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ABSTRACT

Due to a combination of a relatively low energy in-
take and a high demand of energy required for milk 
production, dairy cows experience a negative energy 
balance (EB) at the start of lactation. This energy 
deficit causes body weight reduction and an increased 
risk for metabolic diseases. Severity and length of 
negative EB can differ among cows. Peripartum time 
profiles of EB for dairy cows are not described yet in 
the literature. Creating EB-derived time profiles with 
corresponding metabolic status and disease treatments 
could improve understanding the relationship between 
EB and metabolic status, as well as enhance identifica-
tion of cows at risk for compromised metabolic status. 
In this research we propose a novel method to cluster 
EB time series and examine associated metabolic status 
and disease treatments of dairy cows in the peripar-
tum period. In this study, data of 3 earlier experiments 
were merged and examined. Four dairy cow clusters 
for time profiles of EB from wk −3 until +7 relative to 
calving were generated by the global alignment kernel 
algorithm. For each cluster, mean of body weight pre-
partum was distinguishable, indicating this might be a 
possible on-farm biomarker for the peripartum EB pro-
file. Moreover, cows with severe EB drop postpartum 
were more treated for milk fever and had high plasma 
nonesterified fatty acids and β-hydroxybutyrate con-
centration, and low IGF-1, insulin, and glucose concen-
tration in the first 7 wk of lactation. Overall, this study 
demonstrated that cows can be clustered based on EB 
time profiles and that characteristics such as prepartum 
body weight, and postpartum nonesterified fatty acids 
and glucose concentration are promising biomarkers to 
identify the time profile of EB and potentially the risk 
for metabolic diseases.
Key words: negative energy balance, time trends, 
metabolites, body condition, disease treatments

INTRODUCTION

Due to extensive energy requirement for milk produc-
tion in combination with a relatively low energy intake 
from feed, dairy cows experience a negative energy 
balance (NEB) in the early stage of lactation. To com-
pensate for this shortage in energy, dairy cows mobilize 
fats originating from body reserves (Tamminga et al., 
1997). Because of this body fat mobilization, the avail-
ability of lipogenic to glucogenic compound ratio shifts 
to more lipogenic compounds, which is associated with 
an increase of plasma metabolites such as nonesterified 
fatty acids (NEFA) and BHB, which in turn could 
increase the risk for metabolic diseases such as fatty 
liver and ketosis (van Knegsel et al., 2005; Klein et al., 
2010; Sun et al., 2014).

Metabolic impairment and diseases can lead to a 
reduced productive lifespan, compromised animal wel-
fare, and increased veterinary costs (Seifi et al., 2011; 
Probo et al., 2018) and for these reasons understanding 
the variability of energy balance (EB) levels of cows in 
early lactation is pivotal to facilitate management of 
animal health and wellbeing. Traditionally, EB levels in 
dairy cows are measured and examined independently 
over the pre- and postpartum period or studied as an 
average per time period. In most existing studies EB 
is grouped based on experimental treatments, such as 
dietary (e.g., Odens et al., 2007; Garnsworthy et al., 
2009) or management measures (e.g., Rastani et al., 
2005).

To our knowledge limited studies have grouped 
cows based on EB level [e.g., by dividing cows in 4 
quartile groups based on EB (De Vries and Veerkamp, 
2000)], which can be considered a relatively arbitrary 
approach. It is known, however, that the severity and 
length of NEB period can vary among cows (Mellouk 
et al., 2019). Moreover, little is known about the rela-
tionship between the temporal dynamics of EB in the 
peripartum period and the dynamics of blood metabo-
lites and other cow characteristics. However, it can be 
expected that understanding the relationship between 
the dynamics of EB during the peripartum period and 
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associated metabolic status during early lactation can 
enhance identification of cows that are at risk for com-
promised metabolic status or even metabolic diseases 
and support customized management decisions.

The aim of this study is to cluster EB time series to 
stratify dairy cows into different groups characterized 
by EB time patterns measured over a 10-wk period 
before calving and during early lactation, making use 
of data from previously published studies (van Knegsel 
et al., 2014; Chen et al., 2015; van Hoeij et al., 2017). 
In addition, the EB time series clusters were related to 
plasma metabolites, parity, dry period length, BW, and 
disease treatments in the same period.

MATERIALS AND METHODS

Experimental Data

This study uses data collected during 3 previously 
published studies: study Ia (van Knegsel et al., 2014), 
study Ib (Chen et al., 2015), and study II (van Hoeij et 
al., 2017). The experimental protocols of all 3 studies 
were approved by the Institutional Animal Care and 
Use Committee of Wageningen University & Research 
(the Netherlands) and comply with the Dutch law on 
Animal Experimentation (study Ia and Ib: protocol 
number 2010026; study II: protocol number 2014125). 
A summary of the characteristics of these 3 studies is 
presented in Table 1. In brief, all 3 studies included 
Holstein Friesian dairy cows at the Dairy Campus re-
search herd (WUR Livestock Research, Lelystad, the 
Netherlands). In study Ia, 168 cows were assigned ran-
domly to 3 groups with a 0-d, 30-d, or 60-d dry period 
length (DPL). After lactation of study Ia, 130 of the 
168 cows were examined during the next lactation in 
study Ib. In study Ib, 19 cows originally assigned to 
0-d DPL were attributed to 0→67 d DPL (actual days 
dry: 67 ± 8 d). Cows were allocated to this new group 
and dried off when they had a milk yield of <4 kg/d at 
least 30 d before the expected calving date (Chen et al., 

2015). In study II, 127 cows were assigned randomly to 
1 of the 2 groups with either a 0-d or 30-d DPL.

