
Micro-IDE : A tool platform for generating efficient deployment alternatives
based on microservices
Software: Practice and Experience
Karabey Aksakallı, Işıl; Çelik, Turgay; Can, Ahmet Burak; Tekinerdoğan, Bedir
https://doi.org/10.1002/spe.3088

This publication is made publicly available in the institutional repository of Wageningen University and Research, under
the terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne. This has been done with
explicit consent by the author.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is
entitled to make that work publicly available for no consideration following a reasonable period of time after the work was
first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa
implementation' project. In this project research outputs of researchers employed by Dutch Universities that comply with the
legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online publication in the original
published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and / or
copyright owner(s) of this work. Any use of the publication or parts of it other than authorised under article 25fa of the
Dutch Copyright act is prohibited. Wageningen University & Research and the author(s) of this publication shall not be
held responsible or liable for any damages resulting from your (re)use of this publication.

For questions regarding the public availability of this publication please contact openscience.library@wur.nl

https://doi.org/10.1002/spe.3088
mailto:openscience.library@wur.nl


Received: 27 August 2021 Revised: 17 January 2022 Accepted: 21 March 2022

DOI: 10.1002/spe.3088

R E S E A R C H A R T I C L E

Micro-IDE: A tool platform for generating efficient
deployment alternatives based on microservices

Işıl Karabey Aksakallı1 Turgay Çelik2 Ahmet Burak Can3 Bedir Tekinerdoğan4

1Department of Computer Engineering,
Erzurum Technical University, Erzurum,
Turkey
2BITES Defence & Aerospace, Ankara,
Turkey
3Department of Computer Engineering,
Hacettepe University, Ankara, Turkey
4Information Technology Group,
Wageningen University and Research,
Wageningen, The Netherlands

Correspondence
Işıl Karabey Aksakalli, Department of
Computer Engineering, Erzurum
Technical University, Erzurum, Turkey.
Email: isil.karabey@erzurum.edu.tr

Funding information
None.

Abstract
Microservice architecture (MSA) is a paradigm to design and develop scalable
distributed applications using loosely coupled, highly cohesive components that
can be deployed independently. The applications that realize the MSA may
contain thousands of services that together form the overall system. Microser-
vices interact with each other by producing and consuming data. Deploying
frequently communicating services to the same physical resource would reduce
network utilization, which is vital for reducing costs and improving scalability.
Since the physical resources have limited capacity, it is not always possible to
deploy communicating services to the same resource. Therefore, automated effi-
cient deployment alternatives need to be generated for MSA in the design phase.
To address this problem, we proposed an algorithmic approach to generate effi-
cient microservice deployment configurations to available cloud resources in our
previous study. In this study, a tool (Micro-IDE) has been proposed to realize
and evaluate this approach. The Micro-IDE tool has been validated using a case
study inspired by the Spotify application.

K E Y W O R D S

automated deployment of microservices, cloud computing, microservice architectures,
optimization algorithms, tool platform for deploying microservices

1 INTRODUCTION

In recent years, many companies are rapidly migrating their applications to microservice architectures (MSAs), especially
for migration to cloud-native applications. Cloud providers present resource flexibility and nearly infinite virtual resources
in various aspects such as CPU, memory, disk, and network bandwidth based on the pay-as-you-go principle. Although
the resources are assumed to be unlimited, they are not free of charge. Therefore, businesses try to minimize the utilized
resources for reducing operating costs without jeopardizing the application performance. In this context, the microservice
concept helps to efficiently use resources by enabling deployment flexibility to application developers.1

The main focus of MSA is to decompose the system into highly cohesive, loosely coupled, scalable units.2 This
decoupling of small modules with well-defined interfaces has several benefits. First of all, it allows microservice-based
applications to deploy new service versions without stopping the whole application.2 The use of microservices also enables
the utilization of different technology stacks and programming languages to develop system components. Reducing the

Abbreviations: BDA, big data analytics; CTAP, capacitated task assignment problem; ESB, enterprise service bus; MSA, microservice
architecture; MDE, model-driven engineering; SOA, service-oriented architecture; TAP, task assignment problem.

Softw: Pract Exper. 2022;1–27. wileyonlinelibrary.com/journal/spe © 2022 John Wiley & Sons, Ltd. 1

https://orcid.org/0000-0002-4156-9098
https://orcid.org/0000-0001-9449-2402
https://orcid.org/0000-0002-0101-6878
https://orcid.org/0000-0002-8538-7261
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.3088&domain=pdf&date_stamp=2022-04-25


2 KARABEY AKSAKALLI et al.

service coupling enables scaling the development process since it reduces the coordination requirement among teams
which is critical for setting up geographically distributed teams in different time zones.

MSA has many benefits, but there are several challenges to tackle, including the management complexity of the ser-
vices. Although microservices should be designed as isolated as possible, the services need to interact with each other
during the system execution. Managing communication among thousands of microservices with optimal network costs is
a difficult task. Managing the microservices’ infrastructure is critical since services must be deployed to limited capacity
resources to enable load balancing by considering the available CPU power, memory, and bandwidth. There are available
tools and utilities for microservice lifecycle management, including resource usage and on-demand provisioning. How-
ever, these management tools are insufficient for providing information at the early design phase, such as the amount of
data exchange among microservices.1 The total communication cost between two microservices is a function of the type
and the number and size of the messages exchanged over time.1 These relationships among the services are critical for
the overall performance of the application.

Some service orchestration platforms like Kubernetes,3 Docker Swarm,4 and Apache Mesos5 allow developers to con-
figure CPU and memory thresholds for each container that orchestration platforms use for managing the deployment of
services. The missing part for this configuration is the communication cost among each service that would affect over-
all system performance seriously. For a large-scale and complex microservice application, the manual selection of the
deployment configuration becomes less tractable, and it is very hard to create an efficient alternative. An improper and
thus inefficient deployment configuration can cause a cascaded increase in communication load on other services that the
service interacts with due to the dynamically increasing load on a service. This situation is one of the biggest challenges
that limit the scalability of microservice-based applications.

In summary, deployment of microservices according to manually prepared configuration files may cause performance
and scalability issues since it is hard to manually define a deployment configuration that minimizes the communication
cost among hundreds of microservices without exceeding the resource limits of each node. In our previous study,6 we have
proposed a systematic approach for generating efficient deployment alternatives, and we focused on the model-driven
architecture. We modeled and defined the design space with given deployment parameters and automatically derived the
feasible deployment solution. The approach was validated using a smaller case study (Uber) compared to the Spotify case
study. This study focuses on the challenges of and the development of the tool framework that supports the systematic
approach detailed in our previous study. The current study is complementary to the earlier paper but the focus and the
contributions are different. We have described the usage of Micro-IDE tool architecture by implementing a Spotify case
study. Furthermore, we applied eight types of algorithmic approaches to the case study in addition to the manual deploy-
ment approach. Subsequently, we have evaluated the deployment model generation time based on the algorithms, and we
compared total communication and deployment costs in terms of the applied algorithms. The proposed tool enables mod-
eling a microservice-based application end-to-end and generating effective deployment configurations by considering the
resource constraints of nodes at the early design phase.

The rest of this article is organized as follows: Section 2 gives the necessary information to understand better the study’s
purpose describing the microservice concept and the efficient deployment generation problem of microservice-based
applications. Section 3 clarifies the problem statement and defines a case study to evaluate the proposed tool. Section 4
describes the proposed approach to generate efficient deployment alternatives. Section 5 describes the metamodels that
support the approach. Section 6 explains the extraction of algorithm parameters from the design model and the adapta-
tion of the efficient deployment generation algorithms. Section 7 describes the Micro-IDE tool support through the case
study. Section 8 presents the evaluation of the approach and tool support by comparing the algorithms used. Section 9
provides the discussion together with the threats to validity. Section 10 describes the related work and, finally, Section 11
concludes the article.

2 MICROSERVICE ARCHITECTURE

Enterprise software applications often have hundreds of functionalities to meet a variety of business requirements. Until
recently, these functions were generally developed in single, monolithic applications. Monolithic applications are sub-
ject to cause scalability issues in means of both functionality and development teams. Furthermore, scaling individual
functionalities on-demand or updating a single functionality without affecting other functionalities becomes almost
impossible in a monolithic application at some point.7 Any update in a single functionality can trigger cascading updates
in other parts of the application in monolithic applications, requiring a complete rebuild, installation, and regression



KARABEY AKSAKALLI et al. 3

testing of a broad set of capabilities, including the unchanged ones. To deal with these problems, the concept of “service”
is introduced, and service-oriented architecture (SOA) has become popular.8 There are two types of roles in the SOA con-
cept: service provider and service consumer. The primary motivation of the SOA approach is to design and build services
in such a way that they can be seamlessly integrated and easily reused. Thanks to this approach, the decomposed services
can be reused in other applications, are easier to manage, have higher reliability, and can be developed in parallel in dif-
ferent teams. However, the management of the services is still an issue, and the decomposition brings extra data exchange
load to the system.

