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Introduction

Genomic selection is a tool applied in animal and 
plant sciences for improving quantitative traits (Hef-
fner et al. 2009; Hayes et al. 2009; Jannink et al. 2010; 
Goddard et  al. 2010; Van Binsbergen et  al. 2015). 
Genomic values of line performance measuring the 
genetic merit of lines are calculated using markers 
(e.g., single nucleoteid polymorphisms; SNPs) cover-
ing the whole genome (Hayes et al. 2009). By using 
high density SNP panels, it is expected that SNPs in 
linkage disequilibrium (LD) with quantitative trait 
loci (QTLs) contributing to the phenotypic variation 
(Hayes et al. 2009; Zeng et al. 2018a) are included.

A training panel that has been both genotyped 
and phenotyped is used to build a prediction model 
describing a marker-trait relationship. A common 
approach to do so is by regressing phenotypes on all 
available markers using a linear model (de Los Cam-
pos et  al. 2013). With the prediction model, pheno-
typic values for non-phenotyped plant genotypes are 
predicted, which are subsequently used for selection 
(Hunt et al. 2018).

The first attempts to incorporate and simultane-
ously estimate SNP effects to predict phenotypic 
values were made by Bernardo (1994), Bernardo 
(1996). These have been popularized by Whittaker 
et  al. (2000) and Meuwissen et  al. (2001) and have 
been repeatedly used in plant and animal breeding 
(Bernardo 2008; VanRaden 2008; Crossa et al. 2010). 
However, the availability of high-density SNP panels, 
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where the number of markers (p) exceeds the sam-
ple size (n), implies that regularization methods are 
required in order to estimate all effects.

Common regularization approaches

The most common approach is by using the genomic 
best linear unbiased predictor (GBLUP) method, 
where a mixed model is fitted to the data with the 
marker effects as random (normally and indepen-
dently distributed effects with a common variance) 
(VanRaden 2008; de  Los  Campos et  al. 2009). 
GBLUP has also been alternatively parameterized 
as a ridge regression (Hoerl and Kennard 1970) 
model (referred to as RRBLUP) for genomic predic-
tion (Piepho et al. 2012). Therefore, the level of SNP 
effect shrinkage can be determined with either a grid 
search over the regularization parameter for RRB-
LUP, or by using the ratio of variance components in 
GBLUP (Heslot et  al. 2012). Finally, RRBLUP can 
also be parameterized in a Bayesian setting with a 
Gaussian prior for the marker effects (de Los Campos 
et al. 2013). We will use RRBLUP and GBLUP inter-
changeably in this work.

RRBLUP assumes that all SNP effects have equal 
variance, an assumption that has often been criti-
cized, since both causal and non-causal SNPs receive 
the same amount of regularization. Contrarily, most 
of the SNPs in the genome are assumed to contribute 
little to the phenotype and therefore should be penal-
ized more (Shen et al. 2013). By assuming that SNP 
effects have different distributions, additional flexibil-
ity is added to the BLUP model. One such approach 
is MultiBLUP and Adaptive MultiBLUP (Speed 
and Balding 2014) assigning different distributions 
to the effects, based on prior information or data-
driven approaches. In these approaches, markers are 
assigned to groups with different variances express-
ing whether the markers have large or zero to small 
contribution to the phenotypic variance. Each group 
of markers forms a separate genomic relationship 
matrix.

Another encompassing approach to regularization 
is by assigning certain prior densities to the marker 
effects in the Bayesian setting. Using a t-density 
(which puts more mass at zero and has thicker tails 
relative to the Gaussian density), for example, implies 
that small effects receive stronger shrinkage towards 
zero than strong effects. This approach is colloquially 

known as BayesA (Meuwissen et  al. 2001). BayesB 
(Meuwissen et  al. 2001) and BayesC (Habier et  al. 
2011) are obtained by assuming that SNP effects are 
a mixture of a point-mass at zero and a (diffuse) dis-
tribution on some finite interval. BayesB uses a t-den-
sity as the slab, while BayesC uses a normal density. 
Both induce a combination of variable selection and 
shrinkage (de Los Campos et  al. 2013). Empirical 
studies show only small differences between GBLUP, 
BayesA, BayesB, and BayesC, with variable selec-
tion methods having better performance in scenarios 
with large-effect QTLs. When the number of SNPs is 
small, no difference in performance is observed (de 
Los Campos et al. 2013).

