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A B S T R A C T   

Data generated by the global food system is crucial in the transformation towards sustainable, resilient, and high- 
quality food production. Although the amount of potentially useful data is growing rapidly, its (re)use is still 
limited. The FAIR-principles have been developed for making data findable, accessible, interoperable, and 
reusable both by humans and machines. This paper explores the further operationalization of the FAIR principles 
in agriculture and food. Experience shows that several conditions must be fulfilled before data can be effectively 
shared and reused. First, automated tools must be available for data providers and users. Secondly, we need a 
community-based approach in developing tools and vocabularies. Thirdly, data cannot be shared by an open-by- 
default policy only. Finally, scientific insight is needed in how data is actually (re)used in scientific communities. 
We conclude that bringing the FAIR-principles to full maturity requires a fair balance of efforts within the agri- 
food communities, supported by a proper infrastructure.   

1. Introduction 

The agriculture and food system aims to ensure a sustainable supply 
of healthy and nutritious food to nine billion people in 2050, while 
facing climate change and land degradation. It is widely assumed that 
data generated by the food system and digitalization of the agricultural 
supply chain have a role to play in facilitating the transformation to
wards a resilient, sustainable, and food-secure food system globally. 
Data and digitalization help by allowing for more fine-grained and ho
listic decision making by the farmer, consumer, business, or policy 
maker, leading to data driven solutions (Mey et al. (2019), Carolan et al. 
(2015)), and to increased trust, better strategic and operational decision 
making, and creation of new business. Networks like Global Open Data 
for Agriculture and Nutrition (https://www.godan.info/),1 CGIAR’s Big 
Data Program (https://bigdata.cgiar.org/) and UN Global Pulse 
(https://www.unglobalpulse.org/) give a vital position to data and 
digitalization in the transformation of food systems, moving towards a 
mature data ecosystem. Agricultural and food science have a role to play 
in supporting the emergence of these data and digitalization solutions, 
by (1) opening their data for other societal actors to validate, evaluate 

and apply the proposed solutions, (2) developing proof-of-principles or 
proof-of-concepts of potential solutions at the lower levels of techno
logical readiness, for example by showing the value of machine learning 
on aggregated crop data (Paudel et al., 2021) and (3) exploring inno
vative digital and data solutions through blue skies research. 

At the same time, already much attention is being paid to the role of 
data in all domains of science and applied research. There is a clear need 
to share data between researchers, but also between the research com
munity and data users and providers in society. The underlying idea is 
that science and research should open, not only by producing papers but 
also by sharing data and models2. This is stimulated by developments 
like the European Open Science Cloud (https://ec.europa.eu/rese 
arch/openscience/index.cfm?pg=open-science-cloud), 
(https://webgate.ec.europa.eu/funding-tenders-opportunities/displ 
ay/OM/Online+Manual) and the fast spread of Open Access publishing 
methods as in Plan S (https://www.coalition-s.org/). The goal is to in
crease the effectiveness and transparency of scientific research and so
cietal innovation (Australian_Academy_of_Science, 2021). 

Currently, data sharing is considered as the main bottleneck in 
reaching this goal. Therefore, the FAIR-principles have been developed 
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(Wilkinson et al. (2016)). These principles express how data can best be 
prepared for sharing, i.e., by making it Findable, Accessible, Interoper
able and Reusable. A key step is to link data from a wide range of data 
sources, as advocated in the five-star model proposed by Tim Berners 
Lee (https://5stardata.info/en/). Ideally these principles help others 
than the original creators of a dataset (or even the creators at a later 
point in time) to find, access, understand and automatically process the 
data. This would enable researchers in for example the following tasks:  

• Understand each other’s research claims,  
• replicate research for verification and falsification,  
• combine data from various sources to build new models or theories,  
• save money by not repeating experiments unnecessarily,  
• understand and verify published papers. 

However, executing the FAIR principles in practice is still not trivial 
and needs further guidance (Jacobsen et al., 2020a). The first objective 
of this paper is to explore the operational requirements for the appli
cation of the FAIR data principles in agricultural and food, in particular 
with respect to using shared vocabularies for describing the data. The 
second objective is to provide recommendations for extending the 
adoption of the FAIR principles in these domains, based on the lessons 
we have learned in recent research projects. 

In the following section we explore the particularities of food sys
tems, and their implications for agriculture and food science and its 
data. Next, the paper provides some more background on the develop
ment of data sharing, also highlighting impediments in the practice of 
data sharing. Subsequently we present some case studies of data sharing 
in agriculture and food science in which we have been involved over the 
past years. We have selected these cases as they illustrate some issues 
that we ran into when applying the FAIR principles. Finally, in the 
discussion section the main lessons learned from these and other cases 
will be drawn, with implications for the FAIR principles, data sharing 
and data science in agriculture and food science. 

2. Challenges in agriculture and food science data sharing 

Data in agriculture and food science has some features that help to 
clarify the general context of this paper. First, agriculture and food 
science cover a wide range of scientific disciplines, from genetic research 
for breeding to nutritional science on the composition of food intake, 
with many different disciplines such as animal husbandry, food logistics, 
crop science, consumer behavior, etc. The data types in agriculture and 
food science are thus very divergent, depending on the disciplines 
considered. The overview given in (Janssen et al. (2017)) mentions the 
following issues.  

• Governments collect data for monitoring purposes, management of 
information and administrative procedures. These data, which 
include ethnographic statistics, monitoring data for subsidies and 
taxes, and data on environmental performance and national health, 
are in general uniform in format. They are usually collected on a 
regular basis as a direct input for policy making.  

• Research projects collect data (e.g., measurements in laboratories, 
field and household surveys, multi-dimensional panel data, soil 
sampling, population data) to meet specific project needs. These data 
are often incidental (i.e., collected on an irregular basis) and not 
well-structured (i.e., non-uniform in format and only partially 
annotated). 

• Industries (including farmers and business-to-business service oper
ators) collect data for their own operations and in their R&D activ
ities. They often do not share data due to competitive concerns. 
Moreover, their data formats are often not harmonized. 

Organizations collect data manually or automatically, using all kinds 
of devices. The upcoming Internet of Things adds new data sources, such 

as mobile technology, new sensors, crowd sourcing, drones, and remote 
sensing (Verdouw et al., 2019). 

Over the past year, several reviews and position papers (Wolfert et al. 
(2017), Kamilaris et al. (2017); Lokers (2019); Marvin et al. (2017)) 
have described the state-of-the-art and challenges in data management 
in agriculture and food. A first challenge, often highlighted, is the lack of 
interoperability and standards across the agriculture and food sciences. 
Some parts of the agriculture and food sciences have strong imple
mentations of standards, such as plant genetics through BRAPI 
(https://www.brapi.org/specification), geo-spatial through OGC 
(https://www.ogc.org/docs/is), thesaurus terms and language trans
lations through GACS and AGROVOC (FAO, 2021), and farm manage
ment events through AgGateway (https://www.aggateway.org/). The 
links between these standards are weak, with many crucial parts lacking. 
For example, how do the thesaurus terms from AGROVOC relate to 
spatial concepts in OCC? There is no proper understanding of these 
white spots so far, leading to the conclusion that the advance of big data 
techniques in agri-food is a variety than a volume challenge (Lokers 
(2019), Marvin et al. (2017)). This impacts the sharing and use of 
research data; researchers lack cross-domain harmonized and accepted 
definitions to describe and annotate their datasets, and consequently 
combined analysis of existing datasets becomes a laborious and error 
prone task. 

