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Abstract: Geomorphic classification of large rivers identifies morphological patterns, as a foundation
for estimating biogeochemical and ecological processes. In order to support the modelling of in-
channel nutrient retention or export, the classification of geomorphic units (GUs) was done in the
Padma River, Bangladesh, a large and geomorphically-complex lowland river. GUs were classified
using the normalized difference vegetation index (NDVI) four times over a year, so as to cover the
seasonal variation of water flows. GUs were categorized as primary and secondary channels (C
& S); longitudinal bar (L); transverse bar (T); side bar (SB); unvegetated bank (EK); dry channel
(ED); island (VI); and water depression (WD). All types of GUs were observed over the four distinct
annual seasons, except ED, which was absent during the high flow, monsoon season. Seasonal
variation of the surface area of GUs and discharge showed an inverse relation between discharge and
exposed surface areas of VI, L, T, and SB. Nutrients mainly enter the river system through water and
sediments, and during monsoon, the maximum portion of emergent GUs were submerged. Based
on the assumption that nutrient retention is enhanced in the seasonally inundated portions of GUs,
nutrient retention-/export-relevant geomorphic units (NREGUs) were identified. Seasonal variation
in the area of NREGUs was similar to that of GUs. The mean NDVI values of the main identified
NREGUs were different. The variation of NDVI values among seasons in these NREGUs resulted
from changes of vegetation cover and type. The variation also occurred due to alteration of the
surface area of GUs in different seasons. The changes of vegetation cover indicated by NDVI values
across seasons are likely important drivers for biogeochemical and ecological processes.

Keywords: geomorphic classification; geomorphic units; NDVI; Sentinel 2; QGIS; nutrient retention/
export; large lowland river; Padma River; Bangladesh

1. Introduction

River biodiversity and ecosystem functioning depend on the geomorphology and
erosional and depositional processes within geomorphic units [1,2]. Geomorphic units,
hereafter GUs, are discrete morphodynamic entities, considered building blocks of the river
and defined by their position, morphology, and sediment composition. Generally, GUs
are mapped at reach scale, because this scale is important for hydromorphological factors,
such as water flow and sediment transport [3]. Different classification schemes have been
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proposed to delineate and map GUs at the scale of the river reach. Wyrick and Pasternack [4]
classified GUs based on hydraulic data (flow velocity and depth), whereas Wheaton et al. [5]
classified GUs based on topographic and morphological characteristics (position, attributes
of sediment and vegetation). Classification of GUs has been developed to cover a wide
range of river types (lowland systems, mountain systems, highly dynamic systems, etc.)
and includes different sub-domains (vegetation, bed configuration, sedimentary units) and
scales (macro-unit, unit, and sub-unit) [3,6].

Nutrient retention or export is influenced by seasonal discharge [7,8] and biogeochem-
ical processes [9–11]. Nutrients in a river channel are both taken up by, and released from,
the river bed. Data for large rivers have shown the primary importance of discharge for
nutrient flux [12,13]. Morphological changes in large rivers influence nutrient removal
processes and loads to the deltas or downstream water bodies. With climate change, the
water volume and seasonal flow of some of the world’s biggest rivers are projected to
change markedly [14], changing sediment mobility and ecological functioning [13]. The
sediment load to large river systems reshapes channel morphology [15], with consequences
for biogeochemical processes and in-stream nutrient retention [16]. GUs can be inundated
temporally and enriched with nutrients. This is usually observed in floodplain areas and ri-
parian zones. Plant uptake and denitrification are biogeochemical processes that contribute
to nitrogen removal from riparian wetlands [17,18]. Vegetation influences these processes,
by both taking up nutrients directly and influencing subsurface denitrification in their root
zones [19].

A variety of satellite imagery is available for monitoring inland water quality and
issues related to nutrient retention, such as water transparency, eutrophication, organic
matter, biomass estimation, nutrient, and chlorophyll concentration [20–27]. Recently,
satellite-derived estimates of flood and vegetation cover are increasingly used in monitor-
ing [28–31]. However, this has not gone as far as estimating biogeochemical processes [32]
or nutrient retention as a function of vegetation cover [33], although land use and land
cover (LULC) maps are frequently generated using satellites [34–37].