Data from the 3 considered studies were merged con-
sidering that study II does not include data before wk 
3 prepartum; thus, data before wk 3 prepartum from 
study Ia and Ib were excluded (Figure 1). In addition, 
because cows in study II obtained different rations after 
wk 7 postpartum, data from subsequent weeks were 
removed from all 3 studies. This left data from wk −3 
to +7 relative to calving for 425 animals, of which 7 
were removed because of dropout. This left 418 cows 
and associated data available for analysis in the present 
study.

Housing and Feeding

In all studies, cows were housed in a freestall, consist-
ing of cubicles and slatted floors. Cows were milked 
twice a day (~0600 h and ~1800 h). Ration compo-
sition and feeding strategies were described earlier in 
detail (study Ia/Ib in van Knegsel et al., 2014; study 
II in van Hoeij et al., 2017). In short, in study Ia/Ib 
lactating cows were fed a basal mixed ration matching 
energy requirement for 25 kg of milk production and 
consisting of grass silage, corn silage, wheat straw, and 
rapeseed meal or soybean meal (51:34:2:13, DM basis). 
Dry cows were fed a basal mixed ration of grass silage, 
corn silage, wheat straw, soybean meal, and rapeseed 
meal (39:25:25:4:8, DM basis). From d 10 before the ex-
pected calving date, both lactating and dry cows were 
fed either glucogenic or lipogenic concentrate. After 
calving, concentrate supply was increased stepwise by 
0.5 kg/d until 8.5 kg/d. In study II, lactating cows were 
fed a basal mixed ration matching energy requirement 
for 25 kg of milk production and consisting of grass si-
lage, corn silage, wheat straw, soybean meal, and sugar 
beet pulp (44:34:2:10:8, DM basis). Dry cows were fed 
a basal mixed ration of grass silage, corn silage, wheat 
straw, and rapeseed meal (47:18:24:8, DM basis). From 
d 10 before the expected calving date, both lactating 
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Table 1. Characteristics of studies that were used for this research

Item

Study Ia:  
van Knegsel et al. 

(2014)

Study Ib:  
Chen et al. 

(2015)

Study II: 
van Hoeij et al. 

(2017) This study

Characteristic
  Number of cows 168 130 127 350
  Start week (prepartum) −8 −8 −3 −3
  End week (postpartum) 14 9 44 7
Variable
  Milk Fat, FPCM, lactose, milk yield, protein, SCC
  Plasma BHB, glucose, IGF-1, insulin, NEFA
  Cow BW, energy balance
  Independent DPL, feed
1FPCM = fat- and protein-corrected milk yield; NEFA = nonesterified fatty acids; DPL = dry period length.
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and dry cows were fed 1 kg/d of concentrate. After 
calving, concentrate supply was increased stepwise by 
0.3 kg/d from 4 DIM until 8.5 kg/d at 28 DIM for cows 
receiving standard concentrate level, or 0.3 kg/d from 4 
DIM until 6.7 kg/d at 22 DIM for cows receiving a low 
concentrate level. In all 3 studies cows had free access 
to water and the basal mixed ration.

Measurements

Milk Yield and Milk Composition. Milk samples 
were collected 4 times per week and analyzed as a 
pooled sample for fat, protein, lactose, and SCC (ISO 
9622; ISO, 2013; Qlip). Fat- and protein-corrected milk 
(FPCM) was calculated as (CVB, 2018)

	 FPCM (kg) = [0.337 + 0.116 × fat (%) 	  

	 + 0.06 × protein (%)] × milk yield (kg).	 [1]

Feed Intake, BW, BCS, and EB. Energy bal-
ance was calculated according to the Dutch NE system 
for lactation (VEM; Van Es, 1975; CVB, 2018) as the 
difference between VEM supplied with feed and VEM 
required for maintenance and milk production. Animal 
maintenance requirements are 42.4 VEM/kg0.75·d (1,000 
VEM = 6.9 MJ of net energy). The VEM required for 
milk production is 442 VEM/kg of FPCM (Van Es, 
1975). In calculating the maintenance and milk energy 
requirements, a correction factor to scale requirements 
to an average cow was applied as described in Van Es 
(1975). The energy intake and EB are expressed in kJ/
kg0.75 per day, where kg0.75 indicates metabolic BW 
(Van Es, 1975).

