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Abstract
Estimating a precision matrix is an important problem in several research fields when
dealingwith large-scale data.Under high-dimensional settings, one of themost popular
approaches is optimizing a Lasso or �1 norm penalized objective loss function. This
penalization endorses sparsity in the estimated matrix and improves the accuracy
under a proper calibration of the penalty parameter. In this paper, we demonstrate
that the problem of minimizing Lasso penalized D-trace loss can be seen as solving a
penalized Sylvester matrix equation.Motivated by this method, we propose estimating
the precision matrix using penalized generalized Sylvester matrix equations. In our
method, we develop a particular estimating equation and a new convex loss function
constructed through this equation, which we call the generalized D-trace loss. We
assess the performance of the proposed method using detailed numerical analysis,
including simulated and real data. Extensive results show the advantage of the proposed
method compared to other estimation approaches in the literature.

Keywords D-trace loss · Gaussian graphical models · Generalized Sylvester matrix
equation · �1 Norm penalization · Linear discriminant analysis

Mathematics Subject Classification 62A09 · 15A24 · 62H30 · 90C06

1 Introduction

Precision or inverse covariance matrix has an important role in statistical learning
and data analysis. Its applications span different research fields including genetics,
brain studies, finance, psychology, etc.Moreover, under high-dimensional settings, the
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accurate estimationof a precisionmatrix is crucial for several statisticalmethodologies,
including classification, forecasting, among others.

Precision matrix shows the partial correlations among normally distributed vari-
ables. Under the assumption of multivariate normality, the entry ωi j = 0 of the
precision matrix � = [ωi j ]1≤i, j≤p ∈ Rp×p indicates the conditional independence
between the variables Xi and X j , given all the other variables, i.e., Xi ⊥⊥ X j |X−(i, j)

(Dempster 1972). In this way, the precision matrix is closely related to the Gaussian
graphical models (GGM)which is a useful technique to visualize the conditional inde-
pendence of the variables (e.g., gene interaction networks). The GGM is an undirected
graph G = (N , E), where the set of nodes N = {1, . . . , p} represents the variables.
The set of edges E ⊆ N × N consists of the pair indexes (i, j) corresponding to the
“active” entries ωi j �= 0 for 1 ≤ i, j ≤ p (Lauritzen 1996).

The estimation of large-scale precision matrices and corresponding GGMs has
received a substantial attention in the extant literature. Under high-dimensional set-
tings, one of the most commonly employed approaches in the literature is the Lasso
(least absolute shrinkage and selection operator) or �1 norm penalization (Tibshirani
1996) of a certain loss function, which induces sparsity in the estimated preci-
sion matrix. In particular, Banerjee et al. (2006) introduce the �1 norm penalized
log-likelihood maximization approach, also known as graphical Lasso or GLASSO
estimator (see also Yuan and Lin 2007; Friedman et al. 2008; Scheinberg et al. 2010;
Rothman et al. 2008; Ravikumar et al. 2011; Hsieh et al. 2014, for theoretical anal-
yses and different solving algorithms for this estimator). Other methods that employ
�1 norm penalization approach include the neighborhood selection for selecting the
GGMs (Meinshausen and Bühlmann 2006), sparse partial correlation estimation or
SPACE (Peng et al. 2009), constrained �1 norm minimization for inverse matrix esti-
mation or CLIME (Cai et al. 2011), �1 norm penalized D-trace loss minimization
(Zhang and Zou 2014), sparse column-wise inverse operator or SCIO (Liu and Luo
2015), among several others. Despite the popularity of �1 norm penalty, literature
considers also other penalties such as Adaptive �1 norm (Fan et al. 2009; Avagyan
et al. 2018), SCAD (Fan et al. 2009), Elastic-Net (Ryali et al. 2012), Ridge (i.e.,
squared Frobenius or �2 norm) (vanWieringen and Peeters 2016; Kuismin et al. 2017)
and Generalized Ridge penalties (van Wieringen 2019). Note that the methods based
on penalization framework require a proper selection (i.e., calibration) of the tuning
parameter that controls the strength (i.e., intensity) of the employed penalty. This
can be done empirically through several techniques such as penalized goodness-of-fit
criteria (e.g., Bayesian Information Criterion) and cross-validation methods. In this
paper, we employ both techniques for selecting the penalty parameters of the consid-
ered methods. For the further review on methods to estimate precision matrices, we
refer to Fan et al. (2016) and Kuismin and Sillanpää (2017).

In line with the literature mentioned above, we propose a precision matrix estima-
tion method using �1 norm penalized convex minimization. Our introduced method
is motivated by the D-trace framework of Zhang and Zou (2014). First, we show that
the D-trace loss function is closely related to the Sylvester matrix equation. In other
words, minimizing a penalized D-trace loss function is equivalent to solving a penal-
ized Sylvester equation. We note that the Sylvester equation is a particular case of
matrix equation family called generalized Sylvester equations. Next, we discuss the
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estimation of the precisionmatrices through particular penalized generalized Sylvester
equation. Furthermore, we construct a loss function based on the selected penalized
equation. We call this function a generalized D-trace loss. Using extensive numerical
analysis, we show that the estimated precision matrix obtained through solving the
introduced penalized generalized Sylvester equation (i.e., minimizing �1 norm penal-
ized generalized D-trace loss) provides more favorable performance in finite samples
than the existing methods. We evaluate the performances of the considered estimators
in terms of several statistical measures for different models (i.e., patterns) of the true
precision matrix �.