In comparison with the commonly used, and previous, SPOT and Landsat products of
satellites, the new generations of freely available satellite imagery provide high-resolution
multispectral imaging, with a high revisit frequency for the detection of temporal changes
in LULC, including inland waters [38,39]. Sentinel-2, with 13 spectral bands, can be used
to derive biogeophysical indices that combine different band reflectances. This allows
for calculations of the normalized difference water index (NDWI, [40]), which separates
water cover from land surfaces [41], and the enhanced vegetation index (EVI, [42]), which
corrects soil background signals and atmospheric influences, to identify forest/canopy
cover, enhancing estimates of the well-known normalized difference vegetation index
(NDVI, [43]) that is often used for separating soil, water, and vegetation classes [44].
In-channel GUs consist of water, sediment, and vegetation [45–47]. Nutrient retention
processes in GUs are related to biophysical activities and water availability [48–50]. One
of the advantages of NDVI is that it can be used to monitor the biophysical conditions
related to natural water retention [51–53] and that it is sensitive to low vegetation cover [41].
However, there is a debate over EVI, regarding illumination conditions and hydroclimatic
factors at decadal scales [54,55]. Nevertheless, characteristic local features need to be
considered in the estimation of biophysical indices [56].

NDVI has been used for monitoring the vegetation and ecosystem dynamics of large
rivers [57–61]. Relationships between seasonal vegetation and discharge variation of large
rivers can be verified by the seasonal correlation between NDVI and discharge [62]. In
the Parana River of South America, NDVI was used to assess fluvial dynamics, describe
ecological patterns [57], and establish a relation between vegetation and GUs [59]. The
latter has brought an opportunity to utilize NDVI to classify GUs in large lowland rivers.

Different classification schemes of GUs have been presented, but none focus on the
seasonal variation of GUs, except Marchetti et al. [59], who used NDVI to show only the
dynamics of floodplain vegetation GUs. In this paper, we set out to develop an NDVI-
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based geomorphic classification scheme for a large lowland river that reflects its relevance
for nutrient retention and export. Therefore, the objectives of the present study are to
(i) classify GUs considering the seasonal variation of a large lowland river based on remote
sensing data, (ii) map areas of GUs assumed to be important for nutrient retention or export,
(iii) show the seasonal dynamics of GUs, focusing on nutrient retention and export and,
(iv) demonstrate the effectiveness of NDVI and shape indexes for the present classification.

2. Materials and Methods
2.1. Study Area

The study area is a part of the Padma River, downstream of the confluence of the
Ganges and Brahmaputra rivers (Figure 1). The morphology of the Padma River is highly
variable, ranging from straight, to meandering and braided channels [63]. The erosion
and deposition patterns of the river reshape the islands and bars (locally called chars) [64],
which range from 1 to 36 years in age. Some are occupied by human settlements [65].
Naturally, islands are a vegetated portion of the study area, but the edges are bare land that
is inundated seasonally.
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Figure 1. Study area of Padma River, Bangladesh (Source: OpenStreetMap Contributors, Natural
Earth, Mapzen Global Terrain).

The study reach is about 50 km in length, demarcated as from Baruria, Manikganj
to Mawa, Munsiganj, just before the Padma bridge (Figure 1). Before Mawa, an outflow
called Arial Khan diverges from the main channel, but no tributaries enter the reach. The
selected area is highly dynamic, with a diversified landform, ranging in width from less
than 2 km to 12 km. The maximum discharge is about 75,000 m3/s during the monsoon,
and the minimum is about 5000 m3/s during the dry/winter season [66]. Mean annual
rainfall is about 2000 mm and mostly occurs during the monsoon [67]. After the monsoon,
in-channel emergent sediment units appear, which are used for the cultivation of a variety
of crops.

2.2. Geomorphic Classification of GUs

Geomorphic classification of GUs followed the approach of Rinaldi et al. [3]. The
spatial setting for the GU analysis was bankfull channel width, which comprises (i) ‘sub-
merged’ channel units (main and secondary); (ii) ‘emergent’ sediment units (bars, islands,
inactive channels); and (iii) in-channel vegetation units. All of these are called macro-units.
Macro-units are further divided into units and sub-units. GU names and classified codes
were adopted from Rinaldi et al. [3], except water depression (WD) and sub-units (Table 1).
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Table 1. Names and identification codes of macro-units, units, and sub-units used in the present
classification.