Blood Collection and Analysis. Blood samples 
were collected once a week from 3 wk prepartum until 
7 wk postpartum. Blood samples were collected after 
the morning milking and between 3 and 1 h before 
the morning feeding in 10-mL EDTA tubes (Vacuette, 
Greiner BioOne) from the coccygeal vein. Blood was 
centrifuged (3,000 × g for 15 min, 4°C) and plasma 
was isolated and stored at −20°C until further analy-
sis. Concentrations of NEFA and BHB were measured 
enzymatically using Wako Chemicals kit no. 994-75409 
and Randox Laboratories kit no. RB1007, respectively 
(Graber et al., 2012). The plasma glucose concentration 
was measured using BioMerieux kit no. 61269 (Graber 
et al., 2012). The plasma insulin concentration was 
measured using EMD Millipore Corporation kit no. PI-
12K. The plasma IGF-1 concentration was measured 
using the Beckman Coulter kit no. A15729. For more 
details, we refer the reader to the original publications 
(van Knegsel et al., 2014; Chen et al., 2015; van Hoeij 
et al., 2017).
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Figure 1. Workflow of the clustering of energy balance (EB) time 
profiles. First, data originating from 3 studies were merged and fil-
tered. Two EB time series data sets were selected, one with complete 
EB time series and one with at most 2 missing EB time points for each 
cow. These 2 data sets were used to select the most optimal imputa-
tion method, number of clusters, and clustering method. Because a 
nondeterministic algorithm was chosen to impute missing EB values, 
multiple imputations were averaged to obtain a justifiable consensus. 
NA = not available.
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Disease Treatments. All treatments of disease dur-
ing the experiment were recorded by farm staff accord-
ing to farm protocols (Dairy Campus, Lelystad, the 
Netherlands). Disease treatments were registered daily 
based on treatments for disease, including milk fever, 
retained placenta, vaginal discharge, endometritis, 
cystic ovaries, mastitis, claw disorders, fever, ketosis, 
diarrhea, displaced abomasum, peritonitis, pneumonia, 
and other diseases, and then summed per EB cluster.

Data Analysis

In this section we present a strategy to cluster cows 
based on EB time profiles. The rationale behind this 
strategy is to prevent cows migrating to other clusters 
over time, which is possible for the traditional cluster-
ing approach since each time point is treated separately.

Traditional Clustering of EB. To be able to 
evaluate our novel clustering method, we compared it 
with the traditional approach. For each time point cows 
were assigned to different EB groups based on cut-off 
values (great positive EB, positive EB, NEB, severe 
NEB) derived from literature (Mellouk et al., 2019) and 
data are presented in Table 2.

Handling of Missing Data. Because of missing 
data at one or more time points (weeks) it was not pos-
sible to calculate complete EB time profiles (over the 
10-wk period) for all animals in the study. Complete 
EB profiles were available for 195 animals (45%). A 
total of 107 (25%) animals missed one time point, 48 
(11%) missed 2, and 84 (19%) missed 3 or more time 
points and needed to be imputed. We took a conserva-
tive approach and decided to discard animals with 3 or 
more missing time points: this left 155 animals (36%) 
for which the EB times series needed to be imputed.

Data Imputation. Missing data were imputed using 
an approach based on Random Forest (Breiman, 2001) 
as implemented in the missForest method (Stekhoven, 
2011; Stekhoven and Bühlmann, 2012). The method is 
based on Random Forest regression and works by av-
eraging over many unpruned regression trees. Because 
there is intrinsic randomness in the Random Forest 
algorithm, the missForest imputation is nondetermin-
istic: this means that if the imputation is performed 
multiple times, results can (slightly) change because 
if the randomness of the imputation procedure. This 
naturally leads to multiple imputation framework that 
must be considered when performing clustering of the 
imputed time series (Van Buuren, 2018).

Clustering of Time Profiles. We aimed to cluster 
animals on the basis of the similarity of the EB times 
profiles; to this scope we used a clustering approach 
based on global alignment kernel (GAK; Cuturi et al., 
2007), which is well suited for clustering time series on 

the bases of similarity, since similarities are based on 
kernels that consider costs over all optional alignment 
distances (Marques et al., 2018).

The optimal number of clusters was determined by 
looking at consensus of 2 different approaches: the elbow 
approach (Thorndike, 1953) and the silhouette method 
(Rousseeuw, 1987). The elbow method is a heuristic 
criterion in which the total within sum of squares (i.e., 
a measure of the compactness of the cluster solution) 
is plotted against the number of clusters: the elbow of 
the curve corresponds to the optimal number of clusters 
for the given problem (Kaufman and Rousseeuw, 2009). 
The silhouette method measures how similar an ob-
ject is to its own cluster compared with other clusters 
and ranges from −1 to +1. A high silhouette value 
indicates that a time series is well matched to a given 
cluster and poorly matched to other clusters. If a set 
of time series have all large silhouette value (thus high 
average silhouette value), then the clustering configura-
tion (i.e., the number of clusters) is appropriate. The 
optimal number of clusters is the one that maximizes 
the average silhouette over a range of possible number 
of clusters. When applied on the 51 complete (nonim-
puted) time series, we found the optimal number of 
clusters to be between 4 and 5 and we chose the most 
economical solution for sake of interpretability; k = 4 
was then also used to cluster the imputed time series as 
described below, which gave consistent results as in the 
case of the complete time series.

Definition of the Consensus Clustering. We 
started by generating 1,000 imputed solutions using 
the missForest approach, on which the GAK cluster-
ing algorithm was applied to obtain 4 clusters of times 
series as previously described obtaining 1,000 clustering 
solutions. Because cluster labeling is arbitrary (there is 
no fixed relationship between a partition and any class 
label), there is the problem of defining a consensus of 
the labeling. Basically, the problem is to make sure that 
clusters with the same labels are the same among the 
1,000 solutions. The problem of finding correspondence 
among the labeling of different clusters can be recast as 
an assignment problem and solved using the Hungar-
ian method (Kuhn, 1955), which is a standard tool to 
attack this type of problem (Burkard et al., 2012). We 
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Table 2. Overview of energy balance (EB) cut-off values to divide 
cows into groups traditionally based on Mellouk et al. (2019)

Group   EB1

Great positive EB EB > 77
Positive EB 0 < EB < 77
Negative EB −77 < EB < 0
Severe negative EB EB < −77
1In kJ/kg0.75 per day.
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considered the first clustering solution as a reference 
and found correspondence of the cluster labels of the 
remaining 999 cluster solutions with respect to the first 
solution.