A second challenge is the lack of access to data and actionable so
lutions for trusted and privacy-safe governance of data. Many interesting 
data sources are still closed for commercial or other reasons, even if 
controlled access would not cause any disadvantage. This hinders the 
use of data in agri-food practice and research. On the positive side, 
farmer organizations across the globe have developed codes-of-conduct 
in sharing farmer data and laws like EU General Data Protection Regu
lation (https://gdpr-info.eu/) have provided more clarity on the man
agement of individual data. Data sharing solutions pushed by industry 
have started to emerge (https://join-data.nl/, https://api-agro.eu/en/, 
https://my-agrirouter.com/en/, https://farmstack.digitalgreen.org) but 
are still in their infancy. 

A third challenge is the lack of agreement on how to use the available 
technologies in IoT sensors, lab instruments and all kinds of equipment. 
They should collect (stream) data in a standardized and robust way. 
There are still many steps needed by the researcher to download data to 
a shared format, convert it, and bring it together from a diversity of 
devices. For example, there are several commercial solutions available 
for collecting data in field trials of crops for breeding, each with its own 
particularities, while an open, accepted setup is lacking. This has 
sparked off the development of AgroFIMS by CGIAR (https://bigdata. 
cgiar.org/divi_overlay/agrofims-your-new-companion-for-easy-standar 
dization-of-data-collection-and-description/). 

A fourth challenge is that little attention is being paid to the devel
opment of data management skills as part of educational degrees in 
agriculture and food sciences. Researchers are more trained in finding 
software-based solutions in the domain than in good practices and skills 
for working with data. A related challenge is that the food system re
quires an interdisciplinary and collaborative approach with researchers 
that act as knowledge brokers (Cash et al., 2003), also managing data 
across domains. 

A consequence of the above challenges is that agriculture and food 
researchers are still facing quite some hurdles when it comes to data 
sharing. The abovementioned challenges have been covered in Section 3 
by sharing the current practices and in Section 4 by presenting the cases 
which the authors have worked with. 

3. Steps in FAIR data sharing in practice 

How is data sharing in agriculture and food systems research 
currently arranged? As stated above, data can be generated by re
searchers, but also by companies, organizations, governments, and in
dividuals. Ideally, this data would be properly annotated, using accepted 

J. Top et al.                                                                                                                                                                                                                                      

https://5stardata.info/en/
https://www.brapi.org/specification
https://www.ogc.org/docs/is
https://www.aggateway.org/
https://gdpr-info.eu/
https://join-data.nl/
https://api-agro.eu/en/
https://my-agrirouter.com/en/
https://farmstack.digitalgreen.org
https://bigdata.cgiar.org/divi_overlay/agrofims-your-new-companion-for-easy-standardization-of-data-collection-and-description/
https://bigdata.cgiar.org/divi_overlay/agrofims-your-new-companion-for-easy-standardization-of-data-collection-and-description/
https://bigdata.cgiar.org/divi_overlay/agrofims-your-new-companion-for-easy-standardization-of-data-collection-and-description/


Computers and Electronics in Agriculture 196 (2022) 106909

3

and harmonized standards. However, if this is not the case, users of data 
can adopt (part of) this shared data for their own specific objectives. This 
means that depending on their objectives, they can isolate and preserve 
datasets from external sources and ‘make them more FAIR’, just like the 
data generated by themselves. 

Before discussing the practice of data sharing and the effort needed 
to realize some level of data reuse, we need to ask the question ‘Which 
data is worth the effort?’. This question can be split into sub-questions 
related to benefit and cost: (1) is there potential interest in using this 
dataset and (2) how much work is needed to make it reusable? In 
principle, any dataset is potentially interesting, but specific or sloppy 
data (i.e., data obtained by inadequate methods or methods that are 
hard to explain) will be less interesting for reuse by others. In fact, in 
such cases persistent storage of data is not needed. In all other cases, in 
which data is deliberately stored with the idea that it may be useful in 
future (even if only for legal reasons), the question arises how much 
effort should be spent on making the data ready for reuse. For example, 
during an explorative research project, often raw data is (deliberately) 
collected in ‘quick and dirty’ trial experiments. At best, this data reaches 
the researcher’s notebook as a few numbers, scribbles, and some quick 
drawings. Only the original researcher can explain such notes, which he 
or she even may find hard to do after some time. Most researchers would 
consider cleaning and documenting such a ‘dataset’ a waste of time. 
Even though at a later stage such data may prove to be groundbreaking, 
at the time of production this cannot be foreseen. So, spending time on 
FAIRification asks for a minimal level of quality and maturity of the data 
itself. We have seen many cases in which researchers did not explicitly 
describe the maturity and quality of their data, nor did they assess if and 
how their own data could be useful for others. This argues for defining a 
general data assessment task at the level of a research domain, as we will 
point out later. 

Once a dataset or model is considered sufficiently interesting for 
sharing, work is needed to make it available for (re)use, either by the 
original researcher, by co-workers or by potential users of the data. 
Many of the datasets we have run into are stored and maintained by the 
individual researcher, at best in a digital format on a file system or in a 
structured data repository. In the agri-food domain, we see that datasets 
are scattered and not well organized. Documentation (metadata) is often 
at a minimum, and access is restricted. Learning that some dataset or 
model exists usually happens through personal contact, or when it is 
mentioned in a publication or report. Currently, the situation is rapidly 
improving due to the availability of public research repositories, at the 
national and international level (https://data.europa.eu/en, 
https://dans.knaw.nl/en, https://data.4tu.nl/info/, https://dataverse. 
harvard.edu/, https://gardian.bigdata.cgiar.org). Even then it can be 
hard to import the data into the user’s tools for reuse. 

FAIRification aims to take away the restrictions in data reuse, mak
ing datasets and data streams self-contained and interoperable. To un
derstand what is needed, we need to answer the question: ‘When do we 
consider the (digital) data sharing process to be successful?’. We list the 
following criteria:  

• A potential user of a dataset can find the dataset based on subject, 
source, variables involved, format or other criteria, through a single 
access point on the web.  

• She can decide from the available documentation (metadata) 
whether the dataset is sufficiently interesting for her task and 
whether she is allowed to use it for that purpose.  

• She can import the dataset into her data processing environment, 
including mapping of variables from the imported set to those 
existing in her personal tools.  

• She can add new metadata to the original data and link to new data, 
based on her own findings. 

Provided that the required information is available in some form or 
another, it is in principle always possible to perform these actions 

manually, but this would require effort, expertise and time that is not 
available in practice. The point in following the FAIR-principles is that, 
if the data is stored in digital form and properly annotated, it can be 
accessed, understood, assessed, used, and edited automatically, with 
minimal effort and time for the user. This allows data users to focus on 
analyzing the data rather than spending time on acquiring and orga
nizing it. Even more importantly, proper annotation will increase the 
quality of the data, i.e., once imported it will be more fit-for-purpose. 

However, work is needed at the side of data providers to meet the 
above criteria. It should be noted that FAIR principles have been pub
lished for a broad audience and do not dictate specific ways of imple
mentation. They are open to different interpretations (Jacobsen et al., 
2020a). Based on our experience, we argue that data publishers in the 
agri-food domain at least need to take the following actions, for each 
which we indicate the associated FAIR principles (Wilkinson et al., 
2016).  

• Assign unique identifiers to datasets and data elements, and select 
publicly available repositories (F1, A1, A2).  

• Review and formulate adequate metadata (F2, R1.2).  
• Assign a license and express the metadata with machine actionable 

semantics (I1, I2).  
• Track reuse of the data and extend metadata if needed (extension of 

I3). 

In Section 4, we will show how these tasks can be result in achieving 
a specific ‘data maturity level’. 