Macro-Units Units Sub-Units

Name Code Name Code Name Code

Submerged
channel units

C S
Main channel C - -

Secondary channel S - -

Emergent
sediment units E

Bank-attached bar EA Side bar SB

Mid-channel bar EC
Longitudinal bar L

Transverse bar T
Dry channel ED - -

Unvegetated bank EK - -
Water depression WD - -

In-channel
vegetation units V

Island VI - -
Water depression WD - -

2.3. Seasonal Breakdown and Image Selection

Data for 2016–2020 river discharge were collected from the Bangladesh Water De-
velopment Board (BWDB) (Figure 2). Based on these, four seasons of monsoon, post-
monsoon, dry/winter, and pre-monsoon were identified. These were considered relevant
temporal periods, for which satellite images could be used for the analysis. Additional
criteria of image selection were (i) coverage of the study area, (ii) sensing date (considering
seasons), (iii) mission type (Sentinel 2A/2B), (iv) product type (level 1C), and (v) per-
centage of cloud cover. Remotely sensed, multi-spectral satellite data (Sentinel 2) of
consecutive years (2019–2020) were collected from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/dhus/#/home, accessed on 25 January 2022). Details of the
satellite images are summarized in Table 2.
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Figure 2. Monthly mean discharge data from 2016 to 2020 of the study area in Padma River, Bangladesh.

Table 2. Description of the Sentinel 2 level 1 product (S2MSI1C) used during the present study.

Satellite/Sensor Acquisition Date Season Tile Identifier Cloud Cover
(%)

Sentinel 2A/MSI 19 September 2019 Monsoon 2019 45QYG 2.64
Sentinel 2A/MSI 19 September 2019 Monsoon 2019 45QZG 4.56
Sentinel 2B/MSI 11 November 2019 Post-monsoon 2019 45QYG 0
Sentinel 2B/MSI 11 November 2019 Post-monsoon 2019 45QZG 0.85
Sentinel 2B/MSI 11 February 2020 Dry/Winter 2020 45QYG 0
Sentinel 2B/MSI 11 February 2020 Dry/Winter 2020 45QZG 0
Sentinel 2B/MSI 16 April 2020 Pre-monsoon 2020 45QYG 0.12
Sentinel 2B/MSI 16 April 2020 Pre-monsoon 2020 45QZG 4.17
Sentinel 2B/MSI 11 May 2020 Pre-monsoon 2020 45QYG 47.05
Sentinel 2B/MSI 11 May 2020 Pre-monsoon 2020 45QZG 52.10

https://scihub.copernicus.eu/dhus/#/home
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2.4. Image Processing and Analysis

The Sentinel-2 Level-1C image products provide geocoded top-of-atmosphere (TOA)
reflectance after computation of cloud (opaque/cirrus) and land/water masks, based on
spectral criteria [38]. Image processing and analysis were performed in QGIS, following
the steps shown in Figure 3.

(a) After collection, an atmospheric correction (Dark Object Subtraction, DOS1 [68]) was
applied to all the images, using the semi-automatic classification plugin (SCP) tool
for QGIS [69]. Mosaics of image pairs were created to cover the study area and,
consequently, subsetted to the area of interest using the bands needed to calculate
NDVI (Band 4—Red and Band 8—Near-Infrared). After subsetting, the study area
was devoid of cloud cover except pre-monsoon 2020. Therefore, for pre-monsoon
2020, four images were used. The first images of May 2020 were used for obtaining
cloud-free areas, and after subsetting, the study area was subject to about 5% cloud
cover. Using a cloud mask, two images of April 2020 were used to replace the cloud
pixels (Figure 3, i–v).

(b) NDVI values range from −1 to 1. Generally, the value approaching −1 represents
water; the value varying from −0.1 to 0.1 corresponds to barren areas of sand, and a
value greater than 0.1 corresponds to vegetated areas [44,70]. Using visible red (Band
4) and near-infrared (Band 8) bands of Sentinel-2 data, NDVI was calculated and used
to classify and analyze images. Based on the NDVI value, GUs were reclassified as
land (emergent) and water (submerged). During the conversion from raster to vector,
a 10% sieve analysis was performed to remove small polygons of 10 square meters in
size from the result (Figure 3, vi–viii).

