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In the domain of chemometrics and multivariate data analysis, partial least squares (PLS) modelling is a
widely used technique. PLS gains its beauty by handling the high collinearity found in multivariate data
by replacing highly covarying variables with common subspaces spanned by orthogonal latent variables.
Furthermore, all can be achieved with simple steps of linear algebra requiring minimal computation
power and time usage compared to current high-end computing and substantial hyperparameter tuning
required by methods such as deep learning. PLS can be used for a wide variety of tasks, for example,
single block modelling, multiblock modelling, multiway data modelling and for task such as regression
and classification. Furthermore, new PLS based approaches can also incorporate meta information to
improve the PLS subspace extraction. However, in the current scenario, there is a wide range of separate
tools and codes available to perform different PLS tasks. Oftenwhen the user needs to perform a new PLS
task, they need to start with a separate mathematical implementation of the PLS techniques. This study
aims to provide a single solution, i.e., the Swiss knife PLS (SKPLS) modelling approach to enable a single
mathematical implementation to perform analyses of single block, multiblock, multiway, multiblock
multiway, multi-response, and incorporation of meta information in PLS modelling. It contains all that is
needed for any PLS practitioner to perform both classification and regression tasks. The SKPLS backbone
is the stepwise PLS strategy called response oriented sequential alternation (ROSA) which we generalize
to enable all the mentioned analysis possibilities. The basic structure of the algorithm is highlighted, and
.
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some example cases of performing single block, multiblock, multiway, multiblock multiway, multi-
response PLS modelling and the incorporation of meta information in PLS modelling are included.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the domain of analytical chemistry and chemometrics,
multivariate multi-collinear data is widely encountered [1]. Such
data is usually generated with a wide range of analytical in-
struments such as spectrometers [2]. Often, one of the main aims in
analytical chemistry is to develop calibration models for analytical
instruments using a few reference samples measured with wet
chemistry approaches to use the data of the instrument and the
calibration to predict future key properties of interest such that wet
chemistry can be avoided [1,3,4]. This reduces the need for costly
and labour-intensive manual analyses. There are also other benefits
of using analytical instruments such as spectrometers compared to
wet chemistry as the property predictions can be made in real-time
and in a minimally invasive way. Since, the analytical instrument
data such as from spectrometers are highly collinear, one of the
most important chemometric modelling technique is the partial
least squares (PLS) based modelling [3,4]. PLS is a type of bilinear
latent space modelling technique with repeated steps of covariance
maximisation. The latent spaces are extracted and the multi-
collinearity in data is leveraged to build low rank generalizable
models [5,6]. Another key benefit of PLS modelling is that being a
bilinear modelling approach it provides score and loading vectors,
which allow interpreting any pattern or chemical relevant back-
ground information present in the samples [6]. Furthermore, PLS
can be used for both regression and classification tasks. It is no
wonder that due to such many advantages, PLS is a gold standard
technique in the chemometric domain [7].

Apart from using PLS modelling for single block scenarios, ex-
tensions of PLS modelling can be found for a wide range of tasks
such as data fusion [8e14] as well as handling higher order arrays
[15e17]. Furthermore, approaches for using meta information for
improving latent space extraction as well as multi-response
modelling also exist [18]. The task of data fusion can be termed
as multiblock PLS modelling [12], and the handling of higher order
arrays is known as multiway PLS [17]. The method allowing to
incorporate meta information is the canonical PLS modelling [18].
Meta information is one ormore additional variables describing the
training data. This can be experimental conditions, mixture pro-
portions or other data collected when performing the spectral
measurements. The same meta information is often not available
for test data or when the model is applied in a production envi-
ronment because of practical or economic limitations. However,
since the meta information is only used in the modelling phase for
increasing the adaptability of the latent variables and making a
more informed choice of subspace, this information is not needed
at prediction time. These extensions were developed for handing
the varying nature of data structures as presented in Fig. 1. The
single block PLS case can be understood as where multivariate data
measured on a set of samples is used to predict responses. The
second case of PLS comes when there are multiple blocks of pre-
dictors, predicting responses using multiple multivariate data
measured on the same samples. The third case of PLS arises when
the data, instead of being a 2D matrix, is an n-dimensional array,
i.e., a multiway data block. The fourth case is multiblock data with
one or more multiway blocks where multiway data is jointly
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analysed with a 2D matrix or multiway block. Furthermore, the
responses can be either single response or multi-response, and
with or without extra meta information.