Some steps for supporting these activities have already been made in 
terms of automated data management following the FAIR principles. For 
example, the GO FAIR initiative (https://www.go-fair. 
org/go-fair-initiative/) is promoting several tools for this purpose in 
the envisioned Internet of FAIR Data & Services (IFDS, https://www. 
go-fair.org/resources/internet-fair-data-services/). For example, a so- 
called FAIRifier assists in adding metadata, data license, data model, 
and linking the selected ontologies to a dataset. In addition, a metadata 
editor allows non-technical users to define and publish the metadata 
required by a FAIR data point. Finally, a FAIR Data search engine har
vests the metadata available on FAIR data points or compatible data 
repositories (https://github.com/FAIRDataTeam/FAIRSearchEngine). 
In addition, editors for creating and editing ontologies are available, 
such as Protégé, TopBraid, ORKA, NeON Toolkit (https://www.w3. 
org/wiki/Ontology_editors). Also, numerous controlled vocabularies 
and ontologies are already provided on the web, as we will show in 
Section 5.1. We expect FAIRification features to become embedded in 
commonly used business and research applications and in general pur
pose software, such as spreadsheets (see for example (Wigham et al. 
(2015)) and databases. 

Currently it is still unclear to many data providers and users how to 
perform these actions needed for sharing their data. Moreover, they still 
require quite some manual, labor intensive work. We cannot expect all 
data users to become data scientists. Hence, this calls for automated 
support that can ease the task of researchers, combined with support 
from local ‘(meta)data cultivators’, as we will explain later. 

4. Cases 

In this section we discuss three cases of data sharing in agriculture 
and food research. These cases illustrate which steps are needed to reach 
the next level of data management in this domain as we have set out in 
Section 3. These cases have been selected as they address the challenges 
defined in Section 2 (i.e., 1. Lack of interoperability 2. Lack of access; 3. 
Link with (IoT) devices; 4. Data management skills) in the agriculture 
and food science domain in diverse ways, also attempting to produce 
FAIR datasets. Table 1 links the cases’Crop trial data’, ‘Agri-food data 
service’ and ‘Consumer behavior data’ to the challenges. 
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4.1. Crop trial data 

Problem of the community: In-situ field data is used to benchmark 
productivity but also for building and validating new models and 
datasets. In the domain of near real-time monitoring of agricultural 
productivity, in-situ crop observations are indispensable. They are used 
to improve accuracy and reliability of global and regional studies and of 
monitoring systems. For example, data on when and where a crop was 
on the field can validate arable crop maps that are usually based on (un) 
supervised classification of remote sensing imagery. One can also think 
of deterministic crop models like WOFOST, DSSAT etc., which need 
local information on phenology (emergence, flowering, maturity) for 
calibration and as continuous input. 

It was recognized before that currently the agricultural community is 
fragmented in its data management and lacks commonly available 
reference data on agricultural production (Janssen et al. (2011)). 
Although there are several data portals (e.g., https://gardian.bigdata. 
cgiar.org/#/) and repositories (e.g., https://dataverse.harvard.edu/), 
where datasets are described and published, these datasets are scattered 
over various sources, lack standardization, and have incomplete meta
data. This hampers the re-use of this data by others, causing an ineffi
cient use of resources, while also limiting the calibration and validation 
work which in turn affects product quality. 

FAIRness of the deployed technical solution: In different EU- 
funded projects and global initiatives (GEO, AGMIP), we developed an 
on-line global crop trial repository, called AgroSTAC (https://agrostac. 
org/en), to open key crop observations in a FAIR way. AgroSTAC aims 
for a minimum data set (MDS) for calibration and validation of methods, 
models and tools in the crop modelling and monitoring domain. Pub
lished, open data sets, for example from ODJAR.org, an open data 
journal for agricultural research, and DataVerse (https://dataverse. 
harvard.edu/) are screened for crop type, phenology, leaf area, 
biomass, and yield. Data are curated (see next paragraph) and stored in a 

database, designed such that it can store all aspects of an agricultural 
field trial. It requires that the trial has a location, and the observations 
and management events are timestamped. On top of the database, we 
developed tools and procedures to process, load, maintain and publish 
the data. to process, load, maintain and publish the data. 

Process for data collection: Selected data goes through a dedicated 
data curation procedure. This is a crucial step to enable use of the data 
beyond its original purpose of collection. In this procedure metadata is 
checked and completed using all information available in the data files, 
supporting documents, publications in data and scientific journals, etc. 
If needed and feasible, we convert data to the required units and correct 
date format, we map phenology events to the BBCH scale and we link the 
data to variables based on the ICASA v2 master variable list (White et al. 
(2013)). The curation is documented in a wiki. 

To test the quality of (open) data sets on open repositories eleven 
data sets were downloaded from the repository Harvard DataVerse and 
cleaned, out of a selection of 42 relevant data sets. Three data sets were 
further processed and imported into AGROSTAC. Some observations 
from this test are:  

• From the initial list of 42 data sets identified (created 29 December 
2017 by searching on ‘maize trials’) many data sets have restricted 
access (around two-third).  

• None of the data sets is based on a predefined code book for field 
trials, only some had a dictionary.  

• Almost all datasets had incomplete descriptions of variables and 
units. To a certain extent, data sets could be completed based on the 
data itself, additional data in other sheets or other documents, the 
related publication (if available) and domain knowledge of the data 
curator. Often obvious characteristics (e.g., year) were omitted.  

• Some technical issues arose, in particular with floating point values 
due to different regional computer settings. 

Table 1 
Link between three cases selected against the four challenges presented in 2, where +++ means that this challenge is strongly present in this case; ++ means there is 
some consideration of this challenge, and + means that only a weak link exists between the challenge and the case.   

Challenge 1: lack of interoperability Challenge 2: lack of access Challenge 3: Link with devices Challenge 4: data management skills 

Case 1: Crop trial data +++ +++ + +++

Case 2: Agri-food 
dataservice 

++ +++ ++ ++

Case 3: Consumer behavior data +++ +++ +++ +++

Fig. 1. Visual presentation of AgroSTAC data.  
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• At that moment, no ontology for relevant agronomic terms was yet 
available.  

• For loading data into the AgroSTAC database, a text file format (SIF) 
was developed as well as a loader application that can read this 
format and load the data, while carrying out the necessary checks on 
the input data. 

In addition to this data from Harvard Dataverse we also curated 
datasets from ODJAR.org. This curation work was easier as datasets 
published in ODJAR.org already underwent a review. However, these 
datasets still lack interoperability as they are stored in closed formats 
(no web endpoint) and are not yet in a standardized format. 

The AgroSTAC data management system enables fast and easy data 
retrieval and facilitates sound data management and has a flexible data 
model. Coding of queries (e.g., in support of a REST interface) is 
straightforward and the queries run fast. The database can be exported 
as a triple store. For exploring the data, a viewer application is available 
(https://agrostac.vito.be/), see Fig. 1. 

Lessons learned: 
From this case we have learned that.  

• It is useful to define a Minimum Data Set (MDS) for all trials that 
covers the aspects that are most needed by the community.  

• It is crucial for the community to set standards for data formats and 
ontologies.  

• Existing (legacy) in-situ data requires substantial effort to FAIRify.  
• A data journal is needed as well as quality control of meta-data. 

We recommend focusing on a limited set of variables and datasets 
that have most to offer for the invested time and resources, given typical 
applications in the domain. 

