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A B S T R A C T   

Mapping of environmental variables often relies on map accuracy assessment through cross-validation with the 
data used for calibrating the underlying mapping model. When the data points are spatially clustered, conven-
tional cross-validation leads to optimistically biased estimates of map accuracy. Several papers have promoted 
spatial cross-validation as a means to tackle this over-optimism. Many of these papers blame spatial autocor-
relation as the cause of the bias and propagate the widespread misconception that spatial proximity of calibration 
points to validation points invalidates classical statistical validation of maps. We present and evaluate alternative 
cross-validation approaches for assessing map accuracy from clustered sample data. The first method uses inverse 
sampling-intensity weighting to correct for selection bias. Sampling-intensity is estimated by a two-dimensional 
kernel approach. The two other approaches are model-based methods rooted in geostatistics, where the first 
assumes homogeneity of residual variance over the study area whilst the second accounts for heteroscedasticity 
as a function of the sampling intensity. The methods were tested and compared against conventional k-fold cross- 
validation and blocked spatial cross-validation to estimate map accuracy metrics of above-ground biomass and 
soil organic carbon stock maps covering western Europe. Results acquired over 100 realizations of five sampling 
designs ranging from non-clustered to strongly clustered confirmed that inverse sampling-intensity weighting 
and the heteroscedastic model-based method had smaller bias than conventional and spatial cross-validation for 
all but the most strongly clustered design. For the strongly clustered design where large portions of the maps 
were predicted by extrapolation, blocked spatial cross-validation was closest to the reference map accuracy 
metrics, but still biased. For such cases, extrapolation is best avoided by additional sampling or limitation of the 
prediction area. Weighted cross-validation is recommended for moderately clustered samples, while conven-
tional random cross-validation suits fairly regularly spread samples.   

1. Introduction 

Maps of environmental variables such as above-ground biomass, soil 
carbon stock and land cover change are essential information sources for 
assessing global carbon fluxes and to support climate change mitigation 
actions (Fitts et al., 2021; Harris et al., 2021). Such maps are commonly 
produced by machine learning approaches using spatially exhaustive 
Earth observation imagery, climatic data and terrain variables derived 
from digital elevation models as predictors (e.g. Du et al., 2020; Grabska 

et al., 2020; Li et al., 2020; Morais et al., 2021; Poggio et al., 2021; 
Sanderman et al., 2018). It is widely acknowledged that maps resulting 
from model predictions are not error-free and need proper accuracy 
assessment (Ploton et al., 2020; Stehman and Foody, 2019; Wadoux 
et al., 2021). 

Classical map accuracy assessment is rooted in sampling theory 
wherein an unbiased estimate of map accuracy (e.g. mean squared map 
error) is obtained by design-based inference from a probability sample 
(de Gruijter and ter Braak, 1990; Stehman, 2009). In practice, post- 
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mapping probability samples that are exclusively used for map evalua-
tion are often not available and therefore alternative methods have been 
proposed. In machine learning, if data are abundant, a common 
approach is to randomly divide the full dataset used for modelling into 
three parts: a training set, a validation set, and a test set (Hastie et al., 
2009, Chapter 7). The training set is used for fitting the models, the 
validation set is used to estimate prediction error for model selection and 
hyperparameter tuning, while the test set is used for assessing the ac-
curacy of the final model. This paper addresses this latter testing phase, 
with the specific aim to assess the accuracy of a thematic map produced 
by a calibrated statistical prediction method. Data availability is often 
limited so that setting aside a test set cannot always be afforded and 
therefore resampling methods are used (Hastie et al., 2009; Steele et al., 
2003). To this end, the widely used k-fold cross-validation method splits 
the full dataset into k approximately equally-sized disjoint subsets or 
folds, where repeatedly (i.e. k times) the model is calibrated on k-1 folds, 
whilst the remaining fold is used for assessing prediction accuracy. The 
overall cross-validation accuracy is estimated by aggregating the 
(squared) residuals over the k folds. In conventional k-fold cross- 
validation, the folds are chosen randomly. 

If the full sample dataset is acquired by simple random sampling and 
if k equals the sample size (i.e. leave-one-out cross-validation, hereafter 
LOOCV), estimation from cross-validation is known to be nearly unbi-
ased (Bengio and Grandvalet, 2004; Krzanowski, 2001; Steele et al., 
2003). Since the computational burden of LOOCV is heavy, k is 
conventionally set to five or ten, in which case bias is no longer negli-
gible but can be parametrically corrected (Fushiki, 2011). However, the 
sample datasets used for mapping environmental variables generally are 
not acquired by simple random sampling. Rather, they are amalgam-
ations of several datasets, each with its own formal or opportunistic 
sampling design, which strictly impedes design-based inference. The 
latter also applies to probability samples whose inclusion probabilities 
are not published, such as the LUCAS dataset (d’Andrimont et al., 2020). 
If the data points are fairly uniformly distributed in space, conventional 
k-fold cross-validation likely produces reasonable results but the esti-
mates of the map accuracy metrics may be biased and no confidence 
intervals can be derived. In contrast, strongly clustered points in the 
compound datasets may not be representative of the entire study area as 
they overrepresent some regions while underrepresenting or even 
missing others. This implies that the machine learning models are most 
intensely trained on the densely sampled areas which also have the 
largest impact on the estimated map accuracy. Conventional cross- 
validation map accuracy estimates based on such preferential samples 
tend to be too optimistic and methods are needed to correct for that 
(Steele et al., 2003). 

Several papers including Brenning (2012), Le Rest et al. (2014), 
Roberts et al. (2017), Just et al. (2020) and Ploton et al. (2020) address 
the over-optimistic accuracy estimates by promoting methods collec-
tively known as spatial cross-validation. These methods start from the 
premise that spatial proximity of data points in the calibration and test 
data folds is to be avoided. This is commonly achieved by spatial 
blocking in k-fold CV or spatial buffering in LOOCV (Le Rest et al., 2014; 
Roberts et al., 2017). However, the underlying assertion is incorrect as it 
ignores that there are many prediction points close to calibration points. 
Hence, spatial cross-validation tends to produce overly pessimistic 
validation results. Milà et al. (2022) proposed a spatial buffering 
filtering for LOOCV that matches the nearest neighbour distance dis-
tribution function between the test and training data to that between the 
prediction and training points. 

The motivation for spatial cross-validation further seems to be rooted 
in a persistent confusion about the meaning of independence in design- 
based and model-based approaches (Brus, 2021; de Gruijter and ter 
Braak, 1990). In the case of design-based accuracy estimation from a 
probability sample, the estimators and their associated variance esti-
mators are unbiased, regardless of the magnitude of spatial correlation 
and test locations being close to calibration locations (Gregoire and 

Valentine, 2007; Stehman and Foody, 2019). With Wadoux et al. (2021) 
we therefore object against rejecting long-standing, statistically valid 
methods for assessing map accuracy. 

