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Abstract

In this study, we investigated how the concentrations, pairwise correlations and ratios of 202 free circulating blood metabolites and 
lipids vary with age in a panel of n = 1 882 participants with an age range from 48 to 94 years. We report a statistically significant sex-
dependent association with age of a panel of metabolites and lipids involving, in women, linoleic acid, α-linoleic acid, and carnitine, and, 
in men, monoacylglycerols and lysophosphatidylcholines. Evaluating the association of correlations among metabolites and/or lipids with 
age, we found that phosphatidylcholines correlations tend to have a positive trend associated with age in women, and monoacylglycerols 
and lysophosphatidylcholines correlations tend to have a negative trend associated with age in men. The association of ratio between 
molecular features with age reveals that decanoyl-l-carnitine/lysophosphatidylcholine ratio in women “decrease” with age, while l-carnitine/
phosphatidylcholine and l-acetylcarnitine/phosphatidylcholine ratios in men “increase” with age. These results suggest an age-dependent 
remodeling of lipid metabolism that induces changes in cell membrane bilayer composition and cell cycle mechanisms. Furthermore, we 
conclude that lipidome is directly involved in this age-dependent differentiation. Our results demonstrate that, using a comprehensive approach 
focused on the changes of concentrations and relationships of blood metabolites and lipids, as expressed by their correlations and ratios, it is 
possible to obtain relevant information about metabolic dynamics associated with age.
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Aging is a very complex process, influenced by genetic, environ-
mental, and lifestyle factors (1,2), and involves progressive systemic 
dysregulation, affecting all levels of an organism, from molecules to 
organs (3,4). Metabolomics, that is the comprehensive analysis of 
small molecule profiles measured in a biological sample like blood 
or urine (5,6), is an excellent approach to obtain a global repre-
sentation of the metabolic status of an organism with respect to a 
healthy status or a particular pathophysiological condition (7–9). 
The analysis of metabolomic profiles obtained from participants of 
different ages, performed using an integrative systems biology ap-
proach (10), allows the comprehensive description of the metabolic 
dynamics and can help to quantify and decipher the relationships 
between molecular features and aging process (4,11). Studies have 

been conducted in humans, highlighting how the metabolome is sex 
and age-dependent, indicating sex-specific association of certain gen-
etic loci with several metabolites and lipid species: the levels of many 
metabolites (among them fatty acids, including 10 long-chain fatty 
acids, polyunsaturated fatty acids, glutamine, tyrosine, and histidine) 
and variation thereof are highly dependent on sex and age, and that 
sex differentially influences the levels and variation over time of 
many metabolites (12,13).

Correlations and ratios among molecules, and not only their 
levels, bear relevant biological information: Because molecules be-
have in an orchestrated way through metabolic pathways, changes 
in their association patterns, as represented by correlations and 
ratios (14,15), can provide information on the remodulation of 
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biochemical reaction networks and metabolic pathways associated 
with age or sexual dimorphism, thus suggesting mechanisms through 
which molecules may modify cell membranes and affect hormonal 
activities, mitochondrial metabolism, and cell responses to oxidative 
stress (11,16).

In this study, making use of publicly available data, we took a 
comprehensive system biology approach, focusing on the associ-
ation of the blood circulating unconjugated metabolites and lipids 
with age and sex in a large population cohort with an age range 
between 48 and 98 years (17). We investigated how metabolite and 
lipid abundances correlate with age groups, but also how the correl-
ation and the ratios between metabolites and lipids change in groups 
of participants of different (increasing) ages.

Material and Methods

Experimental Data
We used data from the TwinGene project (17) that includes a lon-
gitudinal cohort from the Swedish Twin Register and a matched 
subcontrol cohort stratified on age and sex. The cohort was selected 
by Ganna et  al. (17). This data set is a valid representation of a 
population consisting of not related participants and with a wide 
age range. It contains 202 quantified blood metabolites and lipids 
measured on n = 2 139 participants (nW = 921 women [43%] and 
nM = 1 218 men [57%]) with an overall age range of 47.6–93.9 years 
(women age range = 48.4–93.9 years and men age range = 47.6–
93.3 years) and with an overall average age of 68.8 (women average 
age = 68.8 years and men average age = 68.7 years). This data set 
was used to identify potential molecular features and metabolic 
pathways associated with the sex-related aging process. Data were 
downloaded from the MetaboLights database (https://www.ebi.
ac.uk/metabolights/) with accession number MTBLS93. Briefly, 
metabolomic profiling was performed on ultra-performance liquid 
chromatography to quadrupole time-of-flight mass spectrometry 
with an atmospheric electrospray interface operating in positive ion 
mode. The first step was the detection, alignment, grouping, and as-
signment of metabolites, performed by Ganna et al. (17), using the 
XCSM software. For the metabolic annotation, 4 approaches were 
performed by the authors: (a) based on matching accurate mass, 
fragmentation pattern, and retention time with their in-house spec-
tral library of authentic standards collected; (b) based on spectrum 
and/or m/z similarities, but not retention time, and the annotation 
relies on the information of public databases; (c) based on the com-
bination of spectral data, accurate mass, and retention time to assign 
the metabolite to a specific chemical class; (d) the other approaches 
failed in the annotation of the metabolite and the metabolite was 
annotated as “unknown.” Combining these approaches, m  =  202 
molecular features, divided into m1 = 36 metabolites and m2 = 166 
lipids and lipid precursors, were assigned in the original publication 
(Supplementary Table 1).

For further details, we refer the reader to the original publica-
tion (17).