The MSA initially inspired by the evolution of SOA. Compared with SOA, MSA involves more granular services that
are small, autonomous, and loosely coupled. The MSA is based on the idea that a single application can be built as multi-
ple services that can be developed and deployed independently.9 The independence of the services facilitates scalability,
deployment, and well-defined interaction of the services. Both MSA and SOA operate on services as the main compo-
nent, but they differ significantly in service characteristics. While SOA adopts the “share as much as possible” approach,
microservices adopt the “share as little as possible” approach.10

Moreover, the communication infrastructure of SOA and MSA is quite different. While SOA solutions generally use a
homogenous communication infrastructure (enterprise service bus [ESB]), MSA often uses more lightweight messaging
solutions such as HTTP/REST, gRPC,11 and various communication protocols can be used among different services. The
major disadvantage of ESB over MSA’s lightweight, heterogeneous communication architecture is that all connected
services are affected when there is a problem with the ESB itself. In this case, ESB leads to the whole system crash, and this
situation creates a single point of failure.12 MSA is more fault-tolerant since any problem occurring in a microservice only
affects this service. The other services continue to serve if they do not heavily depend on the degraded services. Deciding
on the adoption of microservices or SOA approaches heavily depends on the technical requirements. Especially enterprise
companies tend to use SOA for specific motivations such as data governance. Microservices are more commonly used in
web and mobile applications to ease development. Besides that, the SOA architecture can be used as a steppingstone from
monoliths to microservices.13

A conceptual model of an MSA is shown in Figure 1. Multiple clients can send requests to the microservices using
the API layer, which is the entry point for all the client requests. The API layer also provides the mechanism for the

F I G U R E 1 Conceptual model of microservice architecture



4 KARABEY AKSAKALLI et al.

microservices to communicate with each other. The container orchestration layer includes the different containers that
provide a lightweight runtime environment in which the microservices run. Different technology stacks and program-
ming languages can be used for the development of each microservice. Finally, the data storage layer provides persistence
through mechanisms, such as databases and files. Each microservice might use a separate persistent data storage, one of
the major differences between MSA and SOA.

3 CASE STUDY AND PROBLEM STATEMENT

We describe a case study in the following subsection and use this case study to describe the problem statement in the
second subsection.

3.1 Case Study—Spotify: Music and podcasts application

We tried to find an easy-to-understand microservice case study and selected the Spotify14 application, which millions of
people use. We performed research on Spotify architecture from public resources,15 and as far as we have investigated,
approximately 18 microservices have been identified in the Spotify application. The application consists of hundreds of
microservice instances to provide a smooth experience to millions of concurrent users. Based on this information, we
created a hypothetical runtime scenario given in Table 1. The number of instances indicates how many microservice
instances are defined for each service type. The third column shows the amount of memory required for the execution of
the corresponding microservice in megabytes. According to the values defined in Table 1, 1361 microservices require a
total amount of 40,820 MB memory.

T A B L E 1 The properties of the microservices for the case study

Microservice name Number of instances Required memory per microservice (MB)

Delivery Ingestor 50 20

Transcoder Control 58 25

Transcoder Service 68 15

Ingester 66 10

Merger 64 10

Non-Music Metadata Pipeline 78 30

Vmd2-cms 98 40

Content API 96 20

Scatman 76 25

Indexer 78 25

CurationUI 74 25

Preludex 77 20

NERD 66 30

ENsnaphot 87 30

Google docs 84 45

Group Curation 93 35

Splash Content 92 50

Vmd2-service 89 40

Total 1361 40,820



KARABEY AKSAKALLI et al. 5

3.2 Problem statement

Considering the scenario described in Section 3.1, generating an efficient deployment model with expert judgment man-
ually becomes hard in a system consisting of many microservices. Although, application developers may find efficient
deployment configurations, finding an efficient deployment configuration only once is not enough since the configura-
tion will be changed when the application is updated, for example, a service starts consuming new data. Besides, manually
finding an efficient deployment for complex microservice-based applications consisting of thousands of services is not
tractable. In particular, microservice-based applications’ resource usage and performance depend on the efficient deploy-
ment of microservices to the available resources. Therefore, developing and operating a large-scale system consisting of
hundreds or even thousands of services is not trivial.

The efficient deployment concept means minimizing the total execution cost of microservices on existing nodes and
the total communication cost among microservices. Since each node can accommodate the maximum polynomial amount
of microservices, and deploying communicating microservices to different nodes will raise communication costs, the
deployment problem is an NP-hard multi-objective optimization problem.2 This problem needs to be solved by optimizing
total communication and execution costs on the design phase of the created MSA.

Deploying frequently communicating services to the same physical resources reduces the total communication cost,
which is vital in application performance and scalability. In addition to the communication cost among services, CPU
and memory usage of the services, execution cost of the services on the different nodes need to be considered to optimize
the deployment of microservices to limited capacitated resources. For example, installing many microservices with high
resource consumption on the same node will cause problems in performance and scalability. Besides, service upgrades
during communication among microservices will change the resource consumption and overall system performance.1

A microservice-based application is deployed by considering the required resources of each microservice and avail-
able resources. Although container orchestration tools such as Kubernetes,2 Docker Swarm,3 and Apache Mesos4 allow
developers to specify resource utilization thresholds (e.g., CPU and memory) for each microservice, there is no guarantee
that users will set this threshold correctly. Developers often set these values based on the insights gathered from previous
executions of the system or their subjective experience. If only the minimum required amount of resources is set, deploy-
ing many microservices together on a single host may be possible. Although all microservices deployed on the same host
reduce the total communication cost to zero, this deployment alternative is not feasible since a single physical resource
has capacity limits. Even if the resource limits are set correctly for individual microservices, there is no guarantee that the
selected values will result in an efficient deployment configuration for the overall application because inter-service costs
such as network communication are not considered. To sum up, it is challenging to set the resource requirements for a
microservices-based application.

During the deployment phase, the cluster provider tries to balance the load among servers without compromising the
performance of the microservice-based application. However, developers’ lack of standardization in determining their
resource requirements makes it challenging to deploy microservices.

On the other hand, some management tools that use many strategies such as Spread, Bin-pack, Labeled, Random
do not use historical data to direct or improve the deployment of microservices.1 The existing tools select hosts that
consider using instantaneous resources to deploy the microservice, and they can rarely find an efficient deployment
alternative. In this study, a tool called Micro-IDE is proposed to generate efficient deployment alternatives for microser-
vices. The tool aims at finding efficient deployment alternatives using algorithmic approaches used for solving NP-hard
problems. The tool focuses on minimizing total cost considering communication costs of microservices during data
exchange, the execution costs on the servers, the amount of memory required, and the amount of memory and CPU
necessary for the servers to host microservices. In the following section, we elaborate on and describe the approach
in detail.

4 APPROACH FOR GENERATING MICROSERVICE DEPLOYMENT
ALTERNATIVES

Deployment architecture decision generally is deferred to the post-development phase, where it is too late and expensive
to change the system design. We have focused on this problem and defined an approach that tries to generate efficient
deployment alternatives at the early design phase, even before the actual system implementation is started, and this
section explains the approach.



6 KARABEY AKSAKALLI et al.

F I G U R E 2 BPMN diagram of the proposed approach

The approach is based on generating efficient deployment alternatives with minimal total costs, evaluating the gener-
ated alternatives, and analyzing the performance of these alternatives. The approach is supported by a tool (Micro-IDE),
which will be discussed in the next section. The steps of the approach are shown in a BPMN diagram in Figure 2.

Summaries of the activity steps in Figure 2 are given below:

1. Microservice data exchange model design: Microservices need to exchange data during communicating with each
other. In this step, we enable the designer to create data objects and corresponding types for data exchange. Since there
are no homogenous data exchange media in the MSAs, we have researched data exchange platforms and selected the
gRPC as the reference model since it has the most comprehensive data model.

2. Microservice design: At this step, the designer defines the properties of the microservices, such as the name, type,
version, and endpoints.

3. Microservice communication design: At this step, the designer matches the microservices defined in step 2 with the
data exchange model elements defined at step 1.

4. Resource infrastructure design: The designer defines the nodes that the microservices will be deployed at this step.
The memory capacities, processor features, and power factors of the nodes can be specified, and the connection of
these nodes can be designed as local area network (LAN) and wide area network (WAN). Many nodes with different
memory capacities and processor powers can be created using this model. Furthermore, multiple processor units with
different frequencies and core counts can be defined in a single node. This step can be designed independently from
the previous steps.

5. Microservice runtime execution configuration design: Since this step, only the structural properties of the system are
defined. We mean data exchange elements, static properties of the microservices, data production/consumption def-
initions, and node configurations by structural properties. At this step, the designer identifies the runtime execution
scenarios of the designed microservice-based system. The structural properties are not enough to decide on efficient
deployment models since the system’s runtime properties, such as instance count for each microservice and data
update rates, are also important. At this step, the designer defines the number of microservices, the update rate of a
microservice instance in each communication, and the execution cost of each microservice instance on each node.

6. Extracting input parameters for generating deployment alternatives: After performing all the steps mentioned above,
input parameters such as communication costs among microservices, memory capacities of microservices and
nodes, execution cost of microservices on different nodes to generate deployment alternatives are extracted from the
developed models.



KARABEY AKSAKALLI et al. 7

7. Deriving efficient deployment alternatives: After extracting the input parameters in step 6, these parameters are given
as inputs to the algorithms to generate efficient deployment alternatives. According to the selected algorithm, the
approach derives one or more deployment alternatives and presents the results to the designer, who can then select
an efficient deployment model. If a feasible deployment alternative cannot be found, the system provides detailed
information to the designer to optimize the system design.

