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A B S T R A C T   

The generalisation performance of a convolutional neural network (CNN) is influenced by the quantity, quality, 
and variety of the training images. Training images must be annotated, and this is time consuming and expensive. 
The goal of our work was to reduce the number of annotated images needed to train a CNN while maintaining its 
performance. We hypothesised that the performance of a CNN can be improved faster by ensuring that the set of 
training images contains a large fraction of hard-to-classify images. The objective of our study was to test this 
hypothesis with an active learning method that can automatically select the hard-to-classify images. We 
developed an active learning method for Mask Region-based CNN (Mask R-CNN) and named this method 
MaskAL. MaskAL involved the iterative training of Mask R-CNN, after which the trained model was used to select 
a set of unlabelled images about which the model was most uncertain. The selected images were then annotated 
and used to retrain Mask R-CNN, and this was repeated for a number of sampling iterations. In our study, MaskAL 
was compared to a random sampling method on a broccoli dataset with five visually similar classes. MaskAL 
performed significantly better than the random sampling. In addition, MaskAL had the same performance after 
sampling 900 images as the random sampling had after 2300 images. Compared to a Mask R-CNN model that was 
trained on the entire training set (14,000 images), MaskAL achieved 93.9% of that model’s performance with 
17.9% of its training data. The random sampling achieved 81.9% of that model’s performance with 16.4% of its 
training data. We conclude that by using MaskAL, the annotation effort can be reduced for training Mask R-CNN 
on a broccoli dataset with visually similar classes. Our software is available on https://github.com/pieterblok/ 
maskal.   

1. Introduction 

In current practice, broccoli heads are harvested by hand, and this is 
physically demanding, time consuming, and expensive. These labour 
problems can be mitigated by a robot that can harvest the broccoli heads 
automatically. For the robot to be autonomous, it is essential to have a 
perception system that can determine which broccoli heads are both 
healthy and large enough to be harvested. This perception system can be 
realised with a camera and an image processing algorithm. 

Much research has been done on the image-based detection and size 
estimation of broccoli heads (Ramirez, 2006; Kusumam et al., 2017; 
Bender et al., 2020; Le Louedec et al., 2020; Montes et al., 2020; Blok 
et al., 2021a; Blok et al., 2021c; García-Manso et al., 2021; Psiroukis 

et al., 2022). Unfortunately, the methods presented in previous studies 
were not able to detect individual diseases and defects in the broccoli 
crop (García-Manso et al. (2021) did investigate broccoli disease 
detection, but clustered all diseases and defects as one class ”wasted”). 
Individual detection of diseases and defects is desirable, as this would 
allow the broccoli harvesting robot to perform specific treatments for 
each broccoli disease and defect. This disease treatment functionality 
can increase the economic viability of the robot. 

With the current state-of-the-art convolutional neural networks 
(CNNs), it is possible to learn the broccoli diseases and defects as 
separate classes. One of the challenges for optimising the CNN, is the 
selection and annotation of a sufficient number of representative im
ages. Image selection can be challenging when diseases and defects 
occur only sporadically in the field and thus in the images. Image 
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annotation can be challenging for multiple reasons. First, it can be 
difficult to correctly label the diseases and defects as they can be visually 
similar. Second, the annotation process might require additional input 
from crop experts with specific knowledge about the disease, and this 
can make the annotation process more time consuming and expensive. 
Third, it is also desirable to annotate the pixels of each broccoli head, as 
this enables another algorithm to estimate the size of the broccoli head. 
This additional pixel annotation is time consuming and expensive. To 
reduce annotation time and costs, it is important to have a method that 
can maximise the performance of the CNN with as few image annota
tions as possible. 

Active learning is a method that can achieve this goal (Ren et al., 
2020). In active learning, the most informative images are automatically 
selected from a large pool of unlabelled images. The most informative 
images are then annotated manually or semi-automatically, and used for 
training the CNN. The hypothesis is that the generalisation performance 
of the CNN significantly improves when the training is done on the most 
informative images, because these are expected to have a higher infor
mation content for CNN optimisation (Ren et al., 2020). Because only 
the most informative images need to be annotated with active learning, 
the annotation effort can be reduced while maintaining or improving the 
performance of the CNN. 

In CNN-based active learning, pool-based sampling is the most 
commonly used method to select the informative images (Ren et al., 
2020). With pool-based sampling, each unlabelled image is first ana
lysed, and then a set of images of a fixed size is selected to train the CNN. 
The image selection is carried out with a sampling method. Commonly 
used sampling methods are diversity sampling, uncertainty sampling, 
and hybrid sampling (which combines diversity and uncertainty sam
pling) (Ren et al., 2020). With diversity sampling, images are selected 
that represent the diversity that exists in the set of unlabelled images. 
With uncertainty sampling, images are selected about which the CNN is 
most uncertain. 

To date, most active learning methods have been developed for 

image classification, semantic segmentation, and object detection (Ren 
et al., 2020). There have also been two studies on active learning for 
agricultural purposes. Zahidi and Cielniak (2021) researched active 
learning for image classification of crops and weeds, and it was shown 
that with active learning only 60% of the images were needed to achieve 
a performance comparable to that of a CNN trained on the complete 
dataset. Chandra et al. (2020) researched active learning for object 
detection in cereal crops, and it was found that 50% of the annotation 
time could be saved by active learning. Unfortunately, for the broccoli 
harvesting robot, the use of image classification or object detection is 
insufficient, as for the size estimation there also needs to be a segmen
tation of the pixels belonging to each broccoli head. This task requires a 
different CNN: an instance segmentation algorithm. 

For instance segmentation algorithms, only three active learning 
methods have been presented (López Gómez, 2019; Van Dijk, 2019; 
Wang et al., 2020). These three active learning methods were all 
developed for the Mask Region-based CNN (Mask R-CNN) (He et al., 
2017), and all methods used uncertainty sampling. The first active 
learning method for Mask R-CNN was developed by Van Dijk (2019), 
and used the probabilistic active learning (PAL) method of Krempl et al. 
(2014). With PAL, the expected performance gain was calculated for the 
unlabelled images, and the images with the highest gain were selected 
for retraining. The second active learning method for Mask R-CNN was 
developed by Wang et al. (2020), and used a learning loss method. With 
this method, three additional loss prediction modules were added to the 
Mask R-CNN network to predict the loss of the class, box and mask of the 
unlabelled images. Images with a high loss were selected and labelled in 
a semi-supervised way using the model’s output. The third active 
learning method for Mask R-CNN was developed by López Gómez 
(2019). In this work, the image sampling was done with Monte-Carlo 
dropout. Monte-Carlo dropout was introduced by Gal and Ghahramani 
(2016) and it is a frequently used sampling technique in active learning, 
because of its straightforward implementation. In this method, the 
image analysis is performed with dropout. Dropout leads to a random 

Nomenclature 

Abbreviations 
ANOVA analysis of variance 
AUS Australia 
CNN convolutional neural network 
COCO common objects in context 
DO dropout 
FC fully connected 
GNSS global navigation satellite system 
mAP mean average precision 
Mask R-CNN mask region-based convolutional neural network 
MaskAL active learning software for Mask R-CNN 
NL Netherlands 
NMS non-maximum suppression 
PAL probabilistic active learning 
RGB red, green and blue 
ROI region of interest 
RPN region proposal network 
UK United Kingdom 
USA United States of America 

Symbols 
B average bounding box 
M average mask 
∩ intersection 
∪ union 
τIoU threshold on the intersection over union 

ch100 certainty value at 100 forward passes 
chfp certainty value at a specific forward pass 
B bounding box 
cavg average certainty of all instances in the image 
cbox spatial certainty of the bounding box 
ch instance certainty 
cmask spatial certainty of the mask 
cmin minimum certainty of all instances in the image 
cocc occurrence certainty 
csem semantic certainty 
cspl spatial certainty 
fp number of forward passes 
H entropy value 
Hmax maximum entropy value 
Hsem entropy value of an instance 
I instance sets in an image 
K set of available classes 
k class 
M mask 
M1 first mask 
M2 second mask 
n the number of classes 
P Mask R-CNN’s confidence score on a class 
r the number of instances belonging to an instance set 
S instance set 
s instance belonging to an instance set 
t the number of instance sets in an image  
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disconnection of some of the neurons of the CNN, forcing it to make the 
decision with another set of network weights. When the same image is 
analysed multiple times with dropout, the model output may differ be
tween the different analyses. If the model output deviates, there seems to 
be uncertainty about the image, indicating that it can be a candidate for 
selection and annotation. 