The manuscript is organized as follows. In Sect. 2, we describe the proposed
methodology. In Sect. 3, we evaluate the statistical performance of the proposed
methodology and compare it with that of other approaches. In Sect. 4, we provide
a real data application: classification of breast cancer patients using linear discrimi-
nant analysis. We provide our conclusions in Sect. 5. Finally, we provide technical
details in “Appendix A” and the required solving algorithm in “Appendix B.”

2 Proposedmethodology

We use the following notations throughout the paper. For any p-dimensional vector

a = (a1, . . . , ap)T ∈ R
p, we define the �2 norm by ||a||2 =

√∑p
j=1 a

2
j . For any

symmetric matrix A = [ai j ]1≤i, j≤p ∈ R
p×p, we denote the Frobenius norm by

||A||2 =
√∑p

i=1

∑p
j=1 a

2
i j , the �∞ norm by ||A||∞ = max1≤i, j≤p |ai j |, the matrix

�1 norm by ||A||�1 = max1≤ j≤p
∑p

i=1 |ai j |, the componentwise �1 norm by ||A||1 =∑p
i=1

∑p
j=1 |ai j | and off-diagonal �1 norm by ||A||1,off = ∑p

i=1

∑p
j=1, j �=i |ai j |, the

spectral norm by ||A||sp = sup||x ||2≤1 ||Ax ||2. Furthermore, we assume that Xn×p is
mean-centered observed sample data matrix, where each row Xi = (

Xi1, . . . , Xip
)
is

a p-dimensional normal random vector, i.i.d. for i = 1, . . . , n and has a covariance
matrix � = �−1.

Many studies focus on the estimation of a precision matrix under high-dimensional
settings. Among the proposed approaches, graphical Lasso (or GLASSO) is one of
the most popular and well-studied estimators. This estimator is obtained by minimiz-
ing the �1 norm penalized negative log-likelihood function of a multivariate normal
distribution (Banerjee et al. 2006; Friedman et al. 2008):

�̂GLASSO = argmin
�

− log det(�) + trace(�S) + ν||�||1,off, (1)

where S = 1

n

∑n
i=1 X

T
i Xi is the sample covariance matrix and ν > 0 is the associated

tuning (or penalty) parameter that controls the accuracy and the sparsity of the precision
matrix estimator. As an alternative to the log-likelihood function in (1), Zhang and
Zou (2014) introduce a new loss function called D-trace:
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fDT(�,�) = 1

2
trace(�2�) − trace(�), (2)

which is a quadratic function of the precisionmatrix. Furthermore, the authors propose
a precision matrix estimation method based on minimizing the �1 norm penalized D-
trace loss function (hereafter, DT):

�̂DT = arg min
��ε I

1

2
trace(�2S) − trace(�) + τ ||�||1,off, (3)

where τ > 0 is the associated penalty parameter. The constraint � � ε I guarantees
that the solution of (3) is positive definite, where ε > 0 is a small positive value (we
set ε = 10−8 in the numerical analyses). This problem can be easily solved through an
algorithm developed by the same authors, which is based on the alternating direction
method (see also Wang and Jiang 2020, for a similar solving algorithm).

According to the first-order condition, the solution of (3) satisfies the following
penalized matrix equation:

1

2
�S + 1

2
S� − I + Penτ (�) = 0. (4)

Here, Penτ (�) is the penalty term of the estimating equation and is defined as

Penτ (�) = τ Z(�) ∈ Rp×p, where Z(�) = ∂||�||1,off
∂�

∈ [−1, 1] is the subgra-

dient of the (off-diagonal) �1 norm of a matrix.
Note that if there is no penalty, i.e., τ = 0, (4) is known as the Sylvester equation.

This is a matrix equation with the following definition:

�R + L� + C = 0, (5)

where R, L andC are knownmatrices and� is the unknown. In thisway,DTestimation

can be seen as solving a Sylvester equation (using R = L = 1

2
S and C = −I ) with

an imposed Penτ (�) penalty.
The Sylvester equation (5) is closely related to the matrix equation family known

as generalized Sylvester equations, which are defined as

k∑
i=1

Li�Ri + C = 0, (6)

where Li , Ri (i = 1, . . . , k) andC are knownmatrices (see, for instance, Li et al. 2010;
De Terán and Iannazzo 2016). Here, we assume that these matrices guarantee that the
resulting estimator of � is symmetric. Note that the classical Sylvester equation 5 is
a spacial case of 6.

Motivated by the DT estimator (4), we focus on estimating the precision matri-
ces through penalized generalized Sylvester equations. In other words, we induce an
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additional penalty term in (6), under the assumption of positive definiteness of the
estimated precision matrix:

k∑
i=1

Li�Ri + C + Penλ(�) = 0. (7)

Note that different choices of those matrices will lead to different equations. In this
paper, we restrict ourselves with one special case, by setting L1 = R2 = I , L2 =
R1 = 1

4
S, L3 = R3 =

√
2

2
S1/2 and C = −I . We demonstrate the estimation of the

precision matrix using the following penalized matrix equation:

1

4
�S + 1

4
S� + 2

4
S1/2�S1/2 − I + λZ(�) = 0, (8)

where λ > 0 is the penalty parameter and � is required to be positive definite.
The term Z(�) is defined earlier. In contrast to (4), the equation (8) has an extra
weighted component S1/2�S1/2, which imposes additional balanced constraints on
the estimand.Wehypothesize that thismay provide additional benefits on the estimated
precision matrix. On the other hand, similar to (4), when λ = 0, the solution of (8) is
S−1.