8. Analyzing the results and comparing the generated deployment models: In this step, the designer can prefer the ideal
CTAP algorithm applied in the Micro-IDE tool by comparing the total execution cost and communication cost of the
generated deployment models. The system also compares manually created deployment models and algorithmically
generated models in terms of execution and communication costs. The Micro-IDE tool provides automatic analysis
of the generated deployment models according to different algorithms and quality factors. The proposed tool enables
selecting appropriate deployment models for the designed architecture by comparing the generated deployment
models.

5 METAMODELS

To perform the steps of the proposed approach and the implementation of the Micro-IDE tool, several metamodels named
microservices data exchange, microservice definition, communication, infrastructure, runtime execution configuration,
and deployment metamodels are created. These metamodels are described in the subsections below.

5.1 Microservices data exchange metamodel

This metamodel defines the model in step 1 described in Section 3 and the data types required to perform data
exchange among microservices. Microservices need to exchange data while communicating with each other. We pre-
ferred the gRPC communication infrastructure in this metamodel because it has the most comprehensive data types
among the other communication protocols such as publish/subscribe, REST, graphQL, and so forth. Choosing the
most comprehensive communication infrastructure ensures covering all data types in communication methods used by
microservices.

5.2 Microservice definition metamodel

Microservice definition metamodel is used to design microservices mentioned in step 2 described in Section 3. This
model allows the designer to determine many properties of a microservice, such as a name, type, storage unit, ver-
sion, and endpoint information. The most generated metamodels (communication, runtime execution configuration, and
deployment metamodels) need the microservice definition model. The communication infrastructure, the parameters of
runtime execution configuration, and the deployment process are performed through the defined microservices in this
metamodel.

5.3 Microservice communication metamodel for determining the relation
of microservices

Microservice communication metamodel is designed to create the communication infrastructure model in step 3
described in Section 3. In an MSA, each service has a single functionality that solves a problem in the application. For the
application to work as a whole, microservices must communicate using various communication protocols according to
each service’s nature. Thus, a communication metamodel is created that allows exchanging data between microservices
and determining communication protocol. This metamodel requires microservice definition metamodel and microser-
vice data exchange metamodel. The microservices defined in the microservice definition metamodel communicate using
the data objects defined in the microservice data exchange metamodel. The CommunicationModel class in the meta-
model represents the following protocols used for the communication among microservices: RestOperation, graphQL,
gRPC, and pub/sub communication protocols.



8 KARABEY AKSAKALLI et al.

5.4 Microservice infrastructure metamodel

Microservice infrastructure metamodel is created to model the physical resources mentioned in step 4 described in
Section 3. It includes many classes representing the identification of physical resources for deploying services, determining
processor features and memory capacities, and setting network connections between resources. The MicroPhysicalRe-
sourceModel class seen in the metamodel defines one or more Nodes to which services are assigned. The PowerFactor
property in the Node class is used to determine the processing power compared to other nodes. Since a node can have
more than one processor and many custom node properties, the relationship between Node and Processor is expressed in
the metamodel with a one-to-many (1 … ∗) relationship. The processor’s core number, frequency, and processor name
can be determined using the Processor class. Additional requirements (such as disk capacity, graphics card speed) of
a node can be specified using the CustomNodeProperty class. The memory amount of the processor can be defined as
MegaBytes using the MemoryCapacity class. These identified nodes can be connected with multiple networks via LAN
or WAN. Therefore, the Network class is defined as an abstract class for the LocalAreaNetwork and WideAreaNetwork
classes. WideAreaNetwork (WAN) class has speedFactor property to determine how many times the WAN is slower than
LAN. The Router class defines the routers used to connect networks. The LANConnection class is defined as a GMF link
in the metamodel and represents nodes’ connection with the local area network. Similarly, the LANRouterConnection
class represents the connection of a local area network to a router, and the RouterNetworkConnection class represents
the connection of a router to a network.

5.5 Runtime execution configuration metamodel

Runtime execution configuration metamodel defined in step 5 of the approach requires all the metamodels described in
the previous subsections for execution. The MicroRuntimeExecutionModel class includes Metadata and Microservice-
Instance classes to define a single microservice. The MultiMicroserviceInstance class represents multiple microservice
instances, and the Publication class represents the update rate of an ObjectModel. The MicroserviceInstance class con-
tains the Publication and ExecutionCost classes used to determine the update rate of data related to a microservice and
the execution cost of the services on each node, respectively. The MicroserviceInstance class needs the microservice
definition metamodel for identifying microservice instances associated with the microservices. For instance, Deliv-
eryIngestor, which is a service of the Spotify application, is created once in the microservice definition metamodel.
The Publication class needs the ObjectModelElement class defined in microservice data exchange model to determine
the data related to the service. In the runtime execution configuration metamodel, many properties for the execution
such as the microservice instance name (name), instance count (instanceCount), and the required memory (required-
Memory) of the microservice, and the associated microservice name (relatedMicroservice) in microservice definition
metamodel are determined. The relatedMicroservice property can be selected by listing the microservices defined in the
microservice definition metamodel. The relatedElement property in the Publication class is chosen using the Object-
ModelElement defined in the microservice data exchange metamodel. The updateRate property in the Publication class
refers to the update frequency of the selected ObjectModelElement. Also, the ExecutionCost class represents the exe-
cution cost of a microservice on a node. It can be defined as a different execution cost of a microservice for each
node defined in the microservice infrastructure metamodel. The designer can concretely define each of the Deliv-
eryIngestor instances to update the Address object twice per second. Depending on the processing power, the execution
cost for each DeliveryIngestor instance can be defined as 10 out of 25 for one node, 15 out of 25 for another node,
and so forth.

5.6 Microservice deployment metamodel

Microservice deployment metamodel—used to define the model mentioned in step 6 described in Section 3—includes
members, nodes defined in microservice infrastructure metamodel, and microservice instances defined in microservice
runtime execution configuration metamodel. The Member class contains zero or more microservices deployed on a node.
The DeployedMicroservice class includes the deployed microservice’s name and the instance count of the microservice.
Additionally, this class has a reference link to the MicroserviceInstance class defined in the microservice runtime execu-
tion configuration metamodel to define microservice instances associated with microservices defined in the microservice



KARABEY AKSAKALLI et al. 9

definition metamodel. The overall metamodels mentioned in this section and their relationships are shown in the
Appendix. Furthermore, each metamodel has been explained in our previous work with more details.6

6 MAPPING DESIGN ARTIFACTS TO CTAP PARAMETERS

After all the models have been created, the input parameters required to deploy microservices are extracted from these
models. These parameters include the memory capacities of the services, execution costs of the services on the nodes, and
the memory capacities of the nodes. The efficient deployment problem for the microservices matches the “capacitated
task assignment problem (CTAP)” in the literature. CTAP is the problem of assigning n jobs to m nodes with minimum
execution and communication costs. This NP-hard problem is an extension of the task assignment problem (TAP). Unlike
TAP, the memory capacities of resources are limited in CTAP, and communication costs between tasks are considered
during the assignment. Although this problem is used as a model in distributed computer systems, it is also adopted for
many optimization problems such as job scheduling, vehicle routing, shortest route finding, telecommunication network
design, cargo loading. We adopt the CTAP in the proposed tool to solve the efficient deployment problem of MSAs. With
the adoption of the mathematical model of the CTAP, we aim to minimize the communication cost between microservice
instances and the execution cost of the services on the nodes. While the total cost is minimized, the total memory capacity
and processor power of the services deployed to the related node should not exceed the node’s memory capacity and
processor power. The model components matched with the parameters in this problem are expressed as follows:

S, set of m microservices = s1, s2, … , sm
Sj

i, j th instance of i th microservice
N, set of n nodes = n1,n2, … ,nn
Nc, the number of nodes
Nm, the number of microservices
ki, the number of microservice instances
Mn, memory capacity of nodes n
memi, amount of memory needed for i th microservice
xin, cost of executing si microservice on the n th node
aj

in, Sj
i is assigned to Node n

E, a set of communication between microservices, whereby each communicating service combination (i, j) has a com-
munication cost cij if microservices si and sj are assigned to different nodes. Communication cost is negligible if two
microservices are assigned to the same node.

The minimum cost achieved by using these parameters is formulated as follows:

Total minimum cost =
Nm∑

i=1

ki∑

k=1

Nc∑

n=1
aj

inxin +
∑

(i,j)∈E

Nm∑

x=1

kx∑

y=1

Nc∑

n=1
aj

in(1 − ay
xn)cix

Subject to,
n∑

n=1
aj

in = 1, i ∈ S, j ∈ ki,

ki∑

j=1

Nc∑

n=1
aj

in = 1, i ∈ S,

m∑

i=1

ki∑

j=1
memiaj

in ≤ Mn, n ∈ N,

Nm∑

i=1

ki∑

j=1
xinaj

in ≤ Cn, n ∈ N,

aj
in = 0, 1, n ∈ N, i ∈ S(aj

in = 1, if Sj
i is assigned to Node n, 0 otherwise).



10 KARABEY AKSAKALLI et al.

In the adopted CTAP problem, it is assumed that m microservices in the system and microservice i needs
memi units of memory. There are c nonequivalent nodes in the storage system, Node n has a total of Mn unit
memory and Cn unit processing capacity. Running microservice i on node n costs xin. aj

in represents the i th
microservice’s j th instance is assigned to Node n. To calculate total execution cost of i th microservice, aj

in
and xin are multiplicated for all i, j, and n values, then these results are summed up. In this formula, if it is
assigned to Node n, aj

in is equal to 1, otherwise it means that Sj
i is not assigned to Node n and the formula

returns 0.
This NP-hard problem is solved using various algorithms such as Genetic, Hungarian, Next Fit, Best Fit, and so forth.