Data Preprocessing
Removal of outliers
To obtain a uniform study population, we removed those partici-
pants showing outlying blood metabolites and lipid profiles under 
the assumption of the presence of possibly undiagnosed patho-
physiological conditions. Outliers were removed using a Principal 
Components Analysis (PCA) based approach. Hotelling’s T2 values 

were calculated from PCA scores; samples whose T2 values exceeded 
the 95% confidence ellipsis were considered outliers and were re-
moved from subsequent analysis. The optimal number of significant 
principal components to be retained (at the α = 0.05 level) was de-
termined using a statistical test based on the Tracy–Widom distribu-
tion (18). A total of 117 women (18%) and 140 men (11%) were 
removed from the analysis. This left n = 1 882 (nW = 804 women, 
43%, nM = 1 078 men, 57%) samples/participants available for fur-
ther analysis.

Subject stratification
The nW  =  804 women and the nM  =  1 078 men were separately 
stratified by age in 20 groups, Wt (for women) and Mt (for men) 
with t = 1,2, …, 20 of size wi and mi by taking the 20 quantiles QT1, 
QT2, …, QT20 of the women and men age distributions, reflecting 
the 5th, 10th, …, 95th, and 100th percentiles of the sex-specific age 
distribution. Consequently, each Wt group and Mt group had ap-
proximately 5% of the sex-specific sample (≅40 for women and ≅54 
for men). The age characteristics for each women and men group are 
given in Supplementary Table 2. A graphical illustration is shown in 
Figure 1. For each Wt and Mt group, we defined the corresponding 
data matrices Wt and Mt of size wi × p and mi × p containing the 
concentrations of the p = 202 metabolites and lipids measured on 
the wi and mi participants in the corresponding group. Each set of 
data matrices is associated with a 1 × 20 vector tM (respectively tF) 
containing the average age of the M1, M2, …, M20 group (respectively 
W1, W2, …, W20).

Statistical Analysis
Estimation of the average concentration of molecular features 
specific to age groups
For each data set Wt and Mt we calculated the mean abundance mi be-
tween each molecular feature xi. As for the correlation case, we obtained 
thus 20 values for each metabolite–lipid, representing the changes of 
the average abundance of molecular feature xi associated with the age 
groups (a graphical representation is shown in Figure 2A):

We considered the standard mean estimation:

ai = 1
n

n∑
k=1

xi (1)

For each feature, we thus obtained 20 mean values:

A (xi) =
{
ai (t=1), ai (t=2), . . . , ai (t=20)

}
 (2)

Estimation of correlations between molecular features specific 
to age groups
For each data set Wt and Mt of size wi × p and mi × p, we calculated 
the correlation rij between each pair of molecular features xi, xj. For 
each pair, we obtained thus 20 correlation values, representing the 
evolution of the strength of the relationship between molecular fea-
tures xi, xj associated with different age groups (Figure 2A):

C
(
xi, xj

)
=

{
rij (t=1), rij (t=2), . . . , rij (t=20)

}
 

(3)

We used Winsorized correlation coefficients that are robust toward 
the shape, sample size, and outliers in the metabolite concentration 
distribution (19) to estimate the correlation rij within molecular 
features pairs. The Winsorized correlation coefficient is obtained 
by replacing the k smallest observations with the (k + 1)st smallest 
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observation, and the k largest observations with the (k + 1)st largest 
observation. In this way, the observations are Winsorized at each 
end of both xi, and xj. The Pearson’s correlation coefficient is then 
calculated on the Winsorized variables (20). A 10% Winsorization 
was used. Among the ½p(p−1) possible correlations we retained for 
further analysis only those pairs of molecular features for which the 
correlation rij was found to be significant at the α = 0.01 level in at 
least 10 of the 20 data sets Wt and Mt.

Estimation of ratios between molecular features specific to 
age groups
For each data set Wt and Mt, we calculated the ratio qij between each pair 
of molecular features xi, xj. As for the correlation case, we thus obtained 
20 values for each pair, representing the evolution of the ratio magnitude 
of molecular features xi and xj (Figure 2A). We considered the unbiased 
ratio estimator proposed by van Kempen and van Vliet (21) which is 
defined as:

qij = xi
xj
− 1

n

Å
xi
xj3

var (xi)−
cov(xi,xj)

xj2

ã
 (4)

where xi is the mean of xi, xj is the mean of xj, var(xi) is the vari-
ance of xi, cov(xi,xj) is the covariance between xi and xj, and n is the 
sample size. For each ratio, we thus obtained 20 ratio values:

Q
(
xi, xj

)
=

{
qij (t=1), qij (t=2), . . . , qij (t=20)

}
 (5)
Because we were looking for ratio values varying over the 20 age 
groups, we retained for further analysis only those ratios qij for 
which the relative variation between qij(t  = 1) and qij(t  = 20) was 
larger than 10%.

Estimation of the association with average group age of the 
correlation and ratios among molecular features
The association rcA(xi, xj) of the correlation of each pair of mo-
lecular features xi, xj with the average group age tM was estimated 

by taking the Winsorized correlation between the vectors of correl-
ations C

(
xi, xj

)
 defined in eqn (3) and the average group age vector 

tM (respectively, tF):

rcA
(
xi, xj

)
= corr

(
C
(
xi, xj

)
, tM

)
 (6)

The association rqA(xi, xj) of the ratio of each pair of molecular fea-
tures xi, xj with the average group age tM was estimated in a similar 
fashion:

rqA
(
xi, xj

)
= corr

(
Q

(
xi, xj

)
, tM

)
 (7)

The association raA(xi, xj) of the mean abundance of each molecular 
features xi with the average group age tM was estimated as:

raA (xi) = corr (A (xi) , tM) (8)

We considered to be associated with age only the correlations, ratios, 
or mean abundances of those molecular features for which |rcA(xi, 
xj)|≥ 0.65, |rqA(xi, xj)|≥ 0.65 and |raA(xij)|≥ 0.65 and p < .01 after 
correction (fdr) for multiple testing with the Benjamini–Hochberg 
method. Correction for multiple testing (Benjamini–Hochberg) was 
applied at all analysis stages. This choice is based on both statis-
tical and biological considerations. There are 20 age groups, which 
means that the sample size available to estimate the correlation be-
tween metabolite concentrations and associations (correlations and 
ratios) is 20: With 20 observations, it is possible to assess signifi-
cance at α = 0.01 with 80% power only of correlations |r| ≥ 0.65. In 
addition, there are ~20 participants per age group, thus metabolite–
metabolite correlation |r| ≥ 0.65 can be estimated. Biologically the 
0.65 threshold is justified by considering that the majority of cor-
relations observed in metabolomics studies are below 0.6 (22,23): 
Setting a higher threshold allows to focus on correlations that really 
stand out of the background correlation.