All aforementioned methods are based on the 
assumption of independence between SNP effects. 
Nonetheless, it is anticipated that SNPs will be cor-
related due to spatial proximity within the chromo-
somes (Gianola et al. 2003). For modeling the corre-
lation between the effects ante-BayesA, ante-BayesB, 
and BayesN have been proposed (Yang and Tempel-
man 2012; Zeng et  al. 2018b). In these approaches 
the effect of a SNP is estimated with respect to the 
relative physical distance of its preceding neighbour, 
i.e., they have a distance-specific ante-dependence 
parameter (Núñez-Antón and Zimmerman 2009). 
While these are very interesting Bayesian approaches 
dealing with the spatial proximity of the SNPs, they 
involve Markov Chain Monte Carlo methods, which 
become computationally prohibitive for models 
involving many variables. We offer a simpler alterna-
tive method based on penalized regression to account 
for the spatial proximity.

Contribution

In this article we propose, motivated by the network 
constrained regularization and variable selection (Li 
and Li 2008), a regularized linear model: the proxim-
ity smoothed BLUP (psBLUP). Li and Li (2008) use 
a combination of L1 (Lasso) and L2 (ridge) penalties. 
The former is used for variable selection, the latter 
for encouraging smoothness on neighboring marker 
effects. psBLUP uses an L2 instead of an L1-norm 
on the coefficients (like RRBLUP), while similarly 
to Li and Li (2008) it imposes a second L2-norm to 
encourage smoothness on neighboring effects. psB-
LUP explicitly accounts for the dependence between 
marker effects due to the SNPs’ relative spatial 
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proximity within chromosomes. A smooth solution 
on the differences between adjacent marker effects is 
employed, since it is expected that neighboring mark-
ers are in LD with the same QTLs. One feature of the 
method is that we do not require a strict definition 
of the markers’ proximity, which can be estimated 
from the data. For example, the correlation coeffi-
cient between markers can be used as a measure of 
LD (Zaykin et al. 2008). In our applications, we use 
the squared correlation coefficient for those SNP pairs 
being equal or less than 10 centimorgan (cM) apart 
as a measure of proximity and observe that it is suf-
ficient to outperform RRBLUP in terms of accuracy.

Our intention is to present a genomic prediction 
method that improves the accuracy of the traditional 
ridge penalty on marker effects in RRBLUP / GBLUP 
by using additional spatial information on marker 
locations and forcing marker effects to be more simi-
lar when the marker locations are closer. We expect 
this method to be suitable for genomic prediction of 
unphenotyped genotypes in homogeneous plant fami-
lies (F2, RIL, MAGIC) for phenotypic traits with a 
low genetic signal to noise ratio in combination with 
a small training set of genotypes (< 100) . For homo-
geneous plant families, a few hundred markers suffice 
for genomic prediction because linkage disequilib-
rium extends far (10-20 cM). We did not evaluate our 
method for diversity panels with fast linkage disequi-
librium decay. Computational requirements would be 
substantial in that case and need further study. For the 
current applications to homogeneous plant families, 
we present mixed model implementations in theory 
and software.

Overview

The remainder is organized as follows. In Sect. 2, we 
review RRBLUP and propose the psBLUP as a way 
of incorporating information on the SNPs proximity 
in genomic prediction. This section also introduces 
the data with which the two methods (RRBLUP vs 
psBLUP) are compared in terms of predictive ability: 
Arabidopsis thaliana data coming from the Seed Lab 
of Wageningen University and Research, and Barley 
data from the North American Barley Genome Map-
ping Project (NABGMP). In Sect. 3 we demonstrate 
our approach on these two applications and show 
that psBLUP can lead to a gain in accuracy. We con-
clude in Sect. 4 by discussing possible extensions for 

computational efficiency and the advantages of the 
method in settings with limited sample sizes or low 
heritability phenotypes.

Materials and methods

Phenotyped and genotyped datasets

Population 1: Arabidopsis thaliana data 
from Wageningen

The first population is a Recombinant Inbred Line 
(RIL) population created from a cross between two 
natural Arabidopsis accessions, i.e., Bayreuth (Bay-
0) and Shahdara (Sha). The data come from the Seed 
Lab of Wageningen University and Research (Nether-
lands). Seeds of 164 RILs were divided into four sub-
populations (41 lines each) representing four impor-
tant developmental stages of seed germination. The 
concentration levels of 161 metabolites were deter-
mined for all 164 lines. Finally, 64 metabolites were 
retained to be used for further analysis as phenotypes. 
Concentration levels of the metabolites were log
-transformed and adjusted for the four developmen-
tal seed stages by subtracting the mean levels from 
each group. Finally, information on p = 1059 mark-
ers (5 chromosomes) was available. More information 
on the study design and data can be found in Joosen 
(2013) and Joosen et al. (2013).