The aim is to find a deployment of microservices to available nodes at minimum cost.

7 MICRO-IDE TOOL SUPPORT

In this section, a tool framework that supports the approach described in Section 3 is illustrated, and all metamod-
els are integrated for runtime implementation. The Micro-IDE tool is based on metamodels described in Section 5
and algorithmic approaches adopting the CTAP algorithm. This tool operates in plug-in sets on the Eclipse-IDE plat-
form. These plug-ins are built on Eclipse Framework plug-ins such as Eclipse Modeling Framework (EMF),16 Graphical
Editing Framework (GEF),17,18 and Graphical Modeling Framework (GMF).19 EMF is an Eclipse plug-in set used
to design the data model and derive code and other outputs based on the model. There is a distinction between
metamodel and model. While a metamodel describes the structure of the model, a model is a concrete instance of
this metamodel. EMF allows the developer to create metamodels with different extensions such as XMI, Java com-
ments, UML, or an XML schema. Besides, the default application ensures continuity of model data using a data
format called XML Metadata Interchange. The GEF is an Eclipse project that provides end-user components and
views associated with graphical applications. The GMF is an Eclipse modeling project that aims to provide a produc-
tive bridge between EMF and GEF. Creating an Ecore model using GMF is derived from the domain model, domain
gen model, graphical def model, tooling def model, mapping model, and diagram editor gen model via the GMF
dashboard. In this study, a text editor named Emfatic20 is used to generate Ecore models. Besides, EuGENia21 GMF
tool is used, which is more practical than the GMF dashboard for generating all needed models such as .gmfgraph,
.gmftool, and .gmfmap models using generated Ecore models. The layered architecture of the Micro-IDE tool is shown
in Figure 3.

In the following subsections, the general perspective of Micro-IDE tool architecture is described (Section 7.1), and
Micro-IDE tool design is defined according to a selected case study (Section 7.2). Besides, the generated deployment
alternatives using the Micro-IDE tool are examined through the case study (Section 7.3).

F I G U R E 3 Layered architecture of Micro-IDE tool framework



KARABEY AKSAKALLI et al. 11

7.1 Tool architecture

The Micro-IDE tool consists of five fundamental parts: model navigator, model editing pane, item palette, and properties
view, as shown in Figure 4. The Model Navigator on the left side of Figure 4 shows the created metamodels and the
elements used in these models. The Model Editing Pane in the middle provides a drawing area for designing objects and
connections. The Properties View at the bottom serves to list the properties of the elements drawn in the Model Editing
Pane and the metamodels in the Model Navigator. The Item Palette on the right offers the necessary components for
drawing in the Model Editing Pane.

7.2 Usage of Micro-IDE for implementing the case study

In this section, the music application developed by the Spotify company is used to illustrate the Micro-IDE tool. The
created models for this case study and the generated deployment model using this tool are described below.

7.2.1 Designing microservice data exchange metamodel—Object models and data types

While designing the microservice data exchange model for the Spotify application, object classes used in this application
have been determined as the first step. Object classes, attributes, and data types for the case study are shown in Figure 5.
Since user information is required for Spotify membership, a User object class has been created. This class contains userNo
, password , and email attributes. In our scenario, the User class inherits some object classes called Musics, Podcasts, mem-
ber payment information (Interests), search list (Browse), and so forth. Since these classes are user-specific, the User class
is designed as a root class. The Subscribing and PremiumTypeEnum object classes, defined as EnumeratedDataType , allow
selection of payment type and membership type, respectively, in the PaymentInfo class. The Subscribing class includes the
payment type that enables the user to subscribe by credit card, phone bill, or prepayment. Similarly, PremiumTypeEnu m
object class consists of the membership type called individual, student, or family. A member is charged according to the

F I G U R E 4 Fundamental parts of Micro-IDE tool



12 KARABEY AKSAKALLI et al.

F I G U R E 5 Microservice data exchange model for the case study—Object classes, attributes, and their data types

selected property. Furthermore, Artist, Album, and Song classes whose root class is Musics include name, genre, rating,
and listenCount properties.

7.2.2 Identification of microservices and determining the communication patterns

Within the scope of this case study, 18 microservices shown in Table 1 are defined, and the gRPC communication pat-
tern is created to communicate the services with each other. Communication patterns designed on the microservices are
shown in Figure 6. Once the communication pattern is selected, gRPCtype (protoRequest-ProtoResponse), name of the
relationship, source (microservice name), and target (object class) properties must be identified.

In the scope of this study, the identified communication patterns among microservices are represented in Figure
7. In the figure, Merger, PreludexVoting, TranscoderControl, Ingester, contentAPI, GroupCuration, TranscoderService,
CurationUIs, NonMusicMetadataPipeline, vmd2-cms, Scatman, and NERD represent the microservices. The message
types (Podcasts, Interests, Song, PaymentInfo, etc.) refer to the objects used by microservices.

7.2.3 Establishment of physical infrastructure for the deployment of microservices

The physical infrastructure required for deploying microservices can be established by creating the microservice infras-
tructure model. In the scope of this case study, we designed an infrastructure model consisting of four nodes with different
processors and different memory capacities. As shown in Figure 8, some nodes may have more than one processor, such
as Node-4. These four nodes are connected via a local area network connection. The proposed tool allows creating the
desired number of nodes and heterogeneous LAN/WAN connections.

7.2.4 Defining microservice instances using microservice runtime execution configuration
metamodel

In microservice runtime execution configuration metamodel, many properties such as the number of instances
(instanceCount) of a microservice, related microservice for the microservice instance (relatedMicroservice), and the



KARABEY AKSAKALLI et al. 13

(A) (B)

F I G U R E 6 (A) Establishing a communication pattern on microservices. (B) Properties of the selected communication pattern

F I G U R E 7 Identified communication patterns among microservices for the case study

amount of memory needed to store the microservice instance (requiredMemory) can be defined. Besides, Publica-
tion and ExecutionCost classes are added as an attribute in a microservice instance. Thus, the frequency of updat-
ing the data (updateRate) and the execution cost of a microservice instance on each node are determined. A part
of the sample microservice runtime execution configuration model designed for the Spotify application is given
in Figure 9. MultiMicroserviceInstances are defined for 18 microservices described on the microservice definition
model.

This model uses the microservice infrastructure model to determine the execution cost of the microservices on the
nodes, the microservice data exchange model to establish relations with microservices and objects, and the microservice
definition model to determine the corresponding microservice of an instance. An example scenario in which the number
of microservices is listed for the case study is given in Table 1.



14 KARABEY AKSAKALLI et al.

F I G U R E 8 Four nodes physical infrastructure model created for the case study

F I G U R E 9 A part of the microservice runtime execution configuration model for the case study

7.3 Generating efficient deployment alternatives for the case study

After determining the physical and structural requirements for the Micro-IDE tool to deploy the microservices,
the automated deployment process for the microservice instances described in Table 1 is performed using algorith-
mic approaches. The pseudocode of the algorithm for implementing the efficient deployment alternatives is given
in below:

GENERATE_FEASIBLE_DEPLOYMENT (phy_resources,runtime_exec_config)

processors EXTRACT_PROCESSORS (resources)

microservices EXTRACT_TASKS (exec_config)

assignment_tables EXECUTE_CTAP (microservices, processors)

CREATE_DEPLOYMENT_MODEL (allocation_table)



KARABEY AKSAKALLI et al. 15

F I G U R E 10 A sample deployment alternative generated by the Next Fit algorithm

In the first line of the algorithm, GENERATE_EFFICIENT _DEPLOYMENTS gets two parameters to use the microser-
vice infrastructure model and the microservice runtime execution configuration model. EXTRACT_ PROCESSORS
represents the processor specified for each node in the microservice infrastructure model in the second line. Using
this method, feature extraction of the processors in the microservice infrastructure model is performed. In the third
line, the microservice instances are extracted from the microservice runtime execution configuration model using the
EXTRACT_TASKS method. This method extracts the execution costs of microservices on the nodes and the communica-
tion costs among the microservices corresponding to the concept of a task in the CTAP algorithm. In the fourth line, the
CTAP algorithm is applied with the EXECUTE_CTAP method. The method takes processors and microservices as param-
eters. According to the cost information received from the methods, the deployment of microservices to the processors
is stored in the table named assignment_tables. Each member assigned to the processors in the assignment_tables repre-
sents an abstract definition of an efficient deployment alternative. In the last line, alternative deployments are generated
with the CREATE_DEPLOYMENT_MODELS method using the parameters in this table. The details of each method and
overall pseudocode for generating efficient deployment alternatives can be found in our previous work.6 In this study,
various algorithms adapted to the CTAP algorithm are used to deploy microservice instances defined on the microservice
runtime execution configuration model. Improvement rates of the algorithms are calculated according to total execution
and communication costs. In Figure 10, a sample deployment alternative using the Next Fit algorithm can be seen.

8 EVALUATION

In this section, the Micro-IDE tool is evaluated on the case study, and the efficiency of generated deployment alternatives
has been discussed using algorithmic approaches. Besides, the algorithms have been compared in terms of the generation
time of deployment alternatives according to different scenarios.



16 KARABEY AKSAKALLI et al.

8.1 Performance comparison of applied algorithms

After all necessary models for the case study are designed, the deployment model generator wizard can be used by
selecting Microservice Runtime Execution Configuration and microservice infrastructure model, as shown in Figure 11.