In the work of López Gómez (2019), two uncertainty values were 
calculated: the semantic uncertainty and the spatial uncertainty. The 
semantic uncertainty expressed the (in)consistency of Mask R-CNN to 
predict the class labels on an instance. The spatial uncertainty expressed 
the (in)consistency of Mask R-CNN to segment the object pixels of an 
instance. In the research of Morrison et al. (2019), an even more 
comprehensive uncertainty calculation was proposed for Mask R-CNN. 
In this work, three uncertainty values were calculated: the semantic 
uncertainty, the spatial uncertainty and the occurrence uncertainty. The 
occurrence uncertainty expressed the (in)consistency of Mask R-CNN to 
predict instances on the same object during the repeated image analysis. 
Morrison et al. (2019) showed an improved predictive uncertainty of 
Mask R-CNN when combining the three uncertainty values into one 
hybrid value, compared to using the three uncertainty values separately. 
Unfortunately, the uncertainty calculation of Morrison et al. (2019) has 

not yet been applied in active learning. 
The goal of our research was to develop a new active learning 

framework that could be used to optimise Mask R-CNN for the detection 
of broccoli diseases with fewer image annotations. The active learning 
framework was based on the uncertainty calculation of Morrison et al. 
(2019), but changes were made to the semantic certainty calculation to 
make the active learning more suitable for use on datasets with visually 
similar classes (like our broccoli dataset). 

We hypothesised that by using uncertainty-based active learning, the 
performance of Mask R-CNN can be improved faster and thereby the 
annotation effort can be reduced compared to a random sampling 
method. This hypothesis was tested on a dataset containing 16,000 
images of field-grown broccoli (Brassica oleracea var. italica). The 
broccoli dataset contained images of healthy, diseased and defective 
broccoli heads. The first contribution of our research is a new active 
learning framework that can reduce annotation effort for training Mask 
R-CNN. The framework, which is named MaskAL, is the first active 
learning method that integrates three metrics to calculate the uncer
tainty of the instance segmentations. The MaskAL software is publicly 
available on https://github.com/pieterblok/maskal. The second 
contribution of our work is a quantitative analysis of the effects of four 

Fig. 1. Overview of the image acquisition systems that were used to acquire the broccoli dataset. (a) With the Ladybird robot, broccoli images were acquired in 
Cobbitty (Australia) in 2017. The displayed image is from Bender et al. (2020). (b) With a stationary camera setup, broccoli images were acquired in Sexbierum (the 
Netherlands) in 2020. The displayed image is from Blok et al. (2021c). (c) With a tractor-mounted acquisition box, broccoli images were acquired in Surfleet (the 
United Kingdom) in 2015. The displayed image is from Kusumam et al. (2017). (d) With a broccoli harvesting robot, broccoli images were acquired in the 
Netherlands and the United States of America in the period 2014–2021. The displayed image is from Blok et al. (2021c). 
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active learning parameters on the Mask R-CNN performance. 

2. Materials and methods 

This section is divided into three paragraphs. Paragraph 2.1 de
scribes the image dataset that was used for training and evaluation. 
Paragraph 2.2 describes the implementation of MaskAL. Paragraph 2.3 
describes the experiments that were conducted to compare the perfor
mance between the active learning and the random sampling. 

2.1. Image dataset 

2.1.1. Broccoli images 
Our dataset consisted of 16,000 red, green, blue (RGB) colour images 

of field-grown broccoli. 4622 of the 16,000 images were downloaded 

from three online available broccoli image datasets (Bender et al., 2019; 
Blok et al., 2021b; Kusumam et al., 2016). The images in these datasets 
were acquired with a Ladybird robot (Fig. 1a), a stationary camera frame 
(Fig. 1b) and a tractor-mounted acquisition box (Fig. 1c). The other 
11,378 images were acquired with an image acquisition system that was 
attached to a broccoli harvesting robot (Fig. 1d) (Blok et al., 2021a). The 
detailed information about the broccoli fields, crop conditions, and 
camera systems can be found in Table 1. 

The 16,000 images contained a total of 31,042 broccoli heads. The 
majority of the broccoli heads (25,704) were healthy, see one example in 
Fig. 2a. The remaining 5338 broccoli heads were either diseased or 
defective. 1358 broccoli heads were damaged, see one example in 
Fig. 2b. Broccoli heads can be damaged when they are hit by farm ma
chinery or human harvesters. A damaged broccoli head cannot be sold 
for the fresh market, but it can be cut into florets for freezing, preserving 

Table 1 
The 16,000 broccoli images were acquired on 26 fields in four countries: Australia (AUS), The Netherlands (NL), United Kingdom (UK) and United States of America 
(USA). The column “Acq. days” lists the number of image acquisition days performed on that particular field. The column “Ref.” refers to the reference of the publicly 
available image dataset.  

Field Year Place (country) Total images Acq. days Broccoli cultivar Camera Ref. 

1 2014 Oosterbierum (NL) 1105 2 Steel 1  
2 2015 Oosterbierum (NL) 286 3 Ironman 1  
3 2015 Sexbierum (NL) 480 3 Steel 1  
4 2015 Surfleet (UK) 2122 1 Ironman 2 A 
5 2016 Sexbierum (NL) 270 2 Ironman 1  
6 2016 Oosterbierum (NL) 206 1 Steel 1  
7 2016 Sexbierum (NL) 415 3 Steel 1  
8 2016 Sexbierum (NL) 646 2 Steel 1  
9 2016 Sexbierum (NL) 168 1 Steel 1  
10 2017 Cobbitty (AUS) 915 2 Unknown 3 B 
11 2017 Sexbierum (NL) 256 4 Ironman 1  
12 2017 Oosterbierum (NL) 481 2 Ironman 1  
13 2017 Oude Bildtzijl (NL) 149 1 Unknown 1  
14 2018 Santa Maria (USA) 2180 11 Avenger 4  
15 2018 Burlington (USA) 1977 8 Emerald Crown 4  
16 2018 Burlington (USA) 385 3 Emerald Crown 4  
17 2019 Santa Maria (USA) 85 3 Eiffel 5  
18 2019 Guadalupe (USA) 233 5 Avenger 4 & 5  
19 2019 Mount Vernon (USA) 660 2 Green Magic 4  
20 2019 Mount Vernon (USA) 619 1 Green Magic 4  
21 2020 Burlington (USA) 120 1 Emerald Crown 4  
22 2020 Sexbierum (NL) 565 1 Ironman 5 C 
23 2020 Sexbierum (NL) 1020 1 Ironman 5 C 
24 2021 Blythe (USA) 344 1 Unknown 6  
25 2021 Santa Maria (USA) 119 1 Eiffel 6  
26 2021 Basin City (USA) 194 1 Green Magic 6  

Camera 1: AVT Prosilica GC2450, Camera 2: Microsoft Kinect 2, Camera 3: Point Gray GS3-U3-120S6C-C, Camera 4: IDS UI-5280FA-C-HQ, Camera 5: Intel Realsense 
D435, Camera 6: Framos D435e. Reference A: Kusumam et al. (2016), Reference B: Bender et al. (2019), Reference C: Blok et al. (2021b). 