Population 2: Barley data from NABGMP

The second population concerns the well-known 
Steptoe × Morex doubled haploid (DH) population 
developed by the NABGMP (https://​wheat.​pw.​usda.​
gov/​ggpag​es/​SxM/). This DH population was devel-
oped between 1991 and 1992 at several locations in 
North America. It consists of n = 150 DH lines of 
Barley that were evaluated in different environments. 
We retained five traits for further analysis, i.e., yield 
(measured in 16 environments), percentage of grain 
protein (measured in 9 environments), percentage 
of malt extract (measured in 9 environments), line’s 
height (measured in 16 environments), and the degree 
of �-amylase activity (measured in 9 environments). 
A total of 148 lines were genetically characterized 
by p = 794 markers covering the seven barley chro-
mosomes. More information on the study design and 

https://wheat.pw.usda.gov/ggpages/SxM/
https://wheat.pw.usda.gov/ggpages/SxM/
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data can be found in Hayes et al. (1993) and Malosetti 
et al. (2004).

Methods for genomic prediction

Let, for n samples, y = [y1,… , y
n
]⊤ be a n × 1 cen-

tered response vector representing a phenotype of 
interest ( 

∑
i yi = 0 ). Also, let X be a n × p matrix con-

taining scaled SNPs ( 
∑

i xij = 0 , 
∑

i x
2
ij
= n for all 

j = 1,… , p ). In order to build a genomic prediction 
model and establish a genotype-phenotype relation-
ship, a vector of SNP effects needs to be estimated. 
We first present the standard RRBLUP model, before 
extending to psBLUP.

RRBLUP

In RRBLUP the vector of SNP effects is obtained by 
minimizing the penalized least squares with respect to 
�:

where Ip is the p × p identity matrix and where 
�1 ≥ 0 represents the shrinkage parameter controlling 
the amount of regularization. Since �̂ depends on �1 , 
a cross-validation criterion is typically used to select 
�1 from a grid of possible values.

Another way to select �1 is by estimating the vari-
ance components of a mixed model with SNP effects 
as random, since the two models are equivalent 
(Habier et al. 2007; Piepho et al. 2012; de Los Cam-
pos et al. 2013; de Vlaming and Groenen 2015). The 
linear mixed model can be written as:

where � are the residuals distributed as N(0, �2
�
In) and 

u are the random effects distributed as N(0, �2
u
Ip) . 

The ridge regression model with �1 = �2
�
∕�2

u
 gives 

the same estimated SNP effects as (2) (i.e., �̂RR = û ). 
Selecting �1 and calculating the SNP effects based on 
the mixed model is often preferred due to its compu-
tational efficiency (Clark and van der Werf 2013).

SNP proximity matrix

Before presenting the penalized least squares 
for obtaining psBLUPs, we briefly introduce the 

(1)
�̂RR ∶= argmin �

{
(y − X�)⊤(y − X�) + 𝜆1�

⊤Ip�
}
,

(2)y = Xu + �,

proximity between the SNPs, represented as a matrix. 
Let W be a matrix containing information on the 
spatial relationship between SNPs. For example, the 
matrix element wjj′ could contain the LD between the 
jth and j′ th SNPs or the relative (physical/genetic) 
distance between them. Here, W is calculated using 
the square of markers’ pairwise Pearson correlation 
coefficient (VanLiere and Rosenberg 2008) if they 
are close. We deem markers whose genetic distance 
is equal or less than 10cM to be close. A genetic dis-
tance of 10cM concurs with a recombination rate of 
at most .1 (Hartl 2011) which translates to a Pearson 
correlation of at least .6 (Warrens 2008). Let j and 
j′ be two SNP indices, let gj and gj′ be the physical/
genetic position of the two corresponding SNPs on 
the chromosome, and let xj and xj′ be two vectors 
containing genetic information on n samples for those 
SNPs. The matrix element wjj′ is then defined as:

where �(xj, xj� ) is the Pearson correlation between 
SNPs j and j′ . By that definition, each SNP can be 
viewed as the center of a local network of SNPs, and 
is connected to SNPs up to 10cM away. Essentially, 
for these connections, the squared correlation coeffi-
cient is calculated.

Figure  1 contains a toy example illustrating how 
chromosomal spatial information is translated to net-
work information that is explicitly used in psBLUP. 
On the top panel (chromosomal representation), six 
SNPs are marked on a segment of a chromosome. The 
distances between SNPs equal or less than 10cM have 
been shown with dashed lines. On the center panel, 
the same SNPs are represented as nodes in a network 
where an edge is connecting a pair of SNPs if their 
distance is less than or equal to 10cM. The width of 
the edges is analogous to the proximity between two 
SNPs. Finally, the network is represented as a matrix 
(bottom panel), where the similarity between con-
nected SNP pairs is coded in grey-colored circles. A 
darker color indicates a stronger similarity. Empty 
cells imply that the distance between two SNPs is 
larger than 10cM and they do not share a connection 
in the network representation.