In the domain of chemometrics, there are many approaches
available to perform PLS analysis, a summary of several PLS
decomposition approaches can be found elsewhere [19,20]. For
multiblock data modelling there are also several approaches [12,13]
such as multiblock PLS based on hierarchal [11,21], sequential
[15,22,23], parallel PLS [23,24] and response-oriented sequential
alternation (ROSA) [25] frameworks. For multiway data analysis
approaches can be found such as the multiway PLS framework [17].
Also, for including the meta information, an approach called CPLS is
available [18]. However, currently what is lacking is a unified PLS
version which can combine all the approaches under a single um-
brella and have a flexible single-interface model suitable for
handling any type of data structures mentioned in Fig. 1. Such a
unified version of PLS will be of wide user attention and can in-
crease the applications of widely scattered PLS approaches in the
wide domain of sciences.

Of particular interest is that all the PLS approaches are stepwise
approaches [25] where at each step the model components are
extracted by maximizing covariance or canonical correlation.
Furthermore, to achieve stable and generalizablemodels’, a suitable
number of components are extracted with approaches such as
cross-validation [26]. Since the components are modelled in a
stepwise approach it gives PLS the flexibility to model components
from different data blocks in each step and finally to select the
optimal data block. Winning strategies can be leverage metrics
such as maximum correlation, minimum residual [25], or
maximum canonical correlation. This is also the motivation behind
the ROSA modelling in which several data blocks can be modelled
in a stepwise strategy but at each step the winner is decided as the
one resulting in minimum residual [25]. In such a way, the PLS
model can be extended to work on multiple data blocks learning
the complementary information available in all possible blocks.
Also note that when only a single block of data is available then the
ROSA modelling approach will become the standard single block
PLS where in each step the model components are extracted by
covariance maximisation. The presented SKPLS approach is also
based on a ROSA [25] backbone and reaps the benefit of the step-
wise modelling nature of the PLS approach. Publications with ROSA
[25] currently only cover the case of two-way predictors and a
single response. However, the R package multiblock [27] has been
published, which extends ROSA with CPLS, enabling multiple re-
sponses and meta information. The SKPLS extends this further by
enabling multiway blocks, thus providing a single tool for single-
and multiblock with two- and multiway data, using single and
multiple responses with meta information.

This study aims to provide a single solution, i.e., the Swiss knife
PLS (SKPLS) modelling approach for all the mentioned modelling
tasks (Fig. 1). The basic structure of the algorithm is highlighted,
and some example cases are presented for performing single block,
multiblock, multiway, multiblock multiway, multi-response PLS
modelling, as well the incorporation of meta information in PLS
modelling. The codes of the technique will be made available at:
https://github.com/puneetmishra2.

http://creativecommons.org/licenses/by/4.0/
https://github.com/puneetmishra2


Fig. 1. Examples of data structures that can be analysed by Swiss knife PLS.
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2. Method

The SKPLS is an extension of the PLS based ROSA [25] modelling
strategy where each PLS model component extraction step is given
the possibility to explore B number of data blocks to learn com-
plementary latent variables. In each step of ROSA [25], at first, the
latent spaces are extracted by maximizing the covariance with the
response variable at the block level and later the scores based on
the latent spaces compete tominimise the residual for the response
variable y: The block score leading to the lowest sum of squared
residuals is selected as the winner for that step, and later the same
3

step is repeated but constrained to be orthogonal to the subspace
already spanned by the earlier selected components. Although the
ROSA methodology has been extended further in software [27], it
still lacks the ability to handle multiway blocks and a unified
description covering multiple responses and meta information. On
the other hand, the SKPLS, covers all the necessary tools to perform
all major tasks required for PLS modelling of single block, multi-
block, andmultiway data for single andmulti-responses. The SKPLS
approach is presented as follow.
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Please note that a key feature of the above algorithmic steps is
that in the case of single matrix type data or a multiway type data
block, the competition step will not be present and the method will
converge to a single-block PLS or multiway PLS analysis. In the
presence of multiple blocks of either matrix type or multiway array,
the method will become a multiblock approach where the model
components will be selected as the one maximizing the correlation
with the response in the case of single response, while maximizing
the canonical correlation in the case of multi-response. Further-
more, due to the use of the CPLS [18], the method can use the meta
information about samples, in the case of matrix type data blocks,
to achieve efficient subspace extraction. Please also note that just
like ROSA [25], the method does not have any predictor matrix
deflation step as commonly present in other PLS algorithms [20],
thus giving the SKPLS the advantage of speed of execution
compared to other PLS algorithms involving predictor matrix
deflation. It should be noted that, like the original ROSA, SKPLS also
generalizes sequential and orthogonalized PLS (SO-PLS) [28] since
the SO-PLS solution can be obtained by constraining the compo-
nents to be selected from one block at the time, e.g., 8 components
from three blocks: 1,1,1, 2,2, 3,3,3. This makes separate theory for
SO-PLS redundant since it is covered by SKPLS. Just like the tradi-
tional PLS approaches, the optimal number of latent variables to
extract for generalised modelling can be optimised using cross-
validation approaches or using validation sets in the presence of
larger sample sets. In this study, a 5-fold cross-validation was
implemented to optimise the total number of latent variables for all
the demonstrated cases.
Table 1
A summary of the milk data set.