Once correspondence among cluster labels of the 
1,000 cluster solutions was achieved, we were left with 
the problem of determining a consensus clustering (i.e., 
pooling the clustering results obtained from the multiple 
imputed data sets). A consensus solution was obtained 
by majority voting, which is widely used when dealing 
with ensembles of clustering because of its simplicity, 
robustness, and stability (Wang et al., 2013); basically 
the class of a time series is the cluster label, which was 
selected most often across the 1,000 imputed data sets.

Statistical Analysis

Univariate Analysis. The Kruskall-Wallis test 
(Kruskal and Wallis, 1952) was used to compare plasma 
metabolites, milk variables, body condition, BW, and 
calf birth weight among clusters. Dunn’s post hoc test 
was used for multiple comparison (Dunn, 1961).

Receiver Operating Characteristic Analysis. 
Analysis of receiver operating characteristic (ROC) 
curves (Søreide, 2009) was used to assess the discrimi-
native power of BW in discriminating between cow 
clusters based on time profiles of EB; it does not require 
a predetermined cut-off point and is not dependent on 
the group size. The area under the ROC was obtained 
with the corresponding accuracy, specificity, and sensi-
tivity and the estimated best concentration threshold.

Association of Disease Treatment and Cluster. 
Association of disease treatment and EB clusters was 
assessed by means of a Pearson’s χ2 (Pearson, 1900) test 
applied on 4 × 2 contingency table (clusters × number 
disease/nondiseased animals) for each one of the 14 dif-
ferent disease treatments recorded in the studies.

Software. All analysis was performed in R (The 
R Project; www​.r​-project​.org/​). Imputation was per-
formed using the missForest function (options ntree = 
1,000, maxiter = 10) from the missForest R package 
(Stekhoven, 2011). Clustering of time profiles was per-
formed using the tsclust function (distance = ‘gak’) 
from the dtwclust package (Sarda-Espinosa, 2017). 
Silhouette values were calculated with the silhouette 
function from the cluster package (Brigo et al., 2002). 
Correspondence of the labels via the Hungarian method 
was obtained using the R function available at https:​
/​/​www​.r​-bloggers​.com/​2012/​11/​matching​-clustering​
-solutions​-using​-the​-hungarian​-method/​; clustering 
consensus was obtained using the majority voting func-
tion from the diceR package (Chiu and Talhouk, 2018). 
The ROC analysis was performed using the R package 

pROC (Robin et al., 2011). The χ2 analysis was per-
formed using the R built-in function chisq.test.

RESULTS

Clustering of Cows Per Week

Distributions of observations of the EB values for all 
weeks are presented in Figure 2A. We observed a shift 
toward more negative EB values directly after calving 
(wk +1), followed by a gradual shift toward positive EB 
values in the following weeks. Distributions of weekly 
EB values were more dispersed in the prepartum weeks 
compared with postpartum weeks. Next, we explored 
the clustering of animals based on EB values for each 
week separately (traditional clustering), based on ear-
lier published cut-off values (Table 2). In the prepar-
tum weeks, most of the cows were in the positive EB 
cluster (Figure 2B). The number of cows in the severe 
NEB cluster strongly increased postpartum and slowly 
decreased after wk 2 postpartum.

Clustering of Cows Based on EB Time Profiles

The 10 wk (−3 until +7 wk relative to calving) 
(imputed) EB time profiles for 350 cows corresponding 
to the 1,000 imputed data sets were clustered using 
the GAK algorithm in combination with consensus 
clustering. Clustering was based on the similarity of 
the cow-specific EB dynamics (i.e., on the similarity 
of the time progression to a status of EB unbalance 
after calving and following recovery toward a normal 
EB status). No other information (such as metabolite 
or hormone concentration) was used to inform the clus-
tering: the animals were clustered solely on the basis 
of the patterns of calculated EB variation over the 10 
wk. We found an optimal solution for k = 4 clusters 
(Figure 3A). We assigned descriptive names to each 
cluster based on the characteristics of the EB dynamics 
in postpartum weeks, with no reference to metabolite 
or hormone concentration:

	 (1)	 SP cluster: includes cows with a stable positive 
EB time profile over the 10-wk period. The ani-
mals do not experience NEB (EB > 0).

	 (2)	 MN cluster: includes cows with a moderate 
NEB (−100 kJ/kg0.75 < EB < 0) after calving.

	 (3)	 IN cluster: includes cows with an average NEB 
(−400 kJ/kg0.75 < EB < −200 kJ/kg0.75) after 
calving.