Notice that the solution of the penalized matrix equation (8) is the minimizer of the
following optimization problem:

min
��ε I

1

4
trace(�2S) + 1

4
trace(S1/2�S1/2�) − trace(�) + λ||�||1,off. (9)

Again, the constraint � � ε I is added to guarantee the positive definiteness of �.
We call the proposed precision matrix estimator generalized D-trace estimator �̂GDT.
Correspondingly, we define a new loss function as

fGDT(�,�) = 1

4
trace(�2�) + 1

4
trace(�1/2��1/2�) − trace(�), (10)

which we call generalized D-trace loss function. Notice that because of the additional
term trace(�1/2��1/2�), the fGDT function is no longer quadratic of � (but rather
“quasi-quadratic”). Nevertheless, fGDT(�,�) is a convex function of � and has a
unique minimizer at �−1 (see “Appendix A” for more details on the proposed loss
function). Finally, in order to solve the optimization problem (9), we use an algorithm
based on the alternating direction method (see “Appendix B” for detailed description
of the algorithm) similar to DT method.

The following remarks are in order. First, this paper does not aim at discussing the
dominance of one loss function over the other one or which loss function should be
used under different circumstances. Moreover, in this article, we discuss the advan-
tages of employing penalized generalized Sylvester equation for estimating precision
matrices by focusing on one particular case given in (8). As mentioned earlier, differ-
ent generalized Sylvester equations can be introduced based on different choices of
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Li , Ri and C in (6). Notice that these matrices should be selected properly in order
to guarantee the symmetry of the esimtating function (i.e., left side of Eq. (7)) and
the corresponding precision matrix estimate. For example, in (8), the symmetry of
the estimating function is ensured. We leave the selection of those matrices for the
optimal estimating equation (7) for the future research. Second, in this article, we
focus only on �1 norm penalized generalized Sylvester equation. We note that for
instance, the adaptive (i.e., weighted) �1 norm penalization can also be employed in
(8) (see, for instance Avagyan et al. 2018, for Adaptive �1 norm penalized D-trace loss
minimization approach).

3 Simulation analysis

We demonstrate the numerical performance of the proposed approach based on simu-
lated data generated using different models for the true precision matrix � in terms of
several statistical measures. In our study, we consider the most popular techniques for
selecting the penalty parameters for the considered methods. We compare �̂GDT with
D-Trace estimator �̂DT (Zhang and Zou 2014), graphical Lasso estimator �̂GLasso
(Banerjee et al. 2006) and CLIME estimator �̂CLIME (Cai et al. 2011).

3.1 Performance evaluation

We generate multivariate normal random samples with zero mean and covariance
matrix � = �−1 for each model over 100 replications. We evaluate the quality of
a precision matrix estimator based on popular statistical losses and sparsity pattern
prediction measures, previously considered in the literature. In particular, we consider
the Kullback–Leibler loss (KLL) or the entropy loss (see, for instance Yuan 2010; Yin
and Li 2013, etc.), the reverse Kullback–Leibler loss (RKLL) (see Avagyan 2021),
the relative trace error (RTE) and matrix losses (the Frobenius �2 norm, the spectral
norm, and the matrix �1 norm) (see, for instance Cai et al. 2011; Zhang and Zou 2014;
van Wieringen and Peeters 2016, etc.) defined as

KLL(�̂,�) = trace(�−1�̂) − log det(�−1�̂) − p,

RKLL(�̂,�) = trace(��̂−1) − log det(��̂−1) − p,

RTE(�̂,�) =
∣∣∣∣1 − trace(�̂)

trace(�)

∣∣∣∣
�2(�̂,�) = ||�̂ − �||2,
�sp(�̂,�) = ||�̂ − �||sp,
�1(�̂,�) = ||�̂ − �||�1 .

Furthermore, we evaluate the selection of GGM (i.e., sparsity pattern prediction)
based on specificity, sensitivity andMatthews correlation coefficient (Matthews 1975)
defined as
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Specificity = TN

TN + FP
,

Sensitivity = TP

TP + FN
,

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

Here, TP is the number of true positives (i.e., correctly selected nonzero entries),
TN is the number of true negatives (i.e., correctly selected zero entries), FP is the
number of false positives (i.e., incorrectly selected nonzero entries), and FN is the
number of false negatives (i.e., incorrectly selected zero entries). The MCC is popular
approach in statistics for measuring the binary classifications: the closer the MCC to
one is, the better the overall classification is (see Chicco and Jurman 2020, for more
details).

In this paper, we focus on both group of measures, i.e., statistical prediction and
sparsity pattern selection. Usually, improving one measure may deteriorate the other
one. Therefore, we aim at achieving a desirable performance in terms of both criteria,
instead of focusing on either one.Moreover, this performance should remain consistent
over different settings.

3.2 Simulation study 1

Our first simulation study is based on the following models.

• Model 1 ωi i = 1, ωi,i−1 = ωi−1,i = 0.45 and other values are 0 (prevously
considered in Yuan and Lin 2007, etc) friedman.

• Model 2ωi i = 1,ωi,i−1 = ωi−1,i = 0.5,ωi,i−2 = ωi−2,i = 0.35 and other values
are 0 (motivated by Kuismin et al. 2017)).