To estimate the SNP effects using psBLUP we 
need to calculate the normalized Laplacian matrix L 
(Chung and Graham 1997) of W with elements:

(3)wjj� = wj�j =

{
�(xj, xj� )

2, if |gj − gj� | ≤ 10 cM ,

0, otherwise,
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where sj =
∑

j� wjj� is the weighted total connectivity 
of SNP j.

psBLUP

The SNP effects are obtained by minimizing the prox-
imity-penalized least squares with respect to �:

where L is the normalized Laplacian matrix obtained 
with expression 4 and �2 ≥ 0 is the parameter 

(4)ljj� = lj�j =

⎧⎪⎨⎪⎩

1 − wjj�∕sj, if j = j� and sj ≠ 0,

−wjj�∕
√
sjsj� , if j ≠ j� and wjj� ≠ 0,

0, otherwise,

(5)
�̂
ps
∶= argmin �

{
(y − X�)⊤(y − X�) + 𝜆1�

⊤I
p
� + 𝜆2�

⊤L�
}
,

inducing shrinkage on the differences between SNP 
effects analogous to their proximity. Finally, as in 
expression 1, the term �⊤Ip� is the L2-norm shrink-
ing the SNP coefficients.

The term �⊤L� can also be written as (Li and Li 
2008):

This implies that the psBLUPs are smoothed by 
penalizing the sum of weighted squares of the dif-
ferences between them. Therefore, when SNPs j and 
j′ are close on the chromosome, they are expected 
to have almost equivalent association to y and thus 
similar effects, translating in a small difference in 
coefficients.

(6)�⊤L� =

p�
j=1

p�
j�=1

�
𝛽j√
sj
−

𝛽j�√
sj�

�2

wjj� .

Fig. 1   Chromosomal 
representation: six SNPs 
are marked on a part of 
a chromosome. Dashed 
lines indicate the distance 
between pairs of SNPs. Net-
work representation: the 
six SNPs are represented 
as nodes in a network with 
edges connecting only SNPs 
with distance equal or less 
than 10cM. SNPs proximity 
is encoded as edges’ width 
(SNPs with low distance 
have wider edges). Matrix 
representation: the similar-
ity of all pairs of SNPs is 
coded using grey-colored 
circles. Higher similarity is 
encoded with darker grey. 
Empty cells indicate that a 
pair of SNPs does not share 
an edge in the network 
representation
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Solving psBLUP

Following Zou and Hastie (2005) and Li and Li 
(2008), we reduce the problem in (5) to a ridge 
regression using the augmented data solution. Let, 
Q�Q⊤ be the eigendecomposition of the p × p nor-
malized Laplacian matrix L , with Q the p × p matrix 
of eigenvectors and � the diagonal matrix with the 
eigenvalues. Define T = Q�1∕2 , � = �1∕

√
1 + �2 , 

and �∗ =
√
1 + �2� . The new (n + p)-dimensional 

vector of responses y∗
(n+p)

 and (n + p) × p matrix of 
predictors X∗

(n+p)×p
 are then defined as:

Using y∗ and X∗ , expression (5) is rewritten as:

which is a conventional ridge regression model in the 
augmented data y∗ and X∗.

Fitting a mixed model is less computationally 
demanding than the search for an optimal penalty-
value for ridge regression. We select the psBLUPs 
and the regularization parameter � using the follow-
ing model:

where �∗ is the vector of residuals distributed as 
N(0, �2

�∗
I(p+n)) and u∗ is distributed as N(0, �2

u∗
Ip) . 

As the accuracy in terms of correlation is not sensi-
tive to its value, �2 was assessed along a crude grid 
of equidistant values (ranging from 1 to 75). Finally, 
� = �2

�∗
∕�2

u∗
 and therefore, �1 = (

√
1 + �2)�

2
�∗
∕�2

u∗
 . 

Fitting a ridge regression model was done by using 
the augmented design matrix as input to the rrBLUP 
R-package (Endelman 2011). The solution to (5) is 
then obtained as �̂ps = (1 + 𝜆2)

−1∕2�̂
∗

ps
.

Evaluation

We evaluate RRBLUP and psBLUP using the follow-
ing approach. We split the data in training and test 
sets based on three scenarios: 

(1)	 Use 25% of the data for training and 75% for test-
ing,

y∗ =

�
y

0

�
, X∗ =

1√
1 + 𝜆2

�
X√
𝜆2T

⊤

�
.