(c) The study area was delineated based on the image of the dry/winter season (February
2020). Next, all the GUs were classified into units and sub-units based on position and
shape, i.e., location of GUs in the main channel or secondary channel and orientation
of GUs towards the flow direction. After applying zonal statistics, the end product
of the analysis was classified as geomorphic units with counted pixels, mean NDVI
value, surface area, perimeter, and maximum distance between two vertices of each
polygon (Figure 3, ix–xii).

(d) Inundated GUs or portions of GUs in high flow seasons that emerged during other sea-
sons were termed nutrient retention- or export-relevant geomorphic units (NREGUs).
Thus, classified GUs of the monsoon season (high flow) were overlapped with other
seasons, to determine the nutrient retention-relevant terrestrial geomorphic units
or emergent sediment units. The extraction of NREGUs was based on assumptions
that (i) in large rivers, discharge is the main factor regulating nutrient retention or
export [8,12,13]; (ii) changes in discharge are responsible for the alteration of water
residence time; (iii) the surface area of the channel and water depth are considered
determining factors for nutrient retention/export [71–75]; (iv) like the riparian zone,
GUs can be flooded annually and enriched with nutrients; and (v) nutrients enter into
the system through runoff and sediment supply (Figure 3, xiii–xiv).

(e) The delineation and classification of GUs were first performed for the image of the
dry/winter season. Therefore, to keep the exact identification of GUs in the other
images, the attributes of the GUs layer were joined by their location, resulting in
corresponding GUs in other seasons. Manual cross-checking was done for each
GU, other than the dry/winter seasons. Further analysis of GUs was done using
zonal statistics, which provided the number of counted pixels, mean, sum, variance,
maximum, and minimum value of NDVI in each GU type (emergent and submerged).
The polygon shape index from SAGA [76] was used, resulting in different shape index
values for each NREGU. The empirical formula of the polygon shape index is:

Polygon Shape Index = Perimeter/[2 × Square Root (Π × Area)]



Remote Sens. 2022, 14, 1481 6 of 18

The surface area, perimeter, and polygon shape index of different NREGUs were
compared among images of different seasons, to determine the seasonal dynamics
(Figure 3, xv–xvi).

(f) Geometric errors resulting from vectorizing raster data were corrected using the fix
geometrics (FG) tool.
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2.5. Field Observation and Morphometric Analysis of NREGUs

A field validation study was conducted during the dry/winter season. During the
field visit, spot identification of GUs was recorded with a smartphone, using the Input app
(https://inputapp.io, accessed on 25 January 2022). This app is linked with a repository of
geodata (Mergin cloud service, https://public.cloudmergin.com, accessed on 25 January
2022) and can be synchronized within QGIS, avoiding further manual processing. NREGUs
of the study reach of the previous year were developed prior to the field survey. The mean
NDVI value of each NREGU was used to observe a seasonal variation. Besides NDVI,
polygon shape index, surface area, perimeter area ratio (P/A), and maximum distance
of NREGUs were used for the morphometric analysis of NREGUs. Regression analysis
was performed, to determine the primary determinant of polygon shape index, which can
show the suitability of the shape index to differentiate the sub-units longitudinal (L) and
transverse bar (T). The analysis was performed in R v4.1.2 [77].

3. Results
3.1. Identification of GUs and Seasonal Dynamics

The geomorphic mapping showed that the study area consisted of three macro-units
and seven sub-units. The macro-units are baseflow or submerged units (C/S), emergent
sediment units (E), and in-channel vegetation (V). The units were categorized as primary
and secondary channels (C & S), mid-channel bar (EC), bank-attached bar (EA), unvegetated
bank (EK), dry channel (ED), island (VI), and water depression (WD). Further EC were
classified into the sub-units, longitudinal bar (L) and transverse bar (T), and EA into the
side bar (SB).

