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Abstract 
 

Global crop maps are essential tools for agricultural policy making. Opportunities for global crop 

mapping have emerged due to developments in computer science, GIS and remote sensing. This study 

presents an integrated framework for global crop mapping that combines different approaches. The 

framework was specifically applied to banana at a fifteen arcsec (~ 500 m) resolution. It was argued 

that the coexistence of different production systems cannot be neglected. This is why a clear 

distinction between large-scale and smallholder production systems was made. Plantation banana was 

detected based on polarimetric radar remote sensing data. Smallholder banana was mapped through 

the disaggregation of national production statistics with fuzzy land suitability. Outcomes were 

validated with satellite imagery and evaluated with existing global banana maps. The radar analysis 

showed that part of the global banana surface (6.5%) can be mapped with remote sensing. The 

disaggregation with fuzzy suitability gave mixed results for mapping smallholder banana, depending 

on the specific country. The resulting map visualized the general distribution of banana at a finer spatial 

resolution than existing maps. The study meanwhile illustrates an approach for global crop mapping 

based on available spatial data. Moreover, the study indicates how global crop mapping can benefit 

from the integration of remote sensing, production statistics and land suitability concepts. 
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1. Introduction 
 

 

1.1. Global crop mapping 
 

Future global agriculture will face major challenges. Agricultural demands will increase substantially 

under influence of economic growth and population growth. At the same time, climate change will 

hamper the agricultural production (FAO, 2017). This will cause an increased pressure on both global 

food security and the environment (FAO et al., 2020). Another development is the ongoing dispersion 

of crop pests and pathogens around the world (Bebber et al., 2014). This has increased the risk of crop 

disease pandemics and associated crop failures. All these challenges call for informed agricultural 

decision making across different scales. Effective agricultural policies require insights on crop 

production. The spatial distribution of crops is consequently crucial information (You et al., 2014). In 

this context, global crop maps are essential tools to manage the projected agricultural challenges in 

the years to come.  

Global crop mapping made significant progress since the advancements in GIS and remote sensing 

technology at the end of the twentieth century (Giri, 2012). The original focus in global crop mapping 

was more on landcover classes than on specific crops (Mora et al., 2014). All arable land was often 

grouped together in a single landcover class. Defries and Townshend (1994) produced one of the first 

global landcover maps based on spectral characteristics. Not much later, Ramankutty and Foley (1998) 

mapped the global distribution of croplands with satellite and census data at a five arcmin resolution. 

Similar methodologies turned out successful for mapping major crop types (Still et al., 2003, Leff et al., 

2004). Monfreda et al. (2008) thereafter distinguished 175 individual crops at a five arcmin resolution 

by using crop cover data from Ramankutty et al. (2008). This study can be considered the birthplace of 

contemporary global crop mapping.  

Crops are cultivated in a variety of production systems around the world. Commonly a distinction is 

made between large-scale and smallholder systems (Lansing et al., 2008, Brüntrup et al., 2018, Tiffen 

and Mortimore, 1990). Those systems differ from each other in several aspects. Most obviously, large-

scale systems are large in size while smallholder systems typically don not exceed a few hectares (Fox 

and Castella, 2013). Another characteristic of large-scale systems are large homogenous cropping 

surfaces in the form of monocultures. Traditional smallholder systems, however, are often 

polycultures such as intercropping systems (Ntumngia, 2010). Finally, large landowners often have the 

means to regulate environmental conditions while most smallholder farmers are resource-constrained 

(Rurinda, 2014, Hebbar et al., 2016). Most smallholder systems therefore rely on the prevailing natural 

conditions. The challenge of global crop mapping is to cover the full spectrum of production systems, 

despite their different characteristics. 

 

1.2. Global crop mapping approaches 
 

The spatial distribution of crops can be mapped in various ways. Local and regional studies often rely 

on local data acquisition and data collection. Field work, aerial photography and cadastral maps are 

common data sources in such studies (Ahani and Noshadi, 2019, Jurado-Expósito et al., 2019, Handique 

et al., 2017, Gomez Selvaraj et al., 2020). The opportunities for global crop mapping are however more 
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limited. Field work at the global scale is simply not possible. Furthermore, creating global crop maps 

by compiling national crop maps is constrained. Only some countries have such maps at their disposal 

and the willingness to share data is generally low. Global crop mapping therefore asks for a generic 

approach that employs existing and available data sources. 

Crop mapping can be done with direct and indirect mapping approaches. The high quality of remote 

sensing products nowadays provides opportunities for the direct detection of specific crops. Different 

products provide data at various spatial, temporal and spectral resolutions. Multispectral sensors 

provide reflectance data for multiple wavelengths. The full spectral signal is often transformed to 

spectral indices (Lu and Weng, 2007). A well-known index for crop mapping is the normalized 

difference vegetation index (NDVI). Several studies already used seasonal fluctuations in NDVI and 

other indices to map crops at a regional level (Heupel et al., 2018, Peña-Barragán et al., 2011, Zhang 

et al., 2011). Another common type of remote sensing is radar. Radar sensors actively transmit 

microwaves and measure the returned signal. Radar data can be acquired during both day and night-

time. In addition, radar signals are insensitive to interference by clouds (Chen et al., 2018, Lu and Weng, 

2007).  

There are several approaches for indirect crop mapping. Those approaches are not mutually exclusive 

and often complementary to remote sensing (Zhang et al., 2017). A good example is the use of 

statistical data. Whereas crop maps are scarce, agricultural census data is widely available (Kluger et 

al., 2021). Several studies used agricultural census data as a starting point for crop mapping at a global 

scale (You et al., 2014, Monfreda et al., 2008, Onderwater, 2020). Another interesting approach 

involves the notion of land suitability. Land suitability concepts originate from agroecology and 

establish a link between crop occurrence and environmental conditions. A conventional application of 

land suitability for spatial planning is the FAO framework for land evaluation (FAO, 1976). In addition, 

several land suitability studies used fuzzy classification techniques as an alternative framework 

(Atijosan et al., 2015, Ali et al., 2010, Joss et al., 2008). Land suitability concepts have also been used 

to map land use and land use change explicitly. The CLUE modelling framework by Verburg et al. (1999) 

provides an early example of such an approach. Finally, machine learning techniques are increasingly 

used for crop mapping. A variety of crop classification algorithms exists. For instance, Sonobe et al. 

(2014) applied Random Forest and CART algorithms to map crop types in Japan. In addition, Miettinen 

and Liew (2011) separated plantation crops in Southeast Asia by using statistical distance techniques. 

 

1.3. The demand for a global banana map 
 

Banana is an important crop for global agriculture. Banana cultivation and consumption dominates the 

livelihoods of 400 million people around the world, especially in the tropics (García-Bastidas et al., 

2019). Its production amounted to 117 million tonnes in 2019, making banana the fourth most 

important global food crop (FAO, 2020, Churchill, 2011). The majority of banana yields are used for 

local consumption, less than one fifth is exported to international markets (Evans et al., 2020). In other 

words, banana plays an important role in local food security and rural economies. Banana is a perennial 

crop that is traditionally cultivated in home gardens or multi-crop fields (Robinson and Galán Saúco, 

2011). These traditional production systems are still found in smallholder agriculture. For example, 

Kenyan farmers often plant banana at a considerable part of their smallholder plots (Wahome et al., 

2021). The average size of banana plantations in a country like Kenya is 0.32 hectares (Obaga and 

Mwaura, 2018). On the other hand, monoculture banana plantations larger than 100 hectares are 

found in export-oriented regions like Latin-America (Stoorvogel et al., 2004). It should be noted that 
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smallholder systems and banana plantations generally coexist in banana producing countries (Bijker, 

2014).  

The global banana production relies for 95% on cultivars with strong genetic ties. The single Cavendish 

cultivar even accounts for 50% of the global banana production as well as nearly all export production 

(Bakry and Horry, 2016, Ploetz et al., 2015b). This poor genetic diversity makes banana vulnerable to 

a variety of diseases (Jones, 2018). For instance, Xanthomonas bacterial wilt forms a serious threat for 

banana production in East and Central Africa (Ocimati et al., 2019). Also fungal leaf-spot diseases like 

black Sigatoka affect banana production at a global level (Jesus Júnior et al., 2008, Jones, 2018). Banana 

is currently severely threatened by Panama disease. This soil-borne disease is caused by the fungus 

Fusarium Tropical Race 4 (Foc TR4) (Ploetz, 2015a). Predecessors of Foc TR4 had already devastating 

effects in the past (Ordóñez R et al., 2018). Originating from Indonesia (Maryani et al., 2019), Foc TR4 

has recently spread all over the world (Zheng et al., 2018, O’Neill et al., 2016, Ploetz et al., 2015a, 

Thangavelu et al., 2019, Viljoen et al., 2020, García-Bastidas et al., 2020). The disease has severe 

consequences for banana production given that effective management options do not exist (Ploetz, 

2015b). This calls for adequate measures to prevent the spread of the disease.  

Banana diseases spread through landscapes via different pathways. There is often a clear relation 

between the disease and the dominant spreading mechanism (Blomme et al., 2013, Mengesha et al., 

2018). The spatial distribution of host plants is certainly a crucial factor (Otten and Gilligan, 2006). In 

this context, Bijker (2014) applied a multi-scale approach to identify risk factors for the spread of Foc 

TR4 in Costa Rica. An interesting observation was the abundancy of individual banana plants between 

large plantations. Those plants connected the Costa Rican banana landscape by serving as 

steppingstones for the spread of diseases. Her work underlines that plantations, smallholder 

cultivations and wild plants all have an impact on landscape connectivity. Knowing where banana 

grows is therefore essential for disease monitoring and risk evaluation. Despite its importance, 

however, no high-resolution global banana map is currently available. 

 

1.4. Towards a global banana map 
 

Monfreda et al. (2008) produced the first global banana map at a five arcmin resolution. The authors 

achieved this milestone by using global landcover data for the disaggregation of production statistics. 

More recently, Onderwater (2020) produced a global banana map at a thirty arcsec resolution. 

Onderwater increased the resolution substantially by using both remote sensing and land suitability 

for the disaggregation of production statistics. Both studies indicate the added value of census data 

for global crop mapping. At the same time, both studies took only limited advantage of the 

opportunities that remote sensing has to offer. Neither study used remote sensing to map banana 

through direct crop mapping. Furthermore, neither study incorporated the notion of coexisting 

production systems in their methodological frameworks. These observations indicate crucial focus 

points for further research.    

Remote sensing has been used extensively for banana mapping at the regional level (Johansen et al., 

2009, Handique et al., 2017, Gomez Selvaraj et al., 2020). Previous work on radar remote sensing 

deserves special attention. Xie et al. (2015) used polarimetric SAR to separate banana from rice, 

eucalyptus and sugarcane in southern China. Furthermore, Wang et al. (2010) used multitemporal SAR 

to distinguish banana from sugarcane, water and cities. Both studies linked the good separability of 

banana to the distinct shape of the plant. Both studies also mentioned the advantage of radar for crop 
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mapping in the cloudy tropics. The generic character of either method indicates good prospects for 

global crop mapping. Literature also shows interesting applications of land suitability for crop mapping. 

For instance, land suitability for banana was mapped through a fuzzy classification method in the 

Philippines (Salvacion et al., 2019, Salvacion, 2021). A similar approach could be useful for banana 

mapping at a global scale. 

This study presents an integrated framework for global crop mapping. The framework is hereby applied 

to banana specifically. The study considers differences between production systems and includes a 

strong remote sensing component. The research expands the previous work on global banana mapping 

by Monfreda et al. (2008) and Onderwater (2020). In this context, a global banana map is created at a 

fifteen arcsec resolution. 
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2. Materials & Methods 
 

 

2.1. General Framework 
 

This study presents a methodological framework for global crop mapping (Figure 1). The framework 

consists of two methods that each focus on a different production system. The first method was 

developed to detect large-scale production systems through the analysis of remote sensing data. The 

second method was developed to predict the location of smallholder systems based on land suitability 

and census data. In this way, the framework disconnects the occurrence of large-scale systems from 

their biophysical environment. This decision reflects the considerable impact of management practices 

on growing conditions in large-scale systems. The general framework consists of the four steps below. 

The dashed line indicates that the results of step two are required as input for step three. 