Since the distribution of most —if not all— environmental properties 
is spatially structured, having zero sampling density in portions of 
geographic space often implicates the risk of failure to cover portions of 
feature space. Therefore, we concur with Meyer et al. (2019), Just et al. 
(2020), de Sousa et al. (2021), Helmstetter et al. (2021) and others that 
strong data clustering in geographic space may complicate the identi-
fication of predictive models and may result in making predictions 
beyond the feature space covered by the sample. Undeniably, conven-
tional cross-validation cannot assess the accuracy of extrapolations but 
blocked spatial cross-validation will not solve this problem either. 
Instead, one may consider assessing the disparity between feature data 
at prediction sites and those in the training dataset to delineate a pre-
diction model’s area of applicability (AOA), as proposed by Meyer and 
Pebesma (2021). In contrast, the current work aims to tackle bias in map 
accuracy estimates from cross-validation by balancing the impact of 
residuals in the regions with different sampling intensities. Otherwise, 
residuals in densely sampled regions dominate the accuracy estimates 
and this effect arises even if the clustered sample comprises the full 
feature space and, hence, no extrapolation occurs. 

The objectives of this work are to present and evaluate alternative 
cross-validation approaches for assessing thematic map accuracy when 
the sample data are clustered. The first proposed method is a quasi- 
randomization approach (Elliott and Valliant, 2017) using inverse 
sampling-intensity weighting to correct for selection bias by giving more 
weight to observations in sparsely sampled areas and less weight to 
observations in densely sampled areas. Sampling intensity is estimated 
from the observational data points by a two-dimensional kernel 
approach (cf. Cronie and Van Lieshout, 2018; Deutsch, 1989). The two 
other approaches are model-based methods rooted in geostatistics (e.g. 
Goovaerts, 1997; Isaaks and Srivastava, 1990). These account for 
redundant information of spatially clustered residuals by using spatial 
correlation functions (variograms). Estimates of the global map accu-
racy metrics are obtained by simulating residuals on every node of a grid 
covering the entire study area. The first variant assumes homoscedas-
ticity of the residuals, whilst the second accounts for heteroscedasticity 
of the residuals, again as a function of sampling intensity. We explain 
how these methods work and compare their map accuracy estimates and 
those from conventional k-fold cross-validation and blocked spatial 
cross-validation against reference map accuracy metrics. Genuine 
demonstration of our approach would require true values of the target 
variable to be known everywhere, which is unfeasible in reality. To 
mimic a situation of omnipresent reference data, the target environ-
mental variables were sampled from existing above ground biomass 
(AGB) and soil organic carbon stock (OCS) maps and the acquired 
samples were used for fitting and prediction with random forest models. 

2. Methods 

2.1. Cross-validation methods 

2.1.1. Conventional (method 1) 
Five cross-validation methods were compared using different sam-

ples, the details of which are provided in Section 2.2. In our imple-
mentation of conventional 10-fold cross-validation (k = 10), the full 
sample dataset was randomly split 100 times into ten equally sized 
disjoint folds, each time providing a different folding of the full sample. 
Each time, nine of the folds were used for calibrating the model, and the 
remaining fold for testing. The map accuracy metrics (see Section 2.3) 
were computed from the n pairs of reference observations and map 
predictions (n being the sample size) distributed over the ten folds 
(Hastie et al., 2009). The metrics were averaged over the 100 foldings. 
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2.1.2. Spatial (method 2) 
Blocked spatial cross-validation was implemented using Brennings’ 

(2012) sperrorest package for the R language and environment for sta-
tistical computing (R Core Team, 2021). In this method, spatial parti-
tions of the sample are created by k-means (k = 10) clustering based on 
the spatial coordinates. Following Brenning’s (2012) implementation, 
these sample partitions were allowed to differ somewhat in size. 
Computation of the map accuracy metrics over the ten folds proceeded 
as in the conventional cross-validation. Again, we averaged over 100 
repetitions, each producing a somewhat different spatial partitioning. 
The maximum number of iterations for the k-means coordinate clus-
tering procedure was set to 50, which was found to be sufficient for 
convergence. 

2.1.3. Inverse sampling-intensity weighted (method 3) 
Thirdly, we used a heuristic, quasi-randomization method (Elliott 

and Valliant, 2017) employing inverse sampling-intensity weighting to 
give more weight to observations in sparsely sampled areas and less 
weight to observations in densely sampled areas to correct for estima-
tion bias. Sampling intensities of the dataset were estimated using a two- 
dimensional kernel approach where the kernel width was computed 
from the sample using the Cronie and van Lieshout (2018) criterion as 
implemented in the spatstat package for R (Baddeley et al., 2016). The 
map accuracy metrics were computed by weighting the squared re-
siduals obtained from conventional random cross-validation by the in-
verse of the estimated sampling intensity (details are in Section 2.3). The 
RMSE estimator bears some cursory similarity with the Horvitz–-
Thompson estimator of map accuracy metrics in a stratified sample 
(Cochran, 1977; Lohr, 2019) but note that here the weights are obtained 
from estimated sampling intensities, which can largely differ from the 
inclusion probabilities of stratified sampling designs. From here on we 
refer to this method as the weighted cross-validation method. 

2.1.4. Homoscedastic model-based (method 4) 
Next, we used two variants of a model-based method, which were 

again applied to the residuals obtained from conventional cross- 
validation (Section 2.1.1). Using kriging weights, these methods ac-
count for redundant information in spatially clustered residuals based 
on their spatial configuration and autocorrelation as characterised by a 
variogram model. The first variant assumes stationarity of the variance 
(homoscedasticity) of the residuals r(si) = z(si) − ẑm(si), with z(si) 
denoting a reference observation of the target variable at sample loca-
tion si, and ẑm(si) being the map prediction of the target variable at si. 
The residuals r(si) are seen as local realizations of a random field R = {R 
(s), s ∈ D} over the entire study area D, modelled by (Eq. (1)): 

R(s) = μ+ εhom(s) (1)  

where μ is a fixed but unknown spatial mean error of the target variable 
map (map bias) and εhom denotes a stationary, zero mean spatially 
correlated Gaussian random field that is conditioned on the residuals at 
the sample locations and whose spatial correlation is characterised by a 
variogram model. The variogram models were acquired by fitting a 
permissible function through experimental semivariances computed 
from the residuals obtained by conventional cross-validation. Next, 500 
maps of the residual fields R were generated by sequential conditional 
Gaussian simulation on a dense grid with an ordinary kriging model, 
using the gstat package (Gräler et al., 2016; Pebesma, 2004). Note that 
ordinary kriging includes prediction of the unknown μ in Eq. (1) by μ̂OK. 
The procedure was repeated for each sample (see Section 2.2) and for 
both target variables (see Section 2.4). For each of the 500 gridded 
simulated fields the map accuracy metrics were computed (see Section 
2.3), after which the means were computed from the sampling 
distributions. 

