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Plant scientists and breeders require high-quality phenotypic data. However, obtaining 
accurate manual measurements for large plant populations is often infeasible, due to the 
high labour requirement involved. This is especially the case for more complex plant traits, 
like the traits defining the plant architecture. Computer-vision methods can help in solving 
this bottleneck. The current work focusses on methods using 3D point cloud data to 
obtain phenotypic datasets of traits related to the plant architecture. A first step is the 
segmentation of the point clouds into plant organs. One of the issues in point-cloud 
segmentation is that not all plant parts are equally represented in the data and that the 
segmentation performance is typically lower for minority classes than for majority classes. 
To address this class-imbalance problem, we used a common practice to divide large 
point clouds into chunks that were independently segmented and recombined later. In 
our case, the chunks were created by selecting anchor points and combining those with 
points in their neighbourhood. As a baseline, the anchor points were selected in a class-
independent way, representing the class distribution in the original data. Then, we propose 
a class-dependent sampling strategy to battle class imbalance. The difference in 
segmentation performance between the class-independent and the class-dependent 
training set was analysed first. Additionally, the effect of the number of points selected as 
the neighbourhood was investigated. Smaller neighbourhoods resulted in a higher level 
of class balance, but also in a loss of context that was contained in the points around the 
anchor point. The overall segmentation quality, measured as the mean intersection-over-
union (IoU), increased from 0.94 to 0.96 when the class-dependent training set was used. 
The biggest class improvement was found for the “node,” for which the percentage of 
correctly segmented points increased by 46.0 percentage points. The results of the second 
experiment clearly showed that higher levels of class balance did not necessarily lead to 
better segmentation performance. Instead, the optimal neighbourhood size differed per 
class. In conclusion, it was demonstrated that our class-dependent sampling strategy 
led to an improved point-cloud segmentation method for plant phenotyping.
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INTRODUCTION

Plant scientists and breeders require high-quality phenotypic 
data. For example, phenotypic measurements of plant 
architecture-related traits are relevant to study the genotype–
phenotype-environment relationship in the light of plant 
architecture. The plant architecture is the set of traits defining 
the three-dimensional (3D) organisation of the plant parts 
(Reinhardt and Kuhlemeier, 2002) and is an important indicator 
of plant stress (Suter and Widmer, 2013; Fahlgren et  al., 2015; 
Paulus, 2019). Traits related to plant architecture are, for example, 
internode length, leaf angle, and leaf area. Measuring these 
traits manually with a high accuracy and a high temporal 
resolution is infeasible, due to the high labour requirement 
involved. Therefore, the availability of high-quality phenotypic 
data is often limited, especially for more complex traits, such 
as the traits related to plant architecture.

Computer-vision methods can increase the accuracy of the 
trait measurements and reduce the amount of manual labour 
involved. This allows to scale the phenotypic dataset in the 
number of time points per measurement as well as in the 
number of plants measured. Because of the complex 3D 
organization of the plant parts, we  focussed on methods that 
are based on 3D point clouds using deep neural networks. In 
these methods, a first step that is often used, is to semantically 
segment the point cloud, such that for each point it is known 
to which plant part it belongs. The segmented point cloud 
can then be  used as the basis for measuring plant traits. The 
aim of our work is to develop methods that can help in 
measuring traits related to the plant architecture to increase 
the availability of high-quality phenotypic data.

An issue that was identified in previous work on point-
cloud segmentation is that point clouds of plants typically 
have a high level of class imbalance, with, for instance, an 
abundance of leaf points, but only few points belonging to 
classes such as “flower” or “node” (Boogaard et al., 2021; Turgut 
et  al., 2022). This has consequences for semantic-segmentation 
methods, with the segmentation quality for the underrepresented 
classes lagging behind that of the overrepresented classes. For 
example, in the point clouds used by Boogaard et  al. (2021), 
each of the classes “node,” “ovary” and “tendril” consisted of 
less than 1% of the points. The highest Intersection-over-Union 
(IoU, a metric to measure segmentation quality) reported for 
these classes was 0.23, while for the majority class “leaf,” the 
IoU was 0.99. In point clouds of roses (Turgut et  al., 2022), 
the “stem” and “flower” were underrepresented as compared 
to the “leaf.” The highest observed IoU values for these 
underrepresented classes were 0.77 (“stem”) and 0.73 (flower), 
while the IoU for the overrepresented “leaf ” was 0.95. In the 
current work, we propose a method to improve the segmentation 
of underrepresented classes, based on the level of class balance 
in the training data for the neural network.

Class Imbalance—A Literature Review
The training procedure of a neural network consists of two 
main steps, creating the training data and training the network. 
In the first step, the available data needs to be manually labelled 

and transformed into a training, validation and test set. The 
training data are then used to train the network. The second 
step, training, depends on a set of hyper parameters like the 
neural network architecture, the loss function and the possibility 
of using pre-trained weights. In both steps, methods have been 
presented in literature to deal with class imbalance. We  first 
discuss the approaches dealing with the training data and then 
the approaches dealing with the network and training procedure, 
in both cases focusing on 3D point clouds.

When preparing the training data, it is possible to repeat 
samples of underrepresented classes more often than samples of 
overrepresented classes. In the work of Lin and Nguyen (2020), 
randomly selected points of underrepresented classes were 
duplicated and randomly selected points of overrepresented classes 
were removed. This approach changes local point densities and 
structures, which could be  prevented by oversampling entire 
objects instead of individual points. However, it is not 
straightforward to do this in semantic segmentation, since the 
recognition of an object also depends on the context in which 
it is presented. For example, the difference between a petiole 
and a stem is mainly visible because of the surrounding plant 
structure. One approach to do oversampling in a semantic-
segmentation task was presented for the segmentation of LiDAR 
scans of urban areas. The point clouds in this work were divided 
into subsets, in this work referred to as chunks. A chunk was 
then duplicated if more than 70% of the points in that chunk 
belonged to underrepresented classes (Poliyapram et  al., 2019). 
The possibility of applying data augmentation to duplicated chunks 
was added by Griffiths and Boehm (2019b), again in the context 
of 3D scanning and segmentation of an urban environment.