To extend the FAIRification of existing in-situ data the following 
protocol is proposed. It includes downloading data from data re
positories, saving original data, checking descriptions and units, map
ping to the ICASA v2 master variable list, conducting additional visual 
and statistical quality checks, and adding metadata (reference to data 
repository, crop type). It also covers document curation, i.e., encoding, 
referencing external resources used, and describing any assumptions 
and ambiguities encountered. We suggest installing a curation team 
with an agronomy expert for supervising and reviewing the (meta) data. 
Currently the FAIRification of data for AgroSTAC relies mostly on 
project funding. To sustain AgroSTAC we are exploring sustainable 
business models and partnerships. Besides, we stimulate data providers 
to share curated data by emphasizing the advantages (e.g., attribution, 
recognition, re-use of data, new collaboration opportunities etc.) and 
offering a user-friendly guided data curation and publication procedure. 

We know AgroSTAC is not the only and final solution. Publication of 
superior quality data for wider use and discovery requires integration of 
several actions in a workflow. Several functions need to be ensured at 
the same time, including archiving, quality checking, data curation, 
search and finally visualization and storage. These functions will be 
specific per domain and problem. To cover all of them, different plat
forms and capabilities need to play complementary roles. Within this 
landscape, we envision AgroSTAC as a vital component to clean and 
share a minimum dataset to the outside world following the FAIR 
principles. 

4.2. Agri-food data service 

Problem of the community: In the agri-food domain there is an 
increasing interest in applications that process data at the crop field, and 
even sub crop field level, instead of the previously more common grid
ded level of e.g., 1–10 km2 scales. Naturally, this goes together with 
technological requirements to collect data at finer scales and increased 
storage and computing power available to researchers (see for example 
(de Wit et al., 2019). Many datasets are available as open data, such as 

yearly crop field data by RVO (https://english.rvo.nl), daily weather 
data by KNMI (https://www.knmi.nl), soil data by WUR and ISRIC 
(https://www.isric.org), terrain height AHN (https://www.ahn.nl, in 
Dutch) and satellite imagery (NASA, ESA), which can for example be 
used to calculate a vegetation index time series. Typically, a combina
tion of these datasets is needed, requiring for each research project to 
carry out the time-consuming steps of collecting relevant data based on 
spatial area and time range, figure out what the data means, its lineage, 
and what e.g., the units are, find ways to harmonize it into a coherent 
dataset, store it and make it available for actual use. 

FAIRness of the deployed technical solution: AgroDataCube 
(Janssen et al., 2018), (https://agrodatacube.wur.nl) is a repository that 
discloses the kind of data described above, using crop fields as the main 
assets. From the mandatory yearly crop registration by farmers, a 
limited subset of properties of all registered fields is made available as 
open data and imported into the repository. The geometry of the fields is 
used to relate them to other available assets in the repository. For 
example, the soil types for a crop field in a certain year are found by the 
spatial intersection of the two datasets. The database used handles such 
spatial queries when needed. A DOI (needed for ‘F’ and ‘A’ of FAIR) is 
available, which refers to a digital catalogue entry at the Wageningen 
University & Research library and directs the reader to the associated 
web page of AgroDataCube. This web page contains the information on 
how data can be retrieved from the repository, using standard web 
technologies and formats such as HTTP requests, REST and (Geo)JSON 
(‘I’, ‘R’). A more complete implementation of the OpenAPI specification 
(https://swagger.io/specification/) is needed to increase the FAIRness 
for machines; currently they need to be AgroDataCube-aware. Humans 
will have less problems finding their way to the repository. The web 
page of AgroDataCube also provides information about the used license 
and the access token needed for data retrieval (‘R’). 

Crop fields as digital assets have some inherent challenges, as they 
have a limited lifespan. This lifespan is based on the registration process 
that produces a draft version at the beginning of the growing season and 
a definitive version of the dataset near the end of the year. To our 
knowledge there is no publicly available global or national schema for 
providing crop fields with IDs that can serve as Digital Object Identifiers. 
Within the scope of AgroDataCube, each crop field is uniquely numbered 
(‘F’), but typically a first matching needs to be done on spatial attributes 
to combine an external dataset with assets in the AgroDataCube re
pository. Here again FAIRness can be improved, as machines still need 
some AgroDataCube-awareness. 

Metadata is available both at the dataset and data item level (‘F’, ‘I’). 
For the latter it is included as a header block in all retrieved data. 
However, currently this metadata is mostly provided in the form of the 
original source and depends on that for its FAIRness. This is for example 
clearly visible in the crop field information that uses a vocabulary (‘I’) 
defined and maintained by RVO (https://english.rvo.nl) for the purpose 
of registration and e.g., provisioning of subsidies to farmers. Conse
quently, the crop descriptions are only available in Dutch, and the codes 
and descriptions can carry combined information (e.g., a mix of type of 
crop, type of soil it is grown on, and the purpose it is grown for), which 
can moreover fluctuate over time due to changing wordings and 
spelling. 

In the EU Cybele project (https://www.cybele-project.eu), an 
experiment was carried out to add an additional API for accessing data 
from the AgroDataCube repository. It provides on-the-fly trans
formations between the semantic representations (SPARQL and RDF) 
and the web technologies (REST and JSON) used by the repository. It 
also specifies a mapping between the AGROVOC (FAO, 2021) vocabu
lary and the crop codes defined by RVO, instantly providing crop name 
translations into all languages supported by AGROVOC. Furthermore, it 
provides a connection to other datasets that are mapped to this vocab
ulary as well. This increases the ‘F’, ‘A’, and ‘I’ for machines consider
ably and reduces the required AgroDataCube awareness. The proof of 
concept has been realized using Metaphactory (https://www. 
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metaphacts.com/product) and can be extended with further mappings 
for other data in the repository, such as soil types and weather obser
vations (see Fig. 2). 

Process for data collection: Data is ingested into AgroDataCube in 
several ways, depending on the source and characteristics of the data:  

• The RVO crop field data is made available yearly in two versions, a 
draft one in spring and a final one near the end of the year. Due to 
crop fields not having unique identifiers in the (open) datasets, 
geometric processing must be performed to add the data to the re
pository in a validated and consistent way.  

• The KNMI daily weather data is collected periodically by a script, 
validated, and inserted into the repository. The data however is 
added as-is, which means that failing meteorological stations and 
sensors result in gaps in the time series.  

• The soil data is taken from Wageningen University & Research 
datasets and only updated when new versions are made available, 
which is not very frequent (soils do not change rapidly).  

• Remote sensing (satellite) based data such as the vegetation index is 
added when new images become available and have been internally 
pre-processed.  

• Besides the above there is ongoing processing and improvement of 
the data (and the API) based on new insights and feedback from 
users. 

Lessons learned: Distinct types of users will try to access and use 
published data in diverse ways, and it is difficult and expensive to serve 
them all. For example, the choice for GeoJSON as a response format 
prohibits GIS specialists from accessing the AgroDataCube as a regular 
OGC (https://www.ogc.org) compliant data source. The semantic API 
helps semantic specialists in using the AgroDataCube, but it is less clear 
how ‘FAIR’ the repository is, since it can depend on the perspective and 
knowledge of the user. 

Source data might be available as open data through government 

resources. However, practical use reveals inherent problems in the data, 
e.g., geometric inconsistencies in crop fields or typos in crop de
scriptions or even a complete lack of identifiers over the years. These 
issues are repaired in subsequent versions but may mess up text search. 
Having harmonized metadata description helps, but it also can mask 
shortcomings of the underlying data, that are ideally solved at the 
source. 

For the AgroDataCube itself, besides providing an API with docu
mentation it is also needed to provide coding examples (https://github. 
com/AgroDataCube) on how to use the API properly. This gives confi
dence to data scientists and programmers when working with the data 
sources. 

