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Simple Summary: Emotions or affective states recognition in farm animals is an underexplored
research domain. Despite significant advances in animal welfare research, animal affective state com-
puting through the development and application of devices and platforms that can not only recognize
but interpret and process the emotions, are in a nascent stage. The analysis and measurement of
unique behavioural, physical, and biological characteristics offered by biometric sensor technologies
and the affiliated complex and large data sets, opens the pathway for novel and realistic identification
of individual animals amongst a herd or a flock. By capitalizing on the immense potential of biometric
sensors, artificial intelligence enabled big data methods offer substantial advancement of animal
welfare standards and meet the urgent needs of caretakers to respond effectively to maintain the
wellbeing of their animals.

Abstract: Farm animals, numbering over 70 billion worldwide, are increasingly managed in large-
scale, intensive farms. With both public awareness and scientific evidence growing that farm animals
experience suffering, as well as affective states such as fear, frustration and distress, there is an urgent
need to develop efficient and accurate methods for monitoring their welfare. At present, there are
not scientifically validated ‘benchmarks’ for quantifying transient emotional (affective) states in
farm animals, and no established measures of good welfare, only indicators of poor welfare, such as
injury, pain and fear. Conventional approaches to monitoring livestock welfare are time-consuming,
interrupt farming processes and involve subjective judgments. Biometric sensor data enabled by
artificial intelligence is an emerging smart solution to unobtrusively monitoring livestock, but its
potential for quantifying affective states and ground-breaking solutions in their application are yet
to be realized. This review provides innovative methods for collecting big data on farm animal
emotions, which can be used to train artificial intelligence models to classify, quantify and predict
affective states in individual pigs and cows. Extending this to the group level, social network analysis
can be applied to model emotional dynamics and contagion among animals. Finally, ‘digital twins’ of
animals capable of simulating and predicting their affective states and behaviour in real time are a
near-term possibility.

Keywords: animal emotions; animal welfare; sensors; animal-based measures; affective states;
emotion modelling

1. Quantified Animal Welfare—A Perception or a Reality?

Public concern for animal welfare is growing [1], supported by mounting scientific
evidence that many animals, including mammals and birds, are capable of experiencing
affective states such as fear, frustration, and joy [2–4]. Farm animals constitute more than
90% of the non-human animal population, in total numbering over 70 billion, two-thirds
of which are farmed intensively [5]. As the global demand for animal products increases,
livestock farming is expanding in step, with ever larger farms and numbers of animals to
care for. Monitoring and responding effectively to livestock disease and distress is an ever-
growing challenge for farmers, one that has impacts both ethically and economically [1,6].
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As an animal’s affective state responds so rapidly to its physiological state and events
in the external environment, it is a highly sensitive indicator of animal wellbeing [4]. There-
fore, farmers who are better informed about their animals’ affective states are empowered
to respond more rapidly and effectively to preserve livestock welfare and to mitigate losses
in productivity and quality caused through disease and distress. However, at present,
our ability to identify, quantify, and predict affective states in animals, especially positive
states [7,8], is limited [7,9,10].

Although animals cannot express emotions in the same way as humans, using lan-
guage, they nevertheless communicate their affective state via alternative means, including
vocalizations [8,11], body and tail movements [12,13], facial expression [14–17] (including
movements of ears, lips or eyes) [9,16,18], body posture, which is somewhat different from
body movements, hair and or feather movements (e.g., piloerection in some mammals
and raising or lowering the feathers in the crests of some birds) [19]. In addition to these
behavioural signals, animal affective states are associated with changes in physiological
parameters, such as heart rate [18–21], respiratory rate [21,22], and the temperature of
the whole or parts of the body [23–25]. Furthermore, emotional changes in animals also
modulate biochemical signals, such as levels of cortisol [20,26,27], lactate [27,28], and
oxytocin [29] in blood and saliva.

Traditional methods for assessing farm animal affective states, such as surveys or blood
sampling, cause interruptions to farming processes, and are time-consuming, making them
impractical to carry out on large numbers of animals, or they involve subjective judgements
that can introduce bias [30]. Currently, however, there are insufficient scientifically validated
standards available for measuring and quantifying farm animal affective states based on
any of these signals [9]. Furthermore, there are no established standards of good welfare in
animals, rather only those relating to indicators of poor welfare, such as injury, pain and
fear [14,31]. Positive affective states in farm animals are essential to monitor and foster,
not only because they indicate good physical and mental health, but also because they can
increase the productivity of livestock and the quality of products obtained from them [6,32].
Therefore, developing quantitative measures of farm animal affective state (Figure 1) to
improve animal welfare could benefit both livestock and farmers by mitigating disease,
reducing suffering, and increasing the quality and quantity of livestock output.