(7)
�̂
∗

ps
∶= argmin �∗

{
(y∗ − X∗�∗)⊤(y∗ − X∗�∗) + 𝛾�∗⊤Ip�

∗
}
,

(8)y∗ = X∗u∗ + �∗

(2)	 Use 50% of the data for training and 50% for test-
ing,

(3)	 Use 75% of the data for training and 25% for test-
ing.

For each case, RRBLUPs and psBLUPs are esti-
mated. The correlation between the fitted and 
observed values is used to assess the accuracy of each 
method. We repeat the process 100 times for comput-
ing a mean gain/loss of psBLUP compared to RRB-
LUP. For each iteration, we calculate the difference in 
accuracy between psBLUP and RRBLUP. Then, the 
mean accuracy gain/loss is calculated as the average 
of the accuracy difference, over the 100 runs.

The selection of scenarios is justified as follows: 
by using 25-75 training-test split, we investigate how 
good the model performs when there is little infor-
mation for estimating SNP-phenotypic relationships, 
and how in such cases having proximity information 
can help improve accuracy when generalizing to a 
much larger population. Inversely, selecting a 75-25 
training-test split can show two things: (i) that when 
having more power and most SNP-phenotypic rela-
tionship is explained, spatial information may not 
add information; (ii) nevertheless, if the sample size 
is still not an important aspect because studying low 
heritability traits, spatial information on SNPs can 
still improve accuracy. Finally, the 50-50 training-test 
split uses the same number of samples for training 
and testing.

Results

Application 1: Wageningen Arabidopsis thaliana data

Here, we want to assess the gain in predictive accu-
racy when using information on the spatial proxim-
ity of the markers, by comparing psBLUP to RRB-
LUP for 64 metabolites. The markers’ proximity was 
measured using expression (3).

The mean accuracy, for each of the three (sample 
size) scenarios and for each of the two models, was 
determined as the mean correlation coefficient across 
all 100 realizations between the predicted genotypic 
values and observed phenotypes of the test data. 
A summary of the results is presented in Fig.  2 for 
the scenario using 50% of the data for training and 
the rest for testing (the results for all scenarios can 
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be found in the Supplementary Material). It can be 
seen that on average, psBLUP gives higher accuracy 
than RRBLUP, since the gain in accuracy is positive. 
The mean difference between psBLUP and RRBLUP 
was 3.3%. The results have also been summarized in 
Table 1.

In Fig.  2 we observe that the differences in pre-
dictive ability between psBLUP and RRBLUP are 
consistent. Results indicate that phenotypic infor-
mation is contained within markers’ correlation 
structure, since using information on the proximity 
between them yields improved accuracy. In Table 1, 
the accuracy using RRBLUP and psBLUP has been 

summarized together with the estimated gain (the 5th 
and 95th percentile is displayed in the parentheses). 
In both cases (RRBLUP and psBLUP), the accu-
racy increases with larger training sample sizes, as 
expected. The gain in accuracy when using psBLUP 
ranges for 2.91% to 3.54% in all training set scenar-
ios. In the last column of Table 1 we see that psBLUP 
yields superior accuracy from RRBLUP in more than 
86% of the cases for any scenario.

Interestingly, when the predictive accuracy 
using RRBLUP is high, the gain using psBLUP is 
small. Inversely, the gain using marker proximity is 
higher when the genomic prediction model is not so 

Fig. 2   The gain in 
accuracy when using 
psBLUP vs RRBLUP for 
64 metabolites. The x-axis 
is expressed in percent-
ages. For every metabolite, 
psBLUP and RRBLUP was 
fitted 100 times by ran-
domly sub-sampling 50% 
of the samples to be used 
for training the models and 
50% for testing

0.00
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0.20

−10 0 10 20 30 40
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Table 1   The predictive ability of RRBLUP vs psBLUP 
together with their observed difference using the Arabidopsis 
metabolite data from Wageningen University Seed Lab. psB-
LUP and RRBLUP were fitted 100 times under random sub-
sampling for different scenarios: (i) 25% of the samples used 

for training and 75% for testing, (ii) 50% of the samples used 
for training and 50% for testing, and (iii) 75% of the samples 
used for training and 25% for testing. The accuracy is calcu-
lated over all iterations of the process. The parentheses contain 
the 5th and 95th percentile of the point estimate

Training set RRBLUP accuracy psBLUP accuracy Gain in accuracy % of times 
psBLUP > 
RRBLUP