Fig. 2. Examples of the five broccoli classes that were present in our dataset: (a) a healthy broccoli head. (b) a damaged broccoli head. (c) a matured broccoli head. 
(d) a broccoli head with cat-eye. (e) a broccoli head with head rot. The displayed images were all cropped from a bigger field image. 
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some of its economic value. 1318 broccoli heads began to flower, 
making them unsalable. This maturation can happen when the broccoli 
head stays too long in the field, see one example in Fig. 2c. 1303 broccoli 
heads had cat-eye, which is characterised by the yellowing of some 
broccoli florets due to fluctuating temperatures, see one example in 
Fig. 2d. Cat-eye makes the broccoli head unsaleable. 1359 broccoli 
heads had head rot, which is a disease that can cause necrosis or rotting 
of broccoli florets, making the head unsaleable, see one example in 
Fig. 2e. It is important to detect head rot as soon as possible to prevent a 
further spread of the disease. For the application of selective harvesting 
and disease treatment, it was important that Mask R-CNN could distin
guish between the healthy broccoli heads and those with a specific 
disease or defect. 

2.1.2. Training pool, validation set and test set 
Because the images were taken primarily on moving machines, it 

could happen that a unique broccoli head was photographed several 
times. To avoid the training, validation, or test set containing images of 
the same broccoli head, we first grouped the image frames of unique 
broccoli heads. This grouping was done after converting the global 
navigation satellite system (GNSS) coordinates of the tractor to the 
location of each broccoli head in the image so that they could be iden
tified and separated. The image frames belonging to a unique broccoli 
head were placed into either the training pool, validation set, or test set. 

The training pool consisted of 14,000 images, and these images could 
be used to train Mask R-CNN and to sample new images. In the training 
pool, there were 27,009 broccoli heads of which most were healthy (the 
class distribution was 27:1 (healthy: disease/defect)). 

The validation set consisted of 500 images and 1020 broccoli heads. 
The validation images were used during the training process to check 
whether Mask R-CNN was overfitting. The validation images were 
selected with an algorithm that prioritised the selection of images with 
diseased or defective broccoli heads over images with only healthy 
broccoli heads. As a result, the class distribution in the validation set was 
5:1 (healthy: disease/detect). With this class distribution, we were better 
able to evaluate the Mask R-CNN performance on the five broccoli 
classes. 

Instead of one test set, we used three test sets of 500 images each. The 
three test sets contained respectively 961, 1009, and 1043 broccoli 
heads. The three test sets were completely independent of the training 
process, and each test set served as an independent image set for each of 
our three experiments (refer to paragraph 2.3). Because the outcome of 

an experiment influenced the parameter choice in the next experiment, 
new test sets were needed that were independent of the previously used 
test set. The image selection of the three test sets was performed with the 
same algorithm that prioritised the selection of images with diseased or 
defective broccoli heads. The resulting class distribution in the three test 
sets was 5:1 (healthy: disease/detect). 

2.2. MaskAL 

The MaskAL procedure consisted of four sequential steps. First, a 
subset of images was selected from the training pool, and annotated. 
Second, Mask R-CNN was trained on these images. Third, the trained 
Mask R-CNN model was evaluated on the independent test set to 
determine its performance. Fourth, a new subset of images was selected 
from the training pool with either random sampling or uncertainty 
sampling (the active learning). After the fourth step, the selected images 
were annotated and added to the previous training set. Mask R-CNN was 
retrained on this combined set of images, after which it was evaluated 
and used to sample new images. This entire procedure was repeated for a 
number of sampling iterations. The MaskAL procedure is explained in 
more detail in the pseudo-code of Algorithm 1 (the blue-coloured 
functions highlight the four consecutive steps). 

MaskAL was built as a software shell on top of the Mask R-CNN code 
of Detectron2 (version 0.4) (Wu et al., 2019). In our research, Mask R- 
CNN was equipped with the ResNeXt-101 (32x8d) backbone (Xie et al., 
2017). Before the training and sampling could be performed, dropout 
had to be applied to several network layers of Mask R-CNN. In the box 
head of Mask R-CNN, dropout was applied to each fully connected layer, 
see Fig. 3. This dropout placement was in line with Gal and Ghahramani 
(2016) and would allow us to capture the variation in the predicted 
classes and the bounding box locations. Dropout was also applied to the 
last two convolutional layers in the mask head of Mask R-CNN to be able 
to capture the variation in the pixel segmentation, see Fig. 3. The 
severity of the dropout was made configurable in MaskAL by means of 
the dropout probability. The dropout probability determined the chance 
of neurons getting disconnected in the network layers and the value 
could be configured between 0.0 (no dropout) and 1.0 (complete 
dropout). 

Algorithm 1. MaskAL’s pseudo-code. The blue-coloured words are the 
core functions.  

Fig. 3. Schematic representation of the Mask R-CNN network architecture in MaskAL. The white circles with the red crosses indicate the network layers with 
dropout. Conv., DO, RPN, ROI and FC, are abbreviations of respectively convolutional, dropout, region proposal network, region of interest, and fully connected 
layers. The numbers between brackets give the output dimensions of the ROIAlign layer. The image was adapted from Shi et al. (2019). 
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2.2.1. Step 1 - Annotate 
The first step in MaskAL involved the annotation of the selected 

images. At algorithm initialisation, this annotation was done on a subset 
of images that was randomly sampled from the training pool. The images 
were annotated by two crop experts, who used the LabelMe software 
(version 4.5.6) (Wada, 2016). In our research, all images were annotated 
beforehand, as this allowed us to conduct three experiments without 
being interrupted for doing the image annotations. In addition, by 
annotating all images, we were able to train Mask R-CNN on the entire 
training pool (see paragraph 2.3.3). 

2.2.2. Step 2 - Train Mask R-CNN 
After the image annotation, Mask R-CNN was trained on the selected 

images. The training procedure was identical for the uncertainty sam
pling and the random sampling. 

The training was performed with a learning rate of 1.0⋅10− 2, and an 
image batch size of two. The stochastic gradient descent optimiser was 
used with a momentum of 0.9 and a weight decay of 1.0⋅10− 4. During 
training, two data augmentations were employed. The first augmenta
tion was a random horizontal flip of the image with a probability of 0.5. 
The second augmentation was an image resizing along the shortest edge 
of the image while maintaining the aspect ratio of the image. The total 
number of training iterations was proportional to the number of training 
images: for each multiple of 500 training images, 2,500 training itera
tions were added to the base number of 2,500 iterations. The training 
was performed with dropout as a regularisation technique to enhance 

the generalisation performance. This procedure was in line with the 
training procedure of Gal and Ghahramani (2016). 