Validation of the results
To validate the results of the analysis described in the previous 
sections, that is, the existence of an association between average 

Figure 1. Overview of stratification of the study participants. Participants are first stratified by sex and then by age. Women and men are divided into 20 groups 
according to the 20 quantiles obtained from the age distribution of the 2 sex-specific groups.
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Figure 2. (A) Overview of the statistical procedure used to establish the association rcA (xi , xj) (eqn (6)) between the metabolite and lipids pairwise correlations 
C (xi , xj) (eqn (3)), with the group age (Figure 1). In the case of ratios (eqn (7)), the correlation matrix is replaced with the matrix of pairwise ratios, for average 
abundances is replaced by the vectors of means (eqn (8)). (B). Overview of the data-splitting procedure used to validate the results. Each subject group is 
randomly split into 2 halves, obtaining 2 sets of 20 groups. The analysis is performed on the first set, while the second set is used for validation. The procedure 
is repeated 100 times: Only results validated more than 50% of the times are considered significant.

Journals of Gerontology: BIOLOGICAL SCIENCES, 2022, Vol. 77, No. 5 921
D

ow
nloaded from

 https://academ
ic.oup.com

/biom
edgerontology/article/77/5/918/6423519 by W

ageningen U
niversity and R

esearch – Library user on 20 M
ay 2022



age group and metabolite and lipid concentration (eqn (8)), cor-
relations (eqn (6)), and ratios (eqn (7)), we implemented a data 
splitting approach (24,25). Basically, we randomly split each of the 
20 age groups into 2 halves and performed the analysis independ-
ently on the 2 data splits to ascertain if the results could be repro-
duced. To consider the variability due to the random splitting, the 
overall procedure was repeated generating k = 100 different pairs 
of data splits: Analysis was repeated on the 100 pairs of data. We 
considered to be valid only those results that were confirmed in at 
least 50% of the splits (Figure 2B). In this way, we could obtain an 
estimation of the reproducibility and robustness of the results by 
mimicking validation in an external cohort: A portion of the data 
is used to suggest a hypothesis, and a second, independent portion 
is used to test it. Note that this approach can be rephrased in an 
inferential setting and implies that Type I error (ie, the risk of false 
positives) is controlled (conservatively) at the 0.01 level (26) after 
correction for multiple testing. The downside of such an approach 
is a potential loss of power, due to the reduction of the sample size 
used to estimate correlation. However, this approach is effective in 
giving valid inference after the selection of a hypothesis, estimating 
nuisance parameters, and avoiding overfitting (26).

Software
All calculations and plots were performed in R (version 3.3.2). The 
function “win.cor,” implemented in WRS2 package, was used to cal-
culate the Winsorized correlations.

Results

Association of Metabolite and Lipid Abundances 
With Age
Starting from a total of n = 202 metabolites and lipids, a total of 
pW = 3 (women) and pM = 3 (men) compounds were found statistic-
ally significant (adjusted p ≤ .01 and absolute value of raA ≥ 0.65, 
see eqn (8)) in more than 50% of splits obtained performing the 
validation method.
In particular, in the women cohort, we observed a positive correl-
ation of the concentrations of carnitine with raA = 0.79 and an ad-
justed p = .0009 in the 79% of validation splits, linoleic acid with 
raA = 0.66 and an adjusted p = .001 in the 59% of validation splits, 
and α-linoleic acid with raA = 0.65 and an adjusted p = .01 in the 
66% of validation splits with the average age of women group 
(Figure 3A).

The age groups that we used here are data-driven and are not 
physiologically informed. In particular, the first group of women 
(W1) corresponds to a 6-year age bin that likely represents peri-
menopausal women, given that the average age of menopause in 
women in the Western world is 51 years (27). Although this does not 
affect statistical analysis, we shall consider that menopausal transi-
tion aligns with age.

In the men cohort, we observed negative correlation with 
age of monoacylglycerol (MAG), especially MAG (18:0) with 
raA  =  −0.65 and an adjusted p  =  .005 in the 53% of valid-
ation splits, and lysophosphatidylcholines (LPCs), especially 

Figure 3. Correlations between average metabolites and lipids concentrations and the average age of the 20 subject groups: women (A) and men (B). 
LPC =  lysophosphatidylcholine; PC = phosphatidylcholine; PE = phosphatidylethanolamine; MAG = monoacylglycerol. See Figure 2 for an overview of the 
statistical procedure.
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1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC [16:0]) 
with raA = −0.67 and an adjusted p = .005 in the 58% of validation 
splits, and LPC (0:0/18:0) with raA = −0.65 and an adjusted p = .008 
in the 62% of validation splits (Figure 3B).

For a complete overview of the results for all metabolites see 
Supplementary Table 3.

Association of the Correlation Among Molecular 
Features With Age
Starting from a total of n = 20 301 metabolites and lipids correl-
ations, a total of cW  =  2 (women) and cM  =  4 (men) correlations 
among molecules result to be statistically significant (adjusted p ≤ 
.01 and absolute value of rcA ≥ 0.65, see eqn (6)) in more than 50% 
of splits after the validation method.