1. Preparation of input data 

2. Mapping plantation banana 

3. Mapping smallholder banana 

4. Validation and evaluation 

 

 

 

 

  

Figure 1: The general framework for global crop mapping. (The numbers in the 
Figure refer to the different steps in the text) 
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2.2. Materials 
 

2.2.1. Data overview 
Global radar, landcover and slope data were used for mapping large-scale systems. In addition, 

available statistics and land use data were collected for calibration purposes. Climate, soil and water 

table depth data were used to map land suitability. National production statistics were disaggregated 

to map smallholder banana based on the suitability results. Finally, two existing global banana maps 

were collected to allow for a comparison of methods and results. Table 1 provides an overview of the 

data that was used in this study. Each dataset is described in more detail in Chapter 2.2.2. 

 

Table 1: Data overview. (See Annex A for data access) 

Data Details Research 
component 

Temporal 
extent 

Spatial 
resolution 
 

Source 

Synthetic Aperture 
Radar (SAR) 

Sentinel-1 product 
from ESA  

C-band, VV and VH 
polarization 

Plantation banana 2018-2019 10 / 25 / 40 m 
(depending 
on scene) 

(ESA, 2020) 

PALSAR-2 product 
from JAXA  

L-band, HH and HV 
polarization  

Plantation banana 2018-2019         25 m (Shimada et al., 
2014) 

Landcover Copernicus global 
land service (CGLS) 
product  

Plantation banana  
+ Pre-processing 

2018       100 m (Buchhorn et al., 
2020) 

GlobCover product Plantation banana 2009       300 m (Arino, 2010) 

Elevation NASADEM product Plantation banana 2000         30 m (NASA-JPL, 2020) 

Calibration data Costa Rican banana 
map 

Plantation banana 2019 - (Corbana, 2019) 

Mexican land use 
map 

Plantation banana 2017 - (INEGI, 2017) 

Philippine banana 
statistics (regional) 

Plantation banana 2020 - (Salvacion, 2020) 

Climate WorldClim V1 
Bioclim product 

Smallholder banana 
+ Pre-processing 

1960-1991 ≈ 1000 m (Hijmans et al., 
2005) 

Soil SoilGrids product Smallholder banana -      250 m (Poggio et al., 
2021) 

Water table depth EartH2Observe 
product 

Smallholder banana - ≈ 1000 m (Fan et al., 2013) 

National 
production 
statistics 

FAOSTAT product Smallholder banana 2019 - (FAO, 2021b) 

Existing global 
banana maps 

Global banana map Plantation + 
Smallholder banana 

2000   10000 m (Monfreda et al., 
2008) 

Global banana map Plantation + 
Smallholder banana 

2015     1000 m (Onderwater, 
2020) 
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2.2.2. Data collection and justification 
 

Synthetic Aperture Radar (SAR) 

An interesting radar technique is polarimetric synthetic aperture radar (SAR). Polarimetric SAR signals 

reflect the structure and geometry of ground targets (Lopez-Martinez and Lopez-Sanchez, 2017). In 

addition, they reflect several crop characteristics such as ground cover, biomass, moisture content and 

crop height (Srikanth et al., 2016). Polarimetric SAR was used in several regional crop mapping and 

landcover studies (Tao et al., 2017, Ullmann et al., 2017, Zakeri et al., 2017). 

Polarimetric radar data from the Sentinel-1 and ALOS PALSAR-2 satellites were downloaded for 2018 

and 2019. The temporal extent of two years ensured a global data coverage for both platforms. The 

two satellites provided complementary data because of their different polarization channels. Using 

both datasets yielded VV, VH, HH and HV backscatter data. In addition, the sensors of Sentinel-1 (C-

band) and PALSAR-2 (L-band) measure in different parts of the electromagnetic spectrum. Radar 

signals are backscattered by elements that have dimensions similar to the wavelength of the signal (Le 

Toan, 2007). In other words, Sentinel-1 and PALSAR-2 sense different parts of ground objects (Figure 

2). Combining both datasets consequently provides more information on vegetation and crop 

structures. 

Different types of SAR products exist. A distinction is made between Single Look Complex (SLC) and 

Ground Range Detected (GRD) products (Holloway, 2018). However, the exact naming of products 

varies per satellite platform (Airbus, 2015). In short, SLC contains information on signal strength and 

phase while GRD contains signal strength only (Holloway, 2018). This makes that GRD products are 

significantly smaller in size than SLC products. This study used GRD products for this reason, allowing 

for data analysis on a global scale. The SAR images have been aggregated temporally for each 

polarization channel. 

 

Figure 2: Penetration of radar signal into tree objects  

for different radar wavelengths (Sassan, 2019) 

 

Landcover 

The optimal landcover product would separate plantation agriculture from mixed cropping systems. 

Such a landcover product was however not available for this study. Instead, the usability of two 

common global landcover products was evaluated: GlobCover and Copernicus global land service 

(CGLS). A visual comparison with satellite imagery showed that GlobCover covers prominent banana 
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production regions by a few classes only. In this way, the potential banana area could be reduced more 

substantially compared to CGLS. GlobCover was therefore used as the main source of landcover data 

in this study. The 2009 product was considered representative for contemporary landcover. Besides 

GlobCover, urban cover data from CGLS was used as an additional input. This dataset provided 

information on urban cover fraction, complementary to the discrete GlobCover classes. Both 

GlobCover and CGLS have a finer resolution than the level of detail in this study. 

 

Elevation 

A large variety of Digital Elevation Models (DEM) exists. In this study, the NASADEM product was 

selected arbitrarily. NASADEM is an improved digital elevation model that combines data from the 

Shuttle Radar Topography Mission (SRTM) with auxiliary datasets (Buckley et al., 2020). Its spatial 

resolution of 30 m largely meets the requirements for this study. The NASADEM product was converted 

to a slope map for further analysis. This was done in GEE to benefit from the strong processing power 

that the platform offers. The NASADEM product was aggregated to a 500 m resolution, after which 

slope was calculated with a neighborhood of four grid cells. The resulting slope map displayed the 

general gradient in landscapes. Such a general slope map had sufficient detail for this study. 

 

Calibration data 

Two appropriate country maps were found for calibration purposes. The first map was a banana 

plantation map of north-east Costa Rica from the country’s national banana cooperation (Corbana). 

The map delineates the majority of banana plantations in the region. The second map was a Mexican 

land use map from the national institute for statistics and geography (INEGI). The map separates 

agricultural land use classes based on water supply and the crop’s life cycle. Finally, regional banana 

statistics of the Philippines were used as an additional source of calibration data.     

 

Climate 

Climate gradients normally arise at the landscape scale. This allowed for the use of climate data with 

a coarser spatial resolution than the fifteen arcsec output resolution. In addition, major climate trends 

occur at timescales beyond years or decades. The 2005 WorldClim product with a thirty arcsec 

resolution was therefore considered appropriate for this study. The WorldClim subproduct BioClim 

contains bioclimatic variables derived from monthly temperature and rainfall data. BioClim hereby 

offered biologically meaningful climate data that was required for this study. 

 

Soil 

Soil variability occurs at finer spatial scales than climate. The SoilGrids product was selected because 

its spatial resolution matches the requirements of this study. SoilGrids contains information on several 

textural, structural and chemical soil properties on a global level. The data is grouped into six vertical 

intervals, together covering a soil depth of two meters in total. In this study, variability within soil 

profiles has not been considered. Instead, average soil property values were calculated for the 

rootzone of banana. The idea behind this approach is that soil conditions affect banana growth most 

in the rootzone. Banana roots are concentrated in the top 30 cm of the soil (Robinson and Galán Saúco, 

2011). The soil data has therefore been aggregated over this soil depth. 
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Water table depth 

Banana requires well-drained soils (Robinson and Galán Saúco, 2011). In this study, water table depth 

was used as an indicator for drainage conditions. Data on water table depth with a 1000 m spatial 

resolution turned out available. The EartH2Observe product was selected because it provides water 

table data on a global level.   

 

National production statistics 

National production statistics summarize the agricultural production levels of countries. FAOSTAT 

provides an overview for all countries based on national surveys. The database includes production 

statistics for a large number of crops, including banana and plantain. The plantain statistics refer to the 

Musa paradisiaca species specifically (FAO, 2021d). The banana statistics cover all other species of the 

genus Musa that produce edible fruits. The distinction made by the FAO is however arbitrary. The Musa 

paradisiaca group has strong genetic ties with other Musa groups. Robinson and Galán Saúco (2011) 

therefore argue that the name Musa paradisiaca cannot be used to distinguish banana from plantain. 

Moreover, spatial interactions between banana and plantain exist. The work of Bijker (2014) for 

example shows how both groups influence landscape connectivity. It was argued that the inclusion of 

all Musa species yields the most informative results within this study. The banana and plantain 

statistics were therefore merged for mapping smallholder banana. 

The FAOSTAT database contains three production indicators: harvested area, yield and production 

quantity. This study focused more on the global banana distribution than on the global banana 

production. This is why harvested area was selected as the most appropriate production indicator. 

Harvested area statistics for perennial crops like banana are generally equivalent to the total planted 

area (FAO, 2021d). Most recent statistics were available for the year 2019. The statistics were made 

spatially explicit by joining the national production statistics to the QGIS World Map. Eleven regions 

were thereafter removed from the QGIS world map to reduce processing time. Among those regions 

were features with erroneous geometry or zero production statistics. In addition, some remote parts 

of American and French territory were excluded. The excluded areas were either very small or too cold 

for banana. 

 

Existing global banana maps 

Two global banana maps were collected for validation purposes. First of all, Monfreda et al. (2008) 

mapped the global banana distribution for the year 2000 at a five arcmin resolution. Secondly, 

Onderwater (2020) mapped the global banana distribution for the year 2015 at a thirty arcsec 

resolution. Both studies applied a disaggregation method based on production statistics. 

 

 

2.2.3. Data handling and pre-processing 
 

Open-source software was used for data processing, including QGIS, Python and R software. Some 

models have been executed in batch mode to avoid computer memory problems. This implied that 

models were run for different parts of the world separately and merged afterwards. For the same 

reason, intermediate results were rescaled to Byte data type whenever possible. Most datasets in 

Table 1 were accessed through Google Earth Engine (GEE). GEE is a cloud-based platform that contains 



17 
 

a wide variety of geospatial data. The Python API was used to export the GEE data to GeoTIFF format. 

Pre-processing was performed in GEE before exporting, unless stated differently. The different pre-

processing steps are discussed below. 

  

Temperature mask 

Banana has a low tolerance to cold climate conditions. A temperature mask was therefore applied to 

filter out locations that are too cold for banana. The crop is severely damaged when temperatures 

drop below 6 °C (Robinson and Galán Saúco, 2011). Banana occurrence at locations with such 

temperatures during part of the year is very unlikely. Regions with average cold quarter temperatures 

below 6 °C were consequently excluded from further analysis.  

 

Landcover mask 

A general landcover mask was applied to the data. The purpose of the landcover mask was to exclude 

particular landcover types from further analysis. A distinction was made between large-scale systems 

and smallholder systems. For large-scale systems, built-up areas and water bodies were masked out 

to improve the separability of SAR signals. Additional landcover filters for mapping plantation banana 

are described in Chapter 2.3. For smallholder systems, water bodies were excluded to ensure that 

banana was disaggregated over land surface only. Contrary to large-scale systems, built-up area was 

not masked out while smallholder banana is often cultivated in home gardens.  

 

Further pre-processing 

Data subsets were merged if required to obtain inputs with a global coverage. In addition, all datasets 

were aligned in terms of coordinate reference system, extent and resolution. After alignment all 

datasets were in EPSG:4326 with a global coverage and a fifteen arcsec spatial resolution. It was 

decided to work in EPSG:4326 because most datasets already had this coordinate reference system. 

The alignment implied that datasets with finer resolutions were aggregated to fifteen arcsec. 

Analogously, datasets with coarser resolutions were interpolated to fifteen arcsec. The alignment of 

GEE datasets was done automatically when exporting to GeoTIFF format. The alignment with other 

datasets was done in QGIS manually. 
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2.3. Mapping plantation banana 
 

2.3.1. Overview 
 

A method was developed to map large banana surfaces with remote sensing. A schematic overview of 

the method is provided in Figure 3. The method consists of three steps that are explained in 

subchapters 2.3.2. - 2.3.4. respectively.  

 

1. Classification of satellite imagery 

Synthetic Aperture Radar (SAR) data was classified  through a multivariate statistical distance 

analysis. The satellite imagery was hereby compared to characteristic backscatter signals of 

banana. This step yielded a fuzzy banana map, indicating the similarity between grid cell values 

and characteristic values for banana. 