The identified types of GUs were observed in all four seasons, except ED in the
monsoon. The surface area of C/S was maximum during monsoon and minimum during
the dry/winter season (Figure 4). However, the numbers of E and V were highest during
pre-monsoon. An inverse relationship between discharge (m3/s) and surface area of E and

https://inputapp.io
https://public.cloudmergin.com
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V was observed throughout the study year. The number of GUs varied with discharge.
When water level increased, inundation split the bars (E) and islands (V), increasing the
number, but reducing the surface area. This phenomenon was primarily observed pre-
monsoon. During the dry/winter season, the surface area of E and V increased, with
concomitant reductions in their number (Figure 5).
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Figure 5. Seasonal changes of (a) discharge and (b) surface area of GUs (macro-unit level) of the
Padma River, Bangladesh during monsoon 2019, post-monsoon 2019, dry/winter 2020, and pre-
monsoon 2020.

3.2. Seasonal Variation of NREGUs

Mapping of estimated nutrient retention or export-related GUs (NREGUs) showed that
the remaining bars accounted for only 0.96% of surface area during the monsoon, and all
of this was in EC. The maximum surface area of C & S was observed during the monsoon
season (92.6%), followed by the post-monsoon season (87.5%), and the minimum was
observed during the dry/winter season (63.5%). Among the emergent units, the surface
area of VI was the maximum, followed by EC, EA, EK, and ED. The maximum surface areas
of VI and EC were observed during the dry/winter season (VI = 21.9% and EC = 10.49%),
and the minimum during the monsoon season (VI = 3.79% and EC = 0.96%). The surface
areas of ED and EK were higher in the post-monsoon season than in the dry/winter season
(Figure 6 and Table 3). Such a result was found because, in the dry/winter season, some
of the ED and EK portions merged as islands. As with GUs, the seasonal prevalence of
NREGUs was related to discharge.



Remote Sens. 2022, 14, 1481 9 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 6. Nutrient retention or export-related GUs of the Padma River, Bangladesh during (a) mon-

soon 2019, (b) post-monsoon 2019, (c) dry/winter 2020, and (d) pre-monsoon 2020. 

3.3. Use of NDVI and Shape Indexes for Morphometric Analysis 

The identification of GUs and NREGUs was mainly based on NDVI. The mean NDVI 

value of each NREGU showed that it explicitly differentiated channels (C & S), bars (SB, 

T and L), and islands (VI), and that these NREGUs represent a high proportion of the 

study area. The NDVI value of C & S was always less than 0, but varied across seasons. 

This finding demonstrated the effectiveness of the use of NDVI in the seasonal classifica-

tion of NREGUs. NDVI values showed the expected results in the case of bars (0.1 < me-

dian NDVI < 0.2) and islands (median NDVI > 0.2). The bars were primarily sandy units 

with or without vegetation, whereas islands are the main vegetated units, showing higher 

NDVI than bars. The NDVI value of WD was around 0, because these were the shallow 

water portions inside islands or bars, represented by a relatively small surface area. The 

identification of NREGUs was validated by field observations during the dry/winter sea-

son. NDVI values from the field identified C & S, bars, and VI corresponding to the de-

rived values of satellite identified NREGUs (Figure 7). 

Shape characterization shows the variation of spatial data. During the present study, 

the NDVI value was not useful to differentiate among the bar subtypes, but the polygon 

shape index and perimeter/area were useful. The polygon shape index distinguished lon-

gitudinal bar (L) and transverse bar (T) during post-monsoon and dry/winter, where the 

median value of L was greater than 2 and T was less than 2. However, during pre-mon-

soon, the polygon shape index did not show satisfactory results when the median value 

of the polygon shape index was near 2. This happened due to the divergent nature of the 

bars; i.e., splitting of the bars occurred due to an increase of water volume. The perimeter 

area ratio (P/A) differentiated L and T during pre-monsoon, when the median values of L 

and T were above and below 0.1, respectively (Figure 8). 

Figure 6. Nutrient retention or export-related GUs of the Padma River, Bangladesh during (a) mon-
soon 2019, (b) post-monsoon 2019, (c) dry/winter 2020, and (d) pre-monsoon 2020.

Table 3. The surface area of NREGUs in the Padma River, Bangladesh in km2 and percentage.