• Model 3 A block-diagonal matrix, with four equally sized blocks along the diag-
onal. Each block is defined as ωi j = 0.6|i− j | (prevously considered in Cai et al.
2011; Fan et al. 2009, etc).

• Model 4 A random positive definite matrix, with approximately 50% of nonzero
entries, generated using MATLAB command sprandsym. The matrix is further
standardized to have unit diagonal.

We set n = 200, p = 200, 400. For this study, we select the penalty parameters for
the considered methods using Bayesian Information Criterion (BIC) (Yuan and Lin
2007).

3.3 Simulation study 2

Our second study is based on the following models previously considered in Zhang
and Zou (2014).

• Model 5 ωi,i = 1, ωi, j = 0.2 for 1 ≤ |i − j | ≤ 2 and other values are 0.
• Model 6 ωi,i = 1, ωi, j = 0.2 for 1 ≤ |i − j | ≤ 4 and other values are 0.
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• Model 7 ωi,i = 1, ωi,i+1 = 0.2 for mod(i, p1/2) �= 0, ωi,i+p1/2 = 0.2 and other
values are 0. It is assumed that p1/2 is an integer.

In line with Zhang and Zou (2014), we set n = 400, p = 500 for models 5 and 6 and
p = 484 for model 7. For this study, we select the penalty parameters using fivefold
cross-validation technique, consistent with the study of Zhang and Zou (2014).

3.4 Discussion of results

Tables 1, 2, 3, 4, 5, 6, and 7 report the averages (and standard deviations) of the
measures over 100 replications. Bold letters indicate the best performance. First, we
observe that GDT outperforms DT in terms of KLL, RKLL, RTE, �2 norm, �sp norm
for all models, in terms of �1 norm for models 1, 2, 3, 4, in terms of Specificity for
models 1, 2 (when p = 400), 3 (when p = 200), 4, 5, 6, 7, in terms of Sensitivity for
models 3, 4, 5 and in terms of MCC for models 1, 2 (when p = 400), 3, 4, 5, 6, 7.
Both GDT and DT provide similar Sensitivity for models 1 and 2. On the other hand,
DT method performs better than GDT in terms of the matrix �1 norm for models 5, 6,
7, in terms of Specificity for models 2 (when p = 200), 3 (when p = 400), in terms
of Sensitivity for models 6, 7 and in terms of MCC for model 2 (when p = 200).

Comparing our proposed method with GLASSO and CLIME methods, we see that
in general, GDT provides better results, especially in terms of the statistical losses.
However, GLASSO provides the best overall results in terms of the KLL for models

Table 1 Average measures (with standard deviations) over 100 replications for Model 1

p �̂GDT �̂DT �̂GLASSO �̂CLIME

KLL 200 7.920 (0.411) 12.28 (0.973) 16.51 (0.893) 15.76 (0.665)

400 13.25 (0.612) 33.86 (0.892) 37.26 (3.457) 33.12 (0.851)

RKLL 200 6.895 (0.345) 10.34 (0.862) 21.20 (1.285) 15.28 (0.660)

400 11.99 (0.539) 29.02 (0.749) 48.42 (5.085) 30.82 (0.755)

RTE 200 0.101 (0.009) 0.156 (0.012) 0.340 (0.010) 0.235 (0.007)

400 0.070 (0.006) 0.207 (0.005) 0.358 (0.016) 0.232 (0.005)

�2 200 3.074 (0.116) 3.905 (0.201) 6.620 (0.173) 5.133 (0.114)

400 4.068 (0.117) 6.775 (0.107) 9.817 (0.392) 7.225 (0.098)

�sp 200 0.597 (0.048) 0.662 (0.043) 0.899 (0.023) 0.786 (0.038)

400 0.624 (0.063) 0.765 (0.032) 0.936 (0.030) 0.786 (0.025)

�1 200 0.759 (0.058) 0.837 (0.054) 1.060 (0.034) 0.967 (0.056)

400 0.796 (0.077) 0.920 (0.040) 1.108 (0.028) 0.983 (0.046)

Specificity 200 0.992 (0.001) 0.985 (0.002) 0.984 (0.003) 0.991 (0.001)

400 0.999 (0.001) 0.998 (0.001) 0.991 (0.002) 0.993 (0.001)

Sensitivity 200 1 (0) 1 (0) 1 (0) 1 (0)

400 1 (0) 1 (0) 1 (0) 1 (0)

MCC 200 0.805 (0.012) 0.709 (0.040) 0.695 (0.029) 0.797 (0.010)

400 0.924 (0.007) 0.886 (0.009) 0.683 (0.053) 0.712 (0.006)
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Table 2 Average measures (with standard deviations) over 100 replications for Model 2

p �̂GDT �̂DT �̂GLASSO �̂CLIME

KLL 200 14.73 (2.060) 25.81 (0.760) 34.87 (2.476) 29.43 (0.943)

400 31.13 (1.034) 52.62 (1.077) 80.76 (4.053) 89.76 (1.222)

RKLL 200 13.35 (2.457) 27.37 (0.887) 62.74 (6.118) 31.47 (1.124)

400 28.87 (0.927) 54.83 (1.152) 152.3 (10.54) 128.2 (2.723)

RTE 200 0.170 (0.030) 0.310 (0.006) 0.471 (0.013) 0.309 (0.007)