2.1.5. Heteroscedastic model-based (method 5) 
The heteroscedastic model-based method employs a fairly simple 

approach for modelling non-stationarity of the variance of the residuals 
using (Eq. (2)): 

R(s) = μ+ σ(s)∙εhet(s) (2)  

where μ denotes the unknown map bias as in Eq. (1), σ is a deterministic 
field mapping the standard deviation of the residuals r(si) over the entire 
study area s, and εhet is a zero mean, unit variance spatially correlated 
Gaussian random field. The underlying rationale is that σ varies over the 
study area depending on the strength of model fit, which varies with 
sampling intensity. 

In contrast to earlier work (Lark, 2009; Wadoux et al., 2018) that 
assumes the standard deviation to depend linearly on covariates and 
jointly estimated the parameters of that linear model and the variogram 
by restricted maximum likelihood, here we modelled heteroscedasticity 
separately from variogram modelling. The map bias μ (Eq. (2)) was 
predicted by μ̂OK from the homoscedastic model (Section 2.1.4). 
Acknowledging the potentially non-linear impact of sampling intensity 
on the variance of the residuals, σ was modelled by a smooth function of 
the sampling intensity. To that end, zero-degree (constant) locally esti-
mated scatterplot smoothing (LOESS) models, as implemented in R’s 
stats library, were fitted through standard deviations computed from 
binned random cross-validation residuals. The bins were delimited by 
the quantiles (0, 0.01, 0.02, …, 1) of the sampling intensities estimated 
by a two-dimensional kernel approach (see Section 2.1.3). The LOESS 
smoothing parameter was set to 0.5. The observed conventional cross- 
validation residuals were next transformed through division by the 
local σ(si) after subtracting μ̂OK (Eq. (3)): 

r′

(si) = (z(si) − ẑm(si ) − μ̂OK)/σ(si) (3)  

where r′(si) is the transformed residual at sample location si. Variogram 
modelling and conditional sequential Gaussian simulation proceeded as 
in the homoscedastic model but now using the transformed residuals, r′
(si). The residuals simulated at the nodes of the simulation grid (s0) were 
subsequently back-transformed to r(s0) by multiplication with the 
standard deviations predicted by the LOESS model and addition of μ̂OK 
(Eq. (4)): 

r(s0) = μ̂OK + r′(s0)∙σ(s0) (4)  

2.2. Explored samples 

To allow evaluation of the cross-validation methods, our analyses 
needed populations which were sampled and used for computing 
reference map accuracy metrics of random forest models fitted on the 
samples. The used populations are proxies of target environmental 
variables. They cover the entire study area where both the target vari-
ables and the covariates (Section 2.4) are available. The explored sam-
ples which represent different degrees of clustering in a reproducible 
way are described below.  

1. Simple random sample. This corresponds to a simple random sample 
—without replacement— of the study area, where each location (i.e., 
grid cell) has equal inclusion probability. Note that by nature, a 
spatial simple random sample exhibits some degree of clustering and 
hence differentiation in sampling intensity. This sample was added 
as a reference case, and it was analysed the same way as the other 
samples.  

2. Systematic random sample. This refers to sampling on a regular grid 
producing equal density over the study area (cf. Su et al., 2020). The 
grid nodes were obtained by randomly shifting an initial square 
sampling grid that was spaced so as to achieve the desired sample 
size (here 5000). Next, shifts in x and y directions were applied, 
where the shifts were sampled from a uniform distribution between 
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minus half and plus half the spacing of the sampling grid. Only nodes 
hitting grid cells within the study area were retained, which implies 
there can be some spatial gaps in the sample. Apart from these gaps, 
the sampling intensity is uniform. Owing to the shifts, area bound-
aries and some no data areas, the actual realized sample sizes 
differed to some degree from the expected value.  

3. Moderately clustered sample. This sample was produced by stratified 
sampling. First, the study area was divided into 100 compact geo- 
strata using the spcosa package (Walvoort et al., 2010). In each 
sample, 20 of the 100 geo-strata were randomly selected to form a 
stratum and 50% of the total sample size was randomly chosen 
within this stratum. The locations of the remaining 50% of the 
sample were randomly chosen from the stratum formed by the other 
80 geo-strata.  

4. Strongly clustered sample. This sample was produced similarly to the 
moderately clustered sample. However, here ten of the spcosa geo- 
strata were randomly selected to form the first stratum in which 
90% of the sample grid cells were randomly allocated. Additionally, 
10% of the sample was allocated to the stratum composed of the 
remaining 90 geo-strata. An example of a real-life dataset repre-
sented by this sample is the mixture of forest inventory plots and 
research plots used for evaluating global AGB maps (de Bruin et al., 
2020).  

5. Strongly clustered sample with gaps. This sample is based on the spatial 
configuration of observed AGB pixels in central Africa used by Ploton 
et al. (2020). The data file belonging to that paper was downloaded 
from https://doi.org/10.6084/m9.figshare.11865450. The centre of 
the dataset was shifted to the centre of our study area. The 1 km2 

pixels were expanded by a factor two so that the spatial extent 
matched our study area. The pixels were next sampled at a regular 
point spacing of 0.5 km. The sampling points obtained in this way 
were shifted by a random (uniformly distributed) shift of +/− 300 
km in x-direction and +/− 70 km in y-direction. After intersecting 
with a mask of the study area, the remaining points were randomly 
subsampled to achieve the intended sample size. 

Each of the sampling designs 1–5 was repeated 100 times, every time 
producing a different sample. The size of samples 1, 3, 4 and 5 corre-
sponded to 5000 each. The systematic random samples’ size (2) varied 
between 4998 and 5056; upon trying several grid spacings. This range 
was the closest we got to the intended sample size of 5000. 

2.3. Map accuracy metrics 

The map accuracy metrics used in this work are the square root of the 
mean squared prediction error (RMSE) and the Nash and Sutcliffe 
(1970) model efficiency coefficient (MEC), which quantifies the 
improvement made by the model (in this case the map) over using the 
mean of the observations as the prediction. The metrics are defined in 
Eqs. (5) and (6): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(z(si) − ẑm(si) )
2

N

√

(5)  

MEC = 1 −
∑N

i=1(z(si) − ẑm(si) )
2

∑N
i=1

(
z(si) − zp

)2 (6)  

where N denotes the size of the sampling frame (i.e. all units (grid cells) 
in the population) and zp is the population mean of the target variable 
reference values. Since we had population data at our disposal, reference 
population values for these metrics were computed by applying the above 
equations. 