An alternative approach to reduce the level of class imbalance 
in the training set is to use synthetic data. An example was 
published by Griffiths and Boehm (2019a). They provided a 
large synthetic dataset of an urban environment in which the 
presence of small structures like poles and street furniture 
was increased, as compared to, for example, roads and pavements. 
In the plant domain, a synthetic dataset of sweet-pepper images 
including class and depth labels was generated by Barth et  al. 
(2018) and in the work of Turgut et  al. (2022), synthetic 3D 
rosebush models were used to train neural networks to segment 
plants from the ROSE-X dataset (Dutagaci et  al., 2020). Such 
synthetic datasets could be  modified to increase the focus on 
minority classes.

Also during training, class imbalance can be addressed. The 
training of a neural network is based on the loss, which is 
calculated from the difference between a predicted class and 
the ground truth. A common loss function for semantic 
segmentation is the cross-entropy loss, which gives equal weights 
to errors in each of the classes. The focus of a learning algorithm 
can be  shifted towards minority classes by adding per-class 
weights to the loss function. These weights are then used to 
increase the loss for minority classes and decrease the loss 
for majority classes. This approach is known as weighted cross-
entropy loss (Milioto et al., 2019). Focal loss is another variant 
of a weighted loss function in which the loss is inversely 
scaled by the probability that a point is of a certain class, 
which allows to obtain focus on minority classes (Lin et al., 2017).
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Another way to deal with class imbalance is through 
pre-training of a neural network. Pre-training means that the 
network is first trained on a larger, often publicly available 
dataset, to learn common features. The dataset-specific features 
are then learnt in a second training procedure, based on the 
specific training set. This approach was adjusted to learn features 
of underrepresented classes first, before moving to the 
overrepresented classes, known as incremental transfer learning 
(Sander, 2020). The idea was to limit the dataset first to the 
underrepresented classes meaning that it is easier for the network 
to learn features of these classes. Then, the overrepresented 
classes are added, possibly in multiple steps. A strict stopping 
condition is required to prevent overfitting when the 
overrepresented classes have been added.

Although all the above methods alleviate the problem of class 
imbalance to some extent, new methods are needed to further 
improve the segmentation of underrepresented classes. In the 
current work, we  focus on improving the level of class balance 
in the training set. The methods dealing with the network and 
training procedure are out of the scope of the current work.

Contributions of the Paper
In the literature presented above, a common approach was to 
divide the point clouds into chunks that were then independently 
processed by the network. The main reason to create these 
chunks was that large point clouds cannot be  processed at 
once for reasons of limited available memory storage and 
computational power. However, the chunks were either created 
based on fixed volumes, or by applying a sliding window that 
covered the entire point cloud. Instead of covering the entire 
point cloud, our aim was to show that the procedure to create 
the chunks could be designed such that the chunks were directly 
created with a focus on minority classes to improve the class 
balance in the training set. The main principle of our proposed 
method was based on two steps. First, anchor points were 
sampled from the point cloud and second, a set of points 
around each anchor point was selected as the chunk.

The focus of our method was to increase the level of class 
balance in the training set, based on the hypothesis that a 
higher level of class balance would lead to a better segmentation 
method. To test this, first, a reference training set was created 
in a class-independent way. In this class-independent training 
set, the class distribution of the sampled anchor points was 
proportional to the original class distribution. A second, class-
dependent and training set was then generated, in which the 
class distribution of the sampled anchor points was inversely 
proportional to the original class distribution. In the first 
experiment, the added value of the class-dependent sampling 
approach was tested by using both training sets to train a 
neural network and comparing the performance on the 
segmentation task.

Although the anchor points were sampled from a specific 
class, the neighbourhood could contain points of different 
classes. So, even if an equal amount of anchor points was 
selected for each class, the neighbouring points of different 
classes reduced the level of class balance in the training set. 
By decreasing the number of points in the selected 

neighbourhood, this effect could be  reduced. However, the 
neighbourhood of an anchor point does contain relevant 
information about the context of the anchor point. The second 
experiment, therefore, focussed on the effect of the number 
of points added as the neighbourhood on the level of class 
imbalance and the segmentation performance.

In this work, cucumber was used as a model crop. The 
neural network architecture used for the segmentation was 
PointNet++ (Qi et  al., 2017). PointNet++ is one of the top 
performing neural network architectures for point cloud 
segmentation (Guo et al., 2020). In the plant domain, PointNet++ 
was, for example, used in roses (Turgut et  al., 2022) and in 
cucumber (Boogaard et  al., 2021). In both works, it was found 
that PointNet++ was a suitable basis for semantic segmentation 
in the plant domain as compared to other deep neural networks.

MATERIALS AND METHODS

In this section of the paper, we  first present how the point-
cloud data of the cucumber plants were obtained and labelled 
in section “Data Acquisition.” In section “Class Imbalance,” 
the concept of class imbalance is introduced. The method to 
create the training sets and how this method was used to 
battle class imbalance is explained in section “Using the Division 
Into Chunks to Battle Class Imbalance.” The training procedure 
is then presented in section “Training Procedure” and the 
testing procedure and evaluation criteria are introduced in 
section “Testing Procedure and Evaluation.”

Data Acquisition
The cucumber plants used for this research were of the variety 
Proloog RZ F1 (Rijk Zwaan, De Lier, Netherlands). Twelve 
plants were grown in a climate chamber on plant gutters. The 
plants were identified based on the location in the plant gutter 
as plant A1 up to B6, see Figure 1. An in-row distance between 
the plants of 1 m was used to prevent occlusion. The data-
acquisition period started when the plants had 8 leaves and 
a plant length of 76 cm on average. After 11 days, at the end 
of the data-acquisition period, the average number of leaves 
was 12 and the average plant length was 195 cm. An impression 
of the plants is shown in Figure  2.

The point clouds used in this research were obtained using 
a Phenospex F500 Dual-scan1 system, based on laser-line 
triangulation. A driving WIWAM plant analyser2 (see Figure 1) 
was used to automatically position the scanners in front of 
each plant. The plants were then scanned in a vertical direction, 
from the plant gutter up to the growing point of the plant. 
Scans were made at both sides of the plant gutter. A schematic 
overview of the plants and the scanning positions is also given 
in Figure  1. The 24 scanning positions and the 11 days on 
which the plants were scanned resulted in a total dataset of 
24 • 11 = 264 point clouds.