400 0.180 (0.006) 0.306 (0.004) 0.495 (0.009) 0.424 (0.003)

�2 200 5.557 (0.607) 8.552 (0.123) 11.85 (0.268) 8.911 (0.133)

400 8.157 (0.158) 12.04 (0.111) 17.55 (0.253) 16.11 (0.088)

�sp 200 1.123 (0.095) 1.495 (0.043) 1.943 (0.039) 1.592 (0.055)

400 1.198 (0.058) 1.506 (0.033) 2.025 (0.024) 1.994 (0.043)

�1 200 1.480 (0.104) 1.759 (0.063) 2.176 (0.031) 2.005 (0.091)

400 1.553 (0.088) 1.796 (0.052) 2.257 (0.030) 2.387 (0.065)

Specificity 200 0.969 (0.007) 0.985 (0.001) 0.963 (0.007) 0.976 (0.001)

400 0.993 (0.001) 0.989 (0.001) 0.982 (0.003) 0.994 (0.001)

Sensitivity 200 1 (0) 1 (0) 0.998 (0.002) 0.997 (0.002)

400 1 (0) 1 (0) 0.996 (0.003) 0.960 (0.006)

MCC 200 0.669 (0.055) 0.789 (0.008) 0.630 (0.039) 0.705 (0.007)

400 0.794 (0.006) 0.720 (0.006) 0.638 (0.033) 0.797 (0.005)

Table 3 Average measures (with standard deviations) over 100 replications for Model 3

p �̂GDT �̂DT �̂GLASSO �̂CLIME

KLL 200 19.72 (0.344) 21.78 (0.352) 30.21 (0.394) 22.13 (0.357)

400 43.41 (2.509) 52.62 (0.604) 61.35 (1.067) 52.21 (0.601)

RKLL 200 31.44 (0.760) 37.35 (0.847) 66.69 (0.955) 42.71 (0.996)

400 68.82 (7.742) 98.66 (1.532) 136.2 (3.114) 111.7 (1.859)

RTE 200 0.298 (0.007) 0.332 (0.006) 0.452 (0.004) 0.375 (0.006)

400 0.299 (0.026) 0.374 (0.004) 0.456 (0.004) 0.428 (0.004)

�2 200 12.02 (0.085) 12.64 (0.075) 14.41 (0.037) 13.06 (0.070)

400 17.32 (0.695) 19.19 (0.067) 20.59 (0.082) 19.76 (0.066)

�sp 200 2.817 (0.021) 2.913 (0.017) 3.182 (0.010) 2.995 (0.018)

400 2.870 (0.085) 3.074 (0.011) 3.219 (0.011) 3.146 (0.014)

�1 200 3.157 (0.044) 3.193 (0.035) 3.373 (0.023) 3.321 (0.043)

400 3.236 (0.071) 3.310 (0.033) 3.418 (0.028) 3.420 (0.035)

Specificity 200 0.994 (0.001) 0.993 (0.001) 0.995 (0.001) 0.989 (0.001)

400 0.998 (0.002) 0.999 (0.001) 0.995 (0.001) 0.996 (0.001)

Sensitivity 200 0.082 (0.002) 0.081 (0.002) 0.064 (0.001) 0.094 (0.002)

400 0.035 (0.005) 0.032 (0.001) 0.035 (0.001) 0.039 (0.001)

MCC 200 0.214 (0.005) 0.203 (0.005) 0.185 (0.004) 0.203 (0.006)

400 0.148 (0.004) 0.145 (0.002) 0.117 (0.004) 0.140 (0.002)
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Table 4 Average measures (with standard deviations) over 100 replications for Model 4

p �̂GDT �̂DT �̂GLASSO �̂CLIME

KLL 200 60.04 (0.783) 75.71 (3.654) 85.35 (2.673) 140.8 (3.190)

400 152.6 (1.330) 176.9 (1.193) 213.3 (4.170) 343.1 (4.437)

RKLL 200 175.1 (5.016) 251.1 (30.43) 338.5 (21.70) 631.1 (27.20)

400 563.5 (13.8) 653.5 (9.220) 997.2 (39.07) 2226 (83.42)

RTE 200 0.412 (0.006) 0.519 (0.020) 0.631 (0.006) 0.648 (0.005)

400 0.388 (0.005) 0.568 (0.003) 0.688 (0.004) 0.740 (0.003)

�2 200 15.01 (0.059) 16.25 (0.318) 17.67 (0.100) 17.90 (0.069)

400 22.85 (0.067) 24.29 (0.036) 26.25 (0.077) 26.93 (0.034)

�sp 200 5.249 (0.024) 5.367 (0.043) 5.380 (0.013) 5.479 (0.013)

400 4.821 (0.021) 4.879 (0.014) 4.935 (0.009) 5.003 (0.010)

�1 200 9.902 (0.072) 10.09 (0.092) 10.17 (0.036) 10.34 (0.047)

400 11.94 (0.076) 12.01 (0.048) 12.07 (0.020) 12.11 (0.025)

Specificity 200 0.965 (0.002) 0.961 (0.010) 0.967 (0.005) 0.997 (0.001)

400 0.977 (0.001) 0.977 (0.001) 0.984 (0.002) 0.999 (0.001)

Sensitivity 200 0.123 (0.002) 0.116 (0.015) 0.149 (0.011) 0.044 (0.001)

