well against observations (Thorarinsdottir et al., 2020)
and (ii) observations of recent decades also indicate accelerated heating of hot temperature
extremes (Quesada et al., 2012; Seneviratne et al., 2014). Moreover, other studies use different
methodologies and/or model experiments to find amplified heat extremes to continue in the future
(Seneviratne et al., 2021; Vogel et al., 2020; Wiel and Bintanja, 2021) and link these increases to
changes in terrestrial evaporation regimes and related reductions in evaporative cooling (Fischer
et al., 2007; Schwingshackl et al., 2018; Seneviratne et al., 2006; Vogel et al., 2017; Vogel et al.,
2018; Wiel et al., 2021).

Further, the model output from the Earth system models that are heavily constrained by ob-
servations has (partly) been shaped by model assumptions, albeit with higher uncertainties for
variables that have scarce or poor quality observations, such as root-zone soil moisture and
surface heat fluxes (Beck et al., 2021; Muñoz-Sabater et al., 2021). Because of this, other
data sets have been applied as well in Chapters 2, 3 and 5, which might be subject to a dif-
ferent set of measurement errors and/or modelling assumptions. The same strategy cannot be
applied when using projections of future climate conditions from the CMIP6 ensemble (Eyring
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et al., 2016; O’Neill et al., 2016), which makes this issue difficult to address. However, as a
first-order validation, I find that global averages of ET closely resemble other state-of-the-art
observation-based estimates of ET in 4 over historical time periods. Further, I rely on initiatives
from the scientific community (i) to comprehensively collect, harmonize and distribute model
output for plug-and-play climate analyses, such as the CMIP6 ensemble (Eyring et al., 2016),
and (ii) to run experiments using these models, such as the Global Land-Atmosphere Coupling
Experiment-Coupled Model Intercomparison Project phase 5 (GLACE-CMIP5) (Seneviratne
et al., 2013), generating valuable model output to study land-atmosphere interactions and (iii) to
validate these model findings and pinpoint weaknesses necessary for model improvement.

7.3.2 Spatiotemporal variability of climate-vegetation interactions

It is important to reconcile smaller and larger spatial and temporal scales, as climate-vegetation
interactions are known to vary substantially across spatiotemporal scales (Linscheid et al.,
2020). More specifically, the ET and the related ELI are governed by different processes across
different scales: Spatially, ranging from sub-grid scale land surface heterogeneity, irrigation
practices or shallow cumulus clouds shadowing the land surface (Pedruzo-Bagazgoitia et al.,
2017), to mesoscale weather systems and temporally, ranging from the diurnal cycle of radiation,
approximately bi-weekly occurring mesoscale weather systems and possibly related extreme
events, to intra-annual atmospheric oscillations and longer-term effects related to intrinsic
ecosystem dynamics, climate change induced trends in atmospheric CO2, energy and water
availability and nutrient limitation. As such, drivers of ET also vary across spatiotemporal scales.
As we focus on bi-weekly and monthly anomalies of ET and its drivers, we exclude effects
of synoptic weather variability. Futher, these are the time scales that ET is most sensitive to
soil moisture (Boese et al., 2019; Teuling et al., 2006). Especially at the larger spatial scales
used throughout this thesis small-scale variability in soil and vegetation characteristics that
are relevant for estimates of ET and its drivers average out. For example, in Chapter 5, I use
SIF as a proxy for vegetation productivity: gross primary productivity (GPP). While at large
spatiotemporal scales the SIF-GPP relation appears linear (Frankenberg et al., 2011; Guanter
et al., 2012; Joiner et al., 2013), it breaks down at smaller scales (He et al., 2020; Magney et al.,
2020; Maguire et al., 2020; Marrs et al., 2020; Wohlfahrt et al., 2018), inducing noise in the
relation. Furthermore, our findings can also be biased by the intrinsic time signature of the
considered vegetation proxy; As EVI relates more to vegetation structure and SIF to physiology,
the soil moisture control over EVI is stronger than over SIF, because the act on similar time
scales (Turner et al., 2020) (Chapter 5). Further, left unconsidered in this thesis are legacy
effects of soil moisture, which could be substantial (Orth and Seneviratne, 2012). Although I do
not specifically address spatial- and temporal-scale related issues using only one methodology, I
partially resolve this by presenting findings at different spatiotemporal scales, ranging from the
in-situ to 2.0° x 2.0° spatial scale and the daily to monthly and decadal time scales. However, it
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is difficult to conclude on functional spatiotemporal scales for ELI between different chapters, as
different observational versus simulated data products are used.