At MaskAL initialisation, the network weights of Mask R-CNN were 
initialised with the weights of a Mask R-CNN model that was pretrained 
on the Microsoft Common Objects in Context (COCO) dataset (Lin et al., 
2014). After the first training procedure, the transfer learning was done 
with the weights of the previously trained Mask R-CNN model to mini
mise the effects of catastrophic forgetting. 

In our training pool, there was a severe class imbalance (healthy: 
disease/defect = 27:1). Due to this class imbalance, the random sam
pling was more likely to sample images with healthy broccoli heads than 
images with damaged, matured, cat-eye or head rot broccoli heads. This 
could eventually lead to a much worse performance than the uncertainty 
sampling. To prevent that our comparison would be too much influ
enced by the class imbalance, it was decided to train Mask R-CNN with a 
data oversampling strategy (Gupta et al., 2019). With this strategy, a 
specific image was repeatedly trained by Mask R-CNN if that image 
contained a minority class (the minority classes were damaged, 
matured, cat-eye and head rot). By repeating the images with minority 
classes during the training, this oversampling strategy was expected to 
reduce the negative effect of the class imbalance on the Mask R-CNN 
performance. 

2.2.3. Step 3 - Evaluate Mask R-CNN 
After the training, the Mask R-CNN model was evaluated on the in

dependent test set to determine its performance. The performance 
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metric was the mean average precision (mAP), which expressed the 
classification and instance segmentation performance of Mask R-CNN. A 
mAP value close to zero indicated an incorrect classification and/or 
inaccurate instance segmentation, while a value close to 100 indicated a 
correct classification and accurate instance segmentation. 

The evaluation of Mask R-CNN was done without dropout, and with a 
fixed threshold of 0.01 on the non-maximum suppression (NMS). This 
NMS threshold removed all instances that overlapped at least 1% with a 
more confident instance, essentially meaning that only one instance 
segmentation was done on an object. This approach was considered 
valid since the broccoli heads grew solitary and did not overlap each 
other in the images. 

2.2.4. Step 4 - Uncertainty sampling 
After the training and evaluation, new images were sampled from the 

training pool. With the random sampling method, this was done 
randomly. With the uncertainty sampling, images were sampled about 

which the trained Mask R-CNN model was most uncertain. The uncer
tainty sampling involved four steps: the image analysis with Monte- 
Carlo dropout (paragraph 2.2.4.1), the grouping of the instance seg
mentations into instance sets (paragraph 2.2.4.2), the calculation of the 
certainty values (paragraph 2.2.4.3), and the image sampling (para
graph 2.2.4.4). 

2.2.4.1. Step 4.1 - Monte-Carlo dropout. Each available image from the 
training pool was analysed with the Monte-Carlo dropout method. A 
user-specified number of forward passes determined how many times 
the same image was analysed with the trained Mask R-CNN model. 
During the repeated image analysis, the dropout caused the random 
disconnection of some of the neurons in the head branches of Mask R- 
CNN. This random neuron disconnection could lead to different model 
outputs, see Fig. 4a, Fig. 4b and Fig. 4c. The repeated image analysis was 
done with a fixed threshold of 0.01 on the non-maximum suppression 
and a fixed threshold of 0.5 on the confidence level. 

Fig. 4. A visual example of the Monte-Carlo dropout method and the calculation of the certainty values. (a) After the first forward pass with dropout, Mask R-CNN 
produced two instances: one instance of class cat-eye with a high confidence score (0.98) and one instance of class head rot with a lower confidence score (0.65). (b) 
The same image was analysed again during a second forward pass, resulting a confident cat-eye instance (0.97) and a less confident matured instance (0.59). (c) After 
the third forward pass, Mask R-CNN produced a confident cat-eye instance (0.99) and a moderately confident healthy instance (0.71). (d) After the three forward 
passes, the instance segmentations were grouped into two instance sets, based on spatial similarity. An instance set is a group of different instance segmentations that 
appear on the same broccoli head. The white bounding box and mask of the instance sets represent the average box and mask of the instance segmentations. On each 
instance set, three certainty values were calculated: the semantic certainty (csem), the occurrence certainty (cocc) and the spatial certainty (cspl), which was the 
product of the spatial certainty of the bounding box (cbox) and the mask (cmask). The certainty of the instance set (ch) was calculated by multiplying the csem, cocc 
and cspl. 
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2.2.4.2. Step 4.2 - Instance sets. After the repeated image analysis, the 
outputs of Mask R-CNN were grouped into instance sets. An instance set 
is a group of instance segmentations from multiple forward passes that 
appear on the same object in the image, see two examples in Fig. 4d. On 
these instance sets, the certainty values were calculated. 

The grouping of the instance segmentations into instance sets was 
based on the spatial similarity method of Morrison et al. (2019). The 
method added an instance segmentation to an instance set when the 
intersection over union (IoU) between this segmentation and at least one 
other segmentation from the instance set exceeded a certain threshold, 
τIoU. The IoU is a metric for the spatial overlap between two mask 
segmentations, M1 and M2, and the value varies between zero (no 
overlap) and one (complete overlap), see Eq. 1. 

IoU(M1,M2)=
|M1 ∩M2|

|M1 ∪M2|
where |⋅| gives the total number of mask pixels

(1)  

A new instance set was created when the segmentation did not exceed 
the τIoU threshold. It was assumed that this segmentation then repre
sented a different object. In our research, the τIoU was set to 0.5 and this 
value was adopted from Morrison et al. (2019). 

2.2.4.3. Step 4.3 - Certainty calculation. Three certainty values were 
calculated for each instance set: the semantic certainty, the spatial cer
tainty, and the occurrence certainty. The certainty calculations were 
adopted from Morrison et al. (2019), but changes were made to the 
semantic certainty calculation to make it more suitable for use on 
datasets with visually similar classes (like our broccoli dataset). 

The semantic certainty, csem, was a measure of the consistency of 
Mask R-CNN to predict the class labels within an instance set. The csem 
value was close to zero when there was a low semantic certainty, and 
close to one when there was a high semantic certainty. Morrison et al. 
(2019) calculated the csem value by taking the difference between the 
average confidence score of the first and the second most probable class 
of the instance set. This method is known as margin sampling, but a 
disadvantage is that it does not take into account the confidence scores 
of the less probable classes. This is undesirable when the dataset has a 
high degree of inter-class similarity, because then Mask R-CNN has a 
tendency to hesitate between more than two classes. This multi-class 
hesitation was also expected in our broccoli dataset. To overcome the 
disadvantage of the margin sampling, the csem calculation was upgraded 
with an entropy-based equation, which took the confidence scores, P, of 
all classes, K = {k1,…,kn}, into account, see Eq. 2. However, with the 
entropy calculation, the csem value would be low when there was class 
certainty, and this was opposite of Morrison’s csem value. Also, the en
tropy calculation could result in values higher than one, which deviated 
from Morrison’s csem value that was bound between zero and one. With 
two additional calculations these issues were solved. First, the entropy 
value, H, was divided by the maximum entropy value, Hmax, so that the 
resulting value was bound between zero and one (see Eq. 3). The Hmax 

value was calculated with Eq. 4, and this value represented a situation 
where the confidence scores of all classes were equal, which was the case 
when Mask R-CNN had the lowest certainty in predicting the class labels. 
Then, the resulting value from the division was inverted, such that a 
high Hsem value would result when there was a high semantic certainty. 
With Eq. 5, the Hsem values of all instances belonging to an instance set, 
S = {s1,…, sr}, were averaged. This resulted in one semantic certainty 
value, csem, per instance set. Fig. 4d visualises two estimations of csem. 