25% 20.99% 24.45% 3.46% 86.6%
(3.06, 57.84) (6.56, 60.77) (1.50, 6.85)

50% 26.49% 29.40% 2.91% 86.3%
(4.61, 65.20) (9.08, 66.39) (0.77, 6.98)

75% 29.55% 33.09% 3.54% 86.9%
(5.00, 69.47) (12.61, 70.21) (1.17, 8.41)

Mean 25.68% 28.98% 3.30% 86.6%
(4.16, 66.10) (7.93, 67.43) (1.87, 7.17)
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informative. This result has been visualized in Fig. 3. 
Each dot represents the mean accuracy using RRB-
LUP and mean gain in accuracy when psBLUP is 
used, over 100 runs. For metabolites with high pre-
dictive accuracy using RRBLUP, the gain in psBLUP 
is small, while the highest gains using psBLUP have 
been observed for metabolites with very low predic-
tive accuracy using RRBLUP. We will return to this 
observation in the discussion.

Application 2: NABGMP barley data

In this application we assess the gain in predictive 
accuracy when using information on the spatial prox-
imity of the markers, by comparing psBLUP to RRB-
LUP for 59 trait-environmental combinations (Barley 
data from NABGMP). The markers proximity was 
measured using expression (3).

As in the first application, the mean accuracy of 
the models was determined using the mean correla-
tion coefficient between the predicted and observed 
phenotypes of the test data for each of the three 
(sample size) scenarios over 100 runs. A summary 
of the results is presented in Fig. 4 for the scenario 
with half the samples used for training and the rest 
for testing. The results have also been summarized 
in Table 2.

In Fig. 4 we see that the mean difference in pre-
dictive ability between psBLUP and RRBLUP is 
positive in some cases. In Table 2 the results have 
also been summarized. Across all traits, the accu-
racy increases for larger sample sizes using either 
genomic prediction method (RRBLUP or psBLUP). 
The 5th and 95th percentiles are displayed in the 
parentheses for each trait-subsampling scenario. In 
the last column of Table 2 the percentage of times 
psBLUP yields greater accuracy than RRBLUP is 
shown.

As in the metabolite data application, the gain 
in predictive accuracy is greater when the accuracy 
using RRBLUP is lower. The scenario with 50% of 
the data used as training and the rest as testing (for 
all five phenotypes) has been visualized in Fig.  5 
were a downward trend can be seen. Each dot shows 
the mean RRBLUP accuracy and gain in accuracy 
when using psBLUP over 100 runs. With regard to 
the traits, we see that plant height has overall the 
highest accuracy using RRBLUP and subsequently 
the lowest gain when using psBLUP. The scenarios 
using a 25-75 and 75-25 split for training and test-
ing can be found in the Supplementary Material.

Fig. 3   Prediction accuracy 
vs gain in accuracy for the 
64 metabolites used (points 
in the plot) when markers 
proximity is used. The y 
and x-axes are expressed 
in percentages. The y-axis 
shows the percentage gain 
in prediction accuracy when 
psBLUP is used instead of 
RRBLUP. The x-axis shows 
the percentage accuracy 
for a metabolite. Each 
dot represents the mean 
accuracy using RRBLUP 
and mean gain in accuracy 
when psBLUP is used, over 
100 runs
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Discussion

In this work, we developed a regularized regression 
model that uses information on the proximity of the 
explanatory variables in order to increase prediction 
accuracy. Our model (psBLUP) was used in the con-
text of genomic prediction as an extension of RRB-
LUP: the spatial proximity between the SNPs was 
used to improve the predictive ability of RRBLUP. 
When no penalty is used to account for the depend-
ence between SNP effects, the two methods should be 
identical by definition.

For demonstrating the proposed approach two 
applications were considered. In the first application, 
the data were part of a RIL population of 164 lines 
with 1059 SNPs, and 64 metabolites. In the second 
application, the data were part of the Steptoe × Morex 
DH barley population having 148 lines characterized 
by 794 SNPs. In both applications we utilized SNP 
information in order to build a prediction model for 
the responses, using psBLUP and RRBLUP. The two 
methods were compared with regard to their predic-
tion accuracy. The gain using marker proximity is 
highest when the standard genomic prediction model 
is not so informative.

A few things can be noted for the inverse relation-
ship between accuracy gain and training sample size, 
i.e., greater gain for smaller training sample sizes. In 
cases were the training sample size is small, the accu-
racy of the RRBLUP model is expected to be low. 

Therefore, the variation margin that can be explained 
by the SNPs’ spatial proximity (psBLUP) is high. 
Modeling the spatial proximity/accounting for corre-
lation between SNP effects is therefore more impor-
tant for low heritability and smaller training sets.