7.3.3 Proxies for energy and water availability and vegetation functioning

The concept of the central index in this thesis, the ELI, is based on the importance of (i) energy
and (ii) water availability for (iii) vegetation functioning. Throughout the thesis, I have applied
different proxies, which involve several implications. In Chapters 2, 4 and 6, I have defined the
ELI using air temperature as an energy proxy. While some studies find surface net radiation to
be a more accurate energy proxy (Maes et al., 2019), I find generally similar estimates between
radiation- versus temperature-based ELI. However, noteworthy are differences in the strength of
energy limitation over the tropics, reflected by stronger correlations of terrestrial evaporation
with surface net radiation versus air temperature anomalies as an energy proxy, because the
tropical multi-layer canopy competes for light resources (Nemani et al., 2003). In boreal regions,
ecosystems are likely more temperature limited, but as I exclude cold temperatures (monthly
temperature < 10 °C) from the analyses, I partly exclude by construction a stronger temperature
limitation in those regions.

Ideally, matric potential would be used as a water proxy as it reflects plant available water
irrespective of soil texture. However, large-scale estimates of matric potential involve large uncer-
tainties as the relationship between soil moisture and matric potential is non-linear (Genuchten,
1987). Root-zone soil moisture can also be used as a water proxy, which unfortunately is only
available at the desired global coverage from Earth system models. Although observation-based
estimates are available from satellites (Dorigo et al., 2017; Entekhabi et al., 2010), the drawback
of such observations is that they only represent the soil moisture dynamics in the surface layer
(Ulaby, 1982). Other than showing acceptable agreement between seasonally averaged soil
moisture between the surface layer and the root-zone in Chapter 2, the relevance of surface
versus root-zone soil moisture for ELI is still to be studied. Analyses trying to extract a root-zone
signature from surface satellite soil moisture observations using data assimilation (Martens et al.,
2017; Tian et al., 2019; Tobin et al., 2019) and increasing lengths of satellite data products that
estimate root-zone soil moisture (Reichle et al., 2017) could lead to better estimates of water
availability and a more accurate representation of water limitation in the near future.

Vegetation indices can be used as a proxy for ET, as the carbon and water cycles are coupled
through stomatal conductance (Gentine et al., 2019; Humphrey et al., 2021), although indices
can have different characteristics and their quality might deteriorate under specific conditions;
Throughout this thesis, terrestrial evaporation (ET), plant transpiration and vegetation indices
(GPP, NDVI, EVI and SIF) are used interchangeably as proxies for ecosystem functioning.
In Chapter 2 and 4, I apply a number of different proxies for vegetation functioning, which
generally yield similar CSMs and also generally similar drivers of vegetation productivity during
extremes, albeit with stronger water limitation on EVI than on SIF, related to their respective
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intrinsic temporal variabilities. Using plant transpiration instead of ET in Chapter 4 reveals
increasing water limitation for ET, whereas plant transpiration does not become increasingly
dependent on soil moisture, in line with Berg and McColl (2021), who report no projected
dryland expansion. Such details are important to consider, as they might crucially change
the take-away message of such research articles. These proxies correlate well on the coarser
spatial and temporal scales used in this thesis. However, these correlations might deteriorate
approaching higher resolutions (He et al., 2020; Magney et al., 2020; Maguire et al., 2020; Marrs
et al., 2020; Wohlfahrt et al., 2018), vouching for analysis ET and vegetation indices and their
respective drivers on smaller scales.

7.3.4 Causal inference

Correlation does not imply causality. However, correlative methods are used in every chapter in
this thesis to indicate relations between eco-climate variables. In wording, I try to refrain from
using terms such as ”control” and ”drivers” that imply causation. Even if such terms are used, I
emphasize that they do not prove causality. Further, confounding effects between the variables
involved in the computation of the ELI act on different time scales: These variables might be
correlated, simply because they are subjected to similar seasonal cycles and/or trends. Such
confounding effects are excluded by detrending and removal of the seasonal cycle by computing
anomalies. On longer time scales, co-linearities could exist between the variables that confound
long-term ELI trends. To address this, the attribution analysis in Chapter 4 tries through
all combinations of predictors, thereby excluding predictors that carry similar information.
Confounding effects can also occur on shorter time scales: Per example, in energy limitation,
one would not expect soil moisture to affect terrestrial evaporation in any way. However, as a
wet soil moisture anomaly arises from a precipitation event and associated clouds preventing
radiation from reaching the land surface, the correlation between soil moisture and terrestrial
evaporation could be negative. To assure that the correlations on which our findings are based
are meaningful, several steps are taken to (i) avoid spurious relations between variables and
(ii) to exclude confounding effects on relations between eco-climate variables. In Chapter 2, I
exclude the confounding effect of soil moisture on the correlation between air temperature and
terrestrial evaporation, as well as the confounding effect of air temperature on the correlation
between soil moisture and terrestrial evaporation. Using these individual partial correlations to
compute ELI, I retrieve similar CSMs, reflecting limited importance of confounding effects in
that analysis. This approach was also used using CMIP6 model data from 1980 - 2100, which
revealed a more consistent confounding effect of air temperature on the correlation between
soil moisture and terrestrial evaporation than of soil moisture on the correlation between air
temperature and terrestrial evaporation, reflecting a globally steady increase in air temperature as
opposed to the ambiguity of root-zone soil moisture trends (Chapter 4). In Chapter 5, spurious
correlations between vegetation productivity and hydrometeorological drivers are excluded
by filtering negative and insignificant correlations. Further, an additional analysis using only
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non-anomalous vegetation productivity yields similar results to Li et al. (2021b), who use a
methodology that more robustly excludes confounding effects between hydrometeorological
drivers. Finally, in Chapter 5, I find similar results based on two approaches, underlining the
robustness of the findings. Despite these efforts, correlative methods are still deemed incapable of
accurately reflecting causal relation (Krich et al., 2020), which calls for other methods to validate
the correlation-based findings and derive the directionality of interactions between eco-climate
variables such as the application of causal networks and/or sensitivity experiments with physical
models.