NIRONE 1.4 NIRO

Spectral range (nm) 1100e1350 1550
Data shape 296� 126 296�
Reference range (Average ± standard deviation) * *

*not relevant.
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3. Data sets for demonstration

3.1. Protein and fat prediction in milk with three spectral sensors
and two measurement modes

The milk data set was used for demonstrating the single-block
and multiway PLS modelling, multiblock data fusion of matrix type
data blocks andmultiblock data fusion of multiway type data blocks.
Themilk data set consisted of spectral data and reference protein and
fat measurements performed on 296 milk samples [29]. The spectral
measurements were performed with three different portable spec-
tral sensors working in complementary NIR spectral ranges: NIRONE
1.4, NIRONE 2.0 and NIRONE 2.5 from Spectral Engines (Helsinki,
Finland). The NIRONE 1.4 was in 1100e1400 nm, NIRONE 2.0 was in
1550e1950 nm and NIRONE 2.5 was in 2000e2450 nm spectral
ranges. For all the three spectrometers, all measurements were
performed in transmission mode except for the NIRONE 2.0, for
which additional measurement of the same samples were per-
formed in reflectance mode. More information on the data set and
reference protein and fat analysis protocols can be obtained in the
earlier study. Data are summarized in Table 1.
3.2. Soluble solids prediction in apricot puree using near-infrared
and mid-infrared sensing and using maturity level as the meta
information

The apricot data set is used to demonstrate the capability of the
SKPLS to use meta information for efficient subspace extraction.
NE 2.0 NIRONE 2.5 Protein (% w/w) Fat (% w/w)

e1950 2000e2450 * *
201� 2 296� 226 296� 1 296� 1

* 3.90 ± 0.41 4.71 ± 1.10



Table 2
A summary of apricot data set.

NIR MIR Soluble solids content (%)

Spectral range 800e2772 nm 3996-651 cm�1 *
Data shape 750� 769 750� 579 750� 1
Reference range (Average ± standard deviation) * * 12.36 ± 2.43

*not relevant.
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The apricot data set has NIR (800e2770 nm) and MIR (4000-
650 cm�1) spectra acquired on 750 apricots, along with the refer-
ence soluble solids content (SSC %) measurements. The raw spectral
data without any pre-processing step was used for this analysis.
More details on the reference analysis can be obtained in Ref. [30].
Apart from reference measurements, the data set also has infor-
mation about fruit maturity from three different maturity stages:
very green, ripe, over-ripe. The maturity information about the
samples will be used as the meta-information to demonstrate the
potential of SKPLS to improve subspace extraction for SSC predic-
tion. A summary of the data set can be found in Table 2.

4. Results and discussion

4.1. Spectral data description

Summaries ofmean spectral profiles of themilk and apricot data
set are shown in Figs. 2 and 3, respectively. For the milk spectral
profiles, the data were measured in three complementary NIR
spectral ranges: 1100e1350 nm, 1550e1950 nm, and
2000e2450 nm. We can observe from the mean spectral profile
that Block 1 (Fig. 2A) and Block 3 (Fig. 2C) of the milk data were 2-
way data while Block 2 (Fig. 2B) was 3-way data where one extra
mode corresponds to the optical measurement geometry of the
Fig. 2. Mean spectral responses for the milk data set. (A) transmission mode NIRONE 1.4, (