H(K) = −
∑n

i=1
P(ki)⋅logP(ki) with K = {k1,…, kn} (2)  

Hsem

(

s
)

= 1 −

(
H(K)

Hmax(K)

)

where s is an instance of instance set S

(3)  

Hmax(K) = − n⋅
(

1
n

⋅log
1
n

)

where n is the number of classes (4)  

csem(S) =
1
r
⋅
∑r

i=1
Hsem(si) with S = {s1,…, sr} (5)  

The spatial certainty, cspl, was a measure of the consistency of Mask R- 
CNN to determine the bounding box locations and to segment the object 
pixels within an instance set. The cspl value was close to zero when there 
was little spatial consistency between the boxes and the masks in the 
instance set, and the value was close to one when there was much spatial 
consistency. The cspl value was calculated by multiplying the spatial 
certainty value of the bounding box (cbox) by the spatial certainty value 
of the mask (cmask), see Eq. 6. The cbox and the cmask values were the 
mean IoU values between the average box and mask of the instance set 
(respectively denoted as B and M) and each individual box and mask 
prediction within that instance set (respectively denoted as B and M), 
refer to Eq. 7 and 8. The average box, B, was formed from the centroids 
of the corner points of the individual boxes in the instance set (see the 
white boxes in Fig. 4d). The average mask, M, represented the 
segmented pixels that appeared in at least 25% of the individual masks 
in the instance set (see the white masks in Fig. 4d). The value of 25% was 
found to produce the most consistent average masks for our broccoli 
dataset. 

cspl(S) = cbox(S)⋅cmask(S) with S = {s1,…, sr} (6)  

cbox(S) =
1
r
⋅
∑r

i=1
IoU(B(S),B(si)) with S = {s1,…, sr} (7)  

cmask(S) =
1
r
⋅
∑r

i=1
IoU(M(S),M(si)) with S = {s1,…, sr} (8)  

The occurrence certainty, cocc, was a measure of the consistency of Mask 
R-CNN to predict instances on the same object during the repeated 
image analysis. The cocc value was close to zero, when there was little 
consensus in predicting an instance on the same object in each forward 
pass. The cocc value was one when Mask R-CNN predicted an instance on 
the same object in each forward pass. The cocc value was calculated by 
dividing the number of instances belonging to an instance set, r, by the 
number of forward passes, fp, see Eq. 9. 

cocc(S) =
r
fp

with S = {s1,…, sr} (9)  

The semantic, spatial, and occurrence certainty values were multiplied 
into one certainty value for each instance set, see Eq. 10. With this 
multiplication, the three certainty values were considered equally 
important in determining the overall certainty, ch, of an instance set. 

ch(S) = csem(S)⋅cspl(S)⋅cocc(S) with S = {s1,…, sr} (10)  

Because the Mask R-CNN training and testing was done on images and 
not on individual instances, it was needed to combine the certainties of 
the instance sets into one certainty value for the entire image. The image 
certainty value was calculated with either the average method or the 
minimum method. With the average method, the image certainty value 
was the average certainty value of all instance sets in the image, I = {S1,

…,St}, see Eq. 11. In Fig. 4d, the average certainty value was 0.62 ((0.88 
+ 0.37)/2). With the minimum method, the image certainty value was 
the lowest certainty value of all instance sets, see Eq. 12. In Fig. 4d, the 
minimum certainty value was 0.37. The certainty calculation method 
was made configurable in MaskAL, so that we could do an experiment to 
assess its effect on the active learning performance (this is explained in 
paragraph 2.3.1). 
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cavg

(

I

)

=
1
t
⋅
∑t

i=1
ch

(

Si

)

with I =

{

S1,…, St

}

(11)  

cmin(I) = min(ch(I)) with I = {S1,…, St} (12)  

2.2.4.4. Step 4.4 - Sampling. After calculating the certainty value of 
each image from the training pool, a subset of images was selected about 
which Mask R-CNN was most uncertain. The size of the image set, 
hereinafter referred to as the sample size, was made configurable in 
MaskAL. This allowed us to do an experiment to assess the effect of the 
sample size on the active learning performance (this is explained in 
paragraph 2.3.2). 

2.3. Experiments 

Three experiments were set up, with the final objective of comparing 
the performance of the active learning with the performance of the 
random sampling. Before this comparison could be done, experiments 1 
and 2 were performed to investigate how to optimise the active learning. 

2.3.1. Experiment 1 
The objective of experiment 1 was to test the effect of the dropout 

probability, certainty calculation method, and number of forward passes 
on the active learning performance. This test would reveal the optimal 
settings for these parameters, which were assumed to have the most 
influence on the active learning performance, because they all influ
enced the calculation of the certainty value of the image. 

The experiment was done with three dropout probabilities: 0.25, 
0.50, and 0.75. Dropout probability 0.50 was a frequently used proba
bility in analogous active learning research, for example Aghdam et al. 
(2019),Gal and Ghahramani (2016) and López Gómez (2019). With this 
dropout probability, there was a moderate chance of dropout during the 
image analysis. The dropout probabilities 0.25 and 0.75 were chosen to 
have a lower chance of dropout and a higher chance of dropout, 
compared to the dropout probability 0.50. 

Two certainty calculation methods were tested: the average method 
and the minimum method, which are both described in paragraph 
2.2.4.3. By comparing these two calculation methods, it was possible to 
evaluate whether the active learning benefited from sampling the most 
uncertain instances (when using the minimum method), or from sam
pling the most uncertain images (when using the average method). 

Before we could evaluate the effect of the number of forward passes 
on the active learning performance, a preliminary experiment was 
performed to examine which numbers were plausible in terms of con
sistency of the certainty estimate. This consistency was considered 
important, because when the estimate is consistently uncertain, there is 
more chance that the image actually contributes to the active learning 
performance. The setup and results of the preliminary experiment are 
described in Appendix A. Based on the results in Appendix A, two 
numbers of forward passes were chosen: 20 and 40. 

The three dropout probabilities, two certainty calculation methods, 
and two numbers of forward passes were combined into 12 unique 
combinations of certainty calculation parameters. We assessed the effect 
of each of these 12 combinations on the active learning performance. All 
combinations were tested with the same initial dataset of 100 images, 
which were randomly sampled from the training pool. After training 
Mask R-CNN on the initial dataset, the trained model was used to select 
200 images from the remaining training pool about which Mask R-CNN 
was most uncertain. The selected images were used together with the 
initial training images to retrain Mask R-CNN. This procedure was 
repeated 12 times, such that in total 13 image sets were trained (con
taining respectively, 100, 300, 500, …, 2500 sampled images). After 
training Mask R-CNN on each image set, the performance of the trained 
model was determined on the images of the first test set. The 13 resulting 
mAP values were stored. The experiment was repeated five times to 

account for the randomised initial dataset and the randomness in the 
Monte-Carlo dropout method. 

A three-way analysis of variance (ANOVA) with a significance level 
of 5% was employed for the mAP values to test whether there were 
significant performance differences between the three dropout proba
bilities, the two certainty calculation methods, and the two numbers of 
forward passes. The ANOVA was performed per mAP value, because the 
mAP was not independent between the different image sets (for 
instance, the set of 2500 images contained the 2300 images from the 
previous sampling iteration). 