7.4 Outlook

In this section, I propose a series of interesting avenues that emerged from the discussion or as
an extension of the results presented in the chapters of the thesis.

7.4.1 Determining the functional spatiotemporal scales for ELI and its drivers

The functional drivers behind ELI, ET and related vegetation proxies differ between scales
(Linscheid et al., 2020). Although plenty of research is dedicated to determining drivers for
specific vegetation indices at specific spatiotemporal scales (Li et al., 2021b; Maes et al., 2019;
Zhu et al., 2016) (Chapter 5), there is no universal agreement with respect to the most relevant
drivers for the diverse range of readily available proxies for vegetation functioning across scales.
As such, this calls for a comprehensive analysis of these interactions spanning spatiotemporal
scales. Temporal variability can be twofold: Firstly, it is important to consider at what temporal
resolution to compute the anomalies necessary for the ELI computation, which can be varied
from (sub-)daily to monthly time scales. Secondly, the period over which the ELI is computed
could be varied from 5 years to 30, depending on the length of the data records. Spatial
resolution could be varied from the highest resolution available to 2.0° x 2.0° grid cell resolution.
Satellite-observed proxies for vegetation productivity could include high-resolution SIF from the
TROPOMI and EVI from the Advanced Very High Resolution Radiometer (AVHRR) (Zhu et al.,
2013). Additionally, longer data records are guaranteed from reanalysis runs, for example from
ERA5 and ERA5-Land (Hersbach et al., 2020; Muñoz-Sabater et al., 2021). As air temperature
and surface net radiation are well-constrained variables, these could be extracted from such
reanalyses. High-resolution satellite observations of surface and root-zone soil moisture are
available from the SMAP mission (Entekhabi et al., 2010). At the high-resolution, the soil texture
heterogeneity could be resolved (Hengl et al., 2017), such that the matric potential could be
computed similar to Fu et al. (2022a), which more closely reflects plant available water. To reveal
the causal links between between these eco-climate variables that underly ELI estimates, random
forest methods in combination with Shapley Additive Explanations (SHAP) values could be used,
similar to Li et al. (2021b). Such analyses could reconcile ongoing debates on the importance of
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energy and water availability of different proxies for vegetation productivity (Green et al., 2019;
Humphrey et al., 2021; Humphrey et al., 2018; Jung et al., 2010; Jung et al., 2017).

Within this context, another methodological issue remains which might introduce noise in the
derivation of ELI. In the supplementary material of Chapter 4, I show the derivation of the
ELI based on monthly and 2.0° x 2.0° CMIP6 data. More specifically, I use linear detrending
over the decade within which ELI is computed, to avoid spurious aliasing of the anomalies.
Whereas decadal trends in energy availability are consistent, respective trends of soil moisture and
terrestrial evaporation are not, such that resulting decadal trends could be substantially affected
when the time frame over which they are considered is shifted by a year. This directly affects
the anomaly computation and consequently, the magnitude and/or the sign of the resulting ELI.
Different detrending strategies, such as high-pass filters, could prevent such spurious aliasing
and might provide more robust ELI estimates.