Fig. 3. Mean spectral responses for apr
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spectrometer, i.e., transmission and reflection. In all the spectral
ranges, peaks and valleys can be assigned to chemical overtones of
OH, CH, and NH bonds present in abundance in milk due to mac-
romolecules such as water, fats, and proteins [29,31,32]. For the
apricot data set (Fig. 3), the peaks present in the mean spectral
profiles in the NIR and MIR range can also be assigned to a wide
range of chemical absorptions and overtones as identified in an
earlier study [30]. What comes next are the individual demon-
stration analyses of SKPLS for modelling all previously mentioned
combinations of block dimensionality, and incorporation of meta
information for efficient subspace modelling. Please note that for
both the milk and apricot data sets, the samples were partitioned
into calibration (60%) and test sets (40%) using the Kennard-Stone
algorithm [33], where model cross-validation and calibration was
performed using the calibration set while the optimised models
were tested on the test set.

4.2. Single block PLS solution from SKPLS

An example analysis of SKPLS for single block analysis was
performed on one data block from themilk data set (NIRONE 1.4) to
predict fat content, and the results are shown in Fig. 4. The 5-fold
cross-validation allowed selecting 8 latent variables (Fig. 4AeC)
and the model achieved similar calibration and prediction error.
B) transmission and reflection mode NIRONE 2.0, and (C) transmission mode NIR 2.5.

icot data set. (A) NIR, and (B) MIR.



Fig. 4. Results of single block SKPLS analysis performed on NIRONE 1.4 sensor data for predicting fat content. (A) Cross-validation plot used to select latent variables, (BeC) 8 latent
variables were selected, and (D) prediction plot. The changes in colour in (C) from dark blue towards yellow indicates the increasing number of latent variables. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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The model errors were in similar range as what was obtained in an
earlier study using traditional PLS modelling [29]. Note that plots B
and C are redundant when the analysis contains only a single data
block but is included for consistency.

4.3. Single-block multiway PLS solution with SKPLS

In analytical chemistry, multiway data can also be frequently
encountered. For example, in this study, the spectral measurements
performed on milk samples were performed in two different
measurement modes (transmission and absorption) leading to a 3-
way data set. The SKPLS allows modelling multiway data sets by
inclusion of multiway PLS, and as an example themultiway data set
was processed to predict fat content in milk samples. The results of
the SKPLS for modelling 3-way data are shown in Fig. 5. It can be
noted that with cross-validation 8 latent variables were selected
(Fig. 5AeC) which led to a prediction error ~0.2% w/w for predicting
fats content in milk.

4.4. Multiblock 2-way data analysis with SKPLS

The SKPLS, relying on the ROSA stepwise strategy, can also be
used for multiblock analysis of 2-way data blocks. This is because at
each step of latent variable extraction, the SKPLS gives the oppor-
tunity of latent variable extraction to all the available data blocks
and selects the winning block as the one carrying maximum cor-
relation with the response variable in case of single response and
maximum canonical correlationwith the response variables in case
8

of multi-response. As an example, multiblock analysis was per-
formed for fusing information from three data blocks correspond-
ing to transmission spectral measurements performed using
NIRONE 1.4 (Block 1), NIRONE 2.0 transmission mode (Block 2) and
NIRONE 2.5 (Block 3) sensor data for predicting fat content in milk.
The results are shown in Fig. 6, where the cross-validation plot
(Fig. 6A) suggested extraction of 8 latent variables. The total latent
variables plot (Fig. 6B) suggested extraction of 4 latent variables
from Block 1, and 2 latent variables each from Block 2 and Block 3.
The order of latent variables (Fig. 6C) indicates that initially the
latent variables were extracted from Block 1 and later from Block 2
and Block 3. The prediction errors for calibration and test set were
similar indicating optimal model fitting regarding possible
overfitting.
4.5. Multiblock multiway data block analysis with SKPLS

Just like the SKPLS allows multiblock modelling of multiple 2-
way data blocks, it also allows modelling when the data blocks
are of multiway type. As an example, the three block milk data set,
where the 2nd block was 3-way data, was modelled using the
SKPLS to predict fat content in milk. The results of the multiblock
multiway data modelling are shown in Fig. 7, where the cross-
validation allowed selection of 8 latent variables (Fig. 7A). Out of
the 8 selected latent variables, 5 belonged to the 3-way data (Block
2), while 1 latent variable belonged to Block 1 and 2 to Block 3. In
terms of order (Fig. 7C), the first latent variable was selected from
Block 1, while later the following latent variable were selected from