1 https://phenospex.com/products/plant-phenotyping/
planteye-f500-multispectral-3d-laser-scanner/
2 https://www.wiwam.be/projects/
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Next to the 3D spatial information, the Phenospex F500 
Dual-scan system also provided colour information. So, the 
input data contained six features for each point in the point 
clouds: x, y, and z for the 3D position of the point and red, 
green and blue (r, g, and b) for the colour of the point.

To train PointNet++ and to be  able to assess the quality of 
the trained network, a ground truth dataset was generated by 
manually segmenting all the 264 point clouds in the classes 
“stem,” “petiole,” “leaf,” “growing point,” “node,” “ovary,” “tendril” 
and “non-plant,” using the segment module of CloudCompare 
(CloudCompare, 2019). The class “non-plant” was used for the 
plant gutter, the pot, the plant label and the wire to which the 
plant was attached for support. An example of a coloured point 
cloud and a manually segmented point cloud is shown in Figure 3.

Class Imbalance
In Figure  3, the percentage of points in each of the classes is 
added in the legend of the figure, clearly indicating the imbalance 

in the dataset. Most of the points (78.9%) were “leaf” points 
and also the “non-plant” class was relatively large (15.0%). The 
classes “stem” (2.7%) and “petiole” (1.5%) were a lot smaller, 
while each of the remaining classes (“growing point,” “node,” 
“ovary” and “tendril”) contained less than 1% of the points.

The level of class imbalance was quantified using the Shannon 
entropy, according to Eq.  1:

 
h d p p
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Where h(d) is the entropy in bits for dataset d, referring to 
either the manually labelled dataset, or one of the training 
sets created for the experiments done in this research. The 
number of classes is C and pc

d
 is the probability that a randomly 

chosen point belongs to class c in dataset d, which is equal 
to the fraction of points in dataset d belonging to class c. 
The upper limit for the entropy can be  found for a completely 

FIGURE 1 | The mobile platform (left) including the Phenospex F500 Dual-scan system. The right image shows a schematic top-down overview of the plants in the 
climate chamber. The mobile platform automatically moved to the scan positions. At each position, the corresponding plant was scanned in a vertical direction by 
moving the scanners upwards (Boogaard et al., 2021).

FIGURE 2 | Impression of the different parts of the cucumber plants. The left image contains leaves, stem, petioles, tendrils and the supporting wire. In the middle 
image, two emerging fruits with flowers, in this research classified together as “ovary,” are visible. Also, some nodes are clearly visible in this image. The right image 
shows the growing point of the plant and another tendril.
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homogeneous dataset, which is the case when all classes are 
equally present in the dataset. For the 8 classes labelled in 
our dataset, the maximum value for the entropy was 
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32log  bits. If a dataset is dominated by one 

of the classes, the entropy decreases and approaches 0 bits. 
The entropy of the manually segmented dataset, based on the 
class distribution ass shown in Figure  3, was 1.1 bits.

Using the Division Into Chunks to Battle 
Class Imbalance
The process in which the original point clouds were divided 
into chunks was used as a mechanism to battle class imbalance 
in this work. In our procedure, the chunks were created in 
two steps. First, for each class, a pre-defined number of anchor 
points was sampled from the point cloud. An anchor point 
for a certain class was a randomly selected point from the 
set of all points of that class. In the second step, the neighbouring 
points were added to each of the anchor points, based on a 
k-nearest-neighbour search. This search was performed on the 
entire point cloud, including points of different classes than 
the class of the anchor point. The selected neighbourhood 

was then saved as a training sample. The value of k was first 
set at 4,096, as this is a value often used in literature.

The first experiment to battle class imbalance focussed on 
the selection of anchor points from the point cloud. The aim 
was to decrease the level of class imbalance by changing the 
number of anchor points per class, based on two strategies. 
For the first strategy, the anchor points were selected in a 
class-independent manner to maintain the original class 
distribution as a reference. So, the number of anchor points 
per class was based on the original class distribution. For each 
class c, the number of anchor points ac was defined by Eq.  2, 
where nc is the number of points in class c, n is the total 
number of points in the point cloud and a is the number of 
anchor points per point cloud. The value for a was set at 
100, as a balance between processing time and the amount 
of data used for training.

 
a n

n
ac

c� �
 

(2)

The second training set was created using a class-dependent 
selection of anchor points. The hypothesis of this strategy was 
that a class-dependent selection of anchor points could reduce 

FIGURE 3 | Example of an original, coloured, point cloud (left) and a manually segmented point cloud showing the 8 classes used in this research. In the legend, 
the fraction of points per class is given. The black squares show a zoomed in segment of the segmented point cloud.
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the level of class imbalance and improve the segmentation 
performance. For the class-dependent strategy, the number of 
anchor points per class was based on the inverse of the original 
distribution, according to Eq.  3. First, the inverse fraction of 
points in a class was calculated as 1 minus the fraction of 
points in that class. The inverse fraction for each class was 
then divided by the sum of the inverse fractions for all classes, 
in order to obtain the fraction of anchor points for this class 
in the training set. The obtained fraction was multiplied by 
the total number of anchor points per point cloud, a, to obtain 
the number of anchor points per class. As in the previous 
strategy, the value for a was set at 100.
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The two resulting training sets are referred to as the class-
independent and the class-dependent training set. The resulting 
class distribution in these two training sets is presented in 
Figure 4. For comparison, the class distribution of the manually 
labelled dataset is also shown. The entropy of the manually 
labelled data and the class-independent training set was both 
1.1 bits, while the entropy of the class-dependent training set 
was 2.6 bits. This indicates that the class-dependent training 
set had a higher level of class balance.

To provide more insight into how the two training sets differ 
from each other, the points that were selected for training for 
one point cloud are shown in Figure  5. The left image shows 
the selected points for the class-independent training set and 
the right image shows the selected points for the class-dependent 
training set. In the right image, the increased focus on the 
underrepresented classes (“node,” “ovary” and “tendril,” but also 
“stem” and “petiole”) and the decreased focus on the overrepresented 
classes (“leaf” and “non-plant”) is clearly visible.