4.3. Consumer behavior data 

Problem of the community: Consumer dietary behavior has a 
major impact on health and environment. Research in the field of con
sumer food choice can make considerable progress if more data on 
consumer behavior becomes available. This data can help generate 
insight into the influence that specific policies, but also food products 
and national diets have on human health and on our environment. It can 
also provide understanding of how psychological and social factors, 
lifestyle, and culture influence food choice. Do consumers take sus
tainability and fair pricing into account? Next to traditional studies 
based on self-reporting and surveys, such data is increasingly generated 
by electronic devices in real life settings (point-of-sale data, apps, food 
scanners, wearable technology, computer vision, etc.). In addition, data 
on food products is becoming available, not only in terms of ingredients, 
nutritional values, but also about sustainability (e.g., CO2 footprint) and 
consumer acceptability factors. By linking and analyzing these different 
data sources, researchers can propose innovative solutions for important 
societal challenges, such as preventive health, environmental impact 
reduction and minimizing food waste. For consumers, digital dietary 
coaches can be developed to support decision making by individual 

Fig. 2. Screenshot of Metaphactory, a tool for knowledge graph management.  
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consumers. The models and data in food and nutrition are for example 
used in studies to promote a fiber-rich diet (Rijnaarts et al. (2021)). The 
same underlying data is used by food processing companies to innovate 
their products. The current interest in ‘digital twins’ for monitoring and 
control of industrial processes, but also for supporting human decision 
making, clearly increases the demand for high quality data in this field. 
However, in this domain the range of data sources, formats and prop
erties is even more diverse than in the first phase of the supply chain 
(primary production). Consumer data are collected by many organiza
tions, from retail to NGO, food data originates from all different sup
pliers, environmental data requires complex life cycle analysis, etc. 
Reusing and combining data from such diverse sources requires that the 
data and its metadata be well defined and used. The FAIR principles can 
help to realize this if they are accompanied by guidelines that indicate 
which data, metadata and ontologies are suitable for reuse. Moreover, in 
this field we are often dealing with confidential personal or proprietary 
data. It is then crucial that data protection is properly respected. 

Deployed technical solution: FNH-RI-platform, GS1 Data Source 
and food ontology. The European project RICHFIELDS (https://www. 
richfields.eu/richfields-final-conference-2018-in-brussels-belgium/) 
aimed to design a research data platform for scientists, businesses, policy 
makers and people to connect and share information about consumers’ 
food behaviors. This initiated the development of a research infra
structure on Food, Nutrition and Health (FNH-RI) in Europe. Part of the 
platform has been realized, with a focus on setting up, storing, and 
analyzing consumer surveys. In addition, a repository for metadata 
provides access to models and data developed in this field and the 
broader area of agri-food. 

In addition to requiring consumer data, decision support related to 
food also calls for food data. For example, to understand the impact of 
introducing new plant-based food products, we need to know which 
nutrients they contain, but also how they affect the texture and taste of 
the final product. So, properties that relate to consumer acceptance are 
crucial. This type of data is typically scattered and incomplete. Actors in 
the supply chain provide the minimal information that is legally 
required, using local, text-based standards. Additional data on, for 
example, health and environmental is still only available to a certain 
extent and in standard formats. 

Process for data collection: Data is provided by consumers partly 
manually and partly using smart devices. NGOs collect population data 

on food consumption and food choice. Food producers record product 
data in their running processes, varying from manual notes to automated 
sensor input. 

Collecting data on human behavior is notoriously difficult. For 
example, food intake is measured by so-called food frequency ques
tionnaires, 24-hour recalls or intake diaries. However, these are well- 
known to be inaccurate and incomplete and considered by consumers 
cumbersome to complete. Measuring the consumer’s health status is 
even more problematic, since it requires invasive techniques, for 
example taking blood samples. These complications have sparked off 
numerous initiatives to collect such data in a non-intrusive way, for 
example using computer vision technology or lab-on-a-chip solutions. 
However, only when data from such devices is combined with circum
stantial and personal data, meaningful conclusions can be drawn. 
Applying the FAIR principle helps make these combinations. It will 
support automated inference on the merged data. This is not widespread 
practice yet. 

In terms of collecting food product data, other issues arise. Food 
companies are legally obliged to declare for their products which in
gredients they contain, and what their nutritional values and energy 
content are. Centralized organizations such as GS1 (https://www.gs1. 
org/) provide text-based standards to express this information. They 
act as channels to share data with retailers and other organizations. 
However, the quality of the data is not always optimal and paper labels 
are still considered as the ‘ground truth’. A change towards distributed 
sourcing of this data directly from the original sources (the providers) 
and the use of a machine readable linked-data approach would signifi
cantly increase the quality and usability of this data in many applica
tions. This would be beneficial for all food supply chain actors, including 
the consumer. 

Lessons learned: In the domain of food and nutrition many oppor
tunities exist to valorize data on consumer behavior and food products 
and processing. Challenges are (1) lack of sufficiently detailed controlled 
vocabularies and ontologies, (2) limited support for respecting privacy 
and confidentiality and (3) availability of non-intrusive measurements. 
Fig. 3 shows a web service that provides access to environmental foot
print data. Several services are currently being developed, covering a 
wide range of food products and food product properties. The data 
disclosed by these services are expressed in terms of a food ontology. The 
FoodOn initiative (https://foodon.org/) is one of the most promising 

Fig. 3. Example of a web service providing environmental footprint data for a food product.  
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initiatives for ontology development in this field. 

5. Solution paths 

The above and other case studies have revealed some issues in 
making agricultural and nutrition data FAIR. They are practical exam
ples of how this currently works in addressing the given global chal
lenges. From such use cases important lessons can be drawn on how to 
extend the application of the FAIR principles for data sharing in the food 
and agriculture domain. 

5.1. Controlled vocabularies and ontologies in food and agriculture 

As identified in earlier sections, there is a need for further stan
dardization and harmonization of concepts in the agriculture and food 
domain through common controlled vocabularies and ontologies. As 
shown in Table 1, there are several models available, each with its own 
application area, expressiveness, and scope. Every application has its 
specific needs and will require (parts of) the selected models, but also 
dedicated additions and modifications. Moreover, it is essential to make 
a distinction between terminology and general classification on the one 
hand, and complex data structures, with properties and constraints, on 
the other. Whereas a controlled vocabulary provides a light-weight tax
onomy of terms, an ontology provides a logical model with formalized 
concepts and relations in a domain. Vocabularies are typically used to 
support search in unstructured data sources, whereas ontologies support 
querying and reasoning over complex but structured datasets. Vocabu
laries and ontologies can directly be mapped to software structures. For 

example, a controlled vocabulary such as AGROVOC (see Table 2) has 
been developed to structure terminology in the agriculture and food 
domain with the purpose of finding resources in a library of books and 
articles. It is not intended for connecting data in precision farming and 
automatic control of machines. On the other hand, the ontology OM for 
representing units and quantities expresses which quantities can have 
which units and how units can be converted in associated software 
services (Rijgersberg et al. (2013), Keil et al. (2018)). 

However, even if vocabularies and ontologies facilitate finding and 
connecting different data sources, it still requires some effort to apply 
them in practice, for example for merging distinct datasets. Moreover, 
vocabularies and ontologies need to be updated continuously, given 
feedback from practical applications. One issue is that the human 
readable labels they provide for concepts are often ambiguous. Terms 
that have similar labels can refer to different concepts and different la
bels are used for similar terms. This happens for example in a list of 
crops, animals, fertilizers, pesticides, foods, etc., as explained in more 
detail in Janssen et al. (2011). The term ‘maize’ can refer to maize as a 
crop, but also to maize as a single food product. In such cases the 
neighboring concepts in the graph explain what is meant by the single 
node. For example, either ‘crop’ or ‘food product’ being the broader 
term clarifies the difference. Reusing vocabularies and ontologies is 
therefore not straightforward if certain subdomains are not well covered 
in quantity and quality. The following table lists a number of vocabu
laries and ontologies in our domain. 