We note that in some cases (e.g., association panel) 
neighboring markers can have effects with opposite 
signs. Then they will wrongly tend to cancel out, 
leading to smaller overall accuracy. In that case, all 
predictors can be recoded to be positively associated 
with the response prior to model fitting. Alternatively, 
the squared scaled absolute differences between the 
SNP coefficients could be penalized in expression (6).

An advantage of the psBLUP approach is the broad 
applicability, since it can be used for any continuous 
outcome and type of predictor variables. Addition-
ally, it can be implemented using standard statistical 
software that can fit a mixed model, making it easily 
accessible. Moreover, there is no strict definition for 
the markers spatial proximity, which can be estimated 
by the data or by using prior information making the 
data analysis more flexible.

Some issues still need to be addressed. We utilized 
the mixed model equivalence to ridge regression for 
reducing the model tuning to the evaluation of param-
eters that can be obtained with a single optimization. 
Even though the speed is greatly improved by solving 
the mixed model equations on the augmented data, 
the efficiency needs to be further improved for incor-
porating high density SNP panels. For estimating 

Fig. 4   For every combina-
tion of the 59 trait-envi-
ronments of the NABGMP 
dataset, 100 psBLUP and 
RRBLUP models were 
fitted when using 50% of 
the data for training and the 
rest for testing. The x-axis 
is expressed in percentages 
and shows the absolute 
difference in accuracies 
between the best selected 
psBLUP model and RRB-
LUP
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Table 2   The predictive ability of RRBLUP vs psBLUP 
together with their observed difference when using the DH 
barley data from NABGMP. psBLUP and RRBLUP were fitted 
100 times under random subsampling for 3 scenarios: (i) 25% 
of the samples used for training and 75% for testing, (ii) 50% 

of the samples used for training and 50% for testing, and (iii) 
75% of the samples used for training and 25% for testing. The 
accuracy is calculated over all iterations of the process. The 
parentheses contain the 5th and 95th percentile of the point 
estimate

Training set RRBLUP accuracy psBLUP accuracy Gain in accuracy % of times 
psBLUP > 
RRBLUP

Grain Yield 25% 34.47% 36.93% 2.46% 69.9%
(11.5, 59.57) (16.51, 61.6) (0.03, 5.55)

50% 41.75% 42.94% 1.19% 57.4%
(18.79, 64.38) (22.19, 64.59) (-1.23, 3.4)

75% 45.38% 46.54% 1.16% 54.2%
(21.56, 69.35) (26.67, 69.98) (-1.93, 5.38)

Mean 40.53% 42.14% 1.61%
(15.68, 66.87) (19.34, 67.22) (-1.47, 5.06)

Grain Protein 25% 38.17% 40.66% 2.49% 82.2%
(18.28, 51.15) (21.06, 53.29) (1.98, 2.92)

50% 45.51% 46.86% 1.35% 65.8%
(23.48, 58.5) (25.86, 59.13) (0.59, 2.44)

75% 49.54% 51.04% 1.50% 60.8%
(27.81, 65.86) (30.4, 66.41) (0.33, 2.89)

Mean 44.41% 46.19% 1.78%
(18.27, 62.8) (20.67, 63.11) (0.57, 2.94)

Malt extract 25% 36.77% 38.90% 2.13% 73.4%
(24.76, 48.13) (26.94, 50.06) (1.22, 2.85)

50% 44.55% 45.34% 0.79% 60.2%
(31.26, 56.55) (32.85, 56.83) (-0.84, 1.93)

75% 47.53% 49.12% 1.59% 61.7%
(34.06, 61.56) (36.45, 62.22) (-0.15,3.01)

Mean 42.95% 44.45% 1.50%
(27.63, 58.88) (29.53, 59.49) (-0.41, 2.99)

Height 25% 51.81% 52.98% 1.17% 58.2%
(32.91, 68.09) (35.91, 68.38) (-0.49, 3.07)

50% 60.54% 60.35% -0.19% 39.5%
(40.66, 75.53) (41.32, 74.87) (-1.6, 1.12)

75% 64.59% 64.66% 0.06% 42.0%
(43.83, 79.66) (44.58, 79.02) (-0.97, 1.07)

Mean 58.98% 59.33% 0.35%
(36.99, 77.25) (38.41, 76.45) (-1.21,2.48)

�-Amylase 25% 44.74% 47.24% 2.50% 79.8%
(25.81, 60.77) (29.59, 62.8) (1.79,3.78)

50% 51.29% 52.52% 1.23% 66.4%
(32.61, 65.28) (35.03, 66.35) (0.41, 2.51)

75% 53.29% 54.63% 1.34% 61.1%
(34.38, 68.57) (37.28, 69.47) (0.21, 2.91)

Mean 49.77% 51.46% 1.69%
(28.55, 67.21) (31.32, 68.23) (0.33, 3.15)
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the penalized coefficients of the model, the proxim-
ity matrix needs to be stored and decomposed. When 
the number of SNPs is high, the memory needed to 
store such matrix is sizable. Such problem can par-
tially be solved by encoding the matrices in sparse 
format. Still, the matrix needs to be decomposed to its 

eigenvectors and eigenvalues which becomes inten-
sive for big p.