Furthermore, an interface where the generated models are analyzed according to the communication model, data
exchange model, physical infrastructure model, and the number of microservice instances has been developed in the
Micro-IDE tool. The .results file, which reports the detailed analysis of the generated deployment model, is obtained by
selecting the Microservice Runtime Execution Configuration and microservice infrastructure model, as shown in Figure
12. This file (.results) gives information about the memory capacities of the microservices, the object sizes used by the ser-
vices, the communication costs between services, and the memory capacities of the physical resources selected on the tool.

F I G U R E 11 The model generation interface of the Micro-IDE tool

F I G U R E 12 The model analysis interface of the Micro-IDE tool



KARABEY AKSAKALLI et al. 17

F I G U R E 13 The model evaluator interface of the Micro-IDE tool

T A B L E 2 The communication and execution costs values for the generator

Algorithm Total communication cost (MB/s) Total execution cost on the nodes

Hungarian 265.350 21.425

Genetic 266.546 21.970

Next Fit 195.017 21.603

Best Fit 214.883 22.390

Worst Fit 260.681 21.881

Sequential Distribution 266.945 21.772

Uniform Distribution 251.845 21.844

Minimum Nodes 171.03 21.855

Manual Deployment 268.073 21.676

When the information obtained from the analysis interface is examined, the total communication costs of the
microservice instances are calculated by using the number of instances and object sizes used by the microservices
defined in the microservice data exchange model. Besides, the amount of memory required for the deployment of each
microservice instance is listed in the .results file by giving information about the memory capacities of the physical
resources.

The third interface of the Micro-IDE tool is an evaluator designed to compare the generated deployment models by
using algorithmic approaches. Also, the tool allows the comparison of the deployment models created manually and
algorithmic techniques. As seen in Figure 13, two different models identified as Original and Optimized deployment
models can be compared through the selected microservice runtime execution configuration model and the microservice
infrastructure model.

In this study, 1361 microservices are deployed to four nodes consisting of different memory capacities to evalu-
ate the deployment performance of the algorithms. Six algorithms are implemented in the Micro-IDE tool: Hungarian,
Genetic,20 Next Fit, Best Fit, Worst Fit, Sequential Distribution, Uniform Distribution, and Minimum Node Distribu-
tion algorithms. Each algorithm generates a different deployment alternative using execution cost (relative unit) and
communication cost (MB/s) metrics. Communication Cost defines the total communication cost between microser-
vices in the architecture. Execution cost represents the total execution cost of the microservices running on the nodes
in the architecture. The results of these two metrics, which differ according to the selected algorithm, are given
in Table 2.



18 KARABEY AKSAKALLI et al.

F I G U R E 14 A sample deployment model generated manually

In addition to the automated deployment alternatives performed by the algorithms, the proposed tool also allows
creating a manual deployment alternative by an expert. Thus, the deployment alternative generated by an algorithm and
the deployment model generated by the expert can be compared in terms of performance. Figure 14 shows the manual
deployment of 1361 microservices to four nodes. In this figure, the number of service instances is indicated in parenthesis
next to the name of microservice instances. Table 2 presents the communication and execution costs for all algorithms
implemented in the Micro-IDE tool.

According to the values seen in Table 2, the lowest total communication cost is seen in the Minimum Nodes algorithm.
In contrast, this algorithm gives the second-highest value after the Genetic algorithm in total execution cost. The Next
Fit algorithm gives the lowest total execution cost among all algorithms. When both metrics are evaluated, the Next
Fit algorithm performs relatively better than the other algorithms. On the other hand, Genetic and Minimum Nodes
algorithms have the lowest performance in total communication costs. A more detailed analysis of all these values (com-
munication costs for each microservices and their execution costs on each node, the total memory capacity of the services
deployed on the nodes) is reported back to the designer through the Micro-IDE tool. Thus, it provides valuable information
to the designer for deciding on efficient deployment alternatives.

When the communication and execution costs obtained from the generated deployment models using algorithmic
approaches and the manual approach are compared, it is seen that the total communication cost increases in the manual
deployment. In terms of execution costs, the manual deployment is more successful than the other algorithms except for
Next Fit, Best Fit, and Hungarian. When both metrics are analyzed, Next Fit algorithms highly outperform the manual
deployment.



KARABEY AKSAKALLI et al. 19

T A B L E 3 Performance comparison of algorithms according to manual deployment

Algorithm Impr. rate of total communication cost (%) Impr. rate of total execution cost (%)

Hungarian 1.01 1.15

Genetic 0.56 0.33

Next Fit 27.25 12.7

Best Fit 19.09 − 3.29

Worst Fit 2.75 − 0.94

Sequential Distribution 0.42 − 0.44

Uniform Distribution 6.05 − 0.77

Minimum Nodes 36.1 − 0.82

The bold values indicate highest improvement rates according to algorithms.

Two approaches are used when analyzing the validity of the deployment models generated on the Micro-IDE tool.
The first approach is to heuristically evaluate deployment alternatives by an expert who knows the architecture very
well. In this approach, an expert decides the efficient deployment models through logical reasoning even as the deploy-
ment alternatives are generated automatically. The second approach is to compare a deployment alternative with another
deployment alternative in terms of communication cost, execution costs, and the total memory capacity of the assigned
services in the nodes. As seen in the Deployment Model Evaluator interface (Figure 14) of the Micro-IDE tool, two
generated deployment models can be compared, and the comparison results are reported as a .evalresult file

The motivation for calculating the lowest communication cost is deploying two microservices that frequently
exchange data on the same node. For instance, ContentAPIInstance subscribes to the data published by Deliv-
eryIngestorInstance in the Spotify example. Similarly, ScatmanInstance and CurationUIInstance services are deployed on
the same node. There are many examples in this architecture where data are published by a microservice and subscribed
by another microservice. If the connected services are assigned to the same node, the communication cost between them
is assumed zero. In this respect, the Minimum Nodes algorithm has the lowest communication cost as it aims to occupy
the minimum number of nodes. The performance comparison of the algorithmic approach with manual deployment in
terms of improvement rate of communication and execution costs is shown in Table 3.

The algorithmic approaches generally give better results than the manual deployment, as shown in Table 3. The Next
Fit algorithm performs the highest improvement rate when both metrics are considered. When only communication cost
is analyzed, the Minimum Nodes algorithm shows the best performance with a 36.1% improvement rate. These gener-
ators’ results may differ according to different microservice runtime execution configuration models and microservice
infrastructure models. The proposed tool offers the designer the opportunity to choose the most appropriate alternative.
Besides, new CTAP algorithms can be easily added to the Micro-IDE tool for the deployment generation step.

8.2 Evaluation of deployment model generation time based on the algorithms

In this section, the model generation times to create efficient deployment alternatives with the Micro-IDE tool are
analyzed according to different scenarios. The performance of the selected CTAP algorithm significantly affects the
deployment model generation time. The genetic algorithm proposed by Mehrabi et al.22 has the highest complexity
among the generators applied to test the tool. The algorithms are implemented in Java, and the program runs on a
64-bit computer with Intel Core I-7-6700HQ CPU 2.60 GHz 16 GB RAM. Table 4 shows the generation times of deploy-
ment models for the case study in different services and nodes using the genetic algorithm. The number of services and
nodes is determined from an industrial perspective to exhibit a realistic approach. The analysis results show that the
genetic algorithm generates deployment alternatives in a shorter time as the number of nodes increases and microservices
instances decreases.

When the deployment times of the algorithms are analyzed, it is seen that a small number of services can be deployed
in less than one second. As the number of services increases, the time increases in direct proportion. However, the gen-
eration times achieved even in deploying many services using the genetic algorithm are acceptable, and the deployments



20 KARABEY AKSAKALLI et al.

T A B L E 4 Deployment model generation times according to the number of services and nodes using the genetic algorithm

No. Case study Total microservice instances Number of nodes Generation time (s)

1. Spotify 18 4 2

2. Spotify 53 4 2

3. Spotify 206 4 17

4. Spotify 274 5 15

5. Spotify 1361 4 1014

6. Spotify 1361 10 124

T A B L E 5 The deployment times of algorithms according to the same number of microservices and nodes (total number of microservice
instances: 1361, the total number of nodes: 4)

Algorithm Generation time (ms)

Genetic 1,014,548

Hungarian 3447

Next Fit 450

Best Fit 414

Worst Fit 415

Sequential Distribution 25

Uniform Distribution 32

Minimum Nodes 20

The bold values indicate highest improvement rates according to algorithms.

yield much faster than a manual deployment. Different CTAP algorithms perform at different generation times, and also,
generation time differs according to the implementation of the case study. As the complexity of the communication pat-
terns among microservices increased, the deployment generation times have increased proportionally. In our previous
study,6 generation times for generating sample deployment models for the other case study (Taxi Hailing System) are
evaluated according to the different number of microservice instances and nodes using the Genetic algorithm. For the
Spotify scenario, the generation times of all algorithms used in the tool have been compared in Table 5 through the case
study described in Section 4.2.

Table 5 illustrates that most algorithms can deploy thousands of microservices in less than one second. On the
other hand, the generation time of a manual deployment model is unpredictable, and it depends on the expert’s system
knowledge. But, it is hard to obtain a deployment model manually less than 1 s time.