2.3.2. Experiment 2 
The optimal setting for the dropout probability, certainty calculation 

method, and number of forward passes was obtained from experiment 1 
and used in experiments 2 and 3. The objective of experiment 2 was to 
test the effect of the sample size on the active learning performance. This 
experiment would reveal the optimal sample size for annotating the 
images and retraining Mask R-CNN. A smaller sample size would 
possibly be better for the active learning performance, because Mask R- 
CNN would then have more chances to retrain on the images it was 
uncertain about. A larger sample size will reduce the total sampling 
time. 

Four sample sizes were tested: 50, 100, 200, and 400 images. These 
four sample sizes were considered the most practical in terms of anno
tation and training time. For all sample sizes, the initial dataset size was 
100 images and the maximum number of training images was 2500 
images. The number of sampling iterations for the four sample sizes was 
respectively, 48, 24, 12, and 6. The performances of the trained Mask R- 
CNN models were determined on the images of the second test set. The 
experiment was repeated five times to account for the randomised initial 
dataset and the randomness in the Monte-Carlo dropout method. 

A one-way ANOVA with a significance level of 5% was employed for 
the mAP values to test whether there were significant performance 
differences between the four sample sizes. The ANOVA was performed 
on the mAP values that shared a common number of training images (the 
common numbers were 500, 900, 1300, 1700, 2100, and 2500 images). 
The ANOVA was not performed on the mAP value of the initial dataset, 
as this value was the same between the four sample sizes (since the 
training was performed with the same dropout probability). 

2.3.3. Experiment 3 
The objective of experiment 3 was to compare the performance of the 

active learning with the performance of the random sampling. The 
initial dataset size was 100 images, and both sampling methods used the 
same sample size that was chosen from experiment 2. The performances 
of the trained Mask R-CNN models were determined on the images of the 
third test set. The experiment was repeated five times to account for the 
randomised initial dataset and the randomness in the Monte-Carlo 
dropout method. A one-way ANOVA with a significance level of 5% 
was employed to test whether there were significant performance dif
ferences between the active learning and the random sampling. The 
ANOVA was not performed on the mAP value of the initial dataset, as 
this value was the same between the two sampling methods (since the 
training was performed with the same dropout probability). 

For comparison, another Mask R-CNN model was trained on the 
entire training pool (14,000 images). The performance of this model was 
also evaluated on the images of the third test set. The resulting mAP 
value was considered as the maximum mAP that could have been 
reached on our dataset. 

3. Results 

The results are summarised per experiment: experiment 1 (para
graph 3.1), experiment 2 (paragraph 3.2), and experiment 3 (paragraph 
3.3). 
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3.1. The effect of the dropout probability, the number of forward passes, 
and the certainty calculation method on the active learning performance 
(experiment 1) 

Table 2 summarises the effects of the dropout probability, the 
number of forward passes and the certainty calculation method on the 
active learning performance (mAP). The results of the ANOVA are 
summarised by the different letters. The letters are sorted in descending 
order, meaning that letter ”a” significantly outperforms letters ”b” and 
”c” at a significance level of 5% (p = 0.05). The performance means that 
do not have a letter in common are significantly different. 

The dropout probability had the largest effect on the active learning 
performance (Table 2). For all thirteen sampling iterations, dropout 
probability 0.25 had a significantly higher mAP than dropout proba
bility 0.75. In five sampling iterations (1, 2, 3, 11, and 12), the dropout 
probability 0.25 had a significantly higher mAP than the dropout 
probability 0.50. These results were in line with Fig. A.1 (Appendix A), 
which showed that the dropout probability 0.25 had the most consistent 
certainty estimate. Dropout probability 0.25 was chosen as the preferred 
probability in the next experiments. 

The number of forward passes had a small effect on the active 
learning performance. In only three of the thirteen sampling iterations, 
there was a significant difference between 20 and 40 forward passes 
(Table 2). In sampling iterations 8, 11, and 12, the mAP was significantly 
higher at 20 forward passes. This result was unexpected, as Fig. A.1 
(Appendix A) showed that there was a less consistent certainty estimate 
at 20 forward passes than at 40 forward passes. It should be noted that 
the mAP differences between 20 and 40 forward passes were relatively 
small (maximally 1.7 mAP). We decided to choose 20 forward passes in 
the next experiments. 

The certainty calculation method had the smallest effect on the 
active learning performance. In only one of the thirteen sampling iter
ations, there was a significant difference between the average method 
and the minimum method (Table 2). In sampling iteration 10, the 
average method had a significantly higher mAP than the minimum 
method, but the difference was small (1.3 mAP). The small mAP dif
ferences were probably due to the limited number of broccoli instances 
per image. There were on average two broccoli instances per image, 
suggesting that the choice of the average or the minimum method 
probably did not have much influence on the active learning perfor
mance. Despite the small mAP differences, we decided to choose the 
average method in the next experiments. 

The decision to continue with the parameters for the dropout prob
ability (0.25), number of forward passes (20) and certainty calculation 
method (average), meant that five significant interactions between the 
dropout probability and the certainty calculation method and one sig
nificant interaction between the number of forward passes and the 
certainty calculation method were ignored. These significant in
teractions were all due to the dropout probability 0.75 (whose perfor
mance was found to be insufficient). There were no significant 
interactions between the dropout probability, the number of forward 
passes and the certainty calculation method. 

3.2. The effect of the sample size on the active learning performance 
(experiment 2) 

Table 3 summarises the effect of the sample size on the active 
learning performance (mAP). The results of the ANOVA are summarised 
by the different letters. The performance means that do not have a letter 
in common are significantly different at a significance level of 5% (p =

Table 2 
Performance means expressed for the three dropout probabilities, the two numbers of forward passes, the two certainty calculation methods, and the thirteen sampling 
iterations. The results of the ANOVA are summarised by the different letters. The letters are sorted in descending order, meaning that letter ”a” significantly out
performs letters ”b” and ”c” at a significance level of 5% (p = 0.05).  

Sampling iteration Number of training images Performance (mAP) 

Dropout probability Forward passes Certainty method 

0.25 0.50 0.75 20 40 average minimum 

1 100 21.5 a 18.4 b 12.4 c 17.4 a 17.5 a 17.2 a 17.7 a 
2 300 35.8 a 31.3 b 17.5 c 28.6 a 27.8 a 27.7 a 28.8 a 
3 500 42.1 a 37.5 b 22.0 c 34.1 a 33.6 a 33.5 a 34.3 a 
4 700 47.9 a 46.1 a 31.5 b 41.7 a 41.9 a 41.4 a 42.2 a 
5 900 49.8 a 49.6 a 36.3 b 45.3 a 45.1 a 45.0 a 45.5 a 
6 1100 53.1 a 52.7 a 41.0 b 49.3 a 48.6 a 48.9 a 49.0 a 
7 1300 54.5 a 53.2 a 46.0 b 51.7 a 50.8 a 51.5 a 51.0 a 
8 1500 56.5 a 55.3 a 49.7 b 54.7 a 53.0 b 53.8 a 53.9 a 
9 1700 57.2 a 57.5 a 54.0 b 56.8 a 55.7 a 56.8 a 55.6 a 
10 1900 59.0 a 58.2 a 55.5 b 58.0 a 57.2 a 58.2 a 56.9 b 
11 2100 60.1 a 58.4 b 56.9 c 59.1 a 57.8 b 58.6 a 58.3 a 
12 2300 60.6 a 58.7 b 57.8 b 59.7 a 58.4 b 59.2 a 58.9 a 
13 2500 61.1 a 60.2 a 58.6 b 60.4 a 59.5 a 60.2 a 59.7 a  

Table 3 
Performance means for the four sample sizes and the seven sampling iterations that shared a common number of training images. The results of the ANOVA are 
summarised by the different letters. The letters are sorted in descending order, meaning that letter “a” significantly outperforms letters “b” and “c” at a significance 
level of 5% (p = 0.05). The performance means that do not have a letter in common are significantly different. The ANOVA was not performed on the mAP value of the 
initial dataset (100 images).  