Fig. 5. Results of single block SKPLS analysis performed on 3-way NIRONE 2.0 sensor data for predicting fats content. (A) Cross-validation plot used to select latent variables, (BeC) 8
latent variables were selected, and (D) prediction plot. The change in colour in (C) from dark blue toward yellow indicates the increasing number of latent variables. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 6. Results of multiblock SKPLS analysis performed on NIRONE 1.4 (Block 1), NIRONE 2.0 transmission mode (Block 2) and NIRONE 2.5 (Block 3) sensor data for predicting fat
content. (A) Cross-validation plot used to select latent variables, (B) 8 latent variables were selected where 4 were from NIRONE 1.4 and 2 each from NIRONE 2.0 and NIRONE 2.5, (C)
the order of latent variables extraction, where the initial latent variables were selected from NIRONE 1.4 and later from NIRONR 2.0 and NIRONE 2.5, and (D) prediction plot. The
change in colour in (C) from dark blue toward yellow indicates the increasing number of latent variables. An illustration of the component-wise correlations of block candidate
scores to the winning block is shown in Supplementary Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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Block 2 and Block 3. The prediction errors by using the 3-way data
block were slightly lower (Fig. 7D) than not using the 3-way data
structure in the analysis presented in section 5.4 (Fig. 6D). Please
note that in this example the multiblock multiway analysis was
performed using one 3-way data block and two 2-way data blocks,
while in practise the method can also be used when there are
multiple multiway data blocks available.

4.6. Multi-response modelling with SKPLS

One of the many facets of the SKPLS approach is its capability to
handle multiple responses, both continuous response variables for
regression cases and dummy-coded matrices of 0 and 1 for classi-
fication. The SKPLS gains it capability to handle multiple responses
as SKPLS uses the CPLS approach in the backend for efficient sub-
space extraction, and can even be used with a simultaneous mix of
continuous and categorical (dummy-coded) responses. Please note
that SKPLS can handle multi-responses for all the analysis cases
presented in earlier sections 5.2-5.5. However, to demonstrate with
a practical example, the SKPLS was used to analyse the multiway
multiblock data to predict fat and protein content in milk. The
cross-validation plot allowed selection of 8 latent variables
(Fig. 8A), where 7 were from the 3-way data (Block 2) and 1 from
the 2-way data (Block 3) (Fig. 8B). In terms of order, the first latent
variable was selected from Block 3, while all other latent variables
were selected from Block 2 (none from Block 1). The prediction
10
plots for the fat and protein content are shown in Fig. 8D and E,
respectively.

4.7. Incorporation of meta information for efficient subspace
extraction with SKPLS

One extra feature of the SKPLS is its capability to incorporate
meta information during the subspace extraction. Such an inclusion
of meta information is possible as the SKPLS uses the CPLS
approach to subspace extraction. Meta information is only needed
during model training to extract subspaces and not needed in
future testing of the model. An example of how to use the meta
information using the SKPLS is demonstrated using the apricot
dataset where the information about fruit maturity level (in the
form of a dummy matrix of 0/1) was used as the meta information
to improve the prediction of SSC using NIR and MIR in a multiblock
fusion scenario. The results with andwithout incorporation of meta
information in the SKPLS model are shown in Fig. 9. Without in-
clusion of the meta information, the model cross-validation
allowed selection of 3 latent variables (Fig. 9A), where first 1
latent variable was modelled from the NIR data block and then 2
latent variables were from the MIR data block (Fig. 9B and C). The
model based on 3 latent variables achieved a prediction error of
0.73% (Fig. 9D). After the incorporation of meta information, only 1
latent variable was selected (Fig. 9E), which was from the MIR data
block (Fig. 9F and G), and the model led to lower prediction error of