The four samples described in Section 2.2 have n units, with n ≪ N. 
Therefore, they only estimate the map accuracy metrics for the entire 
population. Additionally, the inverse sampling-intensity weighted cross- 

validation method applies case weights to the residuals at different lo-
cations. For the random, the blocked spatial and the weighted cross- 
validation methods, estimates of the map accuracy metrics were hence 
computed by Eqs. 7 and 8: 

̂RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
wi∙(z(si) − ẑm(si) )

2

∑n

i=1
wi

√
√
√
√
√
√
√

(7)  

M̂EC = 1 −
∑n

i=1wi∙(z(si) − ẑm(si) )
2

∑n
i=1wi∙(z(si) − zs )

2 (8)  

where wi are the weights applied to individual observations (i.e. inverse 
sampling intensities for cross-validation method 3, otherwise the 
weights are constant and set to 1), zs is the sample mean of reference 
values of the target variable and ̂RMSE and M̂EC are the estimated map 
accuracy metrics. Note that the pairs of reference observations and map 
predictions were collected over ten folds. 

In the two model-based methods (methods 4 and 5), the map accu-
racy metrics are computed from simulated residuals at the N nodes of the 
grid covering the entire study area. For each simulation, estimates of 
RMSE and MEC were computed by Eqs. (9) and (10): 

̂RMSEsim =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
r(si)

2

N

√
√
√
√
√

(9)  

M̂ECsim = 1 −

∑N

i=1
r(si)

2

∑N

i=1
(r(si) + ẑm(si) − μsim )

2
(10)  

where μsim is the mean of r(si) + ẑm(si) over all nodes of the simulation 
grid. 

To allow comparison of accuracy estimates across different samples, 
relative deviations of the accuracy estimates from their reference met-
rics were expressed as percentages. For example, the relative RMSE 
(rRMSE) was computed by Eq. (11). The relative MEC was computed 
similarly. 

rRMSE = 100∙
̂RMSE − RMSE

RMSE
(11)  

2.4. Case study implementation 

The following two maps provided population reference data for the 
target variables AGB and OCS (see Fig. 1), which were used for drawing 
the sample datasets (for model training) and for computing the reference 
map accuracy metrics:  

• AGB: version 3 of the 2017 CCI-Biomass product (https://catalogue. 
ceda.ac.uk/uuid/5f331c418e9f4935b8eb1b836f8a91b8), which is a 
follow up of the Globbiomass product (Santoro et al., 2021);  

• OCS (0–30 cm soil depth): Soilgrids (https://www.isric.org 
/explore/soilgrids; Poggio et al., 2021). 

The maps were spatially resampled and aligned to a common grid 
with a resolution of 0.5 km that is compatible with the resolution of the 
covariates. The covariates used for predicting AGB and OCS comprise:  

• Seven terrain properties derived from the digital elevation model EU- 
DEM version 1.1 (Copernicus Land Monitoring Service - EU-DEM — 
European Environment Agency (europa.eu));  

• GEDI forest height (Potapov et al., 2021);  
• Seven CHELSA V2.1 climate variables (Karger et al., 2020); 
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• Seven generalized land cover classes derived from the 2017 Coper-
nicus land cover map (Buchhorn et al., 2020);  

• Three soil properties from SoilGrids (only used for predicting AGB);  
• Two spatial coordinates (x, y) and distance from the coast, the latter 

computed using a land mask of the study area that was derived from 
the other covariates. 

The full list of covariates and data sources is provided in the 
appendix. 

The study area is western Europe, constrained in the north at 52◦

latitude because GEDI forest height is only available up to that latitude 
and at − 10◦ and 24◦ longitude mainly because of the availability of EU- 
DEM. The chosen projection was IGNF:ETRS89LAEA (Lambert 
azimuthal equal area projection). The elevation-derived terrain prop-
erties were computed at the original resolution of EU-DEM (25 m) and 
next aggregated by a factor 20 to 0.5 km resolution. The target variables 
and the covariates were sampled at the sites selected by the designs 
described in Section 2.2 for model fitting and map accuracy estimation. 
All raster calculations were done using the terra package (Hijmans, 
2021). 

Random Forest models as implemented in the ranger package 
(Wright and Ziegler, 2017) predicting the target variables as a function 
of the covariates were fitted using out-of-the-box hyperparameter set-
tings. The only exception was the respect.unordered.factors 
option, which was set to TRUE to ensure the categorical land cover 
variable was properly used in the regression trees. Maps of AGB and OCS 
were obtained by predicting with the fitted models using the covariate 
maps. 

In the two model-based approaches, for the AGB residuals automated 
variogram fitting first attempted to fit a nested model composed of a 
short-range spherical structure, a longer-range exponential structure, 
and a nugget. If that failed —as indicated by a model singularity 
warning— an exponential structure with a nugget was tried and, as an 
ultimate resort, a pure nugget model was fitted (a single case). For the 
OCS residuals, first a nested model composed of a spherical structure, a 
Gaussian structure, and a nugget was tried, which in case of failure was 
followed by fitting an exponential structure with nugget. The model 
structures were chosen upon visual inspection of a sample of experi-
mental variograms computed from the data. To reduce the computa-
tional burden of the model-based approaches, the number of foldings 
used in the two model-based approaches was reduced to ten out of the 
100 foldings from random cross-validation. Furthermore, the residual 
fields were computed at a grid spacing of 5 km, and the maximum 
number of nearby points on which local simulations were conditioned 
(nmax) was set to 75. The geostatistical models were implemented using 
the gstat package for R (Gräler et al., 2016; Pebesma, 2004). 

3. Results and discussion 

3.1. Samples 

A subset of the 100 realizations of the five sampling designs 
described in Section 2.2 is shown in Fig. 2. Note that for the systematic 
random sample (Fig. 2(c)) the entire regular grid was randomly shifted 
in horizontal and vertical direction. Since the effect of such shifts is 
difficult to appreciate visually, here only a single systematic random 
sample is shown. Non-sampled areas within the European continent (e.g. 
around the Alps) correspond to no data areas for some of the covariates 
owing to bare rock surfaces, water bodies or urban areas. These sites 
were excluded from the study area. 