8.3 Micro-IDE tool evaluation

The Micro-IDE tool is proposed to generate effective deployment alternatives for microservices at the design phase. The
core of the tool is the correct implementation of the algorithms. Hence, we first focused on the evaluation of the algo-
rithms implemented in this tool. On the other hand, the usability of the tool is also an important evaluation metric for
practitioners. The tool is build on the Eclipse platform and does not require any additional software. The presented tool
is created by using EMF23 and GMF24 frameworks as a plugin in Eclipse. The usability of the tool is thus highly related
to the usability of these frameworks. Earlier studies25-27 have discussed the practical usability of this platform. The inter-
faces presented to the end user in other modeling tools such as Acceleo,28 JetBrains MPS,29 Simulink,30 Sirius31 are more
complicated than the modeling interface created with EMF and GMF frameworks.

The initial conceptual part relates more to the approach than the tool itself. For using the tool, it is required that the
UML classes and the relationships between the classes are defined by an expert who is responsible for the design of the
created architecture. After this process, the related models can be generated with the same difficulty or simplicity as in
the Eclipse platform. Among popular graphical modeling frameworks, Sirius offers a more complex graphical modeling



KARABEY AKSAKALLI et al. 21

environment. Although this framework offers a rich graphical design interface, it requires the end user to create all nec-
essary components on the tool. When a designer uses a Sirius platform, he/she needs to dominate five parts (viewpoint,
representation, mapping, style, and tool) of the view specification model (VSM) to create the required models for the archi-
tecture. Besides, the designer should validate the VSMs by checking correctness of specified representations, mappings,
tools, and finding missing or incorrect elements.

We use EMF and GMF as model-driven architecture in this study since GMF offers a simple usage framework to
the end user. In addition, we use Emfatic32 plugin to provide convenience to the designer in model-driven development.
Thanks to Emfatic, we can create our model and generate code with a single text-based definition file. The most chal-
lenging part of this tool is enhanced code generation during development and working on a more complex infrastructure.
However, the effort required by the developer offers the designer a user-friendly and practical environment. In this context,
the GMF framework provides an advantage compared to other alternative modeling tools.

9 DISCUSSION

In this study, we develop a simulation environment using model-driven engineering (MDE) to generate efficient deploy-
ment alternatives for microservices at the early design phase. Thanks to the MDE approach, an executable model can
be generated using case studies in the design phase. Thus, this approach reduces maintenance costs since it facili-
tates detecting errors before the coding phase.33,34,35 MDE provides the designer with an abstract design environment
and allows the creation of many models and metamodels using model transformations. The proposed Micro-IDE tool
based on MDE generates efficient deployment models at the design phase of the project life cycle. It allows designers
to decide efficient deployment models for the architecture by analyzing and evaluating many generated deployment
models.

Finding an efficient deployment alternative is a critical problem for MSAs, often consisting of thousands of microser-
vices with different system functionalities. In the industrial area, the management tools such as container technologies
used to deploy microservices need a user-created configuration file. Therefore, the configuration file must be reorga-
nized to create a new deployment model. To overcome this problem, we propose a systematic approach6 to deploy
MSAs by creating an automated deployment tool that fulfills functional and quality concerns according to the avail-
able resources. The approach is implemented using the EMF and does not require extra hardware and software except
the Java platform. In this respect, it differs from the other automated microservice deployment tools. Efficient deploy-
ment alternatives can be generated automatically using physical resources (microservice infrastructure model) and
runtime execution configuration parameters of microservices (microservice runtime execution configuration model).
Different algorithms are applied to generate several alternatives in the toolset, and these algorithms obtain various
performances. Besides, the proposed Micro-IDE tool allows the addition of new algorithms, and the new deploy-
ment alternatives specific to the algorithm can be offered as long as the input format for the implemented algorithm
is correct.

The MSA of the Spotify application15 is discussed to support the proposed approach with a real-world case study. In
the Spotify scenario, 4–10 nodes and 1361 microservices are used for tool testing. In addition to generating an automatic
deployment alternative, the tool also enables designing the deployment model manually. In Section 8, the experimental
results show that the algorithmic approaches outperform manual deployment in terms of the model generation times and
the improvement rates of communication and execution costs. However, this does not mean that there is no need for an
expert when deciding and managing the deployment alternatives. The tool is a complementary and supportive alternative
for the human expert who can design, manufacture, and evaluate the generated deployment alternatives. After generating
automatic deployment alternatives, it is possible to choose closer to the optimum result by the expert’s intervention, if
necessary.

One of the most important benefits of the Micro-IDE tool is the early analysis of the system, the analysis and evaluation
of the generated deployment models during the design phase, and the generation of many deployment alternatives for
deciding the most appropriate model for the system. If the deployment process is performed in the development phase,
any change in this phase causes returning to the design, implementation, documentation, and test phases in the project
life cycle, which leads to increases in management cost and time losses.

To clarify the limitations of the proposed Micro-IDE tool, four possible validity threats named internal validity,
construct validity, conclusion validity, and external validity are discussed based on a standard checklist offered by
Wohlin.36



22 KARABEY AKSAKALLI et al.

Internal validity: The most critical validity threat in this study is the inability to reach any expert who knows well
the case studies handled in the study. For this reason, the experiments for manual deployment are performed by the first
author intuitively.

Construct validity: This type of validation is concerned with assessing the challenges encountered in the data extrac-
tion process.36 To evaluate our tool, all of the microservice types used in real scenarios for the Spotify application case
study could not be reached. Another critical point is that it could not be benefited from a real execution scenario while
determining microservice instance counts included in the case studies. In this case, the microservice instance counts are
intuitively identified by the first author. Besides, all metamodels designed for case studies are created by the author by
examining the components on their web platforms. Therefore, we could not scrutinize the usability of the tool support in
the industry and the other different types of parameters according to the requirements of industrial companies.

Conclusion validity: When the evaluation results are examined, the deployment model generation times of the algo-
rithms are calculated using the proposed tool, but the model generation time of the manual deployment varies according
to the system information of the expert. Our experiments show that the algorithmic approaches used within the scope
of the study can generally deploy thousands of microservices in less than a minute. Therefore, we inferred from the
experimental analyses that the algorithmic approaches’ model generation times are lower than the manual deployment
approach.

External validity: This type of validity is concerned with the applicability of the results from the study in a more general
context. In the study, specific parameters are used for the deployment of microservices to resources with limited capacity.
These parameters are:

• Memory capacities of microservices
• Memory capacities of nodes
• The processing power of nodes
• Estimated executions costs of microservices on each node
• Communication costs between microservices

In this study, the microservice infrastructure metamodel, which includes the characteristics of the nodes, is created
by considering cloud computing resources. The bandwidth of the network is assumed as unlimited. Additionally, apart
from the parameters used in popular container technologies such as Kubernetes and Docker Swarm, communication
costs between microservices, which affect the total cost significantly, are used as a constraint. In future work, the other
types of parameters that need to be used as constraints will be investigated, and the adaptation of these parameters to
algorithmic approaches will be evaluated by interviewing companies working on MSAs.

10 RELATED WORK

In the cloud environment, efficient deployment of microservices to limited capacitated resources is a critical issue in terms
of efficient use of the cloud resources and high performance of the microservice-based system. Nowadays, the deployment
process in microservice-based systems is usually performed by an expert who knows the system very well. However, as the
number of microservices in the system increases, it becomes difficult for the expert to deploy hundreds or even thousands
of microservices manually. Many automated deployment tools such as Kubernetes, Docker Swarm, Apache Mesos, and
other alternative technologies are used for microservices. However, these technologies need a user-created configuration
file. However, if a feasible solution cannot be found according to the specified configuration file, the designer must rebuild
the configuration file. Besides, the heavy traffic generated in services is difficult to handle by the designer dynamically, and
deployment can take considerably longer than an algorithmic approach. This situation prevents the efficient deployment
of microservices to limited resources. In this section, literature studies dealing with the efficient deployment of microser-
vices to limited resources and tool-supported system approaches are investigated. Besides, tool-supported studies using a
model-driven development approach are presented to examine MSAs during the design phase.

When the tool-supported studies for microservices are examined, it is seen that few studies propose model-driven
development for microservices. Among these studies, Granchelli et al.37 present an MSA recovery tool named MicroART
that depends on MDE principles. This tool recovers the system in three stages: Physical Architecture Recovery, Service
Discovery Identification, and Logical Architecture Recovery. Since the model-based representation of the MSA is allowed



KARABEY AKSAKALLI et al. 23

in this study, the models generated by this tool can be graphically created. It is also stated that the MicroART tool is
used for many purposes such as documentation, architectural analysis, architectural reasoning, or verification between
deployed architecture and designed architecture. According to the literature studies, MDE is rarely used for microservices.
This study uses model-based engineering for MSAs. Still, the proposed MicroART tool only adopts the recovery of a
microservices-based system, and it uses a container technology (Docker) for deployment operations.

Similarly, in another study38 that uses model-driven development, a productive platform is developed for a MSA,
including a basic metamodel, a generation platform, and supporting services for workload generation. In the developed
tool, Kubernetes container technology has been used for the deployment of microservices. The primary purpose is to
measure and evaluate the performance and resilience of MSAs with desired features. While the problems are injected
into the microservice environment generated on the tool, the behavior of the services can be evaluated. Thus, the tool
enables anomaly detection. In this respect, this model differs from the model-driven automatic deployment tool we
proposed.