In the women cohort, the correlations between phosphocholines 
(PCs), especially between (a) PC (28:2)–PC (32:1) with rcA = 0.69 
and an adjusted p  =  .008 in the 57% of validation splits and (b) 
PC (32:1)–PC (35:3) | PE (38:3) with rcA  = 0.72 and an adjusted 
p = .008 in the 54% of validation splits, tend to increase with age 
(Figure 4A).

In Figure 4B, correlations between MAG and LPC, especially 
(a) MAG (16:0)–LPC (16:1/0:0) with rcA = −0.81 and an adjusted 

p  =  .002 in the 53% of validation splits, (b) MAG (16:0)–LPC 
(0:0/16:1) with rcA= −0.80 and an adjusted p = .002 in the 59% of 
validation splits, (c) MAG (18:1)–LPC (16:1/0:0) with rcA = −0.78 
and an adjusted p =  .003 in the 60% of validation splits, and (d) 
MAG (18:0)–LPC (0:0/16:1) with rcA  =  −0.76 and an adjusted 
p = .004 in the 53% of validation splits, decrease with the average 
age of men-specific groups. The levels of these lipids vary in a similar 
fashion, decreasing with the age.

For a complete overview of the results for all metabolites see 
Supplementary Table 3.

Association of the Ratios Among Molecular 
Features With Age
Alterations in the ratios between 2 single lipids and/or metabolites 
may point at perturbations in pathways relevant for a certain spe-
cific phenotype and they could influence the physiological course of 
aging. In this light, pairwise ratios may serve as potential biomarkers 
of the aging process (28,29).

Starting from a total of n  =  20 301 metabolites and lipids 
ratios, after the validation method, we found only qW =1 (women) 
and qM = 2 (men) ratios between molecules whose variation is sig-
nificantly associated with the average age (adjusted p ≤ 0.01 and 
absolute value of rqA ≥ 0.65, see eqn (7)). In particular, the ratio 
between decanoyl-l-carnitine/LPC (0:0/18:2) with rqA  =  −0.67 
and an adjusted p = .002 in the 56% of validation splits shows 
a negative association with the average age of the women cohort 
(Figure 5A).

In Figure 5B, the ratios between l-carnitine/PC (37:5) with 
rqA = 0.85 and an adjusted p = 1 × 10−4 in the 55% of validation 
splits and l-acetylcarnitine/PC (37:5) with rqA  = 0.85 and an ad-
justed p = 2 × 10−4 in the 51% of validation splits tend to be posi-
tively correlated with the average age of men-specific groups.

Figure 4. Correlations between metabolites and lipids correlations 
and the average age of the 20 subject groups: women (A) and men 
(B). LPC  =  lysophosphatidylcholine; PC  =  phosphatidylcholine; 
PE = phosphatidylethanolamine; MAG = monoacylglycerol. See Figure 2 for 
an overview of the statistical procedure.

Figure 5. Correlations between average metabolites and lipids 
ratios and the average age of the 20 subject groups: women (A) 
and men (B). GCA  =  glycocholic acid; PC  =  phosphatidylcholine; 
PE = phosphatidylethanolamine; MAG = monoacylglycerol. See Figure 2 for 
an overview of the statistical procedure.

Journals of Gerontology: BIOLOGICAL SCIENCES, 2022, Vol. 77, No. 5 923
D

ow
nloaded from

 https://academ
ic.oup.com

/biom
edgerontology/article/77/5/918/6423519 by W

ageningen U
niversity and R

esearch – Library user on 20 M
ay 2022

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glab335#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glab335#supplementary-data


For a complete overview of the results for all metabolites see 
Supplementary Table 3.

Discussion

To shed light on the molecular mechanisms possibly associated with 
age, we studied how the concentration, correlations, and ratios of 
and among circulating blood metabolites and lipids vary with sub-
ject age groups, considering men and women separately to highlight 
possible dependencies on sex. Using different approaches, in the ori-
ginal paper, Ganna et al. (17) demonstrated that LPC (18:1) and LPC 
(18:2) are not directly associated with coronary heart disease (CHD), 
but they found an age-dependent negative trend of these 2 lipids in 
association with CHD risk. Moreover, MAG (18:2) and sphingo-
myelin (28:1) have a positive correlation with the CHD risk. Our re-
sults support the usefulness of the metabolomic analysis conjugated 
with a system biology approach for the identification of age-related 
metabolites and their association patterns, providing additional in-
formation compared to what is already known from the literature.

In women, the levels of carnitine, linoleic acid, and α-linoleic acid 
show a positive correlation with (group) age. These significant cor-
relations are of particular interest because previous studies showed 
that the age-dependent carnitine serum levels increase more with age 
in adult women than men (30,31), and the endogenous biosynthesis 
of carnitine depends on the production, by lysosomal protein deg-
radation, of trimethyl-lysine (32) whose homeostasis is regulated 
by dietary intake, intestinal absorption, and renal reabsorption. 
Carnitine also plays an important role in carnitine-shuttle biochem-
ical reactions and in the energy pool metabolism, inducing an ex-
pression of intramitochondrial alterations (30,33), fundamental in 
linoleic acid metabolism. Previous studies report that the reduc-
tion of estrogens activity and the increase of testosterone levels 
induce modification of the rate of conversion of linoleic acid and 
α-linolenic acid into n − 3 long-chain polyunsaturated fatty acids, 
inducing changes in cell membrane composition and in cell cycle 
mechanisms (34,35). Endogenous biosynthesis of carnitine depends 
on the production, by lysosomal protein degradation, of trimethyl-
lysine (32). The homeostasis of this molecule is regulated by dietary 
intake, intestinal absorption, and renal reabsorption. Carnitine 
also plays an important role in carnitine-shuttle biochemical reac-
tions and in the energy pool metabolism, inducing an expression of 
intramitochondrial alterations (30,33), fundamental in linoleic acid 
metabolisms, whose activity shows age-dependent dysregulation 
(36). In addition to the role of polyunsaturated fatty acids as energy 
sources, they have several functions, as cellular signaling pathways 
(37) and as structural components of cell membranes (38), inducing 
age-dependent changes (39).