3.2. Random forest predictions and reference accuracy metrics 

Fig. 3 shows example maps of AGB predictions made by random 
forest models trained on samples as per four of the five designs 
compared in this study. At first sight, the maps (a-c) are very similar to 
the proxy of exhaustive ground truth provided in Fig. 1(a) but closer 
inspection reveals some dissimilarities. Perhaps the most apparent dif-
ference is a reduction of the largest AGB values along Europe’s mountain 
ranges in Fig. 3(c). The latter map shows predictions based on a strongly 
clustered sample whose locations are shown in Fig. 2(f). It can be 
observed that this sample had few sampling sites in the high biomass 
areas, which may partly explain the observed tendency. The predictions 
in Fig. 3(d) differ considerably from those in Fig. 3(a-c). These are based 
on the strongly clustered, gapped sample shown in Fig. 2(h) which fails 
to cover the major part of the study area including the regions with large 
AGB values (cf. Fig. 1(a)). These higher AGB sites are thus predicted by 
extrapolation rather than interpolation. Moreover, the population map 
accuracy metrics shown in Fig. 4 reveal that the strongly clustered, 
gapped design had the smallest MEC of the five compared sampling 
designs. Weaker correlation between predictions and reference data (as 
indicated by MEC) generally implies overprediction of small reference 
values and underprediction of greater values. This effect is commonly 
observed for AGB maps (e.g. Avitabile and Camia, 2018; Santoro et al., 
2021) and in statistics it is referred to as reversion or regression toward 
the mean (Samuels, 1991). A similar pattern was observed for the OCS 
predictions, which for reason of brevity are not shown here. 

The map accuracy metrics depicted in Fig. 4 show that models 
trained on the systematic samples covering the study area with uniform 
density on average produced the greatest accuracy (i.e. smallest RMSE 
and greatest MEC) for both AGB and OCS. The models trained on the 
simple random samples were on average slightly less accurate but the 
ranges of their map accuracy metrics largely overlap with those of the 
systematic samples. Models trained on the strongly clustered samples 

Fig. 1. Reference above-ground biomass from CCI Biomass (a) and soil organic carbon stock in the 0–30 cm layer from Soilgrids (b) in the study area.  
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were least accurate and also varied the most over the samples, while the 
ranges of their map accuracy metrics did not overlap those of the other 
samples. These effects are as expected, as strongly clustered samples 
overrepresent some geographic regions while underrepresenting others, 
which is likely to also impact representation of feature space. The large 
spread in the map accuracy metrics can be explained by major differ-
ences in the coverage of geographic space and feature space amongst 
different realizations of the strongly clustered design. Note that all 
random forest models had decent predictive skill as judged by the 
population MEC values, yet the AGB models were more accurate than 
the OCS models. 

3.3. Sampling intensities and model identification 

Both the weighted cross-validation method (Section 2.1.3) and the 
heteroscedastic model-based method (Section 2.1.5) require sampling 
intensities to be estimated from the dataset. For each spatial sampling 
design, Fig. 5 shows an example of the intensities computed with the 
spatstat two-dimensional kernel approach (Baddeley et al., 2016) with 
the bandwidth selection according to the Cronie and Van Lieshout 
(2018) criterion. Spatial clustering of the simple random samples pro-
duced some variation in the estimated sampling intensity as can be 
observed in Fig. 5(a). As expected, systematic sampling resulted in a 
homogeneous sampling intensity, except for areas near gaps in the 
sampling frame, such as around the Alps (Fig. 5(b)). The two clustered 
samples exhibit most differentiation in sampling intensity, with the 
strongly clustered sample having the greatest spatial variation. The 
latter is evident in Fig. 5(d), whose pattern emerged from the sample 
depicted in Fig. 2(f). 

In the heteroscedastic model-based method, the estimated sampling 
intensities were used for modelling non-stationarity of the variance of 
the AGB and OCS residuals from reference data by a smooth function of 
sampling intensity. Fig. 6 presents examples of the LOESS hetero-
scedasticity models fitted to standard deviations computed from binned 
cross-validation residuals for the four sampling intensities depicted in 
Fig. 5 (a, c-e). The systematic design lacks sampling intensity variation 
and therefore the corresponding plot is not shown here. Note that for a 
single sample, owing to their similarity, the semi-transparent red curves 
representing the LOESS models from different foldings can hardly be 
discriminated. However, different samples of the same design and 
samples from different designs produced widely divergent models. The 
latter can be appreciated by comparing the curves of Fig. 6(a-d). To 
facilitate comparison of the data ranges over which the models were 
fitted, these were kept constant along the x-axes and the y-axes of Fig. 6 
(a-d). For the simple random sampling design, the standard deviation of 
the residuals was fairly constant over the observed range of sampling 
intensities. The curves for the moderately clustered sample and the 
strongly clustered, gapped sample shows the anticipated smooth 
reduction in the standard deviation with increasing sampling intensity. 
In the case of a strongly clustered sample, the modelled standard devi-
ation of the residuals of the AGB residuals decreases with sampling in-
tensities up to approximately 7.5∙10− 9, beyond which it increases again. 
This behaviour seems counterintuitive but note that the two patches 
with the largest sampling intensities (in Poland and Bulgaria) coincide 
with areas having heterogeneous AGB values at relatively short dis-
tances (cf. Fig. 1(a)). This spatial pattern appears not to be accurately 
reproduced by the random forest model predictions. 

Figs. 7 and 8 show example variograms of AGB residuals and of 

Fig. 2. Examples of studied spatial samples. (a-b) simple random samples; (c) systematic random sample; (d-e) moderately clustered samples; (f-g) strongly clustered 
samples; (h-i) strongly clustered, gapped samples. Except for the systematic sample (c), the sample size always amounted to 5000. The systematic sample had an 
expected size of 5000 but realized samples varied in size between 4998 and 5056. 
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Fig. 3. AGB predictions using (a) simple random sample; (b) moderately clustered sample; (c) strongly clustered sample; (d) strongly clustered, gapped sample.  

Fig. 4. Reference map accuracy metrics computed from the population data for models trained on 100 realizations of each sampling design. Boxes denote the 
interquartile range; thick horizontal line inside boxes are medians; whiskers mark the full range and points indicate the means. SRS = simple random; syst =
systematic random; clustMed = moderately clustered; clustStr = strongly clustered; clustGap = strongly clustered, gapped sample. 
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transformed AGB residuals as used in the homoscedastic and the het-
eroscedastic model-based methods, respectively. The sill of the AGB 
residual variogram computed from the strongly clustered, gapped 
sample in Fig. 7(e) is substantially lower than that of the other samples 
(Fig. 7(a-d)). Hence, the sampled sub-space is internally relatively ho-
mogeneous in terms of AGB residuals whilst these residuals are hardly 
spatially correlated (no remaining spatial structure) as witnessed by the 
(almost) pure nugget variograms. The random forest models effectively 
characterise AGB variability within the densely sampled sub-space (as 
discussed below) but beyond that region their performance is weak as 
indicated by the reference map accuracy metrics shown in Fig. 4(a, c). 