	 (4)	 SN cluster: includes cows with severe NEB 
(−600 kJ/kg0.75 < EB < −200 kJ/kg0.75) after 
calving.
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The MN, IN, and SN clusters included cows with NEB 
patterns postpartum, each to a different extent; cluster 
SN did also differ from IN by EB levels prepartum, 
which were higher for the IN cluster. The number of 
animals in each cluster is shown in Figure 3B. The 
mean EB time profiles of each cluster with the associat-
ed 95% confidence interval are shown in Figure 3C. The 

clusters are well resolved, with minimal overlap in the 
prepartum weeks and distinct EB time profiles during 
the 7 wk postpartum. Four clusters were also obtained 
when the analysis was performed on the complete time 
profiles (i.e., excluding animal with no missing time 
points) as shown in Supplemental Figure S1 (https:​/​/​
zenodo​.org/​record/​6337900​#​.Yids5JYo9PY).
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Figure 2. (A) Distribution of weekly energy balance (EB) observations from wk −3 until +7 relative to calving. Energy balance is expressed 
in kJ/kg0.75 per day. (B) Group sizes of the 4 clusters for EB time profiles from wk −3 until +7 relative to calving
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Data originated from 3 previously published stud-
ies with slightly different animal management and diet 
interventions. We did not observe confounding of the 
EB clusters with diet intervention (Figure 4B, dietary 
treatment; i.e., glucogenic versus lipogenic diets for 
study Ia and Ib were equally represented in the 4 EB 
time profile clusters and not associated with a particu-
lar EB cluster) or with the study (Figure 4C, study 
samples for each study are spread over the 4 clusters), 
indicating that the existence of (groups of) different 
EB time profiles in dairy cows is due to inherent physi-
ological differences and not to animal management or 
external interventions.

Characteristics of EB Time Profile Clusters

Cow Characteristics. We examined the character-
istics of the clusters with respect to dietary treatment, 
DPL, and parity (Figure 4). Mean parity of the cows 
varied among cow clusters, with average parity increas-

ing with the severity of the NEB after calving. Average 
parity was 2.8 for the SP cluster, 2.9 for MN cluster, 
3.3 for IN cluster, and 3.8 for SN cluster and differed 
among clusters (Kruskal-Wallis test: P-value < 0.001, 
chi-squared = 26.91, df = 3, post hoc Dunn test: SP-MN 
P-value = 0.73; SP-IN P-value = 0.014; SP-SN P-value 
< 0.001; MN-IN P-value = 0.011; MN-SN P-value < 
0.001; IN-SN P-value = 0.032). Dry period length also 
varied among clusters: cows with a short DPL had a 
more positive EB profile postpartum compared with 
cows with longer DPL. The SN cluster (i.e., cows with 
severe NEB) had the largest number of cows who dried 
off by themselves, although they were initially planned 
to have a 0-d DP.

Milk, Metabolic Profiles, and Disease Treat-
ments. Next, we explored the dynamics of milk, milk 
composition, and blood metabolites for the 4 cow 
clusters based on EB time profiles (Figure 5). Milk-
related variables had distinctive patterns among clus-
ters postpartum. The SN cluster had the highest milk 
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Figure 3. (A) Consensus clustering of energy balance time profiles. Each line represents time series of energy balance of an individual cow. 
Energy balance is expressed in kJ/kg0.75 per day. SP = stable positive cow cluster; MN = mild negative cow cluster; IN = intermediate negative 
cow cluster, SN = severe negative cow cluster. (B) Number of cows in each cluster of time series of energy balance using imputed data. (C) 95% 
CI of means of energy balance time series for each cow cluster.
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Figure 4. Relationship between energy balance (EB) time profile clusters and study characteristics. Energy content (A), feed composition 
(B), study (C), parity (D), and dry period length (DPL; E) distributions are shown. Feed composition is only applicable for study Ia and Ib. SP 
= stable positive cow cluster, MN = mild negative cow cluster, IN = intermediate negative cow cluster, SN = severe negative cow cluster. The 
DPL classes are expressed in days except for DPL = 0→67, which are cows that were initially classified as DPL = 0 but were dried off due to 
low milk yield (<4 kg/d) at least 30 d before calving.
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Figure 5. Metabolic profiles for each cow cluster. (A) Milk yield (in kg/d); (B) SCC (in 102 cells/mL), (C) lactose (in % in milk); (D) fat 
(in % in milk); (E) fat- and protein-corrected milk yield (FPCM; in kg/d); (F) protein (in % in milk); (G) BW (in kg); (H) plasma glucose 
concentration (in mmol/L); (I) plasma BHB concentration (in mmol/L); (J) plasma nonesterified fatty acid concentration (NEFA, in mmol/L); 
(K) plasma insulin concentration; and (L) plasma IGF-1 concentration from wk −3 until +7 relative to calving for each cluster of time series of 
energy balance. Mean and confidence intervals of the mean are visualized. SP = stable positive, MN = mild negative, IN = intermediate nega-
tive, SN = severe negative.
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Figure 6. (A) Distributions of disease treatments before and after calving among clusters. (B) Distribution of observations of calf birth 
weight among clusters for time series of energy balance. (C) Distributions of observations for liveborn (+) or death calves for each cluster for 
time series of energy balance. SP = stable positive cow cluster, MN = mild negative cow cluster, IN = intermediate negative cow cluster, SN = 
severe negative cow cluster. Percentages show the percentage dead or alive for each cluster.
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yield and SP cluster had the lowest milk yield. Milk 
fat percentage was more stable over time for the SP 
cluster when compared with the other clusters. Somatic 
cell count for the SP cluster rose postpartum compared 
with other clusters. The SN, IN, and MN clusters were 
characterized by reduced plasma IGF-1, insulin, and 
glucose concentrations postpartum compared with the 
SP cluster. Plasma NEFA and BHB concentrations 
were highest postpartum for the SN cluster. Disease 
treatment rates are similar among clusters prepartum 
(Figure 6A). After calving, an increase of disease treat-
ments is visible for all clusters. More cows were treated 
for milk fever (P < 0.001) and there was a tendency (P 

= 0.061) for more cows treated for cystic ovaries in the 
SN cluster (Table 3).