The negative correlation of LPCs concentrations with age, mo-
lecularly associated with the reduction of MAGs levels by the MAG 
lipase enzyme activity (36,40), induces a skeletal muscle mitochon-
drial dysfunction (41); the decreasing of LPCs is, generally, also as-
sociated with the increase of body mass index (BMI) but, in an older 
population, this effect is associated, firstly, with the increasing of age-
dependent inflammation, depending on an overall remodulation of 
cell membrane and mitochondrial dysfunction.

Because the pairwise correlations among molecules can be used 
as a proxy to describe the underlying metabolic network (10), here 
we consider the correlations observed as the result of the combin-
ation of all reactions and regulatory processes occurring in the meta-
bolic network (18,42) at a given age.

In women, the correlations between PC (28:2)–PC (32:1) and 
PC (32:1)–PC(35:3) | PE(38:3) tend to increase with age. During 
the menopause period, a global dysregulation on liver enzymes is 
induced, causing the synthesis of PCs from choline (43,44). The 
interactions of PCs are associated with the remodulation of mem-
branes integrity, promoting their conservation and directly affecting 
the membrane permeability, increasing the fluidity of the bilayer and 
protecting it from peroxidative damage (38,45), a frequent phe-
nomenon in advanced age (46). Correlations between MAG (16:0)–
LPC (16:1/0:0), MAG (16:0)–LPC (0:0/16:1), MAG (18:1)–LPC 
(16:1/0:0), and MAG (18:0)–LPC (0:0/16:1) decrease with age in 
men, and this has been related to the increase of the MAG lipase 
enzyme activity that determines the hydrolysis of MAG into glycerol 
and fatty acid alkyl ester (36,40) and to the impaired mitochondrial 
oxidative capacity associated with low levels of LPCs in advanced 
age (36,41).

The alterations in the ratios between 2 single lipids and/or 
metabolites may point at perturbations in pathways relevant for 
a certain specific phenotype. We considered the pairwise ratios 
as potential biomarkers (28,29) of the aging process. We found 
that only the ratio between decanoyl-l-carnitine/LPC(0:0/18:2) 
shows a negative association with the average age in women, 
and, at best of our knowledge, this association has never been 
reported. We can speculate that decreasing levels of LPCs and 
the increasing levels of decanoyl-l-carnitine induce, synergistic-
ally, a mitochondrial dysfunction (36,41), contributing to age-
dependent metabolic changes and being an indirect result of aging 
(47). In contrast, the ratios between l-carnitine/PC(37:5) and 
l-acetylcarnitine/PC(37:5) tend to be positively correlated with 
the average age of men-specific groups.

Little is known about these molecular ratios. As said before, 
carnitine plays a role in carnitine-shuttle biochemical reactions: 
carnitine palmitoyltransferase 1 enzyme is involved in the revers-
ible acylation of l-carnitine, producing l-acetylcarnitine, and 
this event is fundamental in fatty acid beta-oxidation, mainten-
ance of acyl-coenzyme A pools, and energy metabolism (30). The 
carnitine-shuttle activity could generate a specific remodeling of 
mitochondrial fatty acids oxidation, promoting a modification 
in the mitochondrial membrane lipidome (48), increasing PCs 
fraction (49,50). Although, actually, the overall aging molecular 
mechanisms are unclear, our results show that lipids (ie, LPC, 
MAG, PC, PE, linoleic acid) and carnitine are fundamental in the 
age-related metabolic pathways.

Strengths and Limitations
One of the strengths of this study is a large number of patients 
with a very wide age range (47.6–93.9  years) whose metabolome 
was analyzed. We implemented a stringent validation of the results 
using a repeated data resampling to account for varaibility and to 
obtain robust estimate of metabolite concentrations, correlations, 
and ratios calculated at the age group level to eliminate subject-to-
subject variability.

One limitation of this study is the lack of availability of the clin-
ical data (ie, BMI, waist circumference, systolic and diastolic blood 
pressures) associated with the participants’ metabolite data, publicly 
available on the MetaboLights public database, resulting in an in-
complete representation of the pathophysiological conditions of the 
cohort, indicating that we could not correct at the individual level 
for such factors in the analysis.
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Conclusions

In this study, we presented a comprehensive biology approach to 
highlight potential molecular features concentrations, associations, 
and ratios directly associated with the increase of the age of a 
sex- and age-matched population. We showed that linoleic acid, 
α-linoleic acid, and carnitine have, in the women cohort, a positive 
correlation trend with age, while MAGs and LPCs have, in the men 
cohort, a negative correlation trend with age. These results highlight, 
in women, the effect of the reduction of estrogens activity and the 
increase of testosterone levels on the linoleic acid metabolism and 
on the energy pool metabolism that induces the overall changes in 
cell membrane composition and cell cycle mechanisms. In men, low 
levels of LPCs concentrations are directly connected with the reduc-
tion of MAGs levels by the MAG lipase enzymatic activity that in-
duces mitochondrial dysfunction.

Analyzing the pairwise correlations among molecules, we ob-
served that PCs/PCs correlations tend to have a positive trend associ-
ated with the average ages of women, while MAGs/LPCs correlations 
tend to have a negative trend associated with men average ages. 
These results, in both cases, suggest an age-dependent remodeling of 
fatty acid metabolism that induces, overall, remodeling of cell and 
mitochondrial membranes and modification in terms of fluidity of 
membranes bilayers.