The transformation of the residuals to account for heteroscedasticity 
as a function of sampling intensity rescaled the variograms to approxi-
mately unit sill (Fig. 8), as it should, while it also impacted the shape of 
the variogram model to some degree. For example, for the moderately 
clustered sample it led to a reduction of the long-range spatial correla-
tion structure of AGB residuals for distances up to 200 km (compare 
Fig. 7(c) and Fig. 8(c)) while for the strongly clustered, gapped sample 
heteroscedasticity modelling introduced some weak spatial structure 
(compare Fig. 7(e) and Fig. 8(e)). Note that Figs. 7-8 only show the 
variograms of AGB residuals from a single sample of each sampling 
design; however, we assessed 100 samples per sampling design for both 
AGB and OCS residuals. 

3.4. Map accuracy 

Boxplots of the relative deviation of the map accuracy metrics from 
their reference values for maps produced by models trained on 100 
samples are shown in Fig. 9. Blocked spatial cross-validation systemat-
ically overestimated the RMSE while underestimating the MEC for all 
designs except for the strongly clustered gapped AGB samples, which 
subscribes its pessimistic bias anticipated in the Introduction. In blocked 
spatial cross-validation, the k assessed models are each trained on a sub- 
sample lacking coverage of a spatially contiguous part of geographic 
space where the validation points are located. Since this is likely to have 
an impact on the coverage of feature space as well, these k models tend 
to be inferior to the model trained on the full dataset. In fact, blocked 
spatial cross-validation aggravates the impact of clustered sampling 
patterns by removing parts of geographic space in each fold on which 
the model is tested. This effect has been claimed useful for assessing a 
model’s extrapolation error (Roberts et al., 2017). However, the feature 
space of regions not covered by the sample can be quite different from 
those of the blocks folded out in spatial cross-validation so that blocked 
spatial cross-validation can also be overly optimistic about map accu-
racy. Examples are the RMSE estimates for the strongly gapped AGB 
samples (Fig. 9(a)), where the cross-validation results seem to have been 
slightly optimistic while there was no remaining spatial correlation in 
the AGB residuals that would be removed by spatial blocking (see Fig. 7 

Fig. 5. Examples of estimated sampling intensities (multiplied by 109) for five samples shown in Fig. 2: (a) simple random (cf. Fig. 2(a)); (b) systematic random (cf. 
Fig. 2(c)); (c) moderately clustered (cf. Fig. 2(e)); (d) strongly clustered (cf. Fig. 2(g)); (e) strongly clustered, gapped sample (cf. Fig. 2(i)). 
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(e)). 
For the non-clustered sampling designs, the range of the metrics over 

the 100 samples obtained by blocked spatial cross-validation did not 
include the reference metrics. In contrast, the other four cross-validation 
methods estimated the map accuracy metrics within 10% from their 
reference values for nearly all samples of these designs and design-bias 
was substantially less than with the blocked spatial cross-validation 
method. The conventional random cross-validation results were very 
close to those obtained by weighted cross-validation and the hetero-
scedastic model-based method. It is noted that for the simple random 
samples (which have equal inclusion probability) and the systematic 
random samples (which in addition to equal inclusion probability have 
uniform sampling intensity), accounting for differences in sampling in-
tensity is irrelevant. Nevertheless, doing so hardly if at all affected the 
map accuracy metric estimates compared to their non-intensity-adjusted 
counterparts (cf. conventional versus intensity weighted, and hetero-
scedastic versus homoscedastic in Fig. 9). 

The weighted cross-validation (quasi-randomization) and the het-
eroscedastic model-based methods —which both account for the effects 
of differences in sampling intensity— tended to be the least biased for 
the clustered sampling designs without gaps. However, for the strongly 
clustered, non-gapped design, bias remained substantial and should be 
further reduced. This specifically concerns OCS, which compared to AGB 
was predicted with weaker model fits as judged from the reference MEC 
(Fig. 4). The overoptimistic accuracy estimates can be attributed to 
estimation from geographically disproportional samples from regions 
that were also most intensely sampled for fitting the random forest 
models. In contrast, the reference metrics were computed over the entire 
sampling frame. Weighted cross-validation and the model-based 
methods attempt to correct for selection bias but only accomplished 
this to a limited extent. Potential enhancements may be attained with 
improved sampling intensity estimation and heteroscedasticity 
modelling. 

For the strongly clustered designs with gaps, most map accuracy 

estimates were strongly optimistically biased for all cross-validation 
methods except for blocked spatial cross-validation. The latter may be 
attributed to blocked cross-validation’s hypothetical ability to estimate 
a model’s extrapolation error (Roberts et al., 2017) if the areas of the 
map not covered by the sample have similar accuracy characteristics as 
the folded out cross-validation blocks, which is not guaranteed. The 
weighted cross-validation and model-based methods proposed in this 
work lack information for filling gaps in this design. 

Elliott and Valliant (2017) discussed quasi-randomization and 
superpopulation modelling as generic approaches for making inferences 
from non-probability samples. Here instances of the two approaches 
were considered within a k-fold cross-validation context. The weighted 
cross-validation method is an implementation of a quasi-randomization 
approach. It was found to be less biased than blocked spatial cross- 
validation for the target variables and sampling designs without gaps 
assessed in this study. The two geostatistical model-based methods 
presented in this paper are examples of the superpopulation modelling 
approach discussed by Elliott and Valliant (2017). Accounting for het-
eroscedasticity in the AGB and OCS residuals was found to reduce bias 
compared to the homoscedastic model for the non-gapped designs. 
However, it did not mitigate bias for the strongly clustered gapped 
design, which is no surprise as the non-covered areas on the map lack 
data points to inform the geostatistical model. The best the geostatistical 
model can do in gaps where the nearest sample points are beyond the 
range of the residual variogram is to predict the spatial mean of the 
residuals, which is optimistically biased as there is no information about 
potential extrapolation beyond the feature space the model is trained on. 

None of the k-fold cross-validation methods evaluated in this paper is 
guaranteed to be capable of assessing map extrapolation error for areas 
not covered by the sample. To support mapping the entire study area 
without extrapolation, additional sampling is needed if the current 
sample lacks coverage of feature space. Alternatively one may confine 
the mapped area to the part covered by the sampled feature space, e.g., 
by excluding sites exceeding a critical distance between feature data at 

Fig. 6. Average standard deviation of AGB residuals per density percentile (dots) and fitted LOESS models (curves) for 10 foldings of instances of each of the four 
sampling designs (a-d; same as in Fig. 5(a, c-e). Semi transparency is used for plotting dots and curves corresponding to different data foldings. Per sample, the fitted 
LOESS models are nearly identical over the different foldings and therefore their curves can hardly be distinguished. 