BW of Cows and Calves. Body weight was differ-
ent in the prepartum weeks for all 4 clusters (Table 4). 
The ROC analysis showed that discrimination between 
SP and SN clusters is feasible and that it is possible 
to assign a cow to different clusters based on BW pre-
partum (Table 5). Since before calving the total cow 
BW is the sum of the weight of the calf and that of 
the mother, we also examined the distribution of calf 
weight across the 4 clusters (Figure 6B).

We observed smaller calves for the cows in the SP 
cluster, compared with calves of the cows in the IN, 
MN, and SN clusters (Kruskall-Wallis test: P-value = 
0.02, df = 3, χ2 = 9.60, post hoc Dunn test: SN vs. IN 
P-value = 0.04; SN vs. MN P-value = 0.002; SN vs. SP 
P-value = 0.016).

We also explored the association between the number 
of calves born dead and the EB clusters (Figure 6C). 
Chi-squared analysis of the 4 × 2 contingency table 
corresponding to Figure 6C indicated that the number 
of calves born dead is different among EB clusters (P-
value = 0.0206; χ2 = 9.77, df = 3).

DISCUSSION

In this study we obtained well-resolved cow clusters 
based on EB time profiles in the peripartum period. 
The EB-based time profiles have not been developed 
earlier, although cluster analysis has been applied be-
fore on early-lactation dairy cow data (Tremblay et al., 
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Table 3. Overview of disease treatments per cluster for wk 1 until 7 postpartum1

Item

Cluster

  Chi-squared test2SP MN IN SN

Cluster size 60 88 111 91
Milk fever 0 (0%) 4 (4.6%) 7 (6.3%) 16 (18%) χ2 (3, n = 350) = 19, P < 0.001
Retained placenta 6 (10%) 15 (17%) 13 (12%) 9 (9.9%) χ2 (3, n = 350) = 2.7, P = 0.45
Vaginal discharge 10 (17%) 13 (15%) 9 (8.1%) 8 (8.8%) χ2 (3, n = 350) = 4.4, P = 0.22
Endometritis 7 (12%) 9 (10%) 14 (13%) 9 (9.9%) χ2 (3, n = 350) = 0.47, P = 0.92
Cystic ovaries 4 (6.7%) 7 (8.0%) 19 (17%) 16 (18%) χ2 (3, n = 350) = 7.4, P = 0.061
Mastitis 14 (23%) 11 (13%) 10 (9.0%) 18 (20%) χ2 (3, n = 350) = 4.9, P = 0.18
Claw disorders 4 (6.7%) 12 (14%) 12 (11%) 13 (14%) χ2 (3, n = 350) = 2.5, P = 0.48
Fever 4 (6.7%) 7 (8.0%) 9 (8.1%) 7 (7.7%) χ2 (3, n = 350) = 0.12, P = 0.99
Ketosis 1 (1.7%) 0 (0%) 2 (1.8%) 0 (0%) χ2 (3, n = 350) = 3.2, P = 0.37
Diarrhea 0 (0%) 1 (1.1%) 2 (1.8%) 4 (4.4%) χ2 (3, n = 350) = 4.3, P = 0.24
Displaced abomasum 2 (3.3%) 0 (0%) 3 (2.7%) 1 (1.1%) χ2 (3, n = 350) = 3.3, P = 0.35
Peritonitis 0 (0%) 0 (0%) 0 (0%) 1 (1.1%) χ2 (3, n = 350) = 2.9, P = 0.41
Pneumonia 0 (0%) 1 (1.1%) 0 (0%) 0 (0%) χ2 (3, n = 350) = 3.0, P = 0.39
Other 1 (1.7%) 3 (3.4%) 6 (5.4%) 4 (4.4%) χ2 (3, n = 350) = 1.5, P = 0.67
Total no. of disease treatments 53 83 106 106  
Total no. of cows with disease treatments 38 51 72 61  
1The numbers of cows within each cluster treated for a disease are shown. The percentages of cows from the cluster that were treated for the 
disease are shown in parentheses. 
2χ2 (df, n = sample size).

Table 4. Statistical comparison of BW in the 4 clusters for 3 wk 
prepartum1

Item

Prepartum week relative to calving

−3   −2   −1

Kruskal-Wallis test
  H2 = 63.96 H = 69.25 H = 73.51

df = 3 df = 3 df = 3
P < 0.001 P < 0.001 P < 0.001

Dunn test P-value
  SP-MN 0.20 0.099 0.10
  SP-IN <0.001 <0.001 <0.001
  SP-SN <0.001 <0.001 <0.001
  MN-IN <0.001 <0.001 <0.001
  MN-SN <0.001 <0.001 <0.001
  IN-SN 0.0036 0.015 0.0043
1SP = stable positive cow cluster; MN = mild negative cow cluster; IN 
= intermediate negative cow cluster, SN = severe negative cow cluster.
2H = H statistic.
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2018; De Koster et al., 2019; Xu et al., 2019). These 
studies focused on clustering of orthogonal components, 
milk, or plasma variables, respectively, to unravel meta-
bolic status during early lactation. Our study focused 
on the same topic with a different point of view by 
now clustering EB time profiles, not permitting cows to 
change cluster from week to week as in more traditional 
clustering approaches and allowing us to gain new in-
sights in the dynamics of metabolic status peripartum. 
This novel way of examining dynamics of EB levels of 
cows could improve understanding of the relationship 
between EB and metabolic status and would facilitate 
customized management strategies based on individual 
time profiles of EB.