Sampling iteration Number of training images Performance (mAP) 
Sample size 

50 100 200 400 

1 100 22.4 - 22.4 - 22.4 - 22.4 - 
2 500 40.9 a 41.6 a 42.2 a 36.7 b 
3 900 47.5 b 48.8 ab 50.5 a 48.4 ab 
4 1300 51.0 b 50.3 b 55.2 a 55.6 a 
5 1700 53.1 b 51.7 b 57.9 a 57.5 a 
6 2100 54.3 b 56.1 b 58.9 a 60.2 a 
7 2500 56.7 c 57.3 bc 59.5 ab 60.5 a  
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0.05) (letter ”a” significantly outperforms letters “b” and “c”). The 
ANOVA was not performed on the mAP value of the initial dataset (100 
images). 

For all sampling iterations, sample size 200 had the significantly 
highest mAP. In five of the six sampling iterations (3–7), sample size 200 
had a significantly higher mAP than sample size 50. In three of the six 
sampling iterations (4, 5, and 6), sample size 200 had a significantly 
higher mAP than sample size 100. There was one significant difference 
between sample size 200 and 400 (at iteration 2), indicating that sample 
size 400 had the significantly highest mAP in five of the six iterations. 

An in-depth analysis showed that the performance gains of sample 
sizes 200 and 400 were mainly due to a higher performance on the 
minority classes cat-eye and head rot. Fig. 5c and Fig. 5d show that 
sample sizes 200 and 400 sampled a higher percentage of these classes 
compared to sample sizes 50 and 100 (Fig. 5a and Fig. 5b). Apparently, 
for the active learning performance, it was better to sample with larger 
image batches that primarily consisted of one or two previously 
underperforming minority classes, than to sample with smaller image 
batches that had a more balanced ratio of the minority classes. 

One research demarcation may have influenced the results. In 
experiment 1, only sample size 200 was tested, and this may have 
resulted that the chosen parameters from experiment 1 were only opti
mised for sample size 200 and not for sample sizes 50, 100 and 400. 
Despite this research demarcation, we decided to choose sample size 200 
in the next experiment. 

3.3. Performance comparison between active learning and random 
sampling (experiment 3) 

Fig. 6 visualises the performance of the active learning and the 
random sampling for the thirteen sampling iterations (100, 300, …, 
2500 sampled images). The coloured areas around the lines represent 
the 95% confidence intervals around the means. For all sampling iter
ations, the active learning had a significantly higher mAP than the 
random sampling (the ANOVA was not performed on the mAP value of 
the initial dataset (100 images)). The performance differences were 
between 4.2 and 8.3 mAP. Fig. 7 visualises the possible cause of the 
performance differences. With the random sampling, there was a lower 
percentage of sampled instances of the four minority classes. As a result, 
the classification performance on these minority classes was lower. The 
active learning sampled a higher percentage of images with minority 
classes, leading to a significantly better performance. Figs. 8 and 9 
visualise the Mask R-CNN performance on two broccoli images. 

With the random sampling, the maximum performance was 51.2 
mAP and this value was achieved after sampling 2300 images. With the 
active learning, a similar performance was achieved after sampling 900 
images (51.0 mAP), indicating that potentially 1400 annotations could 
have been saved (see the black dashed line in Fig. 6). 

The maximum performance of the active learning was 58.7 mAP and 
this value was achieved after sampling 2500 images. This maximum 
performance was 3.8 mAP lower than the performance of the Mask R- 
CNN model that was trained on the entire training pool of 14,000 images 
(62.5 mAP). This means that the active learning achieved 93.9% of that 

Fig. 5. Cumulative percentages of the sampled classes in experiment 2. The percentages are expressed for the seven numbers of training images that were shared 
between the four sample sizes: (a) sample size 50 (b) sample size 100 (c) sample size 200 (d) sample size 400. 
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model’s performance with 17.9% of its training data. The maximum 
performance of the random sampling was 11.3 mAP lower than the 
performance of the Mask R-CNN model trained on the entire training 
pool. The random sampling achieved 81.9% of that model’s perfor
mance with 16.4% of its training data. 

Both sampling methods achieved their largest performance gains 
during the first 1200 sampled images, see Fig. 6. The gains were 
respectively, 32.2 mAP with the active learning and 26.5 mAP with the 
random sampling. During the last 1200 sampled images, there was a 
marginal performance increase of 6.0 mAP with the active learning and 
4.2 mAP with the random sampling. Moreover, with the random sam
pling, there was only an increase of 0.7 mAP during the last 800 sampled 
images. This suggests that the annotation of these 800 images probably 
would have cost more than it would have benefited. 

4. Discussion 

By using active learning, the performance of Mask R-CNN improved 
faster, and thereby the annotation effort could be reduced compared to a 
random sampling method. Although this outcome was only demon
strated on one dataset, our results suggest that better performance can 
be achieved when retraining Mask R-CNN on images about which the 
model was most uncertain. 

On our class imbalanced dataset, the better performance of the active 
learning was due to the sampling of a higher fraction of images con
taining the four minority classes. It was expected that the sampled im
ages had a low semantic certainty due to the difficulty in correctly 
classifying the class labels. On the other hand, it was probably easier for 
Mask R-CNN to learn the masks of the five broccoli classes, since they 

Fig. 6. Performance means of the active learning (orange line) and the random sampling (blue line). The coloured areas around the lines represent the 95% con
fidence intervals around the means. For all sampling iterations, the active learning had a significantly higher mAP than the random sampling (the ANOVA was not 
performed on the mAP value of the initial dataset (100 images)). The black solid line represents the performance of the Mask R-CNN model that was trained on the 
entire training pool (14,000 images). The black dashed line is an extrapolation of the maximum performance of the random sampling to the performance curve of the 
active learning. The dashed line can be interpreted as the number of annotated images that could have been saved by the active learning while maintaining the 
maximum performance of the random sampling. 

Fig. 7. Cumulative percentages of the sampled classes in experiment 3. The percentages are expressed for the thirteen numbers of training images and the two 
sampling methods: (a) random sampling (b) active learning. 
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had a similar shape. As such, the spatial certainty might have been 
higher. There was probably also a higher occurrence certainty, as the 
broccoli heads were generally well visible in the image. Thus, in our 
dataset, the overall image certainty was probably more influenced by 
the semantic certainty than by spatial or occurrence certainty. This 
outcome was opposite to López Gómez (2019), who found that the 
spatial certainty contributed most to the active learning performance. 
The difference is that López Gómez tested the active learning on a 
dataset with bicycles and motorcycles, and the shapes of these classes 
were probably more difficult for Mask R-CNN to learn. Thus, depending 
on the specific variation and challenges in a dataset, the active learning 
can emphasise the optimisation of a specific certainty. Since MaskAL is 

the first active learning framework with three certainty calculations, we 
expect that it can also be used on datasets with instances with a difficult- 
to-learn shape or datasets with small and unclear instances. 