400 0.057 (0.001) 0.056 (0.001) 0.068 (0.004) 0.015 (0.001)

MCC 200 0.165 (0.006) 0.146 (0.006) 0.203 (0.006) 0.139 (0.004)

400 0.087 (0.003) 0.085 (0.003) 0.130 (0.004) 0.081 (0.002)

Table 5 Average measures (with standard deviations) over 100 replications for Model 5

�̂GDT �̂DT �̂GLASSO �̂CLIME

KLL 19.62 (0.451) 20.52 (0.388) 20.88 (0.295) 25.99 (0.329)

RKLL 19.96 (0.459) 21.49 (0.410) 23.34 (0.321) 34.92 (0.540)

RTE 0.045 (0.003) 0.061 (0.003) 0.094 (0.003) 0.185 (0.003)

�2 6.640 (0.074) 6.966 (0.062) 7.223 (0.043) 8.645 (0.050)

�sp 0.724 (0.023) 0.745 (0.018) 0.759 (0.012) 0.917 (0.014)

�1 1.158 (0.061) 1.106 (0.040) 1.401 (0.061) 1.129 (0.025)

Specificity 0.984 (0.001) 0.983 (0.001) 0.963 (0.001) 0.995 (0.001)

Sensitivity 0.912 (0.008) 0.911 (0.009) 0.919 (0.007) 0.793 (0.010)

MCC 0.570 (0.006) 0.555 (0.006) 0.419 (0.005) 0.707 (0.008)

6, 7, in terms of Specificity for models 3 (when p = 200), 4, in terms of sensitivity for
models 4, 5, 6, 7 and in terms ofMCC formodel 4. In addition, we observe that CLIME
estimator provides the best overall results in terms of specificity for models 2 (when
p = 400), 4, 5, 6, 7, in terms of sensitivity for model 3 and in terms ofMCC formodels
2 (when p = 400), 5, 6, 7. Note that these results are not surprising because GLASSO
provides more dense solutions (thus, higher sensitivity but lower specificity), whereas
CLIME provides more sparse solutions (thus, higher specificity but lower sensitivity),
in general. This can be observed on the recorded numbers of nonzero entries of these
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Table 6 Average measures (with standard deviations) over 100 replications for Model 6

�̂GDT �̂DT �̂GLASSO �̂CLIME

KLL 36.74 (0.417) 37.30 (0.375) 35.80 (0.307) 46.72 (0.347)

RKLL 45.20 (0.520) 47.36 (0.483) 47.52 (0.429) 78.13 (0.843)

RTE 0.119(0.003) 0.133 (0.003) 0.154 (0.002) 0.269 (0.003)

�2 11.20 (0.046) 11.48 (0.040) 11.42 (0.035) 13.39 (0.039)

�sp 1.520 (0.016) 1.560 (0.013) 1.544 (0.008) 1.800 (0.008)

�1 1.975 (0.048) 1.947 (0.039) 2.372 (0.059) 1.995 (0.020)

Specificity 0.983 (0.001) 0.982 (0.001) 0.945 (0.001) 0.998 (0.001)

Sensitivity 0.672 (0.007) 0.675 (0.007) 0.736 (0.007) 0.439 (0.008)

MCC 0.521 (0.006) 0.511 (0.005) 0.360 (0.004) 0.580 (0.007)

Table 7 Average measures (with standard deviations) over 100 replications for Model 7

�̂GDT �̂DT �̂GLASSO �̂CLIME

KLL 16.37 (0.431) 19.18 (0.415) 15.34 (0.347) 31.35 (0.533)

RKLL 14.15 (0.362) 16.15 (0.337) 15.48 (0.327) 35.02 (0.668)

RTE 0.035 (0.003) 0.058 (0.003) 0.093 (0.003) 0.217 (0.003)

�2 4.577 (0.064) 4.910 (0.059) 4.984 (0.053) 7.717 (0.064)

�sp 0.506 (0.022) 0.540 (0.018) 0.551 (0.011) 0.801 (0.012)

�1 0.927 (0.055) 0.926 (0.037) 1.295 (0.065) 1.030 (0.032)

Specificity 0.983 (0.001) 0.980 (0.001) 0.949 (0.001) 0.999 (0.001)

Sensitivity 0.994 (0.002) 0.995 (0.002) 0.999(0.001) 0.957 (0.006)

MCC 0.602 (0.004) 0.573 (0.004) 0.393 (0.003) 0.933 (0.005)

estimators applied on a real dataset (see Fig. 1). Moreover, the results indicate that
good performance of GLASSO and CLIME in terms of GGM selection usually leads
to deteriorated performances of matrix prediction (i.e., statistical losses).

In sum, the proposed GDT estimator in general provides better performance than
DT, GLASSO, CLIME methods for most of the models in terms of most statisti-
cal losses and GGM prediction measures. Moreover, GDT shows a better trade-off
between the matrix prediction and sparsity pattern identification, i.e., the outperfor-
mance in terms of one criterion does not diminish the other one.

In addition, we conduct a study with smaller off-diagonal nonzero entries in models
1-3 (not provided). The results support our discussion above (i.e., the comparison of
the considered methods remains roughly the same) and shows the robustness of our
simulation study.