We studied the pairwise ratios as potential biomarkers of aging. 
In women, the decanoyl-l-carnitine/LPC ratio has a negative associ-
ation with the increasing of the average ages, while in men the ratios 
between l-carnitine/PC and l-acetylcarnitine/PC have a positive as-
sociation with the increase of age, suggesting, in both cases, a radical 
remodeling of the dynamic membrane fluidity and carnitine-shuttle 
activity.

This study brings forward the concept that correlation and ratios 
among molecular features, and not only abundances along, could be 
used to investigate the dynamic of molecular mechanisms and their 
association with age.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.

Funding
This research received no external funding.

Conflict of Interest
None declared.

Acknowledgments
The authors acknowledge the support and the use of resources of Instruct-
ERIC, a Landmark ESFRI project, and specifically the CERM/CIRMMP Italy 
Centre.

References
 1. Karasik  D, Demissie  S, Cupples  LA, Kiel  DP. Disentangling the genetic 

determinants of human aging: biological age as an alternative to the use 
of survival measures. J Gerontol A Biol Sci Med Sci. 2005;60(5):574–587. 
doi:10.1093/gerona/60.5.574

 2. Kerber  RA, O’Brien  E, Cawthon  RM. Gene expression profiles associ-
ated with aging and mortality in humans. Aging Cell. 2009;8(3):239–250. 
doi:10.1111/j.1474-9726.2009.00467.x

 3. Hoffman  JM, Lyu  Y, Pletcher  SD, Promislow  DEL. Proteomics and 
metabolomics in ageing research: from biomarkers to systems biology. 
Essays Biochem. 2017;61(3):379–388. doi:10.1042/EBC20160083

 4. Jové M, Maté  I, Naudí A, et  al. Human aging is a metabolome-related 
matter of gender. J Gerontol A  Biol Sci Med Sci. 2016;71(5):578–585. 
doi:10.1093/gerona/glv074

 5. Vignoli  A, Ghini  V, Meoni  G, et  al. High-throughput metabolomics by 
1D NMR. Angew Chem Int Ed Engl. 2019;58(4):968–994. doi:10.1002/
anie.201804736

 6. Eckhart  AD, Beebe  K, Milburn  M. Metabolomics as a key in-
tegrator for “omic” advancement of personalized medi-
cine and future therapies. Clin Transl Sci. 2012;5(3):285–288. 
doi:10.1111/j.1752-8062.2011.00388.x

 7. Vignoli A, Tenori L, Luchinat C, Saccenti E. Age and sex effects on plasma 
metabolite association networks in healthy subjects. J Proteome Res. 
2018;17(1):97–107. doi:10.1021/acs.jproteome.7b00404

 8. Vignoli  A, Tenori  L, Giusti  B, et  al. NMR-based metabolomics identi-
fies patients at high risk of death within two years after acute myocar-
dial infarction in the AMI-Florence II cohort. BMC Med. 2019;17(1):3. 
doi:10.1186/s12916-018-1240-2

 9. Vignoli  A, Paciotti  S, Tenori  L, et  al. Fingerprinting Alzheimer’s 
disease by 1H nuclear magnetic resonance spectroscopy of cerebro-
spinal fluid. J Proteome Res. 2020;19(4):1696–1705. doi:10.1021/acs.
jproteome.9b00850

 10. Rosato  A, Tenori  L, Cascante  M, De  Atauri  Carulla  PR, 
Martins  Dos  Santos  VAP, Saccenti  E. From correlation to causation: 
analysis of metabolomics data using systems biology approaches. 
Metabolomics. 2018;14(4):37. doi:10.1007/s11306-018-1335-y

 11. Yu  Z, Zhai  G, Singmann  P, et  al. Human serum metabolic pro-
files are age dependent. Aging Cell. 2012;11(6):960–967. 
doi:10.1111/j.1474-9726.2012.00865.x

 12. Darst  BF, Koscik  RL, Hogan  KJ, Johnson  SC, Engelman  CD. 
Longitudinal plasma metabolomics of aging and sex. Aging (Albany NY). 
2019;11(4):1262–1282. doi:10.18632/aging.101837

 13. Mittelstrass K, Ried JS, Yu Z, et al. Discovery of sexual dimorphisms in 
metabolic and genetic biomarkers. PLoS Genet. 2011;7(8):e1002215. 
doi:10.1371/journal.pgen.1002215

 14. Petersen AK, Krumsiek J, Wägele B, et al. On the hypothesis-free testing of 
metabolite ratios in genome-wide and metabolome-wide association studies. 
BMC Bioinformatics. 2012;13(1):120. doi:10.1186/1471-2105-13-120

 15. Altmaier  E, Ramsay  SL, Graber  A, Mewes  HW, Weinberger  KM, 
Suhre K. Bioinformatics analysis of targeted metabolomics—uncovering 
old and new tales of diabetic mice under medication. Endocrinology. 
2008;149(7):3478–3489. doi:10.1210/en.2007-1747

 16. Barbieri M, Boccardi V, Papa M, Paolisso G. Metabolic journey to healthy 
longevity. Horm Res. 2009;71(suppl 1):24–27. doi:10.1159/000178032

 17. Ganna A, Salihovic S, Sundström J, et al. Large-scale metabolomic pro-
filing identifies novel biomarkers for incident coronary heart disease. PLoS 
Genet. 2014;10(12):e1004801. doi:10.1371/journal.pgen.1004801

 18. Saccenti  E. Correlation patterns in experimental data are affected by 
normalization procedures: consequences for data analysis and net-
work inference. J Proteome Res. 2017;16(2):619–634. doi:10.1021/acs.
jproteome.6b00704

 19. Tuğran  E, Kocak  M, Mirtagioğlu  H, Yiğit  S, Mendes  M. A simulation 
based comparison of correlation coefficients with regard to type I error 
rate and power. J Data Anal Inf Process. 2015;3(3):87–101. doi:10.4236/
jdaip.2015.33010