Although the level of class balance in the class-dependent 
training set was increased, there was still quite some variation 
in the presence of classes. The smallest class (“tendril”) occupied 
2% of the points, while the largest class (“leaf ”) still occupied 
24% of the points. The main reason was that the selected 
neighbourhood contained points of different classes than the 
class of the selected anchor point. The number of points in 
a chunk that were of a different class than the targeted anchor 
point depended on the physical size of the target class in the 
point cloud as well as the value of k. In fact, to obtain a 
completely homogeneous dataset, an equal amount of anchor 
points from each class could be  selected and the chunk size 
could be  set to 1, to prevent the inclusion of neighbouring 
points of different classes. However, this would also cause the 
complete loss of the context of the selected anchor point. 
Neighbouring points add information about local point densities 
and geometrical aspects like the curvature of the plant part. 
To provide an intuition about why this is important, consider 
that an individual point contains only six features: its x, y, 
and z location and the r, g and b colour. If only these six 
features would be  known, especially in the current data, it is 

infeasible to know to what class a point belongs. The features 
of neighbouring points help to predict the correct class.

This apparent tension between class balance and context 
was further investigated in a second experiment. We  created 
additional training sets based on the class-dependent strategy, 
using k  = 512, k  = 1,024, k  = 2,048, k  = 4,096, k  = 8,192 and 
k  = 16,384. The number of anchor points per point cloud, a, 
remained 100 for each of these training sets. The training set 
for k = 4,096 was the same as in experiment 1. The composition 
and the entropy for the generated training sets are shown in 
Figure  6. Indeed, the entropy for the smaller chunk sizes was 
higher than the entropy for the larger chunk sizes, indicating 
that the training sets for smaller values of k have a lower 
level of class imbalance. The variation in presence between 
the classes was lowest at k  = 512, ranging from 7% (“ovary” 
and “tendril”) to 23% (“stem”).

Besides context in the sense of the number of neighbourhood 
points (k), another way to look at the context of a point is to 
count the number of classes that were present in a chunk. The 
number of classes per chunk was analysed for the different values 
of k, as shown in Figure  7. The mean value for the number 
of classes per chunk increased for larger chunk sizes, indicating 
that a higher level of context was present in larger chunks.

In summary, a class-independent training set was generated 
for k = 4,096 and six class-dependent training sets were generated 
for k  = 512, k  = 1,024, k  = 2,048, k  = 4,096, k  = 8,192 and 
k  = 16,384. The training sets were used to train PointNet++, 
as presented in the next section.

Training Procedure
The PointNet++ implementation published by Qi et  al. (2018) 
was trained to segment the chunks of the point clouds into 
plant parts. The manually labelled data were first split into a 
training, validation and test set. To prevent that data from one 

FIGURE 4 | Composition of the manually labelled dataset, the class-
independent training set and the class-dependent training set. The black 
diamonds show the level of entropy (secondary axis) according to Eq. 1.
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plant were in more than one of these sets, this split was made 
on a plant level. As the result of a random selection procedure, 
all data of plant B6 were selected as the validation set and all 
data of plant A1 were selected as the test set (see Figure  1 for 
the plant IDs). In previous work using the same dataset (Boogaard 
et al., 2021), a cross-validation was done to quantify the variation 
in performance when different plants would be  used for the 
training, validation and test split. For the population of plants 
considered, it was found that variation was low. Therefore, in 
the present research, no cross-validation was performed.

The aim of the network was to predict to which plant part 
each point belongs, generally called semantic segmentation. 
Besides features on a per point basis, the network calculated 
contextual features depending on the provided neighbourhood 
points. To obtain these features, a set-abstraction level was 
used, which consisted of three layers. In the sampling layer, 
a set of points was selected from the input chunk using a 
farthest point sampling algorithm. These points were grouped 
with points in their neighbourhood in the grouping layer. 
Finally, for each of the groups, a PointNet-based (Qi et al., 2016) 

FIGURE 5 | Example of the selected points for the class-independent (left) and the class-dependent (right) training set. The class-dependent training set was more 
balanced. Note that points could be included multiple times in overlapping chunks, which is not visible in this figure.

FIGURE 6 | Composition of the six training sets created for experiment 2. 
All datasets are based on the class-dependent sampling strategy using six 
different values for k. The black diamonds show the level of entropy 
(secondary axis) according to Eq. 1.
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layer was applied to learn the local point features. The set 
abstraction was then repeated to learn features on a larger 
scale. Because of the sampling and grouping, not all points 
were processed in this way. The feature vectors for unprocessed 
points were obtained by distance-based interpolation. No changes 
were made to the PointNet++ − architecture in our study, so 
for further details about the network, we  refer to the work 
of Qi et  al. (2016, 2018).

The training procedure used a sparse softmax cross-entropy 
loss. As mentioned in the introduction, the loss function could 
be  changed to increase the loss for incorrect predictions of 
minority classes. Since we  focussed on the effect of improved 
class balance in the training set, we  did not change the loss 
function in the current research. After each training epoch, the 
loss on the validation set was monitored and training was stopped 
when this loss no longer decreased. The weights that corresponded 
to the lowest observed loss on the validation set were then used 
for further evaluation of the performance.

Since the training of a neural network is a stochastic process, 
the results can slightly differ per training run and therefore, 
the training was repeated five times for each configuration. 
The results, presented in section “Results,” are based on the 
average performance of these repetitions.

Testing Procedure and Evaluation
As mentioned in section “Training Procedure,” all point clouds 
of plant A1 were used as the test set. This means that the 

data of this plant were not used in the training nor in the 
validation of the method, such that the performance of the 
method on this plant resembled the performance on new data. 
Similar to the training sets, the point clouds of the test set 
were split into chunks. Since the objective of the test set was 
to estimate the performance on new data, meaning that no 
manually assigned labels would be available, the class-independent 
sampling approach was used for the test set. As a consequence, 
the class distribution in the test set matched the class distribution 
in the original data.

Furthermore, to be  able to segment the entire point clouds 
of the test set, it was necessary to make sure that all points 
were included in at least one of the chunks. Therefore, the 
number of chunks per point cloud, a, was not set on forehand 
for the test set. Instead, the selection of anchor points was 
repeated until all points of the point cloud had been added 
to at least one chunk. In this procedure, the anchor points 
were iteratively selected from the set of points that were not 
yet added to a chunk. To maintain local structures and point 
densities, the k-nearest neighbours were selected from the set 
of all points.