2. Filtering of results 

Areas where banana occurrence is unlikely based on supplementary data were filtered out 

from the dataset. Filtering was done based on four characteristics, namely: landcover, urban 

cover fraction, slope and the SAR signal of the VH polarization channel. The filtering improved 

the results by excluding areas that produced significant noise. 

3. Conversion to plantation banana map 

The filtered map was thereafter converted to a final banana map. A calibration procedure was 

developed to do this conversion as unambiguously as possible. 

 

 

Figure 3: The method for mapping plantation banana.  

(The numbers in the Figure refer to the different steps in the text) 
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2.3.2. Classification of satellite imagery 
 

A comparison was made between SAR data and characteristic backscatter values of banana. All four 

polarization channels were involved in this comparison to make optimal use of the data. This required 

a multivariate approach that allowed for the combination of four inputs. Similarity between the SAR 

data and characteristic banana values was synthesized into a single value. In literature, such a measure 

of similarity is often called a distance (Brereton, 2011, Xu and Tian, 2015). Analogously, algorithms to 

calculate distances are referred to as distance functions. In the context of this study the following 

applied: the smaller the distance, the more likely banana is present.  

Several multivariate distance functions exist (Xu and Tian, 2015), but most common are the Euclidean 

distance and Mahalanobis distance (De Maesschalck et al., 2000). Contrary to the Euclidean distance, 

the Mahalanobis distance accounts for correlation between variables and differences in measurement 

scale (McLachlan, 1999). The Mahalanobis distance function was therefore selected to measure 

similarity in this study. Conveniently, Harasymczuk (2016) developed a QGIS plugin for calculating the 

Mahalanobis distance. This plugin was used after modification and rewriting to a QGIS tool compatible 

with the QGIS model builder. 

Characteristic backscatter values for banana were derived from SAR imagery of banana plantations in 

north-east Costa Rica. The available Costa Rican banana map was overlayed with the SAR imagery of 

all four polarization channels. In this way, the average backscatter signal from Costa Rican banana 

plantations was determined (see Table 2). The observed values were thereafter compared with SAR 

data from banana production regions in northern Colombia and southern Mindanao, Philippines. This 

confirmed that similar backscatter values were found for banana plantations in other parts of the 

world. It was therefore argued that the values in Table 2 can be used for plantation banana in general. 

 

Table 2:  The characteristic backscatter values of Costa Rican banana plantations for different SAR polarization channels. 
(Backscatter values of PALSAR-2 and Sentinel-1 are unitless, values refer to the specific measurement scale of either platform) 

Polarization channel Characteristic value 

HH 6793 

HV 2962 

VV -  3.93 

VH -10.90 

 

 

2.3.3. Filtering of results 
 

 

Landcover filter 

The landcover filter masked out landcover classes that were irrelevant for mapping plantation banana. 

The banana production zones of the world are covered by several different landcover classes (Chapter 

2.2.2). For example, Costa Rican banana plantations are either classified as mosaic cropland, mosaic 

vegetation or broadleaved evergreen forest. Similar observations were done for banana regions 

elsewhere, indicating the need for a lenient landcover filter. It turned out necessary to preserve seven 
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landcover classes in total (see Table 3). Those seven classes together covered the major banana 

production regions of Latin-America, Sub-Saharan Africa and South/South-East Asia.  

 

Table 3: The GlobCover classes that together cover major banana production regions. 

GlobCover Value Description 

11 Post-flooding or irrigated croplands 

14 Rainfed croplands 

20 Mosaic cropland / vegetation (grassland, shrubland, forest) 

30 Mosaic vegetation (grassland, shrubland, forest) / cropland 

40 Closed to open broadleaved evergreen and/or semi-deciduous forest 

50 Closed broadleaved deciduous forest 

60 Open broadleaved deciduous forest 

 

 

Urban cover fraction filter 

The urban filter excluded locations that were considered too urbanized for large-scale banana 

production. Peri-urban environments turned out an important source of erroneous results. It was 

observed that backscatter signals similar to banana emerged from the outskirts of towns. An 

explanation could be the mixture of built-up area and agriculture at such locations. On the one hand, 

built-up areas are characterized by high backscatter in several polarization channels (Ban et al., 2015). 

On the other hand, non-banana agriculture has relatively low backscatter for most polarization 

channels. The combined effect of high and low scatterers in peri-urban areas could explain the 

confusion with signals from banana. Peri-urban areas were therefore removed to avoid confusion by 

applying an arbitrary threshold of 20% for urban cover fraction. 

 

Slope filter 

The slope filter excluded locations that are too steep for banana plantations. This was done to 

eliminate confusing signals originating from mountainous areas. Large plantations are generally not 

constructed at steep terrain for two principal reasons. First of all, terrains with a steep slope have a 

high risk of surface erosion (Robinson and Galán Saúco, 2011). Secondly, steep slopes constrain the 

operation of banana transport systems such as cableways (Thompson and Burden, 1995). Previous 

studies applied slope filters successfully in the context of urban mapping (Ban et al., 2015, Gamba and 

Lisini, 2013). According to Delvaux (1995), terrains with slopes below 8% are agronomically suitable for 

banana production. Furthermore, Onderwater (2020) and Thompson and Burden (1995) mention slope 

thresholds of 0.5% and 0.2% for the operation of cableways. In this study, an intermediate slope 

threshold of 2% has been applied to filter out mountainous areas while preserving banana plantations 

on gently sloping terrain.  

 

SAR-VH filter 

The SAR-VH filter excludes locations that are most likely palm oil plantations. The filter was needed 

while SAR signals of palm oil and banana were confused. For instance, Indonesian palm oil plantations 

on Sumatra and Kalimantan were consistently classified as banana. However, it was observed that 

palm oil plantations returned VH backscatter signals smaller than -13 on the Sentinel-1 measurement 
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scale. Contrarily, banana plantations returned higher VH backscatter signals. A SAR-VH filter with a 

threshold of -13 on the Sentinel-1 measurement scale was therefore applied to eliminate the 

confusion.  

 

 

2.3.4. Conversion to plantation banana map 
 

Conversion parameters 

The improved fuzzy map was finally converted to a plantation banana map. A distance threshold was 

introduced for this purpose. The distance threshold was the maximum Mahalanobis distance for which 

locations were still classified as banana. In this way, the distance threshold allowed for the separation 

of plantation banana from non-banana surfaces. Conversion based on only the distance threshold 

yielded results with significant noise. This is why an additional focal filter was applied. The underlying 

argument was that banana grid cells are generally surrounded by other banana grid cells. In other 

words, isolated banana grid cells have a high risk of being erroneous results. A neighborhood threshold 

was introduced to indicate the minimum required number of banana neighbors. The focal filter 

excluded all potential banana grid cells that had less banana neighbors than the neighborhood 

threshold.  

A formal calibration procedure was developed to determine the optimal distance and neighborhood 

threshold values. In this way, the risk of biased results was reduced and reproducibility of the research 

was secured. It was decided to work with a small neighborhood size of 3 by 3 grid cells. Larger frames 

were not considered for practical reasons. Different combinations of neighborhood and distance 

thresholds were tested and results were compared with one another. The neighborhood threshold 

was varied from zero neighbors to a full encirclement of eight neighbors. The distance threshold was 

varied from one to fifty on a Byte scale. This yielded a total of 450 different combinations for distance 

and neighborhood thresholds. An overview of the calibration parameters is provided in Table 4.  

 

Table 4: The ranges of conversion parameter values that were used for calibration. (The combination of eight different 
neighborhood thresholds with fifty different Mahalanobis distance thresholds yielded 450 calibration runs in total) 

Parameter Fixed value Lower 
value 

Higher 
value 

Step size 

Neighborhood size (x by x grid cells) 3 - - - 

Neighborhood threshold (nr. of neighbors) - 0 8 1 

Distance threshold (Byte scale) - 0  50  1 

 

 

False negatives vs. false positives 

Calibration largely reduced false positive and false negative results. False positives were defined as 

non-banana surfaces that had been classified as banana. Analogously, false negatives were defined as 

actual banana surfaces that had been overlooked in the classification. The relative impact of false 

positives and false negatives on the quality of results is usage-dependent (Connors et al., 2014). In this 

study, the impacts of false positives were considered larger than those of false negatives. It was argued 

that particularly false positives lead to deceptive global patterns. False positives were therefore 
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arbitrarily assigned a four times larger weight than false negatives. The occurrence of false positives 

and false negatives was assessed based on the calibration data. Calibration scores were calculated for 

each run by multiplying the total number of false positives and false negatives with their respective 

weight factors. The false positive and false negative scores were thereafter summed to obtain an 

overall score. The distance and neighborhood threshold giving the lowest score were thereafter 

selected as the optimal conversion parameters. 

 

Calibration data 

Calibration data turned out scarce for this study. Apart from Costa Rica, banana plantation maps were 

not available. Nevertheless, an alternative procedure was developed that made use of available data 

from other sources. Results were in this way calibrated for Costa Rica, Mexico, Nigeria and the 

Philippines. Each country involved a slightly different calibration method. 

 

Costa Rica 

A Costa Rican banana plantation map from 2019 was used to assess false negatives. The map was 

considered appropriate for calibration because its temporal extent roughly matched the SAR data in 

this study. False negatives were defined as Costa Rican banana plantations that were overlooked in 

this study. The map was only used for the assessment of false negatives, not for false positives. Google 

Earth imagery from 2019 indicated that not all plantations were covered by the map. Calibrating on 

false positives would consequently give distorted results. 

Mexico 

A Mexican land use map from 2016 was used to assess false positive results. The map distinguished 

different types of agriculture based on the crop’s life cycle and its water supply. Any banana grid cell 

outside the perennial and semi-perennial land use classes was considered a false positive. The 2016 

land use map was considered representative for the years 2018 and 2019 from which dated the SAR 

data in this study. 

Nigeria 

Nigeria is known for its large production of cooking banana for local consumption (Bifarin et al., 2010). 

The strong focus on production for the own market was confirmed by trade statistics on the country. 

According to FAOSTAT, Nigeria exported only 3 tons of banana and 11 tons of plantain in 2019 (FAO, 

2021c). Compared to a neighboring country like Cameroon (≈ 190,000 tons), the export of Nigeria is 

negligible. Literature furthermore indicates that cooking banana in the country is cultivated by 

smallholder farmers (Akinyemi et al., 2010). This suggests that large-scale plantations associated with 

export banana are absent. Any banana grid cell in Nigeria was therefore considered a false positive.    

Philippines 

Regional production statistics of different banana cultivars were available for the Philippines. As a 

reminder, nearly all export banana in the world is Cavendish (Ploetz et al., 2015b). It was therefore 

argued that large banana plantations only occurred in regions with Cavendish banana. Banana grid 

cells were considered false positives when located in a region with zero Cavendish production. In this 

way, regional Cavendish banana statistics were used to assess false positives in the Philippines.  
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2.4. Mapping smallholder banana 
 

2.4.1. Overview 
A method was developed to map smallholder banana with land suitability and production statistics.  A 

schematic overview of the method is provided in Figure 4. The method consists of two steps that are 

further explained in subchapters 2.4.2. and 2.4.3.. 

 

1. Land evaluation 

Land suitability was mapped at a fifteen arcsec resolution based on climate, soil and water 

table depth. A fuzzy classification was applied to the data. Suitability values were calculated 

for each environmental factor and thereafter combined into a single suitability map.  

2. Disaggregation of production statistics 

National production statistics were disaggregated according to the land suitability map. This 

implied that statistics were distributed over locations with highest suitability. Furthermore, the 

maximum banana cover in each grid cell was made dependent on land suitability. 

 

 

 

Figure 4: The method for mapping smallholder banana.  

(The numbers in the Figure refer to the different steps in the text) 

. 
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2.4.2. Land evaluation 
 

 

Plantations have intensive management that allows for the adaptation of local conditions. On the 

contrary, smallholder systems strongly rely on natural environmental conditions (Rurinda, 2014). 

Small-scale farmers often lack the resources to regulate land characteristics such as moisture 

conditions, organic matter fractions and groundwater levels. The natural conditions consequently have 

to match the land use requirements in smallholder systems. In this context, the FAO framework for 

land evaluation introduced the concept of land quality. Land qualities are defined as complex land 

attributes that influence land suitability for a specific usage (FAO, 1976). A wide variety of land qualities 

exists, ranging from availability of inputs to absence of natural disasters. Most land qualities are 

described as a function of one or multiple land characteristics. Interestingly, land characteristics 

sometimes have an opposite impact on different land qualities. For instance, shallow water tables add 

to moisture availability while reducing oxygen availability. The relative importance of different land 

qualities depends on the specific land use requirements of a certain production system or crop. 