Cow clusters were associated with fixed variables 
such as parity. Cows within the SN cluster had on aver-
age a higher parity than cows within the SP, IN, and 
MN cluster. Cows of greater parity produce more milk 
(Lee and Kim, 2006) and are therefore more likely to 
experience a severe EB drop postpartum. This finding 
is consistent with earlier studies (Friggens et al., 2007; 
Macrae et al., 2019; Van et al., 2020), where positive 
correlations between EB and parity were identified.

In addition, cows with a severe EB drop postpartum 
had a longer dry period. The SN cluster contained rela-
tively more cows which dried off themselves (DPL = 
0→67) than other clusters: from this we can derive that 
cows within this group (SN) are likely to have a severe 
NEB postpartum. This may be related to the fact at the 
previous lactation, this group of cows had a lower milk 
yield, which resulted in spontaneous drying off and was 
associated with an increase in BCS prepartum (Chen 
et al., 2015). It is well known that an elevated BCS at 
calving is related to a decrease in energy intake, a more 
severe NEB and increased risk for metabolic disorders 
after calving (Morrow, 1976). Indeed, the specific group 
of cows that dried themselves off in the current data 
(DPL = 0→67) had a lower energy intake and more 
negative EB after calving (Chen et al., 2015).

Somatic cell count levels in milk of cows in the SP 
cluster were higher postpartum, compared with the 
other clusters. This agrees with the observation that 
cows with shorter or no DPL have a relatively high 
SCC, but a more positive EB (van Knegsel et al., 2014). 
An explanation for this observation could be that cows 
with a short or no DP have a reduced generation of 
mammary epithelial cells in the weeks before calving. 
Less renewal of mammary epithelial cells could result in 
a lower concentration of young and active cells at calv-
ing, resulting in a lower milk yield (Capuco et al., 1997). 
Because of the lower milk yield after calving, cows in 
the SP cluster have a better EB, but the somatic cells 
in milk are less diluted and increase in concentration 
(Steeneveld et al., 2013).
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Metabolic status corresponding to each EB cluster 
was examined and showed distinguishable patterns 
postpartum. The cluster of cows with severe EB drop 
postpartum had high NEFA and BHB concentration 
and low IGF-1, insulin, and glucose concentration, 
which is in line with earlier studies (Reist et al., 2002; 
Friggens et al., 2007; Van et al., 2020) and earlier ex-
plained by van Hoeij et al. (2017). Cows experiencing a 
severe NEB have a low glucose concentration in plasma, 
and therefore insulin production is not enhanced, caus-
ing increased levels of NEFA. Increased plasma NEFA 
are known to be related to metabolic diseases (Adewuyi 
et al., 2005; Ospina et al., 2010). Cows in the SN clus-
ters had higher NEFA concentration postpartum and 
NEFA signatures postpartum could be used to indicate 
whether a cow goes into a severe NEB state postpar-
tum. Although average metabolic status of cows dif-
fered among EB clusters in the current study, it could 
be possible that cows in the same EB cluster differ in 
metabolic status. It can be hypothesized that including 
information on metabolic profiles in the EB clustering 
results in differentiation of metabolic status within and 
between EB clusters.

Although levels for milk and blood variables among 
the different EB clusters tend to overlap in the pre-
partum weeks, complicating cluster discrimination, we 
observed different average BW in the week prepartum 
for the cows in the different clusters. Prepartum BW 
and prepartum EB had a negative correlation, which 
is in line with literature (Heuer et al., 2000, 2001). An 
explanation for this could be that cows experiencing 
severe NEB are able to mobilize more fat postpartum 
from a larger body mass. Mäntysaari and Mäntysaari 
(2010) reported that EB and BW postpartum are 
negatively correlated, which is in line with our results. 
Increased body reserves were associated with increased 
levels of body fat content, causing in turn increased 
leptin, which has a negative effect on feed intake (Lief-
ers et al., 2003). Cows with a relatively high body fat 
will eat less, which results in a severe NEB. Likewise, 
more fat mobilization will lead to a disturbed avail-
ability in C2:C3 ratio. This causes increased plasma 
NEFA concentration, therefore increasing the chance 
to obtain metabolic diseases (van Hoeij et al., 2017). In 
the current study cows experiencing a severe EB drop 
postpartum had higher BW prepartum compared with 
cows experiencing an intermediate, mild, or no EB drop 
postpartum.

Body weight prepartum could be an interesting 
prepartum biomarker to detect which cows go into a 
severe NEB postpartum. For this reason, we examined 
whether BW prepartum could be used to assign cows 
to different EB groups. We applied ROC analysis to 
investigate the power of BW to discriminate between 

different postpartum cow clusters. The ROC analysis 
did show that it is possible to discriminate between 
SP and SN clusters and that it is possible to assign a 
cow to different clusters based on weight. It should be 
noted that BW is also used to determine EB values 
and thus association between BW and EB is expected. 
In addition, clusters have also been determined using 
the dynamics of the EB time profiles, indicating that 
not only the actual EB are related to BW but also the 
temporal dynamics.