 20. Wilcox  RR. Some results on a Winsorized correlation coefficient. Br J 
Math Stat Psychol. 1993;46(2):339–349. doi:10.1111/j.2044-8317.1993.
tb01020.x

 21. van  Kempen  GM, van  Vliet  LJ. Mean and variance of ratio estimators 
used in fluorescence ratio imaging. Cytometry. 2000;39(4):300–305. 
doi:10.1002/(sici)1097-0320(20000401)39:4<300::aid-cyto8>3.0.co;2-o

Journals of Gerontology: BIOLOGICAL SCIENCES, 2022, Vol. 77, No. 5 925
D

ow
nloaded from

 https://academ
ic.oup.com

/biom
edgerontology/article/77/5/918/6423519 by W

ageningen U
niversity and R

esearch – Library user on 20 M
ay 2022

https://doi.org/10.1093/gerona/60.5.574
https://doi.org/10.1111/j.1474-9726.2009.00467.x
https://doi.org/10.1042/EBC20160083
https://doi.org/10.1093/gerona/glv074
https://doi.org/10.1002/anie.201804736
https://doi.org/10.1002/anie.201804736
https://doi.org/10.1111/j.1752-8062.2011.00388.x
https://doi.org/10.1021/acs.jproteome.7b00404
https://doi.org/10.1186/s12916-018-1240-2
https://doi.org/10.1021/acs.jproteome.9b00850
https://doi.org/10.1021/acs.jproteome.9b00850
https://doi.org/10.1007/s11306-018-1335-y
https://doi.org/10.1111/j.1474-9726.2012.00865.x
https://doi.org/10.18632/aging.101837
https://doi.org/10.1371/journal.pgen.1002215
https://doi.org/10.1186/1471-2105-13-120
https://doi.org/10.1210/en.2007-1747
https://doi.org/10.1159/000178032
https://doi.org/10.1371/journal.pgen.1004801
https://doi.org/10.1021/acs.jproteome.6b00704
https://doi.org/10.1021/acs.jproteome.6b00704
https://doi.org/10.4236/jdaip.2015.33010
https://doi.org/10.4236/jdaip.2015.33010
https://doi.org/10.1111/j.2044-8317.1993.tb01020.x
https://doi.org/10.1111/j.2044-8317.1993.tb01020.x
https://doi.org/10.1002/(sici)1097-0320(20000401)39:4<300::aid-cyto8>3.0.co;2-o


 22. Camacho  D, Fuente  ADL, Mendes  P. The origins of correlations in 
metabolomics data. Metabolomics. 2005;1(1):53–63. doi:10.1007/
s11306-005-1107-3

 23. Jahagirdar S, Saccenti E. On the use of correlation and MI as a measure 
of metabolite–metabolite association for network differential connectivity 
analysis. Metabolites. 2020;10(4):171. doi:10.3390/metabo10040171

 24. Cox DR. A note on data-splitting for the evaluation of significance levels. 
Biometrika. 1975;62(2):441–444. doi:10.1093/biomet/62.2.441

 25. Rubin D, Dudoit S, van der Laan M. A method to increase the power of 
multiple testing procedures through sample splitting. Stat Appl Genet Mol 
Biol. 2006;5:Article19. doi:10.2202/1544-6115.1148

 26. DiCiccio CJ, DiCiccio TJ, Romano JP. Exact tests via multiple data split-
ting. Stat Probab Lett. 2020;166:108865. doi:10.1016/j.spl.2020.108865

 27. Lindh-Åstrand L, Hoffmann M, Järvstråt L, Fredriksson M, Hammar M, 
Spetz  Holm  AC. Hormone therapy might be underutilized in women 
with early menopause. Hum Reprod. 2015;30(4):848–852. doi:10.1093/
humrep/dev017

 28. Zelezniak A, Sheridan S, Patil KR. Contribution of network connectivity 
in determining the relationship between gene expression and metab-
olite concentration changes. PLoS Comput Biol. 2014;10(4):e1003572. 
doi:10.1371/journal.pcbi.1003572

 29. Krumsiek J, Stückler F, Suhre K, et al. Network-based metabolite ratios 
for an improved functional characterization of genome-wide association 
study results. bioRxiv, doi:10.1101/048512, 13 April 2016, preprint: not 
peer reviewed.

 30. Mitchell SL, Uppal K, Williamson SM, et al. The carnitine shuttle pathway 
is altered in patients with neovascular age-related macular degener-
ation. Invest Ophthalmol Vis Sci. 2018;59(12):4978–4985. doi:10.1167/
iovs.18-25137

 31. Malaguarnera  G, Catania  VE, Bonfiglio  C, Bertino  G, Vicari  E, 
Malaguarnera M. Carnitine serum levels in frail older subjects. Nutrients. 
2020;12(12):3887. doi:10.3390/nu12123887

 32. Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and in-
complete fatty acid oxidation contribute to skeletal muscle insulin resist-
ance. Cell Metab. 2008;7(1):45–56. doi:10.1016/j.cmet.2007.10.013

 33. Judit  B, Andras  S, Katalin  K, Bela  M. Mass spectrometric analysis of 
L-carnitine and its esters: potential biomarkers of disturbances in carnitine 
homeostasis. Curr Mol Med. 2020;20(5):336–354. doi:10.2174/1566524
019666191113120828

 34. Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) 
from genesis to senescence: the influence of LCPUFA on neural devel-
opment, aging, and neurodegeneration. Prog Lipid Res. 2014;53:1–17. 
doi:10.1016/j.plipres.2013.10.002

 35. Cybulska AM, Skonieczna-Żydecka K, Drozd A, et al. Fatty acid profile 
of postmenopausal women receiving, and not receiving, hormone re-
placement therapy. Int J Environ Res Public Health. 2019;16(21):4273. 
doi:10.3390/ijerph16214273