 

 

Land qualities and land characteristics 

In this study, six land qualities were considered for mapping land suitability (see Table 5). Those specific 

land qualities were selected based on their relevance for smallholder banana. High temperatures and 

solar irradiance are essential to sustain banana growth. Furthermore, high moisture availability is 

required to meet the crop water requirements of banana throughout the year. High oxygen availability 

is necessary to ensure the aeration of the soil. To conclude, high nutrient availability stimulates banana 

growth and high resistance to soil erosion limits the loss of nutrients, seeds and other inputs.    

The land qualities were described by five distinct land characteristics (see Table 5). Cold quarter 

temperatures were used to assess temperature requirements of banana. Annual precipitation was 

used as an indicator for cloudiness and therefore solar irradiation (Robinson and Galán Saúco, 2011). 

The land quality moisture availability was described by four land characteristics in total: dry quarter 

precipitation, annual precipitation, water table depth and soil organic matter. Water table depth was 

used to assess oxygen availability in the rootzone. To conclude, soil organic carbon was used as an 

indicator for both nutrient availability and resistance to erosion. 

The general relationships between land qualities and their associated land characteristics have been 

listed in Table 5. These relationships basically summarize the aforementioned. For instance, high 

annual precipitation increases cloudiness and thus decreases solar irradiation. This implies a negative 

relationship between annual precipitation and solar irradiation. 
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Table 5: The six land qualities and their associated land characteristics that were used for land suitability mapping. (The third 
column indicates the general relationship between the qualities and their associated land characteristics). 

Land quality Land characteristic(s) Relationship 

Temperature Temperature (average for the coldest quarter of the year) Positive 

Solar irradiance Annual precipitation Negative 

Moisture availability Precipitation (average for the driest quarter of the year) 
Annual precipitation 
Water table depth 
Soil organic carbon 

Positive 
Positive 
Negative 
Positive 

Oxygen availability Water table depth Positive 

Nutrient availability Soil organic carbon Positive 

Resistance to erosion Soil organic carbon Positive 

 

 

Fuzzy classification of land suitability 

A rule-based model was developed for the fuzzy classification of land suitability. The rule-based nature 

of the model allowed to derive suitability thresholds from literature. This was convenient given that 

global training data on smallholder banana occurrence was not available. Fuzzy classifications move 

beyond the rigid classification schemes of traditional land evaluation methods. Instead of discrete 

classes, fuzzy classifications produce membership values that reflect how well an object fits into a class 

(Joss et al., 2008). Previous studies showed several advantages of fuzzy classification for crop mapping 

(Qiu et al., 2014). Most importantly, fuzzy classifications represent the continuous gradients in 

landscapes better than discrete classifications. In this study, fuzzy logic was applied to compare land 

characteristics with land use requirements of banana. This produced continuous suitability values for 

smallholder banana. 

Fuzzy suitability values were calculated for each of the five land characteristics in Table 5. This step is 

called the fuzzification of input data. Membership functions were formulated to describe the relation 

between land characteristics and land suitability. The shape of membership functions reflected the 

correlation between a land characteristic and its corresponding land qualities. For example, the 

membership function for cold quarter temperature increased with temperature. This corresponds to 

the positive correlation between cold quarter temperature and the temperature land quality. Some 

land characteristics asked for more complex membership functions. For instance, annual precipitation 

has a contrasting influence on moisture availability and solar irradiation. This relationship was 

modelled by an increase in suitability at low precipitation levels and a decrease in suitability at high 

precipitation levels.  

Two types of membership functions were used in this study. Those functions were referred to as type 

1 and type 2 (Figure 5 & 6). The type 1 function applied to land characteristics that exclusively had a 

positive correlation with suitability. Those were cold quarter temperature, dry quarter precipitation 

and soil organic carbon. The type 2 function applied to land characteristics that had a positive 

correlation with suitability for low values and a negative correlation with suitability for high values. 

Annual precipitation fell into this category. 
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Figure 5: The type 1 membership function for the 
relationship between land characteristics and 

suitability values 

 

 

Figure 6: The type 2 membership function for the 
relationship between land characteristics and 

suitability values 

 

 

The land characteristic water table depth formed a special case while both membership functions were 

used. It was argued that the prevalence of either membership function depended on climate 

conditions. The type 1 function was considered appropriate for wet climate conditions and the type 2 

function for dry climate conditions. Under wet climate conditions, suitability increases with water table 

depth due to the increased oxygen availability. Under dry climate conditions, however, this positive 

correlation was considered only relevant up to a certain depth. At greater water table depths, 

suitability decreases due to constraints in moisture availability. To characterize climate wetness, 

annual precipitation was used as an indicator. The relevance of each membership function was 

expressed by a weight factor based on annual precipitation. Appropriate weights were derived by 

distinguishing three scenarios (Figure 7). First of all, there is a precipitation level below which only the 

membership function for dry climate conditions was considered relevant (Scenario A). Secondly, there 

is a precipitation level above which only the membership function for wet climate conditions was 

considered relevant (Scenario C). Thirdly, any precipitation level in-between resulted in a suitability 

value that was a linear combination of the two membership functions (Scenario B).   

 

 

Figure 7: The relationship between annual precipitation and the relative weight of the type 1 and type 2 membership 
function for water table depth. ( Scenario A, B and C correspond to the scenarios explained in the text) 
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The fuzzy membership values of each land characteristic were thereafter combined into a single 

suitability map. In literature, this step is often called fuzzy inference. Several different methods for 

fuzzy inference exist (Qiu et al., 2014). In this study, fuzzy inference was performed by calculating the 

average fuzzy membership value at each location. No distinction was made between the different 

variables by assigning an equal weight to all of them. This decision reflected the absence of field data 

on smallholder banana for the calibration of those weights.      

 

 

Suitability thresholds 

The suitability thresholds that were derived from literature are listed in Table 6. In line with Figure 5 

and 6, variables with a trapezoidal membership function have four different thresholds and variables 

with a linear membership function have two thresholds. The choice for each threshold value is 

substantiated below. 

 

Table 6: The suitability thresholds for each land characteristic. (Land characteristics with a type 1 membership function have 
two thresholds, land characteristics with a type 2 membership function have four thresholds) 

Variable Unit Threshold 1: 
Minimum 

Threshold 2: 
Lower optimum 

Threshold 3: 
Higher optimum 

Threshold 4: 
Maximum 

Temperature 
(cold quarter) 

°C 14 22 - - 

Precipitation 
(annual) 

mm 650 1400 4000 5000 

Precipitation 
(dry quarter) 

mm 200 350 - - 

Water table  
(wet climate) 

cm  (below 

surface) 
30 120 - - 

Water table  
(dry climate) 

cm  (below 

surface) 
30 60 100 500 

Soil organic 
carbon 

% 0 1.5 - - 

 

 

Cold quarter temperature 

Banana suffers from cold damage when temperatures are too low. For this reason, all locations with a 

cold quarter temperature below 6 °C were masked out as described in Chapter 2.2.3. Those locations 

were not considered for further analysis, neither for mapping plantation banana nor smallholder 

banana. Additional suitability thresholds for cold quarter temperature were defined for mapping 

smallholder banana. This implies that locations could score low on temperature within the land 

evaluation, despite passing the hard 6 °C threshold. According to Robinson and Galán Saúco (2011), 

banana growth ceases below 14 °C. Lower temperatures provoke a discontinuity in the dry matter 

accumulation. When mean temperatures exceed 14 °C the whole year, banana growth is not 

interrupted during the coldest months. This is why a minimum threshold of 14 °C was chosen for cold 
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quarter temperature. The same authors reported optimum temperatures for the net assimilation rate 

of banana at 22°C. The 22 °C is therefore used as the lower optimum threshold for cold quarter 

temperature. 

Annual precipitation 

Banana is characterized by a high water demand. According to literature, annual precipitation levels of 

at least 1300 to 1500 mm are required to meet the crop water requirements of banana (Delvaux, 1995, 

Robinson and Galán Saúco, 2011). A value of 1400 mm was therefore chosen as the lower optimum 

threshold. With respect to solar irradiation, Robinson and Galán Saúco (2011) observed predominantly 

overcast conditions at annual precipitation levels of 4000 mm. It was argued that the availability of 

photosynthetically active radiation becomes a limitation to banana growth at such high precipitation 

levels. For this reason, this value was used as a higher optimum threshold. To conclude, multiple land 

suitability studies used 650 and 5000 mm as absolute precipitation thresholds for banana (Salvacion 

et al., 2019, Onderwater, 2020). These values were therefore adopted as the minimum and maximum 

thresholds for annual precipitation in this study. 

Dry quarter precipitation 

Banana is sensitive to drought stress caused by temporary water shortage. High precipitation levels 

are required throughout the year to avoid constraints on banana growth and development (Robinson 

and Galán Saúco, 2011, Daniells, 1984). In this context, Onderwater (2020) introduced a minimum 

threshold of 200 mm for dry quarter precipitation. The same value was adopted in this study. As a 

reminder, the lower optimum threshold for annual precipitation was set to 1400 mm. It was argued 

that dry quarter precipitation should be at least one-fourth of this 1400 mm to ensure optimal 

conditions throughout the year. This is why a lower optimum threshold of 350 mm was used for the 

dry quarter precipitation. 

Water table depth 

Water table depth has an effect on both drainage and moisture availability. Deep water tables result 

in favorable drainage conditions while shallow water tables result in high moisture availability (Zhu et 

al., 2013). The need for a deep or shallow water table depends on the location. In (semi-)arid regions, 

ecosystems often rely on groundwater to meet their moisture requirements (Eamus et al., 2016). On 

the other hand, good drainage is the principal requirement in humid regions. Banana is susceptible to 

waterlogging in the rootzone under wet climate conditions.  According to Robinson and Galán Saúco 

(2011), the vast majority of banana roots is within the top 30 cm of the soil. It was therefore argued 

that water tables shallower than 30 cm result in highly unsuitable conditions. In addition, the same 

authors stated that water tables deeper than 120 cm are most suitable for banana in the humid tropics. 

This is why a minimum threshold of 30 cm and a lower optimum threshold of 120 cm were selected 

for water table depth in a wet climate.  

Meanwhile, shallow water tables can be favorable to water availability under dry climate conditions. 

Regardless of the climate, however, water table depths larger than 30 cm are considered a 

precondition to avoid waterlogging. The previously defined minimum threshold of 30 cm was therefore 

also used for water table depth in semi-arid areas. In addition, banana roots penetrate below 60 cm 

only occasionally (Robinson and Galán Saúco, 2011). It was reasoned that consequently the risk of 

waterlogging in semi-arid areas is negligible if water table depths exceed 60 cm. This is why a lower 

optimum threshold of 60 cm was applied in this study. Furthermore, literature on the functional 

relationship between groundwater levels and soil moisture was used to select the remaining 

thresholds. Kollet and Maxwell (2008) conceptualized the interconnection between groundwater and 
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shallow soil moisture into different cases. They argued that the influence of groundwater on soil 

moisture starts to decline for water table depths deeper than 100 cm. In addition, they stated that the 

upward redistribution of soil moisture becomes negligible for water table depths larger than 500 cm. 

The higher optimum and maximum thresholds were therefore set to 100 and 500 cm respectively.  

As discussed before, annual precipitation was used to assess the relative importance of the type 1 and 

type 2 membership functions (Figure 5 & 6). In line with Figure 7, the calculation of weight factors 

required two thresholds for annual precipitation. Pfadenhauer and Klötzli (2020b) associated the arid 

(sub)tropics with precipitation levels below 500 to 600 mm. Furthermore, the same authors defined 

precipitation levels over 2000 mm for the humid tropics (Pfadenhauer and Klötzli, 2020c). This is why 

the threshold between scenario A and B was set to 550 mm and the threshold between scenario B and 

C to 2000 mm (see Table 7).  

 

Table 7: The annual precipitation thresholds to differentiate between dry, intermediate and wet climate conditions. 
(Threshold A-B and B-C refer to scenario A and B and scenario B and C in Figure 7 respectively) 

Threshold name Threshold value Definition 

Threshold A-B 550    mm Tipping point between arid and 
moderate climate conditions 

Threshold B-C 2000  mm Tipping point between moderate 
and humid climate conditions 

 

 

Soil organic carbon (SOC) 

Banana benefits from high SOC for multiple reasons. The positive relationship between SOC and soil 

quality has a continuous nature (Sparling et al., 2003, McCallister and Chien, 2000). In this study, it was 

therefore assumed that suitability for crop production increases gradually from zero SOC onwards. 