7.4.2 Changing heat extreme characteristics in response to increasing ecosystem water
limitation under climate change

In Chapter 6, heat extremes are described only by their intensity, since the used monthly output
only includes the hottest day per month. However, climate change will also involve changes in
frequency and duration of such events (Seneviratne et al., 2021). In addition to monthly output,
many models from the CMIP6 ensemble also have daily output, which allows to assess frequency
and the duration alongside the intensity of heat extremes. Moreover, the focus in Chapter 6 is on
the yearly daily temperature maximum, while the role of the land surface in general and the ELI
in particular could be even more prominent for rarer heat extremes with longer return periods and
amplified impacts (Davin et al., 2014). The daily maximum temperature can be retrieved from
the CMIP6 ensemble output, from which heat extreme intensity, frequency and duration can be
obtained in combination with a threshold-based method. In the concurrent season, the ELI and
related reductions in evaporative cooling can be computed and trends can be computed similar to
Chapter 6. Further, in addition to temperature, the focus can be shifted to more impact-relevant
metrics, as for heat stress concurrent wind speed and humidity during heat extremes are also
important (Buzan and Huber, 2020; Matthews, 2018), as reduced humidity during such extremes
might even decrease human mortality (Wouters et al., 2022). These analyses could complement
the findings presented in Chapter 6.

7.4.3 A global gridded dataset from exploiting weather balloon soundings using machine
learning

Atmospheric measurements, such as balloon soundings used in Chapter 3, provide valuable
vertical profiles of pressure, temperature, dewpoint (can be converted to relative humidity),
geopotential height and horizontal displacement (wind speed and -direction), which can be used
in near-real time to inform Numerical Weather Prediction (NWP) and to constrain Earth system
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model simulations (Helbig et al., 2020). Millions of these balloon sounding measurements are
collected in the Integrated Global Radiosonde Archive (IGRA) data set (Durre et al., 2006),
starting from as early as 1905 to near-real time. At many stations morning and afternoon
soundings are available, which effectively contain two snapshots of the ABL, from which the
diurnal evolution of the ABL can be estimated using mixed-layer models, such as CLASS4GL
(Wouters et al., 2019). Unfortunately, they are sparsely distributed, as these labour-intensive
soundings are most often performed over the USA, Europe and Australia. Next to balloon
soundings, atmospheric measurements are available from Global Navigation Satellite System
(GNSS) radio occultation (RO) data from FORMOSAT-3/COSMIC, however only over the last
fourteen years at the daily time scale. Although invaluable for NWP, these data are subject to
large errors over regions with large vertical moisture gradients and have limited retrieval in the
lower troposphere, or the ABL (Ho et al., 2020). Part of these issues can be resolved with the
launch of FORMOSAT-7/COSMIC-2 in 2019. However, these GNSS RO data cannot compete
with the length of the balloon sounding records, the accuracy in the ABL and availability of
multiple vertical profiles a day.

Similar to other machine-learning based initiatives that exploit in-situ measurements and upscale
these to a global gridded data products (Ghiggi et al., 2019; Jung et al., 2019; O and Orth, 2021),
the IGRA balloon sounding data set can be further exploited to derive such a gridded data set. In
that direction, a deep hybrid model that has been tested against balloon soundings over the US
(Grover et al., 2015), yielding promising results. Other machine-learning extensions based on
high-resolution climate model output have shown the potential to represent small-scale processes
occurring ABL, such as moist convection (Gentine et al., 2018; Rasp et al., 2018). However,
such a purely observation-based data set with global coverage is not delivered. Such a data set
would comprise of all the target variables measured by balloon soundings (pressure, temperature,
dewpoints, geopotential height and horizontal displacement) at the standard pressure heights as
stated by the World Meteorological Organization (WMO), that presumably are within the ABL:
(1000,) 925, 850 and 700 hPa. Predictors could include observation-based surface soil moisture,
temperature, relative humidity, horizontal displacement, precipitation, radiative components,
vegetation indices (SIF, EVI, leaf area index (LAI)) and potentially others, if available at the
hourly time scale in the same 0.5° x 0.5° as the balloon sounding site. If this method is validated
in a satisfactory way, an observation-based global gridded data set of morning and afternoon
vertical profiles of all the target variables could be derived. This data set could be used to, for
the first time, use an observation-based atmospheric data set to study the diurnal evolution of
the ABL on a global scale. A similar methodology as in Chapter 3 could be used to estimate
surface heat fluxes. Next to that, such a data set could be used to quantify the contribution of
advection to heat accumulation in the ABL, if the validated machine-learning algorithm would
include two versions: one which learns only from predictors locally and one which is allowed to
learn from predictors both locally and upwind.
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Peñuelas, J., P. Ciais, J. G. Canadell, I. A. Janssens, M. Fernández-Martı́nez, J. Carnicer, M. Ober-
steiner, S. Piao, R. Vautard, and J. Sardans (2017). “Shifting from a fertilization-dominated to
a warming-dominated period”. Nature Ecology & Evolution 1.10, 1438–1445.
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Geoffroy, J.-F. Guérémy, M.-P. Moine, R. Msadek, A. Ribes, M. Rocher, R. Roehrig, D. Salas-
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