More effort is needed to further standardize and harmonize vocab
ularies and ontologies in the agri-food domain and to share experience 
on applications of these models. Until now this has depended on 

Table 2 
Overview of available vocabularies and ontologies in the agriculture and food domain. Several relevant sources can be found at AgroPortal (http://agroportal.lirmm. 
fr/).  

Vocabulary Reference Characteristics 

ADAPT https://www.aggateway.org/GetConnected/ADAPT 
(inter-operability).aspx 

Toolkit to link to farm data, defining a common object model. Support from 
machinery and sensor producers, focus on technical protocols 

AgroFIMS https://agrofims.org/about Crop management, complete coverage of field trial design and activities based on a 
field book. Tied to CG Core Metadata Schema and the Agronomy Ontology (AgrO) 

AGROVOC https://aims.fao.org/agrovoc Food and agriculture-related terms, controlled vocabulary, comprehensive (more 
than 38k concepts), multilingual (40 languages) 

ask-Valerie https://www.foodvoc.org/page/Valerie-9 Innovations in agriculture and forestry. Multilingual controlled vocabulary, covers 
agriculture and forestry for several themes 

ATO https://www.animalgenome.org/bioinfo/projects/ato/ Animal Trait Ontology. Animal genetic traits for distinct types of animals. Limited 
scope. 

BRAPI https://www.brapi.org/specification Plant genetics ontology, limited scope. Compatible with MCPD, MIAPPE, GA4GH 
Variants Schema, GeoJSON and Crop Ontology. 

Crop Ontology https://www.cropontology.org/ Small ontology per crop with different variables, limited alignment, no master list of 
crops. 

eCrop https://unece. 
org/fileadmin/DAM/cefact/brs/BRS_eCROP_v1.pdf 

Agricultural management. Lacks master lists of fertilizers, pesticides, biological 
control agents, etc. 

FAOSTAT https://www.fao.org/faostat/en/#definitions Text-based standards for worldwide statistical data on food production, security, 
trade, sustainability, etc. 

FoodEx2 https://www.efsa.europa.eu/en/data/data-standardisation Food safety, standardized system for classifying and describing food 
FoodOn https://foodon.org/ Food and nutrition ontology, including organisms, production, processing, 

packaging, product hierarchy, etc. 
GACS https://aims.fao. 

org/fr/global_agricultural_concept_scheme_gacs 
Global Agricultural Concept Scheme, multilingual, connects AGROVOC, CAB and 
NAL 

GO https://geneontology.org/ Gene Ontology. Controlled vocabulary, extensive (more 43k terms) and many 
applications 

GPC https://gpc-browser.gs1.org/ Global Product Classification. Logistics, traceability. More than 130k food products 
GS1 Web vocabulary https://www.gs1.org/voc/ Controlled vocabulary for GS1 standards, extension to Schema.org. 
ICASA variable list https://dssat.net/data/standards_v2/ Focus on crop trials and models. Comprehensive list of variables used in crop 

simulation models 
Langual https://www.langual.org/default.asp Food product data. Predecessor of FoodOn 
NAL https://agclass.nal.usda.gov/ Controlled vocabulary, partly multi-lingual, more than 265k terms 
OBO - Open Biological and 

Biomedical Ontologies 
https://www.obofoundry.org/ Open Biological and Biomedical Ontology Foundry. Extensive collection of 

ontologies for the biological sciences 
OGC https://www.ogc.org/docs/is Geospatial (location) information, implemented by many organizations, readily 

accepted 
OM https://www.wur. 

nl/en/product/Ontology-of-units-of-Measure-OM.htm 
Comprehensive ontology on units of measure, quantities, dimensions. 

QUDT https://www.qudt.org Units of measure, quantity kinds, dimensions, and data types  
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scattered and haphazard actions of different players in the field. We can 
also hypothesize that the agriculture and food researchers and their 
respective communities do not take sufficient ownership of the common 
standardization and harmonization efforts required to achieve easy data 
use. This role of the scientific communities was clear in the cases pre
sented above, where efforts are often dependent on a single university, 
research institute or project team taking steps to define a list of 
commonly agreed terms. However, harmonization efforts by the broader 
community remain undefined, and the original creative process un
documented. Many of the vocabularies in Table 2 are the result of ini
tiatives to achieve some sort of alignment in a community. A successful 
case is BRAPI, in which a consortium of universities manages to jointly 
maintain and align a set of vocabularies. Also, in the field of geo-spatial 
data, the OGC plays a leading role in defining relevant standards that are 
commonly followed in the community. Here the leading role of these 
standards in many applications plays a key role. In the food domain, 
FoodOn is gradually taking up a leading position and is supported by 
several research organizations world-wide. For adoption by the food 
industry and trade organizations a transition from existing text-based to 
machine readable standards is needed. GS1 can be a key player in this 
process. 

Undoubtedly the role of the communities involved needs to be 
strengthened to ensure that relevant and robust vocabularies emerge. 
This requires the recognition by the formal and informal leaders of these 
scientific communities of the importance of such vocabularies for the 
general advancement of their science. Funders need to allocate resources 
for the long-term development, and universities and research institutes 
should recognize that contributing to vocabulary development is an 
addition to a scientific career and not a distraction. 

5.2. Fairification 

The FAIR principles have been instrumental in getting good practices 
on data management on the agenda of the scientific and science funding 
community. The increased awareness of the good practices has at least 
led to more publication of data sets gradually, however, it is unclear 
whether it has also led to more data use. The application of the FAIR 
principles to different cases leads to new challenges once one descends 
into the particularities of a specific scientific domain and use case. 
Achieving interoperability (the I in FAIR) by expressing metadata in 

terms of controlled vocabularies and ontologies is still a demanding task. 
From the use cases lessons can be drawn towards the implementation of 
the FAIR principles. 

The first lesson is that the FAIR principles address only a part of the 
data publication process. They define what is needed to publish a suit
able dataset and associated vocabularies. They do not prescribe all steps 
needed to proceed from making the initial observations to providing 
high quality data and metadata, ready for use in software. An additional 
description of the FAIRification implementation process is given in 
(Jacobsen et al. (2020b)). This, however, still leaves the different roles of 
individuals involved implicit. To clarify these roles, we propose to 
distinguish between ‘data provider or user’, ‘data steward’ and ‘data 
reviewer’. We link these roles to the process of data collection, anno
tation, review, publication, curation, and use, as visualized in Fig. 4. 

First, we have the data provider or and the data user. This role is 
typically played by researchers and professionals performing their daily 
tasks, generating data, and using data from other sources. This can range 
from the scientist performing lab experiments to the farmer ploughing 
his land, and from the journalist authoring an in-depth article on the 
environmental impact of modern farming to the consumer following a 
healthy diet. They typically approach the data through the tools for data 
collection and processing they are accustomed to in their everyday 
work, assuming that the data involved are properly understood and 
valid for the cases considered. The data provider must decide which data 
to publish; what is needed to verify or replicate his work? Is it of interest 
for peers (for example, should one share ‘failed experiments’)? What are 
potential risks of misunderstanding and misuse? On the other hand, the 
data user decides which part of the available data to use, how to process 
and present them. They estimate the quality of the data, i.e., what is its 
fitness-for-use in their own case? These are tough questions to answer in 
general and may take considerable effort to answer. The advantages of 
sharing data are clear, but they come at a price. In the research com
munity for example this price cannot only be paid by the researcher, also 
considering that there are already high demands on the researchers in 
terms of writing grant proposals, scientific papers, and teaching 
students. 