S. de Bruin et al.                                                                                                                                                                                                                                



Ecological Informatics 69 (2022) 101665

10

the prediction sites and those in the training dataset (Meyer and 
Pebesma, 2021). 

To support statistically convincing conclusions, it is important to also 
estimate the uncertainty of map accuracy estimates. Currently, there is 
no universal unbiased estimator of the variance of k-fold cross- 
validation (Bengio and Grandvalet, 2004; Yousef, 2021). A model- 
based approach allows computing the model-variance of the predicted 
RMSE and MEC and use these to compute prediction intervals for these 
metrics. However, the model-variance of a predictor and the sampling 
variance of an estimator are fundamentally different, as the source of 
randomness differs between the approaches. In design-based estimation, 
randomness concerns the selection of sampling units, whereas in model- 
based prediction randomness is introduced via the statistical model of 
the spatial variation (Brus, 2021). The latter randomness depends on the 
model’s specification and identification. In general, estimation of con-
fidence intervals from k-fold cross-validation is a yet unsolved puzzle 
requiring further research. 

We acknowledge that our case studies relied on proxies of the spatial 
distribution of environmental properties rather than the true spatial 
distribution as encountered in the field. The used AGB and OCS maps 
smooth out part of the natural spatial variability and prediction models 
fitted on samples from the maps therefore tend to be more accurate than 
models fitted on samples collected in the real world. However, since our 
demonstration required an entire population to derive reference values 
for RMSE and MEC, it would have been infeasible to accomplish without 
reliance on proxy data. Moreover, besides the case of absence of spatial 
structure in the target variable, we cannot think of any reason why the 
general bias trends observed in our case studies would diverge from 
those observed with real field samples. 

4. Conclusions 

We have proposed an inverse sampling-intensity weighted and two 
geostatistical model-based cross-validation approaches as alternatives to 
the broadly propagated spatial cross-validation method that tends to 
produce pessimistically biased map accuracy estimates. The proposed 
methods can be characterised as quasi-randomization and super-
population modelling approaches, respectively. Like blocked spatial 
cross-validation, our weighted approach is a heuristic method. However, 
in contrast to the former it explicitly addresses the spatial clustering 
problem rather than the incorrectly posed problem of spatial proximity 
of test and training data. In our case studies, bias in the map accuracy 
metrics assessed over multiple realizations of the sampling designs by 
weighted cross-validation was much smaller than that of blocked spatial 
cross-validation for non-clustered to moderately clustered samples. For 
the strongly clustered design where large portions of the maps were 
predicted by extrapolation, blocked spatial cross-validation was closest 
to the reference map accuracy metrics. However, blocked spatial cross- 
validation may still yield biased estimates of the map accuracy metrics, 
because it is impossible to tell how large the blocks should be to adjust 
for the deterioration of map accuracy metrics caused by extrapolation. 
Rather, extrapolation is to be avoided by additional sampling or limi-
tation of the prediction area. 

The proposed model-based approaches are rooted in geostatistics. An 
initial homoscedastic model was expanded by modelling hetero-
scedasticity of residuals in the target variable as a smooth function of 
observed sampling intensity. The resulting heteroscedastic model’s map 
accuracy metrics were similar to those obtained by weighted cross- 
validation for the samples without spatial gaps. Hence, for reasons of 
parsimony we recommend conventional random cross-validation for 

Fig. 7. Experimental semivariances (dots) and fitted variogram models (curves) of AGB residuals for 10 foldings of instances of each of the five sampling designs (a-e; 
same as in Fig. 5). Semi transparency is used for plotting dots and curves corresponding to different data foldings. 
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non-clustered samples and weighted cross-validation for moderately 
clustered samples. 

Further research is needed to improve accuracy assessment by cross- 
validation from strongly spatially clustered samples and for estimating 
confidence intervals for map accuracy metrics. 
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Appendix A. Data sources  

Name Description Source Note 

ai Aridity Index https://chelsa-climate.org/downloads/ Version 2.1 
bio1 Mean annual air temperature [◦C] 
bio5 Mean daily maximum air temperature of 

the warmest month [◦C] 
bio7 Annual range of air temperature [◦C] 
bio12 Annual precipitation [kg/m2] 
bio15 Precipitation seasonality [kg/m2] 
gdd10 Growing degree days heat sum above 

10 ◦C 
clay Clay content [g/kg] of the 0-5 cm layer https://soilgrids.org/ Only used for AGB 
sand Sand content [g/kg] of the 0-5 cm layer 
pH Acidity (Ph(water)) of the 0-5 cm layer 
glc2017 Landcover 2017 https://land.copernicus.eu/global/products/lc, reclassified to: closed forest, open 

forest, natural non-forest veg., bare & sparse veg. Cropland, built-up, water 
Categorical variable 

dem Elevation https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-servi 
ce-eu-dem  

(continued on next page) 

Fig. 8. Experimental semivariances (dots) and fitted variogram models (curves) of transformed AGB residuals for 10 foldings of instances of each of the four sampling 
designs (a-e; same as in Fig. 5). Transformation was done using the local regression curves shown in Fig. 6. Semi transparency is used for plotting dots and curves 
corresponding to different data foldings. 
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(continued ) 

Name Description Source Note 

cosasp Cosine of slope aspect Computed with the terra package from elevation Computed @25 m resolution; next 
aggregated to 0.5 km sinasp Sine of slope aspect 

slope Slope 
TPI Topographic position index 
TRI Terrain ruggedness index 
TWI Topographic wetness index Computed with SAGA from 500 m resolution (aggregated) dem  
gedi Forest height https://glad.umd.edu/dataset/gedi Zone: NAFR 
xcoord X coordinate Using a mask created from the other covariates  
ycoord Y coordinate 
Dcoast Distance from coast Using a land mask created from the other covariates  
clustGap Spatial configuration of observed AGB 

pixels in central Africa 
doi:https://doi.org/10.6084/m9.figshare.11865450  

A compiled version of the datasets used in this paper can be downloaded from: https://doi.org/10.5281/zenodo.6513429. The analysis scripts are available at: 
https://doi.org/10.5281/zenodo.6514923. 
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Mengistu, D.K., Pè, M.E., Solberg, S.Ø., Dell’Acqua, M., 2021. Data-driven 
decentralized breeding increases prediction accuracy in a challenging crop 
production environment. Commun. Biol. 4 (1), 944. https://doi.org/10.1038/ 
s42003-021-02463-w. 