The trained network was then used to predict the segmentation 
of all chunks in the test set. The segmented chunks were 
merged to obtain the segmentation of the entire plant. Due 
to the way the chunks were created, points could be  present 
in multiple chunks. If multiple predictions were present for a 
point, the predicted class in the merged point cloud was based 
on a majority-voting strategy including all individual predictions 
for that point. In case the voting ended in a tie, one of the 
classes in this tie was selected at random. The merged point 
clouds were used for the quantitative evaluation of the 
experiments. That is, the evaluation was done on the full point 
clouds of the plants.

The segmentation performance obtained in the experiments 
is reported as the intersection-over-union (IoU) between the 
manually labelled data and the predictions of the trained network 
for the test set. The IoU was based on a point-wise comparison 
between the manual and predicted point labels. A point was 
considered a true positive (TP) if the predicted label was equal 
to the manual label. If the predicted label was not equal to the 
manual label, a point was considered a false positive (FP) for 
the predicted class and a false negative (FN) for the manually 
assigned class. Based on the number of TP, FP and FN points, 
the IoU for class c was calculated according to Eq.  4:

 
IoU TP

TP FP FNc
c

c c c
�

� � [−] 
(4)

Besides the IoU values per class, the average IoU value is 
reported in two ways. First, the micro average of the IoU was 
calculated according to Eq.  5. This provided an indication of 
the IoU for the entire dataset on a point level. However, since 
the “leaf ” was heavily overrepresented in the test set, this 
value was dominated by the IoU of the class “leaf.” Therefore, 
we  also report the macro average, which is the average of the 
per-class IoU values. The macro average was calculated according 
to Eq.  6.

FIGURE 7 | Boxplot showing the number of classes per chunk for different 
values of k, based on the training sets created using a = 100. The mean 
values are shown as “x.” The box shows the lower and upper quartile, the 
whiskers indicate the highest and lowest number of classes per chunk within 
1.5 times the inter-quartile range. Values outside this range were considered 
outliers and are shown as a circle.
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where C is the total number of classes.
The precision (P) and recall (R) are also reported per class, 

based on Eqs.  7 and 8. The precision reports what proportion 
of points that was predicted as a certain class, actually belonged 
to that class. The recall reports what proportion of points that 
actually belonged to a certain class was also predicted as 
that class.
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The significance of differences between reported IoU values 
was tested using a Wilcoxon signed-rank test. The outcome 
of these tests is reported as “n.s.” when the difference was 
not significant, as * when p < 0.05, as ** when p < 0.01 and 
finally as *** when p < 0.001.

RESULTS

In this section, the results of the two experiments are presented. 
First, in section “Selection of Anchor Points,” the segmentation 
performance for the class-independent and the class-dependent 
strategy used to select the anchor points is reported. In section 
“Number of Points Per Chunk,” the performance for the different 
chunk sizes is presented, based on the class-dependent sampling 
strategy. All results are based on the test set.

Selection of Anchor Points
The performance of the segmentation for the two sampling 
strategies, both with chunk size 4,096, is shown in Figure  8. 
When comparing the class-dependent sampling strategy to the 
original sampling strategy, for most classes and the average 
IoU values, a significant improvement of the segmentation 
quality was observed. Exceptions are the “growing point” (no 
significant difference) and the “leaf,” where a very small but 
significant decrease of the IoU was observed.

The biggest improvement was observed for the smallest 
classes, as they suffered most from the imbalance in the original 
dataset. The IoU increased from 0.02 to 0.34 for the “node,” 
from 0.24 to 0.48 for the “ovary” and from 0.30 to 0.48 for 
the “tendril.” The IoU values for the “stem” and “petiole” also 
increased, from 0.65 to 0.79 and from 0.58 to 0.76, respectively. 

Finally, the micro average of the IoU increased from 0.95 to 
0.96 and the macro average of the IoU increased from 0.54 
to 0.68, for the class-dependent sampling strategy.

The confusion matrices for the class-independent and class-
dependent sampling strategy as well as the difference between 
the two are reported in Table  1. For the class-independent 
training set, the majority classes showed the highest percentage 
of correctly predicted points. For the classes “leaf ” and 
“non-plant,” the percentage of correctly predicted points, shown 
on the diagonal, was 99.5 and 98.6%, respectively. Also the 
“stem,” “petiole” and “growing point” showed a high percentage 
of correctly predicted points, 86.7, 73.4 and 92.5%, respectively. 
The performance was lower for “ovary” (50.0%) and “tendril” 
(32.9%). For the class “node,” only 2.7% of the points was 
correctly classified by the network.

The values outside the diagonal show what percentage of 
points that was manually labelled as a certain class, was predicted 
as a different class. The most errors were made for “node” 
points, 69.0% of these points was predicted as “stem” and 21.3% 
was predicted as “petiole.” Also “ovary” and “tendril” were often 
incorrectly predicted as “stem” or “petiole.” Furthermore, for 
the class “tendril,” 21.4% of the points was predicted as “leaf.”

When training on the class-dependent training set, the 
percentage of correctly predicted points increased for most of 
the classes. The percentage of “node” points that was correctly 
classified by the network increased by 46.0 percentage points 
to 48.7%. This improvement was mainly due to fewer “node” 
points being predicted as “stem” and “petiole.” On the other 
hand, the number of “stem,” “petiole,” “ovary” and “tendril” 
points incorrectly predicted as “node” also increased slightly. 
The confusion between “stem,” “petiole” and “leaf ” was strongly 
reduced. The percentage of “node,” “ovary” and “tendril” points 
that were predicted to be “stem” and “petiole” was also reduced, 
although still 38.9% of the “node” points was classified as 
“stem” and 23.2% of the “ovary” points was classified as “petiole.” 
Only for the class “leaf,” a decrease in the number of correctly 
classified points was observed of 0.5 percentage point. Still, 
99.0% of the “leaf ” points was correctly classified and the 
number of false positives for the “leaf ” decreased.

The precision and recall for the network trained on the 
class-independent and class-dependent training set are reported 
in Table  2. For most classes, the precision and the recall were 
higher for the class-dependent training set. The recall for “leaf ” 
and the precision for “growing point” were slightly lower for 
the class-dependent training set. For the class “tendril,” the 
precision for the class-dependent training set is 16 percentage 
points lower than for the class-independent training set. This 
was mostly due to “leaf ” points incorrectly predicted as “tendril.”