GU
Monsoon Post-Monsoon Dry/Winter Pre-Monsoon

km2 % km2 % km2 % km2 %

C&S 362.58 92.6 315.0 87.53 250.88 63.52 274.75 77.0
EA 0.00 - 0.69 0.19 13.29 3.36 13.49 3.78
EC 3.78 0.96 13.25 3.68 41.43 10.49 24.1 6.76
ED 0.00 - 0.30 0.08 0.1 0.02 0.03 0.01
EK 0.00 - 0.94 0.26 0.57 0.14 0.53 0.15
VI 14.83 3.79 26.2 7.28 86.5 21.90 42.9 12.0

WD 10.34 2.64 3.48 0.97 2.2 0.56 0.98 0.28

3.3. Use of NDVI and Shape Indexes for Morphometric Analysis

The identification of GUs and NREGUs was mainly based on NDVI. The mean NDVI
value of each NREGU showed that it explicitly differentiated channels (C & S), bars (SB, T
and L), and islands (VI), and that these NREGUs represent a high proportion of the study
area. The NDVI value of C & S was always less than 0, but varied across seasons. This
finding demonstrated the effectiveness of the use of NDVI in the seasonal classification
of NREGUs. NDVI values showed the expected results in the case of bars (0.1 < median
NDVI < 0.2) and islands (median NDVI > 0.2). The bars were primarily sandy units with
or without vegetation, whereas islands are the main vegetated units, showing higher
NDVI than bars. The NDVI value of WD was around 0, because these were the shallow
water portions inside islands or bars, represented by a relatively small surface area. The
identification of NREGUs was validated by field observations during the dry/winter
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season. NDVI values from the field identified C & S, bars, and VI corresponding to the
derived values of satellite identified NREGUs (Figure 7).
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Shape characterization shows the variation of spatial data. During the present study,
the NDVI value was not useful to differentiate among the bar subtypes, but the polygon
shape index and perimeter/area were useful. The polygon shape index distinguished
longitudinal bar (L) and transverse bar (T) during post-monsoon and dry/winter, where
the median value of L was greater than 2 and T was less than 2. However, during pre-
monsoon, the polygon shape index did not show satisfactory results when the median
value of the polygon shape index was near 2. This happened due to the divergent nature
of the bars; i.e., splitting of the bars occurred due to an increase of water volume. The
perimeter area ratio (P/A) differentiated L and T during pre-monsoon, when the median
values of L and T were above and below 0.1, respectively (Figure 8).
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Figure 8. Polygon shape index (shape index) and perimeter and area ratio (P/A) of longitudinal (L),
transverse (T), and side bar (SB) in post-monsoon 2019, dry/winter 2020, and pre-monsoon 2020 in
Padma River, Bangladesh.

The regression analysis between polygon shape index and different parameters (area,
perimeter, and maximum distance) of the longitudinal bar (L) and transverse bar (T) in
three seasons showed that the R2 value was higher in the case of perimeter, followed by
maximum distance and area (Figure 9). As such, the perimeter was the important parameter
that most impacted the value of the polygon shape index. This finding mainly validated
the categorization of bars. The finding even supported the results during post-monsoon
and dry/winter seasons, when the shape index differentiated L and T. Thus, polygon shape
index was essential for classifying the subtypes of the bar. Comparatively lower R2 values
(L = 0.541; T = 0.4742) during pre-monsoon for perimeter compared with shape index were
evidence that the polygon shape index did not help differentiate between L and T, but
perimeter area ratio (P/A) was effective in that case (Figures 8 and 9).
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of longitudinal bar (L) and transverse bar (T) during post-monsoon-2019, dry/winter 2020, and
pre-monsoon 2020 Padma River, Bangladesh.
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4. Discussion

River hydromorphology plays a role in ecological processes, habitat structure, and
water quality [78,79]. Classification of GUs in rivers aids the assessment of seasonal or long-
term hydromorphological alterations [6]. Previously, GUs of the upper part of the Padma
River were identified and categorized as active channel, mid channel bar, lateral bar deposit,
new bar deposit, old bar deposit, abandoned channel deposit, and flood plain deposit, to
assess its morphological pattern over the decade using sinuosity ratio, braided index, and
percentage of islands [80]. The present classification scheme incorporates an NDVI-based
seasonal approach, which can be used to establish links between hydromorphology and
biogeochemical processes of the river reach.