In “Appendix A,” we briefly discuss the required theoretical assumption for the
model selection, called the irrepresentability condition. Although we do not discuss
theoretical properties of the considered method, we provide a simple numerical exam-
ple (previously used in the literature) where the irrepresentability condition holds for
the GDT estimator, but it fails for the DT estimator.
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Fig. 1 Number of nonzero entries of the estimated precision matrix for different methods over 100
replications

4 Real data analysis

In this section, we demonstrate the performance of the considered methods on an
empirical analysis. We focus on classifying breast cancer patients with pathological
complete response (PCR) and patients with residual disease (RD). This is an impor-
tant problem because the PCR condition after the treatment (e.g., chemotherapy) may
potentially lead to a cancer-free life (Kuerer et al. 1999). We use a dataset (available
at http://bioinformatics.mdanderson.org/pubdata.html) which contains 22283 gene
expression levels of 133 patients (subjects) with breast cancer. Among these, 34
patients have PCR and 99 patients have RD.

Following Cai et al. (2011), we randomly divide the data into a training set and a
testing set with sizes 112 and 21, respectively. The testing set consists of five subjects
with PCR and 16 subjects with RD. The training set contains the remaining subjects.
Next, we apply two sample t test between the two groups using the training set,
and we select the most significant 150 genes with the smallest p-values. Using only
the selected genes, we estimated the precision matrix � using the training set. For
the sake of computational time, the penalty parameters are selected using the BIC
technique. Finally, the estimated precision matrix is used in the linear discriminant

analysis (LDA) score δt (Y ) = Y T �̂μ̂t − 1

2
μ̂T
t �̂μ̂t , t = 1 for PCR and t = 2 for RD.

Here, μ̂t = 1

nt

∑
i∈classt xi is the within group average calculated using the training

set. We use δt (Y ) to classify the subject Y from the testing set. The classification rule
is t̂ = argmaxt δt (Y ). We repeat this process 100 times.

In order to measure the overall classification accuracy, we use MCC defined earlier
in Sect. 3.1. We consider TP and TN as the number of correctly predicted PCR and
RD, respectively, and FP and FN as the number of wrongly predicted PCR and RD,
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respectively. Our calculation shows that the average MCC over 100 replications
obtained using GDT is 0.445, whereas for DT, GLASSO, and CLIME, the aver-
age MCC values over 100 replications are 0.422, 0.338 and 0.406, respectively. This
indicates that GDT provides better overall classification of the subjects with PCR con-
dition compared to the other considered methods. In addition, we record the number
of non-zero entries of the estimated precision matrix over 100 replications. Figure 1
shows that CLIME produces the sparsest precision matrix. On the other hand, our pro-
posed GDT approach produces less nonzero entries on average than DT and GLASSO
methods.

5 Conclusions

The current research presents a new method for estimating high-dimensional preci-
sion matrices. The proposed method is based on the �1 norm penalization of a new
generalized D-trace loss function. Our introduced loss function is motivated by the
D-trace loss. We show that D-trace loss function is based on the Sylvester equation,
whereas our proposed loss function is constructed through the generalized Sylvester
equations. In this article, we restrict ourselves with only one particular penalized equa-
tion, although different other possible versions can be proposed. Selecting the optimal
equation and the corresponding loss function is an open question. We consider this as
one of the future research direction. We provide an extensive numerical analysis using
simulated data. Our study is based on several statistical measures and settings, includ-
ing those previously used in the literature. The proposed method performs favorably
compared to other estimators in the literature. Moreover, we demonstrate a better per-
formance of our proposed method in an empirical application of breast cancer patient
classification using linear discriminant analysis.
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Appendix A: Technical details

In this appendix, we confirm the properties of the GDT loss function. First, we show
that fGDT(�,�) is a convex function of �. We have the following:

fGDT(�1, �) + fGDT(�2, �) − 2 fGDT

(
�1 + �2

2
, �

)

= 1

8
trace((�1 − �2)

2�) + 1

8
trace((�1 − �2)�

1/2(�1 − �2)�
1/2),

which is nonnegative, given that for any symmetric matrix A and a positive definite
matrix B 
 0, the product ABA is positive semidefinite. This confirms the convexity
of fGDT. Next, we show that fGDT has a unique minimizer at �−1. We check the sign
of the Hessian matrix of fGDT:

�GDT(�) = ∂2 fGDT
∂�2 = � ⊗ I + I ⊗ � + 2�1/2 ⊗ �1/2

4
,

where ⊗ is the Kronecker product. For � 
 0, the Hessian matrix is always positive
definite. Finally, we have

∂ fGDT
∂�

= �� + �� + 2�1/2��1/2

4
− I .

By setting the first-order derivative to 0, we can see that the minimum of fGDT occurs
at �−1.

Note that the Hessian matrix corresponding to the DT loss function (3) is defined
as

�DT(�) = ∂2 fDT
∂�2 = � ⊗ I + I ⊗ �

2
.

In general, theHessianmatrix has an important role for themodel selection consistency.
More specifically, it is assumed that maxe∈Sc ||�e,S

(
�S,S

)−1 ||1 < 1, which is known
as the irrepresentability condition.Here,we denote� as the value of theHessianmatrix
at the true (unknown) covariance matrix (e.g., in case of DT estimator, � = �DT(�)).
Next, S = {(i, j)| ωi j �= 0, } is the set of nonzero entries (i.e., support) and Sc is its

complement. We define �S1S2 as a sub-matrix of � ∈ Rp2×p2 with rows and columns
indexing the subsets S1, S2 ∈ {1, . . . , p} × {1, . . . , p}.