The number of disease treatments, especially for milk 
fever and cystic ovaries, during wk 1 until 7 differed 
among EB clusters (Table 3). It is well known that 
disease incidence is high in dairy cows in early lacta-
tion, which is related to the calving process and the 
increase in milk yield directly after calving (Friggens 
et al., 2004; Koeck et al., 2012). Most existing stud-
ies, however, differentiated to type of disease only to a 
limited extent (Collard et al., 2000; Koeck et al., 2012).

In this study, cows were more often treated for milk 
fever in the clusters with a more negative EB, com-
pared with the clusters with a better EB. First, this 
could be related to the detrimental characteristics of 
milk fever causing a poor start of the new lactation, 
with milk fever in itself also being a risk factor for 
secondary diseases during the early-lactation period 
(DeGaris and Lean, 2008). Second, cows in the clusters 
with a more negative EB also had a higher milk yield, 
whereas high-producing cows are more at risk for milk 
fever (Fleischer et al., 2001). Also, for cystic ovarian 
disease it is known that its occurrence is positively 
related to milk yield potential of dairy cows (Koeck et 
al., 2012), as also reviewed in Vanholder et al. (2006). 
The etiology of cystic ovarian disease might be related 
to alterations in metabolic status in high-producing 
dairy cows in early lactation (Vanholder et al., 2006). 
Moreover, it can be hypothesized that cystic ovaries 
occur in the cascade of multiple disease events of dairy 
cows that have a very poor start of their lactation, also 
related to a severe NEB in these cows.

In the cluster with cows with a stable EB, more 
calves were born with a lower birth weight (Figure 6b). 
In the positive EB cluster there were more cows with a 
0-d dry period, compared with the other clusters. In an 
earlier study (Mayasari et al., 2015), we reported that 
cows with a 0-d dry period had calves with on average 
a lower birth weight, which was partially explained by 
also a shorter pregnancy length for cows with a 0-d dry 
period (278 vs. 280 or 1,281 d for 0-d vs. 30-d or 60-d 
dry period).

Calf mortality was negatively associated with EB 
postpartum (Figure 6c). It is well known that stillbirth 
of calves is a risk factor for cows and associated, for 
example, with an increase in cow mortality (Shahid 
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et al., 2015). Moreover, stillbirth is associated with 
an increased risk for dystocia and retained placenta in 
dairy cows (Ghavi Hossein-Zadeh and Ardalan, 2011). 
As a consequence, recovery from parturition is more 
complex after a stillbirth, which could be associated 
with limited feed intake and poor adaptation to a new 
lactation resulting in a more negative EB, as observed 
in the current study.

Overall, we demonstrated that cows have distinct EB 
time profiles and that characteristics such as prepar-
tum BW, and postpartum NEFA, glucose, insulin, and 
IGF-1 concentrations identify the time profile of EB 
and potentially the risk for metabolic diseases. Under 
practical circumstances, the prediction EB profile of 
individual cows could be used to adjust cow manage-
ment strategies. In the current study, however, EB 
time profiles are to some extent simplified by a limited 
number of clusters. With a more advanced approach, 
it might be interesting to examine gradient-wise EB 
profiling instead of dividing cows into a limited number 
of clusters. In addition, metabolic time profiles could 
be used to discriminate EB state of cows, it is known 
that for example NEFA and insulin are related to EB 
(Reist et al., 2002; Fenwick et al., 2008; Van et al., 
2020). Moreover, plenty of studies are available that 
illustrate the value of metabolites in milk (Gustafsson 
and Emanuelson, 1996; van Knegsel et al., 2010) or 
milk fatty acid profiles, either determined by GC or 
estimated by milk infrared spectra (McParland and 
Berry, 2016; Bach et al., 2019; Churakov et al., 2021) 
to indicate the energy status of dairy cows in early 
lactation. Because of the noninvasive characteristics of 
these milk measures, exploration of the value of these 
measures with EB time profiles would be highly rel-
evant from a practical perspective.

CONCLUSIONS

This study demonstrated that dairy cows can be phe-
notyped based on their EB time profiles (i.e., on the 
patterns of transition to and recovery from NEB in the 
weeks before and after calving). We could obtain 4 well-
resolved clusters. Moreover, BW predicted EB profile 
peripartum, although ROC analysis indicated it is dif-
ficult to discriminate between neighboring clusters due 
to overlapping BW distributions. Furthermore, the EB 
time series clusters were mirrored by specific metabolic 
profiles as well as dynamics in milk yield, composition, 
and BW. Cows with severe EB drop (SN cluster) post-
partum had high NEFA and BHB, low IGF-1, insulin, 
and glucose concentration and were treated more for 
milk fever and cystic ovaries. Since NEFA is known 
to be related to metabolic diseases, SN cluster might 

be related to it as well. Being able to distinguish this 
cluster from the other clusters could pave the way to 
personalized animal treatment related to metabolic dis-
eases. In addition, more analysis is required to indicate 
if BW is a possible on-farm biomarker to detect energy 
profile of a cow in an early stage, which might help to 
prevent severe metabolic states or diseases.
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