For computational efficiency, when the number of 
variables far exceeds the number of samples, an alter-
native parameterization can be used by writing model 
(8) as a single trait mixed model with subject-specific 
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Fig. 5   Percentage gain in prediction accuracy (y-axis) when 
using psBLUP vs percentage prediction accuracy per trait 
when using RRBLUP (x-axis). Each dot represents a trait-
environmental combination showing the mean RRBLUP accu-

racy and gain in accuracy when using psBLUP over 100 runs. 
y- and x- marginal boxplots show the psBLUP gain in accuracy 
and RRBLUP accuracy, respectively. For ease of comparison, 
fitted regression lines have been added. 
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random effects. Let, G = X∗X∗⊤ be the realized addi-
tive relationship matrix indicating the relatedness 
between individuals. By ignoring any fixed effects, 
the mixed model with subject-specific random effects 
is written as:

where �∗ ∼ N(0,G�2
�∗ ) . The information connecting 

subject-specific effects �̂∗ to SNP effects û∗ is con-
tained in X∗ (Shen et al. 2013). After �̂∗ is obtained, 
the SNP effects can be acquired as:

Even though the search grid for the tuning parame-
ter in psBLUP is reduced to one dimension since the 
mixed model solution is used, the computational time 
can be demanding for high p and high n by working 
with the augmented data solution i.e., the predic-
tor data set is a (n + p) × p matrix. One approach to 
making the solution more efficient is by estimating 
the SNP coefficients per chromosome. Since SNPs 
are considered independent between chromosomes, 
multiple regularized linear models can be fit. Such 
approach could potentially yield superior accuracy 
by estimating chromosome specific regularization 
parameters and thus making the fit more flexible (by 
working with much smaller matrices). In addition, 
a shared �1 can also be estimated for each chromo-
some while �2 can vary per chromosome allowing 
for a better spatial flexibility per chromosome. In that 
case, the mixed model solution cannot be employed 
anymore.

Alternatives to psBLUP are the ante-dependence 
models (Yang and Tempelman 2012; Zeng et  al. 
2018b). These Bayesian models are based on the 
idea that SNP coefficients are dependent. A typical 
shortcoming of Bayesian methods is the computa-
tional time needed for estimating all coefficients 
using MCMC methods. For p SNPs, when only the 
first neighbor is considered (first order dependence), 
2p − 1 coefficients need to be estimated, making 
it burdensome for higher order dependencies and 
more dense SNP panels. Naturally, for every new 
SNP incorporated to the model, at least two more 
coefficients need to be estimated, resulting in addi-
tional computational time. We feel that psBLUP 
offers an alternative perspective to the same prob-
lem using a simpler set-up. Finally, the choice of 

(9)y∗ = �∗ + �∗

(10)û∗ = X∗⊤G−1�̂∗.

connected neighbors in the ante-dependence mod-
els is fixed for all SNPs, while psBLUP allows for 
different number of neighbors per SNP, making it 
more flexible.

Important future research needs to be done. 
First, assessing how sensitive the results are to the 
selection of the proximity matrices. In this paper, 
we restricted the range within which SNPs were 
allowed to contribute information to 10cM, which 
for segregating populations like RILs and DHs is 
equivalent to a correlation between markers of .6. 
One could play around with this number to see 
whether the performance of psBLUP improves. For 
our choice of 10cM psBLUP often outperformed 
RRBLUP. Second, a more detailed evaluation of 
the sample size effect on the estimated accuracy 
needs to be done. Here, we used 25, 50, and 75% 
of the data samples as tests. A random subsample 
(as small as 25% of the original data) can initially 
be used in any study, to determine what is the maxi-
mum potential gain from psBLUP and what are 
some possible values for the smoothing parameter 
�2.

Finally, the sensitivity to the number of SNP 
needs to be studied. We would expect that the accu-
racy gain will be larger when using smaller number 
of SNPs. Using a big number of SNPs will naturally 
result in higher RRBLUP accuracy, thus smaller 
gain.
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