It has been observed that erosion and deposition at GUs in large lowland rivers are re-
lated to the seasonal discharges [81] that drive hydrological and sediment dynamics [67,82].
The present study illustrates the importance of seasonal discharge for the surface area
and number of GUs, and how this affects NREGUs and, hence, nutrient flux in large
rivers [13,83]. In the Padma River, the area of bars (E) and islands (VI) have increased
over the years [67,84,85]. This has implications for the nutrient dynamics in the river,
changing flow velocity, and water residence time. The maximum exposed surface area
of E and VI of the study reach was observed during the dry/winter season. Low water
flows were prevalent during the winter/dry season, associated with a comparatively large
portion of emergent sediment units. Nawfee et al. [84] observed the characteristics of the
river over a period from 1973 to 2014, where the erosion–deposition process of the bars
was stable during the low flooding season (dry/winter season) and can be described as
a geomorphologically dynamic equilibrium state [86–88]. Some of the geomorphically
complex large rivers consist of a significant portion of vegetated islands, due to the stable
state [80,89–91]. Some portions of bars are used for cultivation and can present various
LULC patterns in different seasons.

The finer resolution of Sentinel-2 was found to be useful, as it identified WD in
different seasons. This also showed the applicability of NDVI over NDWI. The WD might
be potentially important for nutrient retention, due to its capacity for retaining water for
a longer period than other GUs, making the environment favorable for biogeochemical
processes. Several studies have shown high denitrification rates in wetlands, related to
temporal water retention [92–94]. Unlike other studies [95–97], the mean NDVI values of the
VI in NREGUs in our study were below 0.6 in all seasons, because the study area consisted
of only low growing vegetation, without trees or shrubs. Therefore, over saturation of
NDVI due to dense vegetation might not be considered a hindrance for the present research
and provides the effectiveness of NDVI over EVI. However, the latter is considered more
suitable than NDVI in some remote sensing studies [98–100].

NDVI can be used to classify land cover to some degree [101] and estimate nutrient
retention [102,103]. Classification of NREGUs based on NDVI provides the potential
to categorize vegetation nutrient retention. Studies on the Parana River in Argentina
showed that vegetation is closely linked with geomorphic units [59]. Recently NDVI has
been implemented for crop classification and irrigation water monitoring [43,52,104]; both
might be favorable for the present study, due to inundation and human-induced LULC
types. In the GUs of the Padma River, both natural and human-induced vegetation were
observed. Especially in the islands (VI) and bars (E), the vegetation cover and types were
different. There is strong evidence that biogeochemical processes such as plant uptake and
denitrification can vary according to vegetation cover and type [105–107]. Thus, NDVI-
based LULC mapping might be useful to predict the spatial and temporal variation of
nutrient retention processes of the study reach and other similar river systems.

Shape characterization is important for mapping and delineating in-channel GUs and
describing spatiotemporal changes of GUs [5,108]. The position and geometry of the bars
change over time in the Padma River [80]. A significant association was observed during
the present study between polygon shape index and perimeter from post-monsoon to
dry/winter seasons, when water depth and discharge decreased. This finding could be
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associated with other seasonal measurements of nutrient retention processes, to determine
the impact of the shape of the bars. Alternatively, the spatial variation of nutrient retention
of a geomorphically complex river can be linked, by determining the geometry of the bars,
i.e., shape characterization, because discharge plays a vital role in both cases.

5. Conclusions

The NDVI based GU classification scheme provides a new approach for assessing GUs
in large geomorphically complex lowland rivers. The use of NDVI brings the opportunity
to incorporate vegetation and LULC. Thus, LULC types in GUs can be considered patches
that might be useful to link with the biogeochemical and ecological processes of river
systems. Mean NDVI distinguished, not only primary and secondary channels (C & S),
islands (VI), and bars (EC), but also changes across seasons. This finding indicates the
effectiveness of NDVI-based classification. The study confirmed that seasonal discharge
could significantly change the surface area of water and sediment portions of the river
channel. The present study also showed that morphometric parameters, i.e., polygon shape
index, help categorize the types of bar, such as longitudinal (L) and transverse (T), where
NDVI was ineffective. The perimeter of the bars (L and T) is the primary determiner of
the polygon shape index. This provides the potential for using shape index to estimate
the spatiotemporal variation of nutrient retention processes among in-channel emergent
sediment units, which can be further tested with field research. The approach we presented
here should also be tested with complementary direct and indirect techniques using other
satellite data.
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