There are also related studies in the literature that develop tools or platforms by dealing with the deployment
problem of microservices. Profeta et al.39 propose a microservice-based platform for deploying, executing, and com-
posing big data analytics (BDA) applications in different scenarios and areas. The ALIDA platform is designed as a
unified platform where both BDA application developers and data analysts interact. Using this platform, developers
can register new BDA applications via the exposed API and web user interface. Besides, data analysts can use these
BDA applications to create workflows through a dashboard user interface to manipulate and visualize results from one
or more sources. It is also stated that the platform provides an optimal deployment configuration by synthesizing a
machine learning model based on performance metrics of BDA application workflows. One of the disadvantages of this
platform is to be designed for only BDA applications. In this case, different types of microservice-based applications
cannot be created using this platform. In another study, Guo et al.40 propose a new Cloudware PaaS platform based
on MSAs and container technologies for deploying services to users through a browser. This platform can deploy tra-
ditional desktop applications directly to the cloud and provides the end-user with the opportunity to use the services
only through browsers. It is mentioned that this platform has some advantages such as complexity control, individual
deployment, flexibility, fault tolerance, and extensibility since it uses MSA. However, it is seen that basic container tech-
nologies are used for the deployment of the services, and the platform is designed for using the services directly from
the cloud.

In Reference 41, the authors develop a tool called pipekit equipped with instructions determining service dependency
by providing a container orchestration language. This tool provides a communication layer to exchange data between
microservices using a storage unit for each service. Since the data exchange between different services should be deter-
mined in the first configuration to deploy MSAs, the deployment process is performed by notifying the system when the
services are ready. The study states that Docker orchestration tools such as Docker Compose do not support complex
scenarios sufficiently. Thus the pipekit communication layer tool is designed as an extended version of Docker Compose.

Carvalho et al.42 propose multiple provider selection approaches for cloud service selection in microservice-based
applications. This approach can select several services from a single provider for a microservice and separate providers for
each microservice, unlike other techniques. Multiple criteria decision-making method is used to rank the cloud services,
and the selection process is mapped with the multi-choice knapsack problem using the greedy algorithm approach. The
authors develop a Python-based tool to evaluate the performance of the proposed approach. This tool offers the services
to be used and the cost of each provider as a JSON file and the providers to host the microservices. There are no pre-
determined servers for generating efficient deployment models in the study, and the user is informed about the cost by
selecting the multi-cloud provider selection mechanism. In this context, it is foreseen that this information can be used
as preliminary information for modeling physical resources in our tool.

Sampaio et al.1 emphasized that a microservice-based application’s performance and resource usage depend on the
deployment of the microservices, and the existing deployment tools such as Kubernetes, Docker Compose developed
for this purpose have minimal capabilities. Therefore, an adaptation mechanism called REMaP is proposed to generate
automatic deployment of microservices. The proposed mechanism can automatically change the service placement at
runtime using the relationships (communication costs) and resource usage histories of the services. An MAPE-K-based
adaptation manager43 is used to make this displacement. This proposed mechanism has dealt with the deployment of
microservices during a running time and does not evaluate the system during the design phase. For this reason, it dif-
fers from the Micro-IDE tool. In another study2 that deals with optimal and automatic deployment of microservices, an
algorithm executed for three stages is presented to minimize the total cost on nodes. In the first stage, the algorithm gen-
erates the constraint sequence that determines the deployment of microservices and these services on the nodes. Then,



24 KARABEY AKSAKALLI et al.

in the second stage, it generates a set of constraints containing the connections to be established, and finally, it synthe-
sizes the related deployment plan based on these constraints. The optimization metrics are determined that minimize
the total cost of the deployment using these constraints. The authors compute a series of deployment plans by modeling
a real-world MSA in ABS44 to test the proposed method. This proposed tool is very close to our approach. Our solution
differs from this tool since The Micro-IDE does not need any additional hardware. Besides, many deployment alterna-
tives are presented to the designer by selecting different algorithms at the system’s design phase. Therefore, the proposed
tool differs from our study since the deployment plan is created using a single algorithmic approach, and it requires the
ability to use ABS language for modeling.

11 CONCLUSION AND FUTURE DIRECTIONS

Adopting MSAs provides many advantages such as scalability, maintenance, flexibility, smaller, and faster deployment,
but existing management tools do not consider the runtime information of services. The proposed Micro-IDE tool
efficiently performs an automated deployment approach for microservices by using the communication costs among
microservices, resource usage of microservices, and their execution costs on the resources. Microservice data exchange,
microservice definition, microservice communication, microservice infrastructure, microservice runtime execution con-
figuration, and microservice deployment models were proposed in our previous study6 are utilized in integration to realize
the deployment. The proposed tool allows generated deployment alternatives using different algorithms and enables
detailed analysis of the deployment alternatives in terms of execution and communication cost for each service. To eval-
uate the generated deployment alternatives, the Micro-IDE tool provides interfaces for the designer or end-user. Besides,
the tool gives feedback to the designer to further improve the created architecture. We adopted the music and podcasts
application called Spotify as a case study to validate the proposed tool. The generation times of the deployment alterna-
tives are less than one second in most algorithms, which is acceptable for the design phase. Besides, it is seen that most
of the tested algorithmic approaches generate a deployment alternative with lower communication and execution costs
compared to manual deployment.

In future studies, a plug-in will be integrated for one of the container environments such as Kubernetes, Docker
Swarm, Apache Mesos, and the deployment configuration generated by an optimization algorithm will be automati-
cally deployed to the server and virtual machines. Since this plug-in will be able to deploy without a user configuration,
a significant and unique contribution will be provided to the industrial applications of the microservice concept. This
design tool plug-in that automatically deploys microservices to existing management tools will be the first in the lit-
erature to the best of our knowledge. Besides, the success of the plug-in and the algorithmic approaches will be
studied in an experimental cloud environment, and the validity of the results of the Micro-IDE simulation tool will be
analyzed.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

DATA AVAILABILITY STATEMENT
Data openly available in a public repository that issues datasets with DOIs.

AUTHOR CONTRIBUTIONS
Işıl Karabey Aksakalli implemented the proposed Micro-IDE tool and evaluated the tool in terms of different parameters
used for the Capacitated Task Assignment Problem (CTAP). Turgay Çelik pioneered the proposed tool and revised the
terminological writing of the article. Ahmet Burak Can contributed to the article by determining the constraints of the
tool and the properties of the limited capacitated resources. Bedir Tekinerdoğan proofread and revised this article and
greatly improved the article to make the proposed method understandable.

ORCID
Işıl Karabey Aksakallı https://orcid.org/0000-0002-4156-9098

Turgay Çelik https://orcid.org/0000-0001-9449-2402
Ahmet Burak Can https://orcid.org/0000-0002-0101-6878
Bedir Tekinerdoğan https://orcid.org/0000-0002-8538-7261

https://orcid.org/0000-0002-4156-9098
https://orcid.org/0000-0002-4156-9098
https://orcid.org/0000-0001-9449-2402
https://orcid.org/0000-0001-9449-2402
https://orcid.org/0000-0002-0101-6878
https://orcid.org/0000-0002-0101-6878
https://orcid.org/0000-0002-8538-7261
https://orcid.org/0000-0002-8538-7261


KARABEY AKSAKALLI et al. 25

REFERENCES
1. Sampaio AR , Rubin J, Beschastnikh I, Rosa NS. Improving microservice-based applications with runtime placement adaptation. J Internet

Serv Appl. 2019;10(1):1-30.
2. Bravetti M, Giallorenzo S, Mauro J, Talevi I, Zavattaro G. Optimal and automated deployment for microservices. Proceedings of the

International Conference on Fundamental Approaches to Software Engineering; 2019:351-368; Springer, Cham.
3. Kubernetes. Kubernetes official website. Accessed July 31, 2020. https://kubernetes.io/
4. Docker. Docker swarm. Accessed July 31, 2020. https://docs.docker.com/engine/swarm/
5. Apache. Docker swarm. Accessed July 31, 2020. http://mesos.apache.org/
6. Aksakalli IK , Celik T, Can AB, Tekinerdogan B. Systematic approach for generation of feasible deployment alternatives for microservices.

IEEE Access. 2021;9:29505-29529.
7. Kalske M. Transforming monolithic architecture towards microservice architecture; 2018.
8. A. D. Best architecture for an MVP: Monolith, SOA, microservices, or serverless? Accessed July 31, 2020. https://rubygarage.org/blog/

monolith-soa-microservices/-serverless
9. Chawla H, Kathuria H. Building microservices applications on Microsoft azure: designing, Developing, Deploying, and Monitoring. Apress;

2019.
10. Partanen A. Microservices vs. Service-oriented architecture; 2018.
11. gRPC. Language Guide (proto3). Accessed January 12, 2020. https://developers.google.com//protocol-buffers/docs/proto3
12. Villamizar M, Garcés O, Castro H, et al. Evaluating the monolithic and the microservice architecture pattern to deploy web applications

in the cloud. Proceedings of the 2015 10th Computing Colombian Conference (10CCC); 2015:583-590; IEEE.
13. SOA vs. Microservices: what’s the difference? Accessed January 12, 2020. https://www.ibm.com/cloud/blog/soa-vs-microservices
14. D. L. Ek M. SOA vs. Microservices: what’s the difference? Accessed February 17, 2020. https://www.spotify.com/
15. Goldsmith K. Microservices at spotify. Accessed February 17, 2020. https://www.infoq.com/news/2015/12/microservices-spotify/
16. Budinsky F, Ellersick R, Steinberg D, Grose TJ, Merks E. Eclipse Modeling Framework: A Developer’s Guide. Addison-Wesley Professional;

2004.
17. Moore B. Eclipse development: using the graphical editing framework and the eclipse modeling framework; 2004. Books24x7.com.
18. Rubel D, Wren J, Clayberg E. The Eclipse Graphical Editing Framework (GEF). Addison-Wesley Professional; 2011.
19. Voelter M, Kolb B, Efftinge S, Haase A. From front end to code-MDSD in practice; 2006.
20. Daly C. Emfatic language reference. IBM alphaWorks; 2004.
21. Kolovos DS, Rose LM, Abid SB, Paige RF, Polack FA, Botterweck G. Taming EMF and GMF using model transformation. Proceedings of

the International Conference on Model Driven Engineering Languages and Systems; 2010:211-225; Springer.
22. Mehrabi A, Mehrabi S, Mehrabi AD. An adaptive genetic algorithm for multiprocessor task assignment problem with limited memory.