 36. Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan 
regulation, and age-related disease. Aging Cell. 2019;18(6):e13048. 
doi:10.1111/acel.13048

 37. Sokoła-Wysoczańska  E, Wysoczański  T, Wagner  J, et  al. Polyunsaturated 
fatty acids and their potential therapeutic role in cardiovascular system 
disorders—a review. Nutrients. 2018;10(10):1561. doi:10.3390/nu10101561

 38. Li  Z, Agellon  LB, Allen  TM, et  al. The ratio of phosphatidylcholine to 
phosphatidylethanolamine influences membrane integrity and steatohepatitis. 
Cell Metab. 2006;3(5):321–331. doi:10.1016/j.cmet.2006.03.007

 39. Chung KW. Advances in understanding of the role of lipid metabolism in 
aging. Cells. 2021;10(4):880. doi:10.3390/cells10040880

 40. Grabner  GF, Zimmermann  R, Schicho  R, Taschler  U. Monoglyceride 
lipase as a drug target: at the crossroads of arachidonic acid metab-
olism and endocannabinoid signaling. Pharmacol Ther. 2017;175:35–46. 
doi:10.1016/j.pharmthera.2017.02.033

 41. Semba RD, Zhang P, Adelnia F, et al. Low plasma lysophosphatidylcholines 
are associated with impaired mitochondrial oxidative capacity in adults in 
the Baltimore Longitudinal Study of Aging. Aging Cell. 2019;18(2):e12915. 
doi:10.1111/acel.12915

 42. Steuer R, Kurths  J, Fiehn O, Weckwerth W. Observing and interpreting 
correlations in metabolomic networks. Bioinformatics. 2003;19(8):1019–
1026. doi:10.1093/bioinformatics/btg120

 43. Auro K, Joensuu A, Fischer K, et al. A metabolic view on menopause and 
ageing. Nat Commun. 2014;5:4708. doi:10.1038/ncomms5708

 44. Cui X, Yu X, Sun G, et al. Differential metabolomics networks analysis 
of menopausal status. PLoS One. 2019;14(9):e0222353. doi:10.1371/
journal.pone.0222353

 45. Rabini  RA, Moretti  N, Staffolani  R, et  al. Reduced suscepti-
bility to peroxidation of erythrocyte plasma membranes from 
centenarians. Exp Gerontol. 2002;37(5):657–663. doi:10.1016/
s0531-5565(02)00006-2

 46. Akila VP, Harishchandra H, D’souza V, D’souza B. Age related changes 
in lipid peroxidation and antioxidants in elderly people. Indian J Clin 
Biochem. 2007;22(1):131–134. doi:10.1007/BF02912896

 47. Haas  RH. Mitochondrial dysfunction in aging and diseases of aging. 
Biology. 2019;8(2):48. doi:10.3390/biology8020048

 48. Lum H, Sloane R, Huffman KM, et al. Plasma acylcarnitines are associated 
with physical performance in elderly men. J Gerontol A Biol Sci Med Sci. 
2011;66(5):548–553. doi:10.1093/gerona/glr006

 49. Burstein MT, Titorenko VI. A mitochondrially targeted compound delays 
aging in yeast through a mechanism linking mitochondrial membrane lipid 
metabolism to mitochondrial redox biology. Redox Biol. 2014;2:305–307. 
doi:10.1016/j.redox.2014.01.011

 50. Janikiewicz  J, Szymański  J, Malinska  D, et  al. Mitochondria-
associated membranes in aging and senescence: structure, func-
tion, and dynamics. Cell Death Dis. 2018;9(3):332. doi:10.1038/
s41419-017-0105-5

926 Journals of Gerontology: BIOLOGICAL SCIENCES, 2022, Vol. 77, No. 5
D

ow
nloaded from

 https://academ
ic.oup.com

/biom
edgerontology/article/77/5/918/6423519 by W

ageningen U
niversity and R

esearch – Library user on 20 M
ay 2022

https://doi.org/10.1007/s11306-005-1107-3
https://doi.org/10.1007/s11306-005-1107-3
https://doi.org/10.3390/metabo10040171
https://doi.org/10.1093/biomet/62.2.441
https://doi.org/10.2202/1544-6115.1148
https://doi.org/10.1016/j.spl.2020.108865
https://doi.org/10.1093/humrep/dev017
https://doi.org/10.1093/humrep/dev017
https://doi.org/10.1371/journal.pcbi.1003572
https://doi.org/10.1101/048512
https://doi.org/10.1167/iovs.18-25137
https://doi.org/10.1167/iovs.18-25137
https://doi.org/10.3390/nu12123887
https://doi.org/10.1016/j.cmet.2007.10.013
https://doi.org/10.2174/1566524019666191113120828
https://doi.org/10.2174/1566524019666191113120828
https://doi.org/10.1016/j.plipres.2013.10.002
https://doi.org/10.3390/ijerph16214273
https://doi.org/10.1111/acel.13048
https://doi.org/10.3390/nu10101561
https://doi.org/10.1016/j.cmet.2006.03.007
https://doi.org/10.3390/cells10040880
https://doi.org/10.1016/j.pharmthera.2017.02.033
https://doi.org/10.1111/acel.12915
https://doi.org/10.1093/bioinformatics/btg120
https://doi.org/10.1038/ncomms5708
https://doi.org/10.1371/journal.pone.0222353
https://doi.org/10.1371/journal.pone.0222353
https://doi.org/10.1016/s0531-5565(02)00006-2
https://doi.org/10.1016/s0531-5565(02)00006-2
https://doi.org/10.1007/BF02912896
https://doi.org/10.3390/biology8020048
https://doi.org/10.1093/gerona/glr006
https://doi.org/10.1016/j.redox.2014.01.011
https://doi.org/10.1038/s41419-017-0105-5
https://doi.org/10.1038/s41419-017-0105-5