Furthermore, a wide variety of optimal SOC values was found in literature. Values ranging from 0.6% 

and 3% have been reported by different studies depending on their approach and study extent 

(Hijbeek et al., 2017). In this study, SOC values below 1.5% were considered suboptimal for crop 

production. The threshold of 1.5% falls within the range observed by Hijbeek et al. (2017) but was 

further chosen arbitrarily. The selected suitability thresholds of 0% for the minimum and 1.5% for the 

lower optimum reflect the findings above.  

 

 

2.4.3. Disaggregation of production statistics 
 

The smallholder banana map was created through the disaggregation of production statistics. The 

suitability map and plantation banana map were transformed to the coordinate reference system 

EPSG:3857 before disaggregation. This was done to obtain data with linear units of measure for 

coordinates. A nearest neighbor resampling  was applied to preserve the original grid values.  
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Adjustment of production statistics 

The FAO production statistics on banana and plantain were used in this study (see Chapter 2.2.2). An 

important preparatory step was the reduction of the statistics based on the results for plantation 

banana. Plantation banana was mapped independent from the production statistics as explained in 

Chapter 2.3.. The production statistics from FAOSTAT however make no distinction between 

production systems and therefore cover both plantation and smallholder banana. This means that the 

plantation banana surface had to be subtracted from the production statistics. The locations were also 

removed from the suitability map to avoid the allocation of banana to the same grid cell twice.  

For each country, the number of banana grid cells (ncell) was multiplied with the cell size (Acell). The cell 

size and cropping surface are often considered the same in disaggregation studies (Khan et al., 2010). 

However, the crop coverage at banana plantations is lower than the cell size due to the presence of 

infrastructure and buildings. This is why a crop coverage factor of 0.9 was applied (fcover). Equation 1 

summarizes the procedure for the adjustment of production statistics. 

 

   

In which: 

Statsnew = Harvested area production statistics after adjustment for plantation banana 

Statsold = Harvested area production statistics as reported by the FAO (plantain + banana) 

ncell = Number of banana grid cells 

Acell = Cell size 

fcover = Correction factor for crop coverage 

 

 

Disaggregation procedure 

Locations with high suitability had prevalence over locations with low suitability during the 

disaggregation. This implied that smallholder banana was distributed over locations with highest 

suitability first, locations with second highest suitability second and so on. Grid cells were basically 

filled up with banana from high to low suitability until all statistics were distributed. Most grid cells got 

therefore either zero banana coverage or maximum banana coverage. The only exception were grid 

cells for which the suitability value coincided with the suitability threshold. The suitability threshold 

was defined as the lowest suitability level over which statistics were disaggregated. The statistics were 

generally not sufficient to obtain the maximum banana coverage in these grid cells. Statistics were 

therefore equally distributed over all grid cells with this suitability level. The suitability threshold 

differed per country and was inferred automatically from the data. 

The specific characteristics of smallholder systems were taken into account in the disaggregation 

process. Contrary to plantation banana, smallholder banana is often cultivated in multi-cropping 

systems (Robinson and Galán Saúco, 2011).  It was therefore argued that smallholder banana coverage 

is significantly lower than plantation banana coverage. Furthermore, it was reasoned that locations 

with high suitability have larger banana coverage than locations with low suitability. The smallholder 

banana coverage was therefore explicitly linked to suitability. Maximum banana coverage was 

arbitrarily set to 0.4 for locations with optimal suitability (fmax). From there, banana coverage decreased 
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linearly to zero for lower suitability values (Sact / Spot). This relationship between suitability and crop 

cover fraction is summarized in Equation 2.  

 

  

In which: 

fact = Maximum banana coverage of a grid cell after the correction based on suitability 

fmax = Maximum banana coverage for grid cells with optimal suitability 

Sact = Actual suitability value of a grid cell 

Spot = Potential (maximum) suitability value of a grid cell 

 

 

 

2.5. Validation of results 
 

Validation was done by the visual comparison of results with satellite imagery and existing global 

banana maps. The visual comparison with Google Earth satellite imagery was performed to assess 

differences between the banana map and actual crop cover. The validation was done for several 

regions in different parts the world. The exact validation locations are specified in Table 8. None of the 

validation locations were previously used for calibration purposes. 

A visual comparison with two other global banana maps was made to compare spatial banana patterns 

at a global scale. Both maps involved a certain procedure for the disaggregation of production 

statistics. Monfreda et al. (2008) disaggregated production statistics based on global landcover data. 

Onderwater (2020) disaggregated production statistics with a combination of landcover and 

environmental data. Neither study mapped large-scale systems and smallholder systems differently. 

 

Table 8: The locations for validation of the results with Google Earth imagery. (The region and location for Tanzania are missing 
because the whole country was considered for validation)  

Country Region Location 

Venezuela Zulia state Lake Maracaibo 

Tanzania - - 

India Maharashtra state Jalgaon 

Australia Queensland Tully & Innisfail 
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3. Results & Discussion 
 

 

3.1. Plantation banana map 
 

3.1.1. Fuzzy plantation banana map 
The classification of radar satellite data resulted in a fuzzy banana map (Figure 8). This map gives a first 

impression of banana occurrences. The values indicate how similar the measured radar signals are to 

banana. In Figure 8, locations with high similarity are represented by light colors. These are the 

locations where banana would be expected based on the radar signal. The similarity is clearly higher 

in the tropics than in desert zones. Furthermore, the map indicates higher similarity outside the 

tropical rainforest zones around the equator. 

 

  

Figure 8: The fuzzy plantation banana map of the world. (Yellow colors indicate high similarity between the measured radar 
signal and the characteristic banana signal) 

      

The map was created using the Mahalanobis distance algorithm. The Mahalanobis distance algorithm 

is commonly used for classification of satellite imagery. Several studies compared the performance of 

Mahalanobis distance with other mapping techniques. For instance, Hossen et al. (2018) compared 

unsupervised clustering, maximum likelihood and statistical distance techniques for landcover 

monitoring. The Mahalanobis distance was among the best performing algorithms in their study. In 

addition, Shi et al. (2019) assessed the performance of different classification techniques for crop 

mapping. Mahalanobis distance yielded high prediction accuracies similar to other algorithms.  

Global crop mapping asks for simple classification algorithms like the Mahalanobis distance to limit 

processing time. Moreover, data requirements should not exceed available computation power. This 

is why GRD radar products were used in this study (Chapter 2.2.2.). It should be noted that the 

processing opportunities for GRD products are more limited than for SLC products. For instance, SLC 

products can be processed through polarimetric decomposition (López-Martínez and Pottier, 2021, 
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Raney, 2014). Polarimetric target decomposition provides insight in the dominant scattering 

mechanisms behind the measured radar signal (Srikanth et al., 2016). In this way, SLC products would 

allow for more informed crop classifications than GRD data (Xie et al., 2015).  

Figure 9 shows the fuzzy plantation banana map for Costa Rica. The yellow-colored banana plantations 

in the northeastern part of the country clearly stand out. This makes sense given that a banana 

plantation map of this region was used for calibration of the conversion parameters. The sharp-eyed 

reader may observe a diagonal artifact line in the results, indicated by the green arrow in Figure 9. This 

line forms the boundary between two neighboring flight paths of the PALSAR-2 satellite. Since 2019, 

JAXA doesn’t balance the backscatter intensity of neighboring PALSAR-2 paths in mosaic images 

anymore (JAXA, 2021). Images from different flight paths are now only orthorectified and corrected 

for slope. This decision has direct effect on the fuzzy map in Figure 9 because PALSAR mosaics for 

2018/2019 were used. Radiometric discontinuities between PALSAR images with a different 

acquisition time can be attributed to seasonality and local weather conditions (Grandi et al., 2011). 

Different SAR signals may emerge from associated changes in vegetation cover and moisture 

conditions over the year. The results however indicate that the artifact line only impacts the 

classification of plantation banana marginally. Figure 9 shows that the banana plantations in the region 

stand out regardless of the flight path that covers them. This could reflect the regulated vegetation 

cover and moisture levels at banana plantations during the year. 

 

 

Figure 9: The fuzzy plantation banana map of Costa Rica. (Yellow colors indicate high similarity between the measured radar 
signal and the characteristic banana signal. The green arrow points to an artifact line that originates from the PALSAR-2 data)  

 

3.1.2. Filtered plantation banana map 
Non-banana surfaces were filtered out from the fuzzy plantation banana map. Besides a general 

landcover filter, specific filters were applied for urban cover fraction, slope and VH backscatter. The 

filters reduced the potential banana area and moreover reduced the confusion with peri-urban areas, 

mountainous areas and palm oil plantations. The four filters together reduced the potential area to 

260245 km2, unevenly distributed over the world. The effect of each separate filter is illustrated in 

more detail on the basis of specific regions.  



34 
 

The effect of the landcover filter is clearly visible in Egypt. The country mainly consists of dessert areas 

that are too arid for large-scale banana production (Figure 10). Alongside the Nile River, however, a 

band of irrigated agricultural land can be found. The landcover filter masked out the dessert areas 

while preserving the agricultural lands. This reduced the potential banana area in Egypt drastically. 

The filter for urban cover fraction improved results significantly for several countries, including Nigeria. 

The filter allowed for the identification of (peri-)urban areas that remained invisible on the landcover 

map. This was needed because a large number of erroneous results appeared to originate from the 

outskirts of towns. In the case of Nigeria, fifteen times more urban area was filtered out by the filter 

for urban cover fraction compared to the landcover filter (Figure 11).  

 

 

 
 
 

 

 
 

Figure 10: The landcover map of Egypt. The landcover filter 
eliminated bare areas while preserving cropland 

 Figure 11: The urban cover fraction filter for Nigeria. 
(Green areas were preserved, red areas excluded) 

                  

          

Mountainous areas turned out another source of errors. The slope filter made it possible to exclude 

steep terrains that are unsuitable for large-scale plantation agriculture. This reduced the noise in the 

results significantly. A good example of the effect of the slope filter is the Dominican Republic (Figure 

12). Satellite imagery indicates that banana production on the island exclusively takes place in gently 

sloping valleys. The slope filter successfully filtered out the coastal and central mountain ranges while 

preserving the valleys in between.  

Lastly, the SAR signal from oil palm plantations caused significant confusion with the signal of banana. 

It was observed, however, that oil palm has generally lower VH backscatter signals compared to 

banana. The additional VH filter allowed for the separation of oil palm and banana by putting a hard 

boundary on the VH signal. For example, most large oil palm plantations in southern Borneo, Indonesia 

were filtered out in this way (Figure 13). 
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Figure 12: The slope filter for the Dominican Republic. (Yellow 
areas were preserved, black areas excluded) 

  
Figure 13: The VH filter for Borneo, Indonesia. (Blue 
areas were preserved, red areas were excluded) 

 

 

 

3.1.3. Final plantation banana map 
 

The filtered fuzzy banana map was finally converted into a plantation banana map. Best results were 

produced with a distance threshold of 25 combined with at least 4 neighboring banana grid cells in a 

3 by 3 neighborhood. Figure 14 presents the resulting map, showing the global distribution of 

plantation banana in the world. The plantation banana surface in Figure 14 corresponds to 

approximately 6.5 % of the global banana surface according to the FAO (FAO, 2021b).  

 

Figure 14: The final global plantation banana map. (The banana grid cells are represented by points for visualization 
purposes) 

 

The results clearly reflect the climatic requirements of banana. Banana occurrence is concentrated in 

the frost-free (sub)tropics, roughly situated between the tropic of Cancer and the tropic of Capricorn 

(Figure 15). Most locations are also in areas with high annual precipitation levels, such as Central and 

South America, West Africa and South-East Asia (Figure 16). Meanwhile several exceptions to those 
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spatial patterns can be observed. Plantation banana was found under more temperate conditions up 

to Israel in the northern hemisphere. Analogously, plantation banana was observed up to South-Africa 

and southern Brazil in the southern hemisphere. Banana also appears present in (semi)arid 

environments such as Pakistan and Yemen. These kind of azonal banana occurrences may be attributed 

to favorable local climate conditions that are different from the macro-climate (Pfadenhauer and 

Klötzli, 2020a). In addition, they may be a result of intensive management practices to improve the 

growing conditions for banana.  