Steele, B.M., Patterson, D.A., Redmond, R.L., 2003. Toward estimation of map accuracy 
without a probability test sample. Environ. Ecol. Stat. 10 (3), 333–356. https://doi. 
org/10.1023/A:1025111108050. 

Stehman, S.V., 2009. Sampling designs for accuracy assessment of land cover. Int. J. 
Remote Sens. 30 (20), 5243–5272. https://doi.org/10.1080/01431160903131000. 

Stehman, S.V., Foody, G.M., 2019. Key issues in rigorous accuracy assessment of land 
cover products. Remote Sens. Environ. 231 https://doi.org/10.1016/j. 
rse.2019.05.018. 

Su, H., Shen, W., Wang, J., Ali, A., Li, M., 2020. Machine learning and geostatistical 
approaches for estimating aboveground biomass in Chinese subtropical forests. 
Forest. Ecosystems 7 (1). https://doi.org/10.1186/s40663-020-00276-7. 

Wadoux, A.M.J.C., Brus, D.J., Heuvelink, G.B.M., 2018. Accounting for non-stationary 
variance in geostatistical mapping of soil properties. Geoderma 324, 138–147. 
https://doi.org/10.1016/j.geoderma.2018.03.010. 

Wadoux, A.M.J.C., Heuvelink, G.B.M., de Bruin, S., Brus, D.J., 2021. Spatial cross- 
validation is not the right way to evaluate map accuracy. Ecol. Model. 457, 109692 
https://doi.org/10.1016/j.ecolmodel.2021.109692. 

Walvoort, D.J.J., Brus, D.J., de Gruijter, J.J., 2010. An R package for spatial coverage 
sampling and random sampling from compact geographical strata by k-means. 
Comput. Geosci. 36 (10), 1261–1267. https://doi.org/10.1016/j. 
cageo.2010.04.005. 

Wright, M.N., Ziegler, A., 2017. Ranger: a fast implementation of random forests for high 
dimensional data in C++ and R. J. Stat. Softw. 77 (1), 1–17. https://doi.org/ 
10.18637/jss.v077.i01. 

Yousef, W.A., 2021. Estimating the standard error of cross-validation-based estimators of 
classifier performance. Pattern Recogn. Lett. 146, 115–125. https://doi.org/ 
10.1016/j.patrec.2021.02.022. 

S. de Bruin et al.                                                                                                                                                                                                                                

https://doi.org/10.1186/s13021-021-00183-6
https://doi.org/10.1007/s11222-009-9153-8
http://refhub.elsevier.com/S1574-9541(22)00114-5/rf0080
http://refhub.elsevier.com/S1574-9541(22)00114-5/rf0080
https://doi.org/10.1016/j.rse.2020.112103
https://doi.org/10.1016/j.rse.2020.112103
https://doi.org/10.32614/RJ-2016-014
https://doi.org/10.1201/9780203498880
https://doi.org/10.1201/9780203498880
https://doi.org/10.1007/BF00890327
https://doi.org/10.1007/BF00890327
https://doi.org/10.1038/s41558-020-00976-6
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1111/ddi.13174
https://cran.r-project.org/web/packages/terra/terra.pdf
https://cran.r-project.org/web/packages/terra/terra.pdf
http://refhub.elsevier.com/S1574-9541(22)00114-5/rf0125
http://refhub.elsevier.com/S1574-9541(22)00114-5/rf0125
https://doi.org/10.1016/j.atmosenv.2020.117649
https://doi.org/10.1016/j.atmosenv.2020.117649
https://doi.org/10.1038/s41597-020-00587-y
https://doi.org/10.1080/02664760120047915
https://doi.org/10.1198/jabes.2009.07060
https://doi.org/10.1198/jabes.2009.07060
https://doi.org/10.1111/geb.12161
https://doi.org/10.1111/geb.12161
https://doi.org/10.1038/s41598-020-67024-3
https://doi.org/10.1201/9780429296284
https://doi.org/10.1201/9780429296284
https://doi.org/10.1111/2041-210X.13650
https://doi.org/10.1016/j.ecolmodel.2019.108815
https://doi.org/10.1016/j.ecolmodel.2019.108815
https://doi.org/10.1111/2041-210X.13851
https://doi.org/10.1111/2041-210X.13851
https://doi.org/10.1016/j.ecolind.2021.108081
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/j.cageo.2004.03.012
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.1016/j.rse.2020.112165
https://doi.org/10.1016/j.rse.2020.112165
http://refhub.elsevier.com/S1574-9541(22)00114-5/rf0210
http://refhub.elsevier.com/S1574-9541(22)00114-5/rf0210
https://doi.org/10.1111/ecog.02881
https://doi.org/10.1080/00031305.1991.10475833
https://doi.org/10.1080/00031305.1991.10475833
https://doi.org/10.1088/1748-9326/aabe1c
https://doi.org/10.5194/essd-13-3927-2021
https://doi.org/10.5194/essd-13-3927-2021
https://doi.org/10.1038/s42003-021-02463-w
https://doi.org/10.1038/s42003-021-02463-w
https://doi.org/10.1023/A:1025111108050
https://doi.org/10.1023/A:1025111108050
https://doi.org/10.1080/01431160903131000
https://doi.org/10.1016/j.rse.2019.05.018
https://doi.org/10.1016/j.rse.2019.05.018
https://doi.org/10.1186/s40663-020-00276-7
https://doi.org/10.1016/j.geoderma.2018.03.010
https://doi.org/10.1016/j.ecolmodel.2021.109692
https://doi.org/10.1016/j.cageo.2010.04.005
https://doi.org/10.1016/j.cageo.2010.04.005
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1016/j.patrec.2021.02.022
https://doi.org/10.1016/j.patrec.2021.02.022

	Dealing with clustered samples for assessing map accuracy by cross-validation
	1 Introduction
	2 Methods
	2.1 Cross-validation methods
	2.1.1 Conventional (method 1)
	2.1.2 Spatial (method 2)
	2.1.3 Inverse sampling-intensity weighted (method 3)
	2.1.4 Homoscedastic model-based (method 4)
	2.1.5 Heteroscedastic model-based (method 5)

	2.2 Explored samples
	2.3 Map accuracy metrics
	2.4 Case study implementation

	3 Results and discussion
	3.1 Samples
	3.2 Random forest predictions and reference accuracy metrics
	3.3 Sampling intensities and model identification
	3.4 Map accuracy

	4 Conclusions
	Authorship
	Declaration of Competing Interest
	Appendix A Data sources
	References