In this article, we do not provide theoretical properties for our proposed estima-
tor. However, we suppose that in order to establish the model selection consistency
of GDT estimator a similar irrepresentability condition would be required based on
�GDT(�). In general, irrepresentability conditions are difficult to compare theoreti-
cally, i.e., show that a condition for one method is always weaker or stronger than
the that for another method for a certain class of precision matrices. This remains
an open question, and we plan to study this problem in separate paper. Nevertheless,
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we compare the irrepresentability conditions of DT and GDT estimators on a simple
example, previously used by Ravikumar et al. (2011) and Zhang and Zou (2014).

Consider � = [ωi j ]1≤i, j≤4 ∈ R4×4, with ω11 = 1, ω14 = ω41 = 2c2, ω23 =
ω32 = 0 and ωi j = c otherwise, where we assume that the values of c guarantee
the positive definiteness of the matrix. It can be checked that for DT estimator, the
irrepresentability condition holds for |c| ≤ 0.315. On the other hand, the irrepre-
sentability condition based on � = �GDT(�) holds for |c| ≤ 0.335, which shows that
for c ∈ (0.315, 0.335] the irrepresentability condition holds for GDT estimator, but it
fails for DT estimator.

Appendix B: Algorithm

In this section, we describe an algorithm for obtaining the proposed estimator based on
the alternating direction method.Wemodify the optimization problem (9) for matrices
�0 and �1:

�̂GDT = arg min
�1
ε I

1

4
trace(�2S) + 1

4
trace(�S1/2�S1/2) − trace(�) + λ||�0||1,off

subject to {�,�} = {�0,�1}.

It is easy to see that the problem above is equivalent to (9). The Lagrangian of the new
problem (B.1) is defined as

L(�,�0,�1,
0,
1) = 1

4
trace(�2S) + 1

4
trace(�S1/2�S1/2) − trace(�)

+λ||�0||1,off + h(�1 � ε I ) + trace(
0(� − �0))

+trace(
1(� − �1)) + ρ

2
||� − �0||22 + ρ

2
||� − �1||22,

where ρ, 
0, 
1 are the multipliers and h is an indicator function, which returns 0 if
the statement �1 � ε I is true and ∞, otherwise. For simplicity, we set ρ = 1. Let
(�t ,�t

0,�
t
1,


t
0,


t
1) is the solution at step t = 0, 1, 2, . . .. The solution is updated

according to the following steps:

�t+1 = arg min
�=�T

L(�,�t
0,�

t
1,


t
0,


t
1), (B.1)

{�t+1
0 ,�t+1

1 } = argmin
�0=�T

0 ,�1�ε I

L(�t+1,�0,�1,

t
0,


t
1), (B.2)

{
t+1
0 ,
t+1

1 } = {
t
0,


t
1} + {�t+1 − �t+1

0 ,�t+1 − �t+1
1 }. (B.3)

From (B.1), we write

�t+1 = 1

4
trace(�2A) + 1

4
trace(�B�B) − trace(�C), (B.4)
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where A = S + 4I , B = S1/2 and C = I + �t
0 + �t

1 − 
t
0 − 
t

1. Let A =
UVUT and B = UWUT are the eigendecomposition of matrices (it is easy to see
that A and B have the same eigenvectors). Assume that eigenvalues are ordered:
V1 ≥ · · · ≥ Vp and W1 ≥ · · · ≥ Wp. It can be checked that the solution of (B.4)
is given as �̂ = U {(UT BU ) ◦ C}UT , where ◦ denotes the Hadamard product and

Ci j = 4

Vi + Vj + 2WiWj
for 1 ≤ i, j ≤ p. Next, from (B.2), it follows that

�t+1
0 = argmin

�0=�T
0

1

2
trace(�0

2) − trace(�0(�
t+1 + 
t

0)) + λ||�0||1,off. (B.5)

It is easy to check that the solution of (B.5) is given as �t+1
0 = ST (�t+1 + 
t

0, λ),
where ST is the soft-thresholding operator and is defined as [ST (A, λ)]i j =
sign(Ai j )max(|Ai j | − λ, 0)Ii �= j + Ai j Ii= j .

Finally, from the second part of Eq. (B.2), it follows that

�t+1
1 = argmin

�1�ε I

1

2
trace(�2

1) − trace(�1(�
t+1 + 
t

1)). (B.6)

The solution of (B.6) is given as �t+1
1 = [

�t+1 + 
t
1

]
+, where for any symmetric

matrix A with an eigendecomosition A = Udiag(α1, . . . , αp)UT the operator [A]+
is defined as

[A]+ = Udiag(max{α1, ε}, . . . ,max{αp, ε})UT

For the provided algorithm, we start with initial values at t = 0: 
0
0 = 
0

1, �
0
0 =

�0
1. We repeat the steps (B.1), (B.2), (B.3) until the following convergence conditions

are satisfied:

||�t+1 − �t ||2
max(1, ||�t ||2, ||�t+1||2) < 10−7.

It is important to note that we can significantly reduce the computational time of the
algorithmby discarding the constraint� � ε I in the initial optimization problem. This
enables us to drop �1 and omit the problem (B.6). If the reduced algorithm provides a
positive definite outcome �̃ (such that �̃ � ε I ), then we stop the calculation and set
�̂ = �̃. Otherwise, we repeat the complete algorithm provided earlier with an initial
start �̂.
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