 

 
 
 

 

 
Figure 15: Global frost map (Pfadenhauer and Klötzli, 
2020a) 

 
 

 

 

Figure 16: Global precipitation map (Pfadenhauer and 
Klötzli, 2020a) 

 

The calibration procedure was performed based on available data of four different countries. The 

number of false negatives was minimized for Costa Rica and the number of false positives for Nigeria, 

Mexico and the Philippines. In ecology, false positives are traditionally considered absent from species 

distribution mapping (Pillay et al., 2014). This has however changed with the emergence of satellite-

based approaches (Chambert et al., 2015, Fretwell et al., 2014). In this study, false positives were 

considered more disruptive than false negatives. It was argued that particularly false positives affect 

the general global patterns as displayed by the map. The results showed that four times more false 

negatives persisted after calibration compared to false positives. This reflects the decision to give false 

positives a four times larger weight than false negatives. It should however be noted that the specific 

one to four ratio was chosen arbitrarily. Other ratios would be equally suitable, depending on the 

preferences of users and the intended map usage (Connors et al., 2014).  

Figure 17 to 22 show the final results of the four countries that were used for calibration. In Costa Rica, 

over eighty percent of the calibration data was mapped accurately (Figure 17). This producer accuracy 

should be seen as a good classification score, especially for a crop map with global extent (Vintrou et 

al., 2012). Furthermore, several plantations that are not present on the existing map clearly appear on 

the global map (Figure 18). This affirms the decision to use the Costa Rican map to minimize false 

negative results only. It turned out that the Costa Rican map did not cover all plantations in the region. 

Using this map to also minimize false positives would consequently have led to biased results. 

 



37 
 

 
Figure 17: The final plantation banana map of Costa Rica. 
(The green arrow shows the location of Figure 18)  

 
 

 
 
Figure 18: Close-up of Costa Rican banana fields. (The 
regional map and study results have been mapped on top) 

 

The results for Mexico show a concentration of plantation banana in the southern part of the country 

(Figure 19). The satellite imagery confirms that this is the humid, tropical side of the country where 

indeed banana would be expected. The number of remaining false negatives after calibration is 

negligible, being two observations only (i.e., 0.25% of the total). Even better, those few false negatives 

closely resemble actual banana plantations on satellite imagery (Figure 20). The false negatives in 

Mexico consequently seem to originate from inaccuracies in the calibration data. This suggests a 

perfect user accuracy for Mexico: every observation on the map is an actual banana plantation in the 

field. 

 

 
 

 

 

 

Figure 19: The final plantation banana map of Mexico. Figure 20: Close-up of false negative results in 
Mexico. (The two locations actually seem 
banana plantations) 

 

In Nigeria, two false negatives remained after calibration. Both observations originate from the 

outskirts of a town called Akure in the southwestern part of the country (Figure 21). The filter for urban 

cover fraction failed to eliminate those two locations from the results. A significantly larger number of 

67 false negatives (i.e. 5.01% of total) persisted in the results of the Philippines (Figure 22). The 

calibration for the Philippines was done based on regional Cavendish production statistics. All 

observations in regions with zero Cavendish production levels were classified as false positives. The 

principal argument for this approach was that large-scale banana production revolves around the 
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Cavendish cultivar (Ploetz, 2015b). However, the Saba and Lakatan cultivars are cultivated in large 

quantities in some northern provinces of the Philippines (Figure 23). Satellite data confirms that the 

alleged false negatives here are actually banana. On the one hand, this observation means that the 

calibration procedure for the Philippines was not perfectly accurate. The Saba and Lakatan banana 

plantations in the northern Philippines were unrightfully treated as false negatives. On the other hand, 

this observation suggests that the SAR-based method in this study provides robust results for different 

cultivars. This provides good prospects for future work on global banana mapping with similar 

methods.  

 

 

 
 

 

 

Figure 21: The final plantation banana map of Nigeria.   Figure 22: The final plantation banana map of the 
Philippines.  

 

 

 

    

Figure 23: Regional banana production statistics of the Philippines for the Saba (A), Lakatan (B) and Cavendish (C) cultivars. 
(Salvacion, 2020)  
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3.2. Smallholder banana map 
 

3.2.1. Fuzzy land suitability maps 
 

Fuzzy land suitability maps were created for the five land characteristics that were used in this study 

(Figure 24). The fuzzy values express the suitability for banana cultivation on a continuous scale that 

runs from zero to one. The closer to one, the higher the suitability. Suitability values for annual 

precipitation and cold quarter temperature are highest in the tropics. This is in correspondence with 

the high water and temperature requirements of banana. Dry quarter precipitation turns out to be the 

most limiting environmental factor. The suitability values for this land characteristic are zero in a large 

part of the word. Soil organic carbon (SOC) appears to be the least limiting factor. Most locations on 

earth have a suitability value for SOC larger than zero. The global SOC pattern roughly resembles the 

annual precipitation pattern. This relationship reflects the impact of precipitation on plant productivity 

and SOC storage consequently (Saiz et al., 2012). To conclude, two suitability maps were created for 

water table depth. The first map shows suitability for dry climate conditions, the second map for wet 

climate conditions. The two maps roughly show a reversed pattern. Predominantly low values were 

mapped for dry conditions whereas predominantly high values were modelled for wet conditions. 

These patterns show that most locations on earth have water table depth larger than five meters. 
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Figure 24: The fuzzy suitability maps for the five land characteristics that were used in this study. 
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The two suitability maps for water table depth were combined based on annual precipitation (see 

Chapter 2.4.2.). The global distribution of different rainfall zones is shown in Figure 25. The rainfall 

zones have a clear impact on the combined suitability map for water table depth (Figure 26). For 

example, the suitability values in the Sahara reflect the dry climate. Analogously, the suitability values 

in Indonesia reflect the wet climate. Finally, the suitability values in northern Australia are a linear 

combination of both maps in Figure 24. The results for Ethiopia show how this approach works out at 

regional scales. A distinct east-west precipitation gradient runs through this country (Figure 27). This 

gradient is well visible in the combined suitability map (Figure 28). Suitability values are lower in the 

(semi)arid eastern part of the country compared to the humid highlands in the west. Moreover, the 

relative location of high suitability values differs per rainfall zone (Figure 29). In the arid parts, highest 

values are found close to river streams. In the humid parts, highest values are found further away from 

streams. These patterns reflect the spatial differences in land use requirements of banana with respect 

to water table depth. 

 

 

Figure 25: The global distribution of rainfall zones. (The 
zones reflect differences in annual precipitation) 

 

Figure 26: The combined suitability map for water table 
depth. 

 

 

This study acknowledged the complex interaction of the land characteristic water table depth with 

oxygen availability and moisture availability. Its impact on these two land qualities was made 

dependent on another land characteristic, namely annual precipitation. Previous studies followed a 

similar logic. For instance, Dubovyk et al. (2016) performed a fuzzy land suitability study for two 

different watersheds in Uzbekistan. They varied the parameters for membership functions according 

 
 
 
 

 
 

 
 
 
 

Figure 27: The distribution of rainfall 
zones in Ethiopia. (The red oval shows 
the extent of Figure 29) 

Figure 28: The combined suitability 
map for water table depth in Ethiopia. 
(The red oval shows the extent of 
Figure 29) 
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Figure 29: Close-up of the combined 
suitability map for water table depth 
in north-east Ethiopia. 
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to the land characteristics in the region. Furthermore, Juhos et al. (2019) did a fuzzy suitability study 

for arable soils in Hungary. Suitability values were determined based on quality indicators consisting 

of multiple variables. Texture suitability was for example calculated based on clay content and water 

table depth. The authors argued that texture suitability is only meaningful if water table depth is 

considered. In other words, they stated that intercorrelations between land characteristics should not 

be neglected. A similar argument was made in this study. Water table data was considered meaningful 

only when interpreted with precipitation data. 

Precipitation data was used specifically to model the complex relationship between water table depth 

and land qualities. This decision was convenient because it required no additional data collection. 

There are however alternative options based on different indicators. For example, the climate 

moisture index (CMI) is a common measure that considers both precipitation and evapotranspiration 

(Malisawa and Rautenbach, 2012). The CMI consequently provides more information on the local 

water balance that precipitation data alone. This in turn gives a better idea of whether moisture 

availability or oxygen availability is the most limiting land quality at a certain location. 

Fuzzy approaches are common practice for land suitability modelling. Several studies found that fuzzy 

logic simulates the continuous nature of landscape variation well (Ali et al., 2010, Atijosan et al., 2015, 

Joss et al., 2008, Salvacion, 2021). Another advantage is the resilience of fuzzy approaches to 

measurement uncertainty. The risk of error propagation with fuzzy approaches is low compared to 

discrete classification approaches (Qiu et al., 2014). In this study a rule-based fuzzy model was created 

with threshold values from literature. Many alternative approaches exist, however most of them 

require training data. For example, several studies did crop mapping by establishing a relationship 

between environmental conditions and field observations. The induced relationship was thereafter 

applied to all locations for which environmental data was available (Heumann et al., 2011, Ray et al., 

2016). Such approaches are widespread in ecology and called niche-based models (Zhang et al., 2020, 

Panda and Behera, 2019, Phillips et al., 2006). Similarly, Mertens et al. (2021) and Borborah et al. (2020) 

recently mapped wild banana species with niche-based models in South-East Asia and India. The global 

applicability of niche-based modelling is however low due to the high training data requirements. 

 

 

3.2.2. Final land suitability map 
 

The final suitability map was constructed from the five individual suitability maps for annual 

precipitation, cold quarter temperature, dry quarter precipitation, soil organic matter and water table 

depth. Figure 30 shows the resulting map displayed at the same color scale as its constituents. In 

general, the final suitability map provides a smoother global pattern than the fuzzy maps for each land 

characteristic. Nevertheless, several distinctive features can still be observed. Dry quarter precipitation 

has a profound effect in the tropics. Locations with high dry quarter precipitation have significantly 

higher suitability values compared to neighboring regions. Soil organic matter has a strong effect in 

the (semi)arid regions of Australia and North-Africa. Suitability values larger than zero can be found 

here despite the unfavorable water table and climate conditions.    
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Figure 30: The final land suitability map. (All five constituent suitability maps were given an equal weight) 

 

Each fuzzy suitability map of the five land characteristics was considered equally important. This is why 

the final suitability map in Figure 30 was created by the calculation of average grid cell values. Several 

alternative approaches for fuzzy inference exist (Qiu et al., 2014). For instance, one could aggregate 

different suitability values by taking the minimum or maximum value at each location. Such 

approaches could be appropriate in case of highly risk-averse or risk-tolerant suitability studies. A more 

balanced suitability map is obtained by calculating a weighted average. This approach considers all 

inputs but meanwhile provides flexibility to make certain inputs more dominant (Yager, 1988). A major 

challenge that comes with this approach is the definition of appropriate weight values. Kapoor et al. 

(2020) developed an inventive framework for the determination of weight factors in land suitability 

assessments. The authors calculated the percentage influence of different land characteristics on 

planning decisions based on literature and expert consultations. The data was thereafter translated to 

weighting factors through an analytic hierarchy process. In a similar way, weight factors could be 

derived from data on decision making by smallholder banana farmers. This would lead to a better 

understanding of farmer’s behavior and thus the dominant factors that govern global banana patterns. 

At the same time, the limitations of such an approach are evident for studies on a global scale. 

 

3.2.3. Disaggregated smallholder banana map 
 

Finally, FAO production statistics were disaggregated according to the suitability results. Both banana 

and plantain statistics were used for this purpose. Figure 31 shows the harvested area of banana for 

different countries of the world. For some European countries the banana production turned out larger 

than expected. This can be explained by the formal definition of national territories. For example, the 

French statistics include production on the Caribbean islands Guadeloupe and Martinique (FAO, 

2021a). The same applies for Spain, having its banana production concentrated in the Canaries 

(Cakmak et al., 2019, FAO, 2021a). The harvested area of plantain is displayed in Figure 32. The maps 

indicate that more countries have large banana surfaces than large plantain surfaces. Furthermore, 

several countries have either zero banana statistics or zero plantain statistics. The first case for 

example applies to Peru, Nigeria and Myanmar, the second case to Brazil, Angola and Indonesia. Such 
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a clear distinction is not realistic and originates from differences in data collection techniques among 

national surveys (FAO, 2021d). This observation reaffirms the decision to merge the FAO statistics for 

banana and plantain in this study. 