Fig. 7. Results of multiblock multiway SKPLS analysis performed on NIRONE 1.4 (Block 1), NIRONE 2.0 transmission and reflection mode (Block 2) and NIRONE 2.5 (Block 3) sensor
data for predicting fats content. (A) Cross-validation plot used to select latent variables, (B) 8 latent variables were selected where 5 were from NIRONE 2.0 and 1 from NIRONE 1.4
and 2 from NIRONE 2.5, (C) the order of latent variables extraction, where the initial latent variables were selected from NIRONE 2.0 and later from NIRONR 2.5 and NIRONE 1.4, and
(D) prediction plot. The change in colour in (C) from dark blue toward yellow indicates the increasing number of latent variables. An illustration of the component-wise correlations
of block candidate scores to the winning block is shown in Supplementary Fig. 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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Fig. 8. Results of multi-response multiblock multiway SKPLS analysis performed on NIRONE 1.4 (Block 1), NIRONE 2.0 transmission and reflection mode (Block 2) and NIRONE 2.5
(Block 3) sensors data for simultaneously predicting fats and protein content. (A) Cross-validation plot used to select latent variables, (B) 8 latent variables were selected where 7
were from NIRONE 2.0 and 1 from NIRONE 2.5, (C) the order of latent variables extraction, where the first latent variable was selected from NIRONE 2.5, while later were selected
from NIRONE 2.0, (D) prediction plot for fats content, and (E) prediction plot for protein content. The change in colour in (C) from dark blue toward yellow indicates the increasing
number of latent variables. An illustration of the component-wise correlations of block candidate scores to the winning block is shown in Supplementary Fig. 3. (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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0.69% (Fig. 9H) for the exact same test set. Reduction of latent
variables from 3 to 1 alongside the reduction of prediction error
from 0.73 to 0.69% indicates the highly efficient modelling per-
formed by the SKPLS. An additional aspect that can become more
prominent when the efficient CPLS subspaces are used in a multi-
block setting is that some blocks may become redundant, like the
NIR block in this example. Please note that in this example, the
meta information was in the form of discrete class labels corre-
sponding to maturity stage of the fruit samples, while in practice
themeta information can even be continuous variables such as easy
to measure chemical analytes, ambient temperatures, etc. Note also
that currently the inclusion of the meta information is only possible
to improve the subspace extraction of 2-way type data matrices
because of the CPLS algorithm being suitable for 2-way type data
only. However, further work is needed for developing a multiway
CPLS algorithm for including meta information to improve the
multiway type data decomposition. This topic is out of scope for the
current study and is only a minor limitation of the algorithm
functionality.

5. Conclusions

This study presented a unified version for PLS modelling called
12
Swiss knife PLS (SKPLS) which allows awide range of PLSmodelling
operations inside one coherent framework. The backbone of the
SKPLS is the stepwise latent variable extraction strategy for single
and multiblock analyses called ROSA. The SKPLS can be used for a
wide ranges of task such as single block 2-way data modelling as
commonly performed by PLS modelling in the analytical chemistry
and chemometric domain, single block multiway data modelling
which is relevant when the predictor matrix is a multiway array,
multiblock data fusion modelling when multiple data blocks of 2-
way and/or multiway types are available and the aim is to learn
complementary information from different data blocks, multi-
response modelling which makes the method capable of both
multi-response regression and classification tasks, and finally the
capability to incorporate meta information for efficient subspace
extraction. These are the most common predictive modelling tasks
performed in the chemometric domain using PLS subspace-based
approaches. The SKPLS method can be considered a general PLS
subspace extraction-based. It is a Swiss knife in the domain of PLS
modelling, covering a wide range of modelling scenarios. Since the
method does not include deflation of the predictor matrices as in
other PLS based algorithms, just like ROSA, the method is naturally
expected to be faster than most other deflation based PLS model-
ling approaches. As SKPLS is based on ROSA, it inherits the



Fig. 9. Results of SKPLS analysis for including meta information about fruit maturity to predict soluble solids content using NIR and MIR data. (A) Cross-validation plot without meta
information indicating selection of 3 latent variables, (B) selected latent variables, 1 for NIR and 2 for MIR, (C) order of latent variables selection, where the first latent variable was
selected from NIR and later 2 from MIR, (D) prediction plot for fat content without use of meta information, (E) cross-validation plot after inclusion of meta-information, (FeG)
selected latent variable, only 1 from MIR, and (H) prediction plot for fat content with use of meta information. The change in colour in (C and G) from dark blue toward yellow
indicates the increasing number of latent variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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limitation of only using one block for each component. When two
blocks are tied in the competition for winning a component
competition, this leads to arbitrary block selection. However, since
the tie is often due to overlapping information in the input blocks,
the predictive power is typically correspondingly little affected. If
the exact choice of blocks is important to the user, diagnostic tools
are available like plotting the fit of the candidate scores (repre-
sented by canonical correlation to the residual response(s)) and
possibly manually forcing desired block order for selections. See
supplementary information as examples of such plots.
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