Proceedings of the World Congress on Engineering and Computer Science. 2009;2:115.
23. Eclipse Modeling Framework (EMF). Accessed May 20, 2021. https://www.eclipse.org/modeling/emf/
24. GMF tooling. Accessed May 14, 2021. https://www.eclipse.org/gmf-tooling/
25. Molina F, Toval A. Integrating usability requirements that can be evaluated in design time into model driven engineering of web

information systems. Adv Eng Softw. 2009;40(12):1306-1317.
26. Saadatmand M, Odontidis V. Investigating Eclipse Modeling Tools to Improve Usability in SaveIDE. PhD thesis. Master’s thesis. Master of

Computer Science Department of Computer Science &Hellip; 2008.
27. Kolovos DS, Paige RF. Towards a modular and flexible human-usable textual syntax for EMF models. Proceedings of the MODELS

Workshops; 2018:223-232.
28. Musset J, Juliot É, Lacrampe S, et al. Acceleo user guide; Vol. 2, 2006:157 http://acceleo.org/doc/obeo/en/acceleo-26-user-guide pdf
29. Pech V, Shatalin A, Voelter M. JetBrains MPS as a tool for extending Java. Proceedings of the 2013 International Conference on Principles

and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools; 2013:165-168.
30. Karris ST. Introduction to Simulink with Engineering Applications. Orchard Publications. 2006.
31. Eclipse Sirius. Accessed May 12, 2021. https://www.eclipse.org/sirius/
32. Eclipse emfatic; Accessed March 20, 2021. https://www.eclipse.org/emfatic/
33. Bézivin J. On the unification power of models. Softw Syst Model. 2005;4(2):171-188. Springer.
34. Brown AW, Booch G, Iyengar S, Rumbaugh J, Selic B. An MDA Manifesto The MDA Journal: Model Driven Architecture Straight From

The Masters. University of Surrey; 2004.
35. Schmidt DC. Model-driven engineering. Comput IEEE Comput Soc. 2006;39(2):25.
36. Wohlin C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. Proceedings of the 18th

International Conference on Evaluation and Assessment in Software Engineering; 2014:1-10.
37. Granchelli G, Cardarelli M, Di Francesco P, Malavolta I, Iovino L, Di Salle A. Microart: a software architecture recovery tool for maintain-

ing microservice-based systems. Proceedings of the 2017 IEEE International Conference on Software Architecture Workshops (ICSAW);
2017:298-302; IEEE.

38. Düllmann TF, vanHoorn A. Model-driven generation of microservice architectures for benchmarking performance and resilience
engineering approaches. Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion;
2017:171-172; ACM.

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
http://mesos.apache.org/
https://rubygarage.org/blog/monolith-soa-microservices/-serverless
https://rubygarage.org/blog/monolith-soa-microservices/-serverless
https://developers.google.com//protocol-buffers/docs/proto3
https://www.ibm.com/cloud/blog/soa-vs-microservices
https://www.spotify.com/
https://www.infoq.com/news/2015/12/microservices-spotify/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/gmf-tooling/
https://www.eclipse.org/sirius/
https://www.eclipse.org/emfatic/


26 KARABEY AKSAKALLI et al.

39. Profeta D, Masi N, Messina D, Dalle Carbonare D, Bonura S, Morreale V. A novel micro-service based platform for composition, deploy-
ment and execution of BDA applications. Proceedings of the 2019 45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA); 2019:182-185; IEEE.

40. Guo D, Wang W, Zeng G, Wei Z. Microservices architecture based cloudware deployment platform for service computing. Proceedings of
the 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE); 2016:358-363; IEEE.

41. de Guzmán PC, Gorostiaga F, Sánchez C. Pipekit: a deployment tool with advanced scheduling and inter-service communication for
multi-tier applications. Proceedings of the 2018 IEEE International Conference on Web Services (ICWS); 2018:379-382; IEEE.

42. Carvalho J, Vieira D, Trinta F. Greedy multi-cloud selection approach to deploy an application based on microservices. Proceedings of the
2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP); 2019:93-100; IEEE.

43. Computing A. An architectural blueprint for autonomic computing. IBM White Pap. 2006;2006(31):1-6.
44. Johnsen EB, Hähnle R, Schäfer J, Schlatte R, Steffen M. ABS: a core language for abstract behavioral specification. Proceedings of the

International Symposium on Formal Methods for Components and Objects; 2010:142-164; Springer, New York, NY.

AUTHOR BIOGRAPHIES

Işıl Karabey Aksakallı graduated from Gazi University in 2013 and started to work as a research
assistant at Atatürk University in 2014. After receiving her MSc degree from Atatürk University
in 2015, she was appointed as a research assistant to Erzurum Technical University. She started
her PhD in 2016 at Hacettepe University and received the PhD degree in 2021. Her research
topics include microservice architectures, optimization methods, distributed systems, machine
learning, and deep learning techniques.

Turgay Çelik received his BS (2003), MSc (2005), and PhD (2013) degrees in Computer Engi-
neering from Hacettepe University, Turkey. From 2003 to 2005, he served as a research assistant at
Hacettepe University. Currently, he is a lead software engineer in Bifes Defence & Aerospace Inc.,
Ankara, Turkey. He has 10 years of professional experience in software engineering research and
software development. His research topics include distributed systems, infrastructure and mid-
dleware technologies, modeling and simulation, software architecture modeling, model-driven
software development, software design optimization, and software performance profiling and

optimization.

Ahmet Burak Can is currently affiliated with the Department of Computer Engineering at
Hacettepe University, Turkey. He received the PhD degree in Computer Science from Purdue Uni-
versity, West Lafayette. He has BS and MS degrees in Computer Science and Engineering from
Hacettepe University. He is a member of the IEEE. His main research areas are computer vision,
distributed systems, and network security.

Bedir Tekinerdoğan is a full professor and chair of the Information Technology group at
Wageningen University & Research in The Netherlands. He received his MSc degree (1994) and
a PhD degree (2000) in Computer Science, both from the University of Twente, The Netherlands.
He has more than 25 years of experience in software/systems engineering and is the author of
more than 350 peer-reviewed scientific papers. He has been active in dozens of national and inter-
national research and consultancy projects with various large software companies, whereby he
has worked as a principal researcher and leading software/system architect.

How to cite this article: Karabey Aksakallı I, Çelik T, Can AB, Tekinerdoğan B. Micro-IDE: A tool platform for
generating efficient deployment alternatives based on microservices. Softw Pract Exper. 2022;1-27. doi:
10.1002/spe.3088



KARABEY AKSAKALLI et al. 27

APPENDIX. THE OVERALL METAMODELS AND THEIR RELATIONSHIPS


	Micro-IDE: A tool platform for generating efficient deployment alternatives based on microservices 
	1 INTRODUCTION
	2 MICROSERVICE ARCHITECTURE
	3 CASE STUDY AND PROBLEM STATEMENT
	3.1 Case Study---Spotify: Music and podcasts application
	3.2 Problem statement

	4 APPROACH FOR GENERATING MICROSERVICE DEPLOYMENT ALTERNATIVES
	5 METAMODELS
	5.1 Microservices data exchange metamodel
	5.2 Microservice definition metamodel
	5.3 Microservice communication metamodel for determining the relation of microservices
	5.4 Microservice infrastructure metamodel
	5.5 Runtime execution configuration metamodel
	5.6 Microservice deployment metamodel

	6 MAPPING DESIGN ARTIFACTS TO CTAP PARAMETERS
	7 MICRO-IDE TOOL SUPPORT
	7.1 Tool architecture
	7.2 Usage of Micro-IDE for implementing the case study
	7.2.1 Designing microservice data exchange metamodel---Object models and data types
	7.2.2 Identification of microservices and determining the communication patterns
	7.2.3 Establishment of physical infrastructure for the deployment of microservices
	7.2.4 Defining microservice instances using microservice runtime execution configuration metamodel

	7.3 Generating efficient deployment alternatives for the case study

	8 EVALUATION
	8.1 Performance comparison of applied algorithms
	8.2 Evaluation of deployment model generation time based on the algorithms
	8.3 Micro-IDE tool evaluation

	9 DISCUSSION
	10 RELATED WORK
	11 CONCLUSION AND FUTURE DIRECTIONS

	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	AUTHOR CONTRIBUTIONS
	ORCID
	REFERENCES
	AUTHOR BIOGRAPHIES
	APPENDIX . THE OVERALL METAMODELS AND THEIR RELATIONSHIPS