 

 

Figure 31: The harvested areas of banana for different 
countries in the world (FAO, 2021b) 

 

Figure 32: The harvested areas of plantain for different 
countries in the world (FAO, 2021b) 

 

The disaggregated smallholder banana map is presented in Figure 33. The plantation banana map has 

also been projected on top to show both results together in one map (Figure 34) . The potential banana 

area with temperatures above 6 °C was added as a background layer. The smallholder banana map 

reveals the global distribution of banana at a fifteen arcsec (~ 500m) resolution. A strong concentration 

of smallholder banana around the equator is observed. In South America, smallholder banana is 

strongly concentrated between minus five and plus five degrees latitude. This is where dry quarter 

precipitation is highest and thus the growing conditions for banana are most suitable. Similar patterns 

appear for the rest of the world. Smallholder banana is strongly present in the coastal regions of West-

African countries. Those regions have high water availability and high soil organic carbon compared to 

other parts of the countries. The distribution of smallholder banana in Southeast Asia reflects similar 

environmental gradients. Smallholder banana is predominantly found in the low-latitude coastal parts 

of countries within this region.  

 

Figure 33: The global smallholder banana map (The yellowish background layer shows the world’s potential banana area with 
cold quarter temperatures above 6 °C. The smallholder banana results have been aggregated to a 10km resolution for 
visualization purposes) 

Area (ha): 

 

Area (ha): 

 



44 
 

 

Figure 34: The global smallholder banana map with plantation banana mapped on top. (The yellowish background layer shows 
the world’s potential banana area with cold quarter temperatures above 6 °C. The smallholder banana results have been 
aggregated to a 10km resolution for visualization purposes) 

 

The FAO production statistics could be disaggregated for the majority of countries in the world. 

However, problems emerged for the nine island states listed in Table 9. The suitable area in these 

states was smaller than the banana surface according to the statistics. Moreover, no statistics at all 

were disaggregated for eight of the nine states. Further examination revealed that data on water table 

depth was missing for each of these eight states. The missing data caused NoData values in the final 

suitability map and statistics could therefore not be disaggregated. The island state of Kiribati forms a 

special case. Data on water table depth was missing for only part of the archipelago. Data was available 

around the other islands but did not align exactly with their extent. A comparison with satellite data 

showed that the extent of Kiribati was not presented well on the QGIS world map. This caused only 

marginal overlap with the environmental data and consequently a poor data coverage for Kiribati. 

These findings emphasize the strong impact of data quality on the final results. 

 

Table 9: The island states for which no or not all productions statistics could be disaggregated. 

Island states Banana + plantain statistics (ha) Final smallholder banana area (ha) 

Cabo Verde 258 0 

Cook Islands 5 0 

French Polynesia 26 0 

Kiribati 1629 551 

Maldives 8 0 

Mauritius 508 0 

Niue 41 0 

Samoa 5206 0 

Tonga 858 0 
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The fuzzy suitability map captured subtle environmental gradients in landscapes. For some countries, 

however, this strongly reduced the extent of the smallholder banana area. A comparison between 

Indonesia and China illustrates this. The Indonesian production statistics were distributed over large 

parts of the country. This resulted in an extensive smallholder area with low banana coverage. The 

results correspond well to reality given that banana is cultivated across the country (Hermanto et al., 

2011). Contrarily, the Chinese production statistics were entirely allocated to the Hainan province in 

the south. This is not realistic while actual banana occurrence extends to the whole subtropical part of 

South China (Thiers et al., 2019, Xiao-Lan et al., 2007). The fuzzy suitability map provided too much 

detail for a realistic disaggregation of production statistics in this case.  

In this study, locations were only used for disaggregation if all locations with higher suitability were 

already satisfied. This means that grid cells were filled with smallholder banana from high to low 

suitability until no statistics were left. Grid cells got assigned a smallholder banana coverage between 

zero and forty percent, depending on their suitability. This specific disaggregation procedure 

sometimes produced very small banana areas, as was the case for China. Larger areas would be 

attained by lowering the banana coverage parameter. Banana coverage could also be linked to the 

prevailing smallholder production systems in different countries. Alternatively, a different 

disaggregation procedure could be applied to improve the results. A fixed suitability threshold would 

separate banana presence from banana absence independent of national production statistics. Such 

an approach is often referred to as defuzzification (Qiu et al., 2014). Production statistics could 

thereafter be distributed over locations with higher suitability than the threshold. Another idea would 

be to group suitability values into discrete classes before the disaggregation of production statistics. 

This would produce results with more general patterns, similar to conventional suitability mapping.  

 

 

3.3. Validation of results 
 

The results were validated through a visual comparison with satellite imagery and existing global 

banana maps. The visual comparison with satellite imagery was done for Venezuela, Tanzania, India 

and Australia. Those four countries were selected because they are part of different continents. In 

addition, neither of the countries were used for calibration. The comparison with existing global 

banana maps was done with the maps of Monfreda et al. (2008) and Onderwater (2020). 

 

3.3.1. Comparison with satellite imagery 
 

The results identify banana in north-west Venezuela (Figure 35). Satellite imagery reveals that the 

banana occurrences are located in the Maracaibo Lake basin (Figure 36). The basin is a wide depression 

in the landscape with extensive alluvial plains (Morales et al., 2001). Literature confirms the presence 

of banana plantations in this region (Gámez and Acconcia, 2009). A closer look on satellite imagery 

shows how the results clearly demarcate individual plantations (Figure 37). More detailed close-ups 

indicate that those plantations are banana (Figure 38). Although the imagery becomes blurry at high 

resolutions, a high resemblance with Costa Rican banana plantations is observed (Figure 39). The 

method presented in this study turned out suitable for the identification of plantation banana in 

Venezuela. Moreover, smallholder banana is projected in the same area based on land suitability 
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(Figure 36). This indicates favorable banana growing conditions in the Maracaibo Lake basin and 

consequently explains the presence of banana. A large share of smallholder banana is also placed in 

south Venezuela (Figure 35). It is however questionable whether smallholder banana is abundant in 

this region. Satellite imagery shows that south Venezuela is mainly covered by tropical rainforest. 

Agricultural activity is therefore most likely limited.  

 

 

 

 
 

 
 

Figure 35: The final banana map of Venezuela. (The red oval 
indicates the extent of Figure 36) 

Figure 36: The results for the Maracaibo Lake basin in 
Venezuela. (The red oval indicates the extent of Figure 37) 

 

 

 

 
 

 

 
 

Figure 37: Plantation banana in the 
Maracaibo Lake basin. (The red oval 
indicates the extent of Figure 38) 

 

Figure 38: Close-up of plantation banana 
in the Maracaibo Lake basin. (The red 
oval indicates the extent of Figure 39a) 

Figure 39: Comparison between a 
plantation in the Maracaibo Lake 
basin (a) and northeast Costa Rica (b). 

 

The results for Tanzania are dominated by smallholder systems (Figure 40). Only one observation for 

plantation banana was made, located just north of Lake Manyara. Satellite imagery confirms that this 

is indeed a banana plantation. Smallholder banana is allocated to different regions across the country. 

In general, the resulting patterns match regional production statistics (Figure 41). Smallholder banana 
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is rightfully projected in most production regions. At the same time, smallholder banana remains 

indeed absent from the central and south-eastern part of the country. Banana occurrence in the 

northern Kilimanjaro region remains unfortunately undetected. This is a pity given that the region is 

among the top-three banana producing regions of the country (Suleiman, 2018). Environmental 

conditions on the slopes of Mt. Kilimanjaro are sufficiently suitable for the cultivation of banana. The 

high population pressure in the area have resulted in intensive intercropping systems with coffee and 

banana (Soini, 2005). The example of the Kilimanjaro region illustrates that population dynamics also 

have an influence on crop production, in addition to biophysical suitability.   

 

 

 
 

  
 
 
 

Figure 40: The final banana map of Tanzania. Figure 41: Regional banana production statistics of Tanzania 
(NBS Tanzania, 2021). (The green arrow point to the 
Kilimanjaro region) 

 

 

India has the largest banana surface of all countries in the world (FAO, 2021b). The main banana 

producing regions are found in the southern and western part of the country (Singh, 2010). The results 

indicate banana occurrence in these regions, but also in the eastern part of the country  (Figure 42). 

Satellite imagery confirms that plantation banana was classified correctly. However, the plantation 

banana surface is quite low given the high production statistics of India. Especially in the production 

zones of south India more observations were expected. For example, the surroundings of Jalgaon in 

Maharashtra state are known for their high production (Singh, 2021). Satellite imagery indeed shows 

a belt of intensive agriculture north-east of the city (Figure 43a). In addition, the SAR data indicates a 

backscatter signal that is highly similar to banana (Figure 43b). Most potential banana locations were 

however removed after application of the VH filter (Figure 43c). The remaining locations thereafter 

got lost during the conversion process due to a lack of neighbors. Satellite imagery reveals that banana 

plots in the region are abundant but small in size. The region is characterized by alternating spatial 

patterns of banana and other crops. This results in mixed SAR signals with VH backscatter values 

exceeding the threshold. The example of Maharashtra state points out a common limitation of global 

crop mapping. The VH filter strongly improved results for Indonesia by reducing the confusion with 
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palm oil. The same filter simultaneously decreased the results for India. Global decision rules often 

have different, if not contrasting effects in different parts of the world.  

The Jalgaon region is also absent on the smallholder banana map. The majority of the production 

statistics is disaggregated to the coastal regions of Western India (Figure 42). This area has high 

suitability values due to high annual precipitation. Analogously, the Jalgaon district has low suitability 

values due to constraints on water availability. The suitability analysis however ignores that irrigation 

is common practice among smallholder farmers in Northern Maharashtra (Gorain et al., 2020, Gorain 

et al., 2018). This makes that the actual land suitability in Jalgaon district is underestimated. The 

example indicates that intensive smallholder production systems are currently not detected. 

 

 

 

 

 

 
 

Figure 42: The final banana map of India. (The red oval indicates the extent 
of Figure 44) 

Figure 43: The results for the Jalgaon area in 
India. Subfigures: a) Satellite image, b) SAR 
similarity map, c) filtered SAR similarity map.  

 

 

The Australian banana production is concentrated around the cities Tully and Innisfail in north-east 

Queensland (Daniells, 1984). This is clearly reflected by the results of this study (Figure 44). Plantation 

banana was detected in the Tully region (Figure 45 & 46). Furthermore, all smallholder banana is 

allocated to the coastal area between Tully and Innisfail (Figure 45). This is remarkably accurate given 

the large size of Australia. In some cases, the predicted smallholder banana areas even overlap with 

actual banana plantations (Figure 47). Banana production in Australia appears strongly connected to 

land suitability. The results show that the methods for mapping plantation and smallholder banana 

were both very accurate for Australia.  
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Figure 44: The final banana map of Australia. (The red oval indicates the extent of Figure 46) 

 

  

 
 
 
 

 

 
 

Figure 45: The results for the Tully region, north-
east Queensland. (The red ovals indicate the 
extents of Figures 46 and 47) 

 
 

Figure 46: Plantation banana near 
Tully. 

 

 
 

Figure 47: Comparison between 
the results (a) and satellite 
imagery (b) for smallholder 
banana near Tully. 

 

 

3.3.2. Comparison with global banana maps 
 

The map by Monfreda et al. (2008) was one of the first global banana map ever made. The authors 

disaggregated agricultural inventory data based on a global cropland map at a five arcmin (~ 10km) 

resolution. The global cropland map was created by Ramankutty et al. (2008) and showed which 

fraction of grid cells was covered by cropland. The map was created through a regression analysis 

between agricultural census data and landcover products from the MODIS and SPOT satellites. 