Number of Points Per Chunk
The results of the experiment to test the effect of different 
chunk sizes on the segmentation performance are presented 
in this section. In Figure  9, the IoU values including the 95% 
confidence intervals on the mean are plotted. The significance 
of the differences for all classes are reported in Table A1 in 
Appendix A, based on a two-sided test.
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For most classes, there seems to be  an optimal chunk size 
at one of the intermediate values. For “stem,” the highest IoU 
was observed at k  = 2,048; for “petiole,” the highest IoU was 
observed for k  = 8,192. For these classes, the variation in IoU 
between k  = 2,048, k  = 4,096 and k  = 8,192 was very small. 
For the classes “node” and “ovary,” the IoU was higher for 
smaller chunk sizes with a maximum at k  = 1,024. However, 
for k = 512, the IoU was lower at a similar level as for k = 4,096. 
A similar pattern was found for the “tendril,” having the highest 
IoU at k  = 4,096. The highest IoU for the class “non-plant” 
was found at k = 8,192, although this value was only significantly 
higher than the IoU for k  = 16,384. For the classes “leaf ” and 
“growing point,” the highest value was found at k  = 16,384. 
However, it could be  the case that, if even larger values for 
k were added to the experiment, also for these classes, the 
IoU would drop. On average, the results did show an optimal 
value at k  = 8,192 for the micro average and at k  = 4,096 for 
the macro average of the IoU.

To provide more insight into the precision-recall trade-off, 
the precision and recall for each class are reported in Table  3. 
For “stem” and “petiole,” both the precision and the recall 
decreased for smaller chunk sizes, caused by a higher fraction 

of FP and FN for these classes. The precision for the “leaf ” 
stayed very high, meaning that if a point was classified as 
“leaf,” it almost certainly was correct. On the other hand, the 
recall for the “leaf ” decreased for smaller chunk sizes, meaning 
that no longer all “leaf ” points were retrieved for these chunk 
sizes. Based on visual inspection of the segmented point clouds, 
the main reason was identified as “leaf ” points incorrectly 
classified as “growing point.” This also caused the drop in 
precision for the class “growing point.”

Looking at the classes “node” and “ovary,” the changes in 
precision and recall showed an optimum chunk size around 
2,048 or 1,024 points. The optimum chunk size for “tendril” 
was 16,384 when aiming for precision, while it was 512 when 
aiming for recall. Finally, the precision and recall for the class 
“non-plant” were high and stable among the different chunk sizes.

DISCUSSION AND RECOMMENDATIONS

Data Set
The cucumber plants used in this research were grown in a 
climate chamber at an in-row distance of 1 meter. The distance 

FIGURE 8 | IoU for the class-independent and the class-dependent sampling strategy based on the test set. Bars indicate the mean IoU and the error bars give 
the 95% confidence interval on the mean. The archs indicate the significance of the differences between the observed IoU values.
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between the plants prevented occlusion of plants by neighbouring 
plants. The main advantage of this experimental design was 
that each point cloud contained data of only one plant, which 
reduced the complexity of the segmentation task. For plant-
phenotyping experiments, especially in data-acquisition systems 
based on a plant-to-sensor concept, it is a reasonable assumption 
that individual plants can be  scanned. However, besides plant 
scientists and breeders, the presented methodology might be of 
interest for commercial growers to assess the current state of 
their crop. When measuring plants in a denser and more 
complex environment, resulting in plant–plant occlusions, for 
each plant part, it needs to be  identified to which plant it 
belongs. This is an additional task, for which suitable methods 
need to be  developed. The current dataset does not provide 
sufficient variation in complexity of the plants and their 
environment to study the effect of the level of complexity in 
the data on the segmentation performance. Extending the 
dataset in this direction would be valuable to further investigate 
practical applicability of the method for isolated plants as well 
as for high-density growing systems encountered in 
horticultural practice.

Although the measurement set-up resulted in high-resolution 
point clouds of individual plants, the point clouds were still 

not complete. That is, parts of the plant were missing in the 
point cloud, due to occlusion by other plant parts from the 
viewpoint of the scanner. Since PointNet++ relies on local 
geometrical features to segment the point clouds, it is likely 
that the missing data had a negative effect on the segmentation 
performance. A more in-depth investigation of this effect is 
recommended as future research. For this research, the level 
of completeness was the same for all experiments and it is 
not likely that it effected our results on dealing with class 
imbalance. We  expect that the conclusions drawn at the end 
of the paper would not change if a more complete dataset 
was used.

The results presented in this paper clearly show that the 
class-dependent strategy outperformed the class-independent 
strategy. In this comparison, the class-independent strategy, 
with a chunk size of 4,096 points, was used as a baseline. 
Although it was shown in Figure 4 that the class distribution 
of the class-independent training set indeed matched the 
original class distribution, the training set was constructed 
using our sampling procedure instead of a sliding window 
approach. This means that also for the class-independent 
training set, not all points of the original point clouds were 
used for training, contrary to current practice. To further 

TABLE 1 | Confusion matrices for the trained network using the class-independent selection of anchor points, the class-dependent selection of anchor points and the 
difference between the two.

Class-independent 
(percentage)

Predictions

Stem Petiole Leaf Gr. point Node Ovary Tendril Non-plant

True labels

Stem 86.7 6.5 1.9 1.5 0.4 0.7 0.1 2.1

Petiole 17.2 73.4 6.4 1.3 0.3 0.9 0.3 0.2

Leaf 0.0 0.0 99.5 0.4 0.0 0.0 0.0 0.0

Gr. Point 0.3 0.0 5.9 92.5 0.0 0.0 0.2 1.0

Node 69.0 21.3 1.6 2.2 2.7 1.4 0.1 1.8

Ovary 20.9 24.9 1.8 0.2 0.9 50.0 0.8 0.5

Tendril 21.8 7.9 21.4 1.1 0.2 2.7 32.9 12.0

Non-plant 0.7 0.0 0.5 0.1 0.0 0.0 0.0 98.6

Class-dependent 
(percentage)