The role of the data steward to take up part of this burden has already 
been amply described in the FAIR related literature (Mons (2021)). Data 
stewards assist researchers in implementing the FAIR principles from an 
organizational point of view. Each research group or unit employs a data 

Fig. 4. Stepwise overview of the process for data collection, sharing and use.  
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steward as a gatekeeper for creating and implementing data manage
ment plans. It is stated that 5% of a research budget should be spent on 
data stewardship (Mons, 2020). On the data production side, the stew
ard helps data providers to publish high-quality and FAIRified data 
effectively with endpoints on the web (cloud). She assists in finding 
ways to describe and store data (if possible in community-specific data 
warehouses), to identify potential data publication outlets, and to find 
and use relevant vocabularies. Whereas the data steward assists in 
properly annotating the data for publication, the data itself should not 
be touched. The original creator of a dataset is responsible for per
forming experiments in a proper way and making accurate observations. 
On the data consumption side, the data steward assists users in pre
paring data from external sources for research goals. The data user is 
responsible for selecting data elements and making proper inferences 
over the data. We can also consider data curation for a particular 
application context as part of the data steward’s task (covering both 
metadata and data), but this requires a close connection of the steward 
with the cases considered. 

Hence, the role of the data steward alleviates the task of the 
researcher. However, the institutional and scientific effort involved still 
causes much pressure on the capacity and budget available in research 
projects. This pressure can be reduced by (1) partly automating the 
process (for example checking parameter compatibility or for unit 
conversion), and (2) by introducing the role of the data reviewer. 

We propose the role of the data and ontology reviewer as the inter
mediate actor between data providers and data users. When data pub
lication becomes more of a widespread practice, like manuscript 
publication, its value for scientific careers will become apparent. Data 
reviewers are scientific peers that can evaluate the general fitness-for- 
use and understandability of a dataset for use by other researchers in 
the same domain, based on the metadata provided by the researcher 
who originally collected the data. These reviewers operate in the same 
way as reviewers of scientific manuscripts, being independent from the 
original author and not coming from the same lab or research group. 
Data reviewers can define a minimal information level that prescribes 
which variables and meta-data is required for any dataset to be pub
lished in a specific domain. An example of such a standard in proteomics 
is MIAPE (https://www.psidev.info/miape). 

The second task of data reviewers, as domain experts but not tied to 
specific projects, is to ensure that ontologies in this domain are avail
able, properly published, updated, and documented. If needed they 
initiate new ontology development projects. Finally, they check whether 

the considered datasets properly link to these accepted, community- 
driven vocabularies and ontologies. 

Researchers and non-academic professionals can act as data re
viewers, provided they distinguish their data needs from the needs of the 
community in their domain – not unlike manuscript reviewers. In that 
way, the organizations they are embedded in can carry their part of the 
burden either financially or through time resources, to ensure that 
shared data becomes usable. Here again the importance of scientific and 
professional communities emerges as a mechanism to support the dia
logue between data providers and users. 

5.3. Data maturity levels 

Data sharing is all about the quality of data and metadata, and the 
best proof of success is in the automated use of data in other studies than 
for which they were originally created. However, the ideal situation of 
fully automatic reuse will not always be achieved in practice, given 
limited resources, capabilities, and tools available. To our best knowl
edge no maturity model for automated data reuse has been defined yet. 
Based on the existing FAIR principles we propose a five-star model for 
data quality, inspired by the five-star model of Tim Berners Lee for 
Linked Data (https://5stardata.info/en/). Whereas the latter refers to 
the technical level of linking data elements, our five levels for data 
maturity express to which extent a dataset is reused or at least ready to 
be reused. The levels are shown in Table 3. 

Although we addressed data in particular, similar conditions hold for 
sharing computational models, algorithms, and tools. The latter relate 
directly to computation, in contrast to more descriptive research out
puts, such as descriptive theories, explanations and debates that are 
shared through traditional publications (Goldacre et al. (2019)). 

6. Conditions for easier data use 

Based on the above observations, we identify four conditions that 
will have to be met for data sharing across research domains to succeed. 

A first condition is the availability of automated tools for data pro
viders and users, but also for stewards and reviewers. Data annotation 
tools are needed to facilitate easy alignment with commonly agreed 
vocabularies during data production. For example, an analyst capturing 
data in a lab journal or a crop trial manager who logs activities in a field 
book should be supported in connecting their data definitions to con
cepts defined in a shared vocabulary. Ideally this functionality is 
embedded in applications that are already commonly used, such as 
spreadsheets. Some initiatives have been taken in this direction (Wig
ham et al., 2015; Wolstencroft et al., 2011), but most commercial 
(generic) solutions lack such functionality. An additional benefit of this 
would be that data providers avoid mistakes already at the point of 
creating data and become aware of potential reuse of the data at an early 
stage. 

A second condition is that funding, tools, and ontology development 
are community-driven. It is an institutional effort to finance and build the 
required infrastructure. Domain-specific communities must manage 
pools of data sets, following the needs and particularities of each 
domain, including a clear governance model for sensitive data. Problems 
such as missing data, out-of-range data, missing metadata, concept 
matching and ontology alignment are specific for a domain or even the 
actual problem to be solved. Tools for annotation, review and curation 
of data can best be developed at a community level. Such communities 
must be small, for example within agri-food farm-household modelers 
require quite different data with different challenges than crop-modelers 
(Hammond et al. (2017)), see Section 4. Considering agri-food as just 
one community will not lead to substantial progress, as it is too diverse 
internally. 

A third condition is that we acknowledge that sensitive data (e.g., 
because of confidentiality, privacy, implicit assumptions that may lead 
to misuse) cannot be opened through an open-by-default policy. In food 

Table 3 
Five-star model of data quality and use.  

Number of 
stars 

Status Quality level 

* Raw Published in a data repository that is externally 
accessible and findable, contains raw data with 
some textual meta-description (institution, 
publisher), with a DOI for the entire dataset. 

** Reviewed One star + published in a data journal with 
reviews and feedback; metadata as textual 
description with more information on 
variables and provenance. 

*** Linked and 
licensed 

Two stars + metadata and variables linked to 
public ontologies or controlled vocabularies in 
linked data format; license attached for use of 
the data. 

**** Operationalized Three star + a data expert from a specific 
community has created a version of the data 
according to the agreed common data model 
for that community and has added community- 
specific metadata. 

***** Used Four star + use of the dataset by others in 
another study, tracked through citations; 
added metadata on scope of re-use: for what 
does the data work and for what not?  
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systems, private sector parties play a key role in creating and applying 
data from the supply chain, which are valuable for others, for example in 
research. These private parties often insist on non-disclosure of data that 
researchers have used to generate their articles. However, there should 
be a way to give restricted access to reviewers and secondary users to at 
least the metadata to verify the quality of the data for a particular 
purpose. Here, transparent governance mechanisms need to be adopted 
and shared across communities. As an example of a rule for data access, 
usage could be restricted to accredited research organizations or con
sultants only, or to a particular research project. These rules and criteria 
need to be objectified and universally applicable, also hold beyond the 
research project’s lifetime, implemented in clear authorization mecha
nisms that also avoid stagnation in data use. 

One last condition for improving data sharing practices is to create 
insight into how data is actually (re)used in scientific communities. Such 
insight could for example come from a serious study of the role of data in 
scientific meta-reviews, an example being the Cochrane reviews 
managed by the Cochrane Collaboration in the health domain 
(https://www.cochranelibrary.com/). Most other scientific domains do 
not yet have such review mechanisms, thereby lacking mechanisms to 
connect widely available data (see, for example, (Suškevičs et al. 
(2017)). These scientific communities need to explicitly discuss and 
think about the next-generation research questions that can be answered 
and how they are going to make shared data pools available as a sci
entific community. 