There are several ways in which MaskAL could be further improved. 
First, weighting factors could be integrated into the certainty equation to 
tune the relative importance of either semantic, spatial, or occurrence 
certainty. We believe that this could have improved the MaskAL per
formance on our broccoli dataset, as prioritisation of semantic certainty 
could have led to faster optimisation of the classification performance. 
Second, the dropout can be further optimised. As demonstrated in 
experiment 1, the choice of the dropout probability had a large influence 
on the active learning performance. To choose the optimal dropout 

Fig. 8. Instance segmentation outputs of Mask R-CNN on the same image with a head rot infected broccoli head. (a) The Mask R-CNN model that was trained with 
the random sampling method misclassified the broccoli head as being healthy. (b) The Mask R-CNN model that was trained with MaskAL correctly classified the 
broccoli head. 

Fig. 9. Instance segmentation outputs of Mask R-CNN on the same image with two healthy broccoli heads (the ones in the top and centre of the image) and one 
damaged broccoli head (in the bottom of the image). (a) The Mask R-CNN model that was trained with the random sampling method misclassified the damaged 
broccoli head as being cat-eye. (b) The Mask R-CNN model that was trained with MaskAL correctly classified the three broccoli heads. 
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probability on a different dataset, it may be necessary to redo experi
ment 1, possibly with more than three tested probabilities. However, it is 
time consuming to conduct such an experiment for every new dataset. 
Therefore, we recommend investigating whether the concrete dropout 
method of Gal et al. (2017) can be used as an alternative method to 
automatically optimise the dropout probability during training. After 
using the concrete dropout method, the optimised dropout probability 
can be used for sampling, and this might reduce the experimental time 
and improve the active learning performance. 

Although our active learning method and dataset were different, it is 
possible to qualitatively compare our results with those of López Gómez 
(2019),Van Dijk (2019), and Wang et al. (2020). In the study of López 
Gómez (2019), the active learning with Monte-Carlo dropout performed 
better than the random sampling in five of the eight sampling iterations. 
In the other three sampling iterations, the active learning performed 
worse than the random sampling. One possible reason for this poorer 
performance was that López Gómez (2019) sampled both images about 
which Mask R-CNN was uncertain as images about which Mask R-CNN 
was certain (this was done to increase the diversity in the image set). We 
believe that López Gómez (2019) could have achieved better results if 
Mask R-CNN had been retrained only on the images about which the 
model was most uncertain. In the study of Van Dijk (2019), the proba
bilistic active learning (PAL) did not perform better than the random 
sampling, possibly because PAL was designed to provide certainty scores 
only for classification and not for mask segmentation. Another reason 
for this outcome was that Van Dijk (2019) performed the image sam
pling on such small datasets that the added value of the active learning 
may have been limited (the datasets contained respectively 61 images 
and 45 images). In the study of Wang et al. (2020), the active learning 
with a learning loss method was compared to random sampling on two 
medical datasets. On one dataset, the active learning performed better 
than the random sampling in the first three sampling iterations, while in 
the last two iterations the performance was equal. On the other dataset, 
the active learning performed better than the random sampling in all 
five sampling iterations. Thus, learning loss can be another promising 
method for active learning, especially because, unlike MaskAL, it can 
predict the image uncertainty in one forward pass. In future research, 
MaskAL should be compared quantitatively to other active learning 
methods for Mask R-CNN. We also recommend comparing MaskAL’s 
uncertainty sampling with sampling methods other than random sam
pling, such as diversity sampling or hybrid sampling. Such a comparison 
could give a better impression of how MaskAL would compare to other 
more advanced sampling methods. We recommend performing such a 
comparison on a benchmark dataset, such as Microsoft COCO, because 
this dataset contains more images and more variation than our broccoli 
dataset. 

The potential use of MaskAL is greater than sampling images from a 
fixed dataset in an offline setting. MaskAL can also be applied to an 
operational robot to immediately select the images about which Mask R- 
CNN is most uncertain. This image selection can be done with a fixed 
threshold on the image certainty value. The down side of using MaskAL 
during robot deployment is that the image analysis will take more time. 
Should the image analysis take more time than desired, then it is rec
ommended to temporarily store the images on the computer, so that they 
can be analysed by MaskAL after the robot has completed its task. 

MaskAL’s certainty calculation can also be used for purposes other 
than active learning. For instance, the certainty values can be used as an 
input for the robot to make more targeted decisions, like transporting 
the harvested broccoli heads with low semantic certainty to another bin 

for further inspection. The certainty values of MaskAL could also be 
fused with other predictions or sensor measurements in a probabilistic 
framework, allowing the robot to better reason under uncertainty. 
Future research should focus on applying MaskAL for such purposes. 

5. Conclusions 

On our broccoli dataset with five visually similar classes, the active 
learning with MaskAL performed significantly better than the random 
sampling. Furthermore, MaskAL had the same performance after sam
pling 900 images as the random sampling had after sampling 2300 im
ages. This means that by using MaskAL, 1400 annotations could have 
been saved. Compared to a Mask R-CNN model that was trained on the 
entire training set (14,000 images), MaskAL achieved 93.9% of that 
model’s performance with 17.9% of its training data. In comparison, the 
random sampling achieved 81.9% of that model’s performance with 
16.4% of its training data. We conclude that by using MaskAL, the 
annotation effort can be reduced for training Mask R-CNN on a broccoli 
dataset with visually similar classes. 

In this paper, MaskAL was used for active learning with the purpose 
of reducing annotation effort. The research was performed on a dataset 
in which all classes were known. We think that MaskAL can also be 
valuable for selecting unknown classes in open-set learning. Further
more, MaskAL can also be used as an uncertainty estimator in proba
bilistic robotic frameworks. Our software is available for such purposes. 
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Appendix A. Preliminary experiment on the effect of the number of forward passes on the consistency of the certainty estimate 

This section summarises the setup and the results of the preliminary experiment that was done to test the effect of the number of forward passes on 
the consistency of the certainty estimate. This preliminary experiment was conducted with a Mask R-CNN model that was trained on the entire training 
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pool (14,000 images). 
Eighteen numbers of forward passes (fp) were tested: from 2 to 10 in steps of 1 and from 10 to 100 in steps of 10. For each number of forward pass, 

the certainty value was calculated on each instance set that was predicted on the images of the first test set. Then, the absolute difference was 
calculated between that certainty value, chfp , and the certainty value at 100 forward passes, ch100 , see Eq. A.1. 100 forward passes was the maximum 
number that could be performed with our graphical processing unit. The ch100 value was assumed to approximate the certainty value after an infinite 
number of forward passes. By calculating the absolute difference with the ch100 value, it was possible to get an indication of the consistency of the 
certainty estimate at a specific forward pass, Δchfp . 

Δch(S)fp = |ch(S)fp − ch(S)100| with fp =
{

2, 3,…, 10, 20,…, 100
}

(A.1) 

Fig. A.1 visualises the absolute difference in the certainty estimate between a specific forward pass and 100 forward passes. The absolute dif
ferences are visualised for the dropout probabilities 0.25, 0.50, and 0.75. For all dropout probabilities, the largest absolute difference was observed for 
the forward passes lower than 10. Between 10 and 40 forward passes, there was a gradual decrease in the absolute difference. Between 40 and 90 
forward passes, the absolute difference was relatively constant. Based on Fig. A.1, we chose 20 and 40 forward passes to be tested in experiment 1. 
These values produced a relatively consistent certainty estimate (especially for the dropout probabilities 0.25 and 0.50). In addition, the value 20 was 
closest to the 16 forward passes that were used by Morrison et al. (2019). 
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