Predictions

Stem Petiole Leaf Gr. point Node Ovary Tendril Non-plant

True labels

Stem 91.1 1.7 0.5 0.9 3.2 0.5 0.2 1.9

Petiole 3.2 88.7 3.2 0.7 2.9 0.6 0.6 0.1

Leaf 0.1 0.2 99.0 0.5 0.0 0.0 0.1 0.1

Gr. point 0.9 0.1 1.9 96.1 0.1 0.0 0.2 0.7

Node 38.9 7.8 0.7 1.2 48.7 0.7 0.2 1.9

Ovary 4.3 23.2 1.0 0.1 5.0 65.4 1.0 0.1

Tendril 10.3 3.9 8.4 0.8 2.2 0.5 63.8 10.2

Non-plant 0.5 0.0 0.2 0.1 0.0 0.0 0.1 99.0

Difference (percentage point) Predictions

Stem Petiole Leaf Gr. point Node Ovary Tendril Non-plant

True labels

Stem 4.4 −4.8 −1.5 −0.6 2.8 −0.2 0.1 −0.2

Petiole −14.0 15.3 −3.2 −0.6 2.6 −0.3 0.3 −0.1

Leaf 0.1 0.1 −0.5 0.2 0.0 0.0 0.1 0.0

Gr. point 0.6 0.1 −4.0 3.6 0.1 0.0 0.0 −0.3

Node −30.1 −13.5 −0.9 −1.0 46.0 −0.7 0.1 0.1

Ovary −16.6 −1.7 −0.8 −0.1 4.0 15.4 0.2 −0.3

Tendril −11.6 −4.0 −13.1 −0.3 2.0 −2.2 30.8 −1.8

Non-plant −0.2 0.0 −0.2 0.0 0.0 0.0 0.1 0.4

Each row in the confusion matrices is based on the points that were labelled as that class by hand. The percentages indicate how these points were predicted by the network, 
meaning that values on the diagonal are correct predictions (marked in bold, also known as recall). Wrong predictions are highlighted in red and correct predictions are highlighted in 
green, brighter colours correspond to higher values.
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FIGURE 9 | IoU for the test set using six different chunk sizes, based on the class-dependent sampling strategy. Bars indicate the mean IoU and the error bars give 
the 95% confidence interval on the mean. The significance of differences between the observed IoU values are reported separately in Table A1 in Appendix A for 
readability.

assess the validity of this training set as a baseline, the 
performance of the method trained on the class-independent 
training set was compared to the performance reported by 
Boogaard et  al. (2021). In that work, a common sliding 
window approach was used and all points of the original 
point clouds were included in the chunks. The average difference 
between the IoU values of the classes was only 1 percentage 
point, and the micro and macro averages of the IoU were 

equal, indicating that the current class-independent training 
set provided a suitable baseline.

Sampling of the Training Data
Seven training sets were created for the experiments, the class-
independent training set for k  = 4,096 and six class-dependent 
training sets for k = 512, k = 1,024, k = 2,048, k = 4,096, k = 8,192 
and k  = 16,384. The resulting training sets depended on three 

TABLE 2 | Precision (P) and Recall (R) per class, for the class-independent and the class-dependent selection of anchor points.

Stem Petiole Leaf Gr. point Node Ovary Tendril Non-plant

P R P R P R P R P R P R P R P R

Class-
independent

0.72 0.87 0.74 0.73 1.00 1.00 0.55 0.93 0.34 0.03 0.80 0.50 0.85 0.33 0.99 0.99

Class-
dependent 0.85 0.91 0.83 0.89 1.00 0.99 0.51 0.96 0.55 0.49 0.89 0.65 0.69 0.64 0.99 0.99

Per column, the highest value is highlighted in green and the lowest value is highlighted in red.
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main parameters: the number of anchor points per class (ac), 
the number of anchor points per point cloud (a) and the 
method to define the neighbourhood of the anchor point, 
which was selected as the chunk. The effects of these parameters 
are discussed in the following three paragraphs.

First, in the current work, the number of anchor points 
per class was based on the inverse of the class distribution, 
instead of using an equal amount of anchor points per class. 
This resulted in a set of anchor points that contained many 
points from the minority classes such as “node” and “ovary,” 
and only few points from the majority classes, such as “leaf.” 
With a hypothetical setting of k  = 1, this would result in a 
training set that would also be  imbalanced but reversed to 
the original imbalance. This effect can be  seen for k  = 512  in 
Figure  6, where the original majority class “leaf ” is now a 
minority class. Still, the training set based on k  = 512 had the 
highest level of entropy, meaning that it was the most balanced 
training set. This is caused by the inclusion of neighbouring 
points, which were often from the original majority classes.

Second, the total number of anchor points per point cloud 
was set to 100  in the current work. The reason to keep this 
value constant was to obtain an equal amount of training 
samples, or chunks, for each of the values of k. However, 
instead of considering each chunk as a training sample, each 
individual point could be  seen as a training sample. From 
that perspective, to keep the number of training samples 
constant, not the number of chunks, but the number of points 
in the training set (a ∙ k) should be  kept constant. In our 
case, the number of points in the training set increased for 
larger values of k. Although in general more training data 
lead to a better performance, the best performance for all 
classes except “leaf ” was found at lower values of k, indicating 
the importance of class balance in the training set. It is 
recommended to further investigate the optimal number of 
anchor points per point cloud in relation to the chunk size. 
Besides saving on computation time, using less chunks also 
means that the effort needed for manually labelling the data 
can be  reduced.

The third parameter was the algorithm used to select the 
neighbourhood of the anchor points. In this work, a nearest 
neighbour search was used, meaning that all selected points 

fitted within a sphere. In other applications, for example focussing 
on elongated objects, differently shaped neighbourhoods might 
be  more suitable. Although different choices could have been 
made for the three parameters that were discussed, the conclusions 
in the light of the current research remain valid. It was clearly 
shown that the proposed class-dependent sampling method to 
create the training set did improve the segmentation quality.