7. Conclusion 

Data sharing in the agriculture and food domain is gradually 
becoming accepted practice. With some cases we have demonstrated 
concrete efforts. We have emphasized the need for distributing the work 
involved in annotating data over different players in the information 
chain. We have distinguished three complementary roles to execute this 
work: data provider/user, data steward and data reviewer. The latter needs 
some level of public commitment in specific domains. Interaction be
tween researchers producing the data and those using the data is crucial 
to create pools of datasets that have the potential to be ‘fit-for-purpose’ 
and ‘within-scope’ for related applications that use that data. Finally, we 
have defined five levels of data sharing maturity to create awareness and 
listed four general conditions that need attention. 

To conclude, while the FAIR principles have been instrumental in 
raising awareness on data sharing with researchers and other pro
fessionals, they have not yet shown to be particularly helpful in imple
mentation of operational data sharing within agri-food communities. 
Many agri-food communities still lack the crucial building blocks 
required, such as shared vocabularies, sufficient quality data sets and 
shared data handling practices. Our findings suggest that a casuist- 
approach (i.e., case-by-case investigation) to data-sharing in concrete 
scientific communities is preferred to depositing generic principles that 
are hard to operationalize. 
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Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Australian_Academy_of_Science, 2021. Advancing data-intensive research in Australia. 
Carolan, L., Smith, F., Protonotarios, V., Schaap, B., Broad, E., Hardinges, J., Gerry, W., 

2015. How can we improve agriculture, food and nutrition with open data? Open 
Data Institute 2015. 

Cash, D.W., Clark, W.C., Alcock, F., Dickson, N.M., Eckley, N., Guston, D.H., Jager, J., 
Mitchell, R.B., 2003. Knowledge systems for sustainable development. Proc. Natl. 
Acad. Sci. USA 100 (14), 8086–8091. https://doi.org/10.1073/pnas.1231332100. 

de Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., 
Supit, I., van der Wijngaart, R., van Diepen, K., 2019. 25 years of the WOFOST 
cropping systems model. Agric. Syst. 168, 154–167. https://doi.org/10.1016/j. 
agsy.2018.06.018. 

Fao, 2021. AGROVOC – Semantic data interoperability on food and agriculture. FAO, 
Rome, Italy.  

Goldacre, B., Morton, C.E., DeVito, N.J., 2019. Why researchers should share their 
analytic code. BMJ 367 (6365). 

Hammond, J., Fraval, S., van Etten, J., Suchini, J.G., Mercado, L., Pagella, T., Frelat, R., 
Lannerstad, M., Douxchamps, S., Teufel, N., Valbuena, D., van Wijk, M.T., 2017. The 
Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of 
households to inform climate smart agriculture interventions: Description and 
applications in East Africa and Central America. Agricultural 151, 225–233. https:// 
doi.org/10.1016/j.agsy.2016.05.003. 

Jacobsen, A., de Miranda Azevedo, R., Juty, N., Batista, D., Coles, S., Cornet, R., 
Courtot, M., Crosas, M., Dumontier, M., Evelo, C.T., Goble, C., Guizzardi, G., 
Hansen, K.K., Hasnain, A., Hettne, K., Heringa, J., Hooft, R.W.W., Imming, M., 
Jeffery, K.G., Kaliyaperumal, R., Kersloot, M.G., Kirkpatrick, C.R., Kuhn, T., 
Labastida, I., Magagna, B., McQuilton, P., Meyers, N., Montesanti, A., van Reisen, M., 
Rocca-Serra, P., Pergl, R., Sansone, S.-A., da Silva Santos, L.O.B., Schneider, J., 
Strawn, G., Thompson, M., Waagmeester, A., Weigel, T., Wilkinson, M.D., 
Willighagen, E.L., Wittenburg, P., Roos, M., Mons, B., Schultes, E., 2020a. FAIR 
principles: interpretations and implementation considerations. Data Intelligence 2 
(1–2), 10–29. https://doi.org/10.1162/dint_r_00024. 

Jacobsen, A., Kaliyaperumal, R., da Silva Santos, L.O.B., Mons, B., Schultes, E., Roos, M., 
Thompson, M., 2020b. A generic workflow for the data FAIRification process. Data 
Intelligence 2 (1-2), 56–65. 

Janssen, H., Janssen, S.J.C., Knapen, M.J.R., Meijninger, W.M.L., van Randen, Y., la 
Riviere, I.J., Roerink, G.J., 2018. AgroDataCube: a big open data collection for agri- 
food applications. Wageningen Environ. Res. https://doi.org/10.18174/455759. 

Janssen, S.J., Athanasiadis, I.N., Bezlepkina, I., Knapen, R., Li, H., Domínguez, I.P., 
Rizzoli, A.E., Ittersum, M.K.v., 2011. Linking models for assessing agricultural land 
use change. Computers and Electronics in Agriculture 76(2) 148-160. DOI 10.1016/ 
j.compag.2010.10.011. 

Janssen, S.J., Porter, C.H., Moore, A.D., Athanasiadis, I.N., Foster, I., Jones, J.W., 
Antle, J.M., 2017. Towards a new generation of agricultural system data, models and 
knowledge products: Information and communication technology. Agric. Syst. 155, 
200–212. https://doi.org/10.1016/j.agsy.2016.09.017. 

Kamilaris, A., Kartakoullis, A., Prenafeta-Boldú, F.X., 2017. A review on the practice of 
big data analysis in agriculture. Comput. Electron. Agric. 143, 23–37. https://doi. 
org/10.1016/j.compag.2017.09.037. 

Keil, J.M., Schindler, S., Brodaric, B., 2018. Comparison and evaluation of ontologies for 
units of measurement. Semantic Web 10 (1), 33–51. 

Lokers, R., 2019. Guidelines for analysing pathways to impact: Evaluation of open data 
for development F1000Research. 

Marvin, H.J., Janssen, E.M., Bouzembrak, Y., Hendriksen, P.J., Staats, M., 2017. Big data 
in food safety: an overview. Crit. Rev. Food Sci. Nutr. 57 (11), 2286–2295. https:// 
doi.org/10.1080/10408398.2016.1257481. 

Mey, L., Berdou, E., Ayala, L.M., Lokers, R., 2019. Open Data Impact Narratives – Stories 
of Impact of Open Data in Agriculture and Nutrition, GODAN F1000 Gateway. 
GODAN. DOI 10.7490/f1000research.1117566.1. 

Mons, B., 2020. Invest 5% of research funds in ensuring data are reusable. Nature 578 
(7796), 491. https://doi.org/10.1038/d41586-020-00505-7. 

Mons, B., 2021. Data stewardship for open science: implementing FAIR principles. 
Chapman and Hall/CRC. 

Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., 
Athanasiadis, I.N., 2021. Machine learning for large-scale crop yield forecasting. 
Agric. Syst. 187, 103016. https://doi.org/10.1016/j.agsy.2020.103016. 

Rijgersberg, H., van Assem, M., Top, J., 2013. Ontology of units of measure and related 
concepts. Semantic Web 4 (1), 3–13. https://doi.org/10.3233/SW-2012-0069. 

Rijnaarts, I., de Roos, N.M., Wang, T., Zoetendal, E.G., Top, J., Timmer, M., Bouwman, E. 
P., Hogenelst, K., Witteman, B., de Wit, N., 2021. Increasing dietary fibre intake in 
healthy adults using personalised dietary advice compared with general advice: a 
single-blind randomised controlled trial. Public Health Nutr 24 (5), 1117–1128. 
https://doi.org/10.1017/S1368980020002980. 
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