Monfreda et al. (2008) used subnational statistics to calculate the banana fraction in different 

administrative units with respect to total cropland in the same area. The fractions were thereafter 

multiplied with the percentage agricultural cover in each grid cell. Within provinces or states, grid cells 

with a large percentage of agriculture consequently got assigned a large banana area. This approach 

resulted in an extensive banana area with small banana coverage in the order of magnitude from 10-6 

to 10-4 for most parts of the world (Figure 48). 
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Figure 48: The global banana map by Monfreda et al. (2008). (Values range between 10-6 to 10-4
 for most parts of the world) 

 

Onderwater (2020) refined the disaggregation process by introducing land suitability concepts. The 

author first narrowed the potential banana area through a land use analysis based on landcover, NDVI 

and canopy height. A land suitability map was thereafter created according to the FAO guidelines for 

land evaluation. The suitability analysis was based on several biophysical variables, comprising climate, 

slope, drainage and soil type. The traditional land evaluation approach yielded a suitability map with 

four discrete classes. National production statistics were disaggregated according to this map. The 

disaggregation procedure was highly similar to the procedure applied in this study. In short, locations 

with superior suitability classes were considered first before moving to less suitable locations. The 

results show a global banana distribution confined to a smaller part of the earth’s surface compared 

to Monfreda et al. (2008). In this way, Onderwater (2020) produced more informative spatial banana 

distribution patterns at a thirty arcsec (~ 1km) resolution (Figure 49). 

 

 

Figure 49: The global banana map by Onderwater (2020). (Values represent banana coverage on a 10km aggregated grid). 
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Our study differs in several aspects from its predecessors. First of all, the spatial resolution was 

increased to fifteen arcsec (~ 500m). Secondly, different methods were developed to map banana in 

large-scale and smallholder production systems. Onderwater (2020) already acknowledged the impact 

of production characteristics on crop distributions. His work involved different suitability thresholds 

for countries based on their agricultural production intensity. Such an approach however neglects the 

coexistence of different production systems within countries (Bijker, 2014). This study therefore 

developed a framework that subdivides banana occurrence into plantation banana and smallholder 

banana. In this way, different methods could be applied that match the specific characteristics of either 

system. For instance, about 6.5 % of the global banana surface was detected with the satellite-based 

method for plantation banana. This added great detail to the global banana map (Figure 50). 

 

 

Figure 50: The global banana map in this study. (See Figure 34 for the full global extent. The yellowish background layer shows 
the world’s potential banana area with cold quarter temperatures above 6 °C. The plantation banana grid cells are represented 
by points for visualization purposes) 

 

Furthermore, our study applied a fuzzy approach for mapping land suitability based on environmental 

data only. Contrary to Onderwater (2020), the potential banana area was not reduced based on remote 

sensing data. Such a filter was considered inappropriate given the heterogeneity in smallholder 

landscapes.  The fuzzy approach resulted in very detailed distribution patterns for smallholder banana. 

The patterns cover only a fraction of the extent predicted by Monfreda et al. (2008). This reaffirms the 

added value of disaggregation through suitability as already shown by Onderwater (2020). Compared 

to the latter, the smallholder banana extent was much smaller in this study. The fuzzy approach 

captured the continuous suitability gradients in landscapes. For some countries like Australia this 

resulted in highly accurate results (see Chapter 3.3.1.). For other countries like China, however, the 

patterns are questionable (see Chapter 3.1.3.). It is therefore difficult to say whether the fuzzy 

approach outperformed the conventional land evaluation.  

Further research is needed to evaluate the global applicability of fuzzy land suitability for the 

disaggregation of production statistics. The challenge would be to generate more reasonable patterns 

for some countries while preserving the detailed patterns for others. This may be achieved by adjusting 

several model parameters or the disaggregation procedure as a whole (see Chapter 3.2.3). To 

conclude, Monfreda et al. (2008) used subnational production statistics one or two administrative 

levels below the national whenever available. Such subnational data could improve the results of a 

disaggregation with fuzzy suitability, especially within large countries. 



52 
 

3.4. General discussion 
 

Knowing which crops are grown where is crucial information (Giri, 2012). Ongoing developments in 

GIS and remote sensing have expanded the opportunities for crop mapping over the past decades. 

Satellite data at large spatiotemporal resolutions is nowadays available for global applications. This has 

enabled object-oriented land use inventories way beyond the subnational zones proposed by Huising 

(1993). Global crop mapping with remote sensing has however its limitations. The detection of specific 

crop types relies on the detection of unique reflectance characteristics. This requires homogenous crop 

surfaces with dimensions that exceed the spatial scale of analysis (Schmidtlein et al., 2014). At a global 

level, most crops are not exclusively cultivated in homogenous systems. For most crops a wide variety 

of production systems exists, ranging from large monocultures to smallholder polycultures. It may be 

questioned whether direct crop mapping with satellite data will ever work for all farming systems in 

the world (Huising, 1993). Global crop mapping consequently asks for a more complex, integrated 

approach.  

This study presented a framework for mapping plantation and smallholder crops with different 

methods. The agroecological interactions between people and their environment differ substantially 

in large-scale and smallholder production systems (Dalgaard et al., 2003). The aforementioned 

distinction between large-scale and smallholder was therefore considered crucial to map global crop 

distributions (Rabbinge, 1997). Large cropping surfaces can be mapped through remote sensing. This 

study presented a method for the processing of SAR satellite data through statistical distance analysis. 

Some supplementary satellite products were required to filter the results and obtain satisfactory 

results. The method was successfully applied to banana and designed for the application to other 

crops. Mapping smallholder banana turned out more challenging. A method was developed for the 

disaggregation of production statistics through fuzzy land suitability. The underlying assumption was 

that crops are cultivated in areas with high biophysical suitability. Indeed, several studies confirm the 

general relationship between biophysical land suitability and crop occurrence (Yengoh and Ardö, 2014, 

Jamil et al., 2018, Heumann et al., 2013).  

A suitability-based approach has however several limitations. First of all, land suitability is not mutually 

exclusive among different crops. Areas that are suitable for crop A may be equally suitable for crop B. 

This poses a challenge for mapping specific crop types. Secondly, biophysical suitability explains only 

part of smallholder farmers’ decision-making behavior. Møller et al. (2021) observed large 

discrepancies between biophysical suitability and prevailing land use patterns in Denmark. The authors 

call for a proper definition of land suitability, covering both ecological and socioeconomic aspects. 

Several studies incorporated socioeconomic factors for crop mapping, ranging from household 

characteristics and assets to market accessibility and prizes (Heumann et al., 2013, You et al., 2014). 

Similar approaches could improve the results for intensive smallholder production systems like those 

in India (Chapter 3.3.1.). Thirdly, suitability assessments neglect human presence as the ultimate 

precondition for agricultural activity. The results for Venezuela and Tanzania in this study provide a 

good example (see Chapter 3.3.1.). The disregard of demographics is inconvenient given that 

population density has a major influence on both land use and production intensity (Letourneau et al., 

2012). At the same time, it should be noted that the inclusion of socioeconomics and demographics in 

crop mapping may have undesirable side effects. In this way, occurrences of crop wild relatives will no 

longer appear in the results. This could be a disadvantage for crop mapping studies, depending on the 

user application and crop type. In this study, a broad focus on domesticated and wild banana was 

preferred given the relevance of both for the transmittance of diseases.   
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A major challenge in contemporary crop mapping is to develop methods for the exploitation of big 

earth observation data (Corbane et al., 2017). Satellite platforms nowadays offer a wealth of 

information at various spatiotemporal scales. This study presents a straightforward method for 

mapping large-scale cropping surfaces with open-source data and software. Further research should 

confirm the applicability of the method to crop mapping in general. Implementations at higher spatial 

resolutions may greatly improve the results. In addition, the benefits of integrating multi-temporal and 

multi-source data could be explored (Khosravi and Alavipanah, 2019). The method for mapping large-

scale cropping surfaces in this study is rule-based and requires only few calibration data. The choice to 

develop such a method was made intentionally given that calibration data for global crop mapping is 

often scarce. Future studies could benefit from more data-driven approaches if extensive calibration 

data becomes available. In this context, the results of this study could even be used to find appropriate 

training data at a global level. 

Remote sensing will become ever more important for global crop mapping when processing 

opportunities expand. At the same time, land suitability assessments will remain a reasonable 

alternative for mapping mixed smallholder systems. The method for mapping smallholder cropping 

surfaces in this study leaves room for improvement. The recalibration of model parameters may result 

in more informative global patterns. In addition, the effect of including socio-economic and 

demographic variables could be explored. Another focus point would be the use of subnational 

statistics within the disaggregation process. To conclude, universal applicability should always be the 

cornerstone of global crop mapping. Future studies should explicitly consider the trade-off between 

model complexity and global applicability. Methodological frameworks should be as generic as 

possible, albeit not oversimplifying the complex global system. In this study, a balance was found by 

integrating methods for large-scale and smallholder systems. Future crop mapping studies may benefit 

from a similar approach.          
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4. Conclusion  
  

• This study demonstrates how global spatial patterns in agriculture can be mapped at a fifteen 

arcsec resolution. An integrated framework for global crop mapping was developed that 

combines remote sensing, production statistics and land suitability concepts. 

 

• The framework was applied to banana and yielded a global banana map with applications for 

monitoring the spread of diseases. The methodological concepts are generic and could be 

applied to other crops.  

 

• Special attention was paid to the coexistence of different crop production systems within 

landscapes. It was argued that fundamentally different systems ask for different mapping 

approaches. 

 

• The study illustrates how large cropping surfaces can be mapped with remote sensing at a 

global level. Polarimetric SAR data was processed through a statistical distance method. The 

method leaves room for the adjustment of input parameters according to users’ intentions.  

 

• The results of this study indicate both opportunities and challenges of a fuzzy suitability 

approach for mapping smallholder crops. Further research should reveal how the inclusion of 

demographic and socio-economic variables could improve the results.  

 

• Developments in GIS and remote sensing expand the processing opportunities for global crop 

mapping. Open source geodata at fine spatiotemporal resolutions is nowadays available. 

Advances in computational power make GIS applications accessible to all. Future studies 

should develop methods that exploit the wealth of data while serving a broad audience.  
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Appendix 
 

Data overview with instructions for access: 

 

Data Details Source Access (+ GEE snippet) 
Synthetic Aperture 
Radar (SAR) 

Sentinel-1 product from 
ESA  

C-band, VV and VH 
polarization 

(ESA, 2020) Google Earth Engine  

ee.Image("COPERNICUS/S1_GRD") 

PALSAR-2 product from 
JAXA  

L-band, HH and HV 
polarization  

(Shimada et al., 2014) Google Earth Engine  

ee.Image("JAXA/ALOS/PALSAR/YEARLY/SAR") 

Landcover Copernicus global land 
service (CGLS) product  

(Buchhorn et al., 2020) Google Earth Engine  

ee.Image("COPERNICUS/Landcover/100m/Pr
oba-V-C3/Global") 

GlobCover product (Arino, 2010) Google Earth Engine 

ee.Image("(ESA/GLOBCOVER_L4_200901_200
912_V2_3)") 

Elevation NASADEM product (NASA-JPL, 2020) Google Earth Engine  

ee.Image("NASA/NASADEM_HGT/001") 

Calibration data Costa Rican banana map (Corbana, 2019) Through Corbana 

Mexican land use map (INEGI, 2017) https://www.inegi.org.mx/app/bibl
ioteca/ficha.html?upc=8894635984
59  

Philippine banana 
statistics (regional) 

(Salvacion, 2020) Other Crops: Area Planted / 
Harvested, by Region and by 
Province, by Semester, 2010-2020 

https://openstat.psa.gov.ph/ 

Climate WorldClim V1 Bioclim 
product 

(Hijmans et al., 2005) Google Earth Engine  

ee.Image("WORLDCLIM/V1/BIO") 

Soil SoilGrids product (Poggio et al., 2021) Google Earth Engine  

ee.Image("projects/soilgrids-isric/soc_mean") 

Water table depth EartH2Observe product (Fan et al., 2013) THREDDS Data Server of Plymouth 
Marine Laboratory:  

https://wci.earth2observe.eu/thre
dds/catalog/usc/water-table-
depth/catalog.html (HTTPServer) 

National production 
statistics 

FAOSTAT product (FAO, 2021b) http://www.fao.org/faostat/en/#d
ata/QCL  

Existing global 
banana maps 

Global banana map (Monfreda et al., 2008) http://www.earthstat.org/harveste
d-area-yield-175-crops/  

Global banana map (Onderwater, 2020) Data not available 

 

https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463598459
https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463598459
https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463598459
https://wci.earth2observe.eu/thredds/catalog/usc/water-table-depth/catalog.html
https://wci.earth2observe.eu/thredds/catalog/usc/water-table-depth/catalog.html
https://wci.earth2observe.eu/thredds/catalog/usc/water-table-depth/catalog.html
http://www.fao.org/faostat/en/#data/QCL
http://www.fao.org/faostat/en/#data/QCL
http://www.earthstat.org/harvested-area-yield-175-crops/
http://www.earthstat.org/harvested-area-yield-175-crops/