Evaluation
To evaluate the proposed method, the trained networks were 
used to segment the point clouds of a test set. To construct 
this test set, anchor points were added until all points of the 
point cloud were part of at least one chunk. This method can 
be  relatively inefficient, as points can be  included in multiple 
chunks. Based on the results of the majority-voting strategy 
to reconstruct the plants after segmentation, it turned out that 
having multiple predictions per point did not drastically improve 
the results, although this was not thoroughly investigated. 
Including fewer points in multiple chunks can reduce processing 
time. Therefore, an alternative approach to create the test set 
could be  to apply a clustering algorithm that divides the input 
point cloud into clusters of the chosen chunk size. Unfortunately, 
most clustering algorithms do not guarantee a fixed number 
of members per cluster. A possible solution was presented by 
Yi and Moon (2014), who did propose a k-means based 
clustering method with a fixed number of cluster members. 
This and other alternatives to optimise the test set should 
be  further investigated.

The evaluation of the segmented test set was based on the 
IoU, the precision and the recall. These are common evaluation 
criteria for semantic-segmentation methods and the results 
show that our proposed method outperformed the baseline 
with respect to these criteria. However, although the segmentation 
of the minority classes did improve, the performance for these 
classes is still lagging behind the performance for the majority 
classes. There is no general definition of when a segmentation 
method is good enough and therefore, it is difficult to assess 
the value of the proposed improvement. We  recommend to 
evaluate the current state-of-the-art plant-segmentation methods 
not only in the light of computer-vision based criteria, like 
IoU, precision and recall, but also in the light of plant-based 

TABLE 3 | Precision (P) and Recall (R) per class, for the six different chunk sizes.

Chunk 
size:

Stem Petiole Leaf Gr. point Node Ovary Tendril Non-plant

P R P R P R P R P R P R P R P R

512 0.82 0.85 0.74 0.82 1.00 0.90 0.07 0.96 0.49 0.53 0.74 0.80 0.32 0.77 0.99 0.99

1,024 0.84 0.89 0.80 0.85 1.00 0.94 0.12 0.96 0.56 0.58 0.90 0.79 0.46 0.76 0.98 0.99

2,048 0.86 0.91 0.83 0.87 1.00 0.98 0.29 0.97 0.58 0.57 0.89 0.75 0.54 0.71 0.99 0.99

4,096 0.85 0.91 0.83 0.89 1.00 0.99 0.51 0.96 0.55 0.49 0.89 0.65 0.69 0.64 0.99 0.99

8,192 0.85 0.91 0.84 0.88 1.00 0.99 0.61 0.94 0.50 0.39 0.87 0.60 0.77 0.59 0.99 0.99

16,384 0.82 0.92 0.84 0.87 1.00 1.00 0.64 0.89 0.46 0.29 0.88 0.55 0.78 0.54 0.99 0.99

Values highlighted in green correspond to the higher values per column, while values highlighted in red correspond to the lower values per column.
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criteria like internode length, leaf angle and leaf area. This 
requires that during the data-acquisition phase of the phenotyping 
experiment, sufficient manual measurements of such plant traits 
need to be  added to the dataset. Unfortunately, for the current 
data set, these measurements were not available.

Final Recommendations
In this research, we  focussed on the improvement of the 
segmentation quality that could be  achieved using dedicated 
sampling of the training data. However, as mentioned in the 
introduction, the training procedure itself also provides 
opportunities to improve the segmentation performance on 
minority classes, for instance using data augmentation, weighted 
loss functions or synthetic data. Also increasing the amount 
of training data, possibly using multiple annotations per input 
sample, as suggested in Boogaard et al. (2021), could improve 
the segmentation. Evaluating these aspects goes beyond the 
scope of the current paper. We  recommend to further explore 
these opportunities, quantifying the individual as well as the 
combined contributions to an improved segmentation method, 
in future work.

Finally, the class-dependent sampling method for creating 
the chunks was set-up in a generic way and is in principle 
not limited to cucumber plants. Specific settings, like the values 
for k and a, might be application or dataset specific. Therefore, 
the effect of these settings needs to be  investigated to select 
a suitable value, similar to the way other hyper parameters 
of the network are set. The main procedure can then be  tested 
on any point-cloud segmentation task. As imbalanced data are 
a typical problem in point cloud processing, also outside the 
plant domain, it would be  interesting to test if the proposed 
method to create more balanced training sets also improves 
the segmentation performance in other applications and datasets.

CONCLUSION

We have presented a method to battle class imbalance in the 
segmentation of point clouds of cucumber plants. As 
hypothesised, the results of the first experiment showed that 
the segmentation performance on the original, imbalanced and 
test data was significantly improved using a more balanced 
training set. As expected, the biggest improvements were found 
for the smallest classes. The percentage of correctly predicted 
“node” points increased by 46.0 percentage points, followed 
by the “tendril,” for which the percentage of correctly predicted 
points increased by 30.8 percentage points. Also the overall 
segmentation quality improved, with the micro average of the 

IoU increasing from 0.94 to 0.96 and the macro average of 
the IoU increasing from 0.54 to 0.68.

In the second experiment, the trade-off between the amount 
of context and the class balance was investigated. Six training 
sets were created for different values of the chunk size, k. This 
parameter defined the number of points sampled around each 
anchor point. Lower values for k tended to increase the level of 
class balance in the training set, while higher values added more 
context around the anchor point. The results showed that higher 
levels of class balance did not necessarily lead to better segmentation 
performance. The value for k showing the best segmentation 
results differed per class. Based on the average IoU values, the 
best segmentation results were obtained using k  = 8,192 for the 
micro average or using k  = 4,096 for the macro average.

In this paper, we  have demonstrated that class-dependent 
sampling of the training data to improve the class balance in 
the training set led to an improved point-cloud segmentation 
method for plant phenotyping.
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NOMENCLATURE

Point features r, g, b Spectral features: red, green, blue
x, y, z Geometric features (x, y, z location of point)

Division into chunks a Total number of anchor points per point cloud
ac Number of anchor points per class c, per point cloud
n Total number of points in point cloud
nc Total number of points in class c
k Number of points per chunk

Shannon entropy d Dataset, refers to the manually labelled dataset, or one of the training, validation and test sets
C Number of classes (C = 8 in the current research)
h(d) Shannon entropy for dataset d

pd
c Probability that a randomly chosen point belongs to class c in dataset d

Evaluation IoUc, IoUmicro, IoUmacro Intersection-over-Union for class c, or as micro or macro average
TP, FP, FN True positive, False positive, False negative
P, R Precision, Recall
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