An emerging disruptive approach in livestock farming, currently in development
within our research group at Wageningen University, is the use of biometric sensor tech-
nology in combination with big data analytics to analyse farm animal behaviour [9]. At
present, no such systems have been developed for measuring and predicting farm animal
affective states. Traditional methods of farm animal monitoring are time-intensive, can
only be performed sporadically, and yield small data sets, making it difficult to derive
accurate inferences about animal behaviour and affective state [33]. In contrast, wearable
and environmental sensors allow for huge data sets of physical, biological, and biometric
parameters to be continuously and concurrently acquired from individual animals or entire
herds [34]. Big data methods, such as artificial intelligence (AI) and machine learning
(ML) algorithms, provide a powerful, automated approach to analysing these data in real
time [33,35,36]. Big data analytics thrive on a continuous flow of data, gradually learning
features and patterns in the data, and improving the ability over time to accurately classify,
quantify, and predict affective states [37–42].

A wide variety of both invasive and non-invasive sensor types have been developed
applicable to monitoring animal behaviour and affective states [9,43]. Invasive sensors
are either implanted or swallowed by the animal, and hence have the drawbacks in terms
of animal welfare and harm: risking infection, and inducing stress, and hence potentially
skewing the collected data. Therefore, non-invasive sensors are generally preferred for
animal welfare monitoring [9]. These include remote sensors such as visual and thermal
cameras, microphones, and wearable sensors attached to the animal, such as for monitoring
heart and respiratory rate, and activity levels.
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Figure 1. Framework for affective style measurement driven animal welfare research: Relationship
between the farm animal emotional lateralization, animal welfare and the affective states. Lateral-
ization: Asymmetrical representation of the control of emotions and processing in the animal brain.
BIS—Behavioural Inhibition System; BAS—Behavioural Activation System. Reprinted from [44]
Applied Animal Behaviour Science 237, 105279, Goursot, C.; Düpjan, S.; Puppe, B.; Leliveld, Lt M.
Affective styles and emotional lateralization: A promising framework for animal welfare research,
2021, Creative Commons Attribution (CC BY 4.0). https://doi.org/10.1016/j.applanim.2021.105279
(accessed on 2 October 2021). Text in the right hand box was changed from “Individualized welfare”
to “Quantified Animal Welfare”.

Small-scale studies, including from our group, have previously explored automated
affective state measurement from data collected from one or a small number of sensors;
the potential of big data to characterize animal affective state across multiple visual, ther-
mal, auditory, physiological, and biochemical modalities is as yet, untapped [9,45]. The
integration/fusion of multimodal sensor data is key to measuring emotional changes with
sufficient speed and accuracy to be relevant for guiding livestock welfare decisions in
real-world farming situations [9]. Recent innovations in AI and ML methods have substan-
tially improved our ability to identify and quantify affective states in biometric sensor data
collected from humans and animals [37,40,41,46]. These technical achievements augur a
new era in farm animal welfare monitoring, in which big data analytics methods capitalize
on multimodal sensor data to substantially advance our understanding of animal affective
states and wellbeing [9,34]. This approach has the potential to revolutionize livestock
farming by allowing farmers to continuously monitor their animals’ welfare [9], respond
quickly to prevent disease and distress [34,47], and optimize care at the level of individual
animals [48,49].

This perspective and critical review article provides a framework for quantitative and
objective assessment of distinct affective state features and categories in farmed animals
(predominantly pigs and cows). In this article, I propose ways to identify robust predictors
of farm animal affective state and behaviour by collecting multimodal biometric sensor data
from real farm environments; methods to develop objective, scientifically validated scales
and indices of animal welfare to predict affective state and behaviour at the individual and

https://doi.org/10.1016/j.applanim.2021.105279
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herd levels; and perspectives to generate digital twin (digital replica of a real-world entity)
models of animals that allow measured and predicted affective states and behaviours to be
reported in real time to animal caretakers in an interactive and intuitive way.

2. Multi-Dimensional Sensor Data for Monitoring of Affective States

The Three Circles model of animal welfare proposes that the essential criteria are
the basic health and functioning, natural living, and affective states of animals [50]. Al-
though much attention has been paid to physical indicators of health, functioning, and
the living conditions of livestock, limited research to date has focused on measuring their
affective states [9,30]. Research into non-human animal affective states is considerably less
developed than that into human affective states [7], although overlaps exist in the concep-
tual frameworks used to study affective states across species, especially within mammals.
According to one widely accepted contemporary definition [7], emotions are short-lived
affective states involving simultaneous behavioural, physiological, cognitive and subjective
processes. Emotional experiences typically are characterized by two main dimensions:
valence (pleasant to unpleasant) and arousal (high to low energy). Discrete emotions, such
as fear, anger, joy or contentment, can be placed within this two-dimensional “affective
space” [4,51]: for example, fear is negative valence–high arousal, while contentment is
positive valence–low arousal.

However, while many of the existing methods for measuring emotion-related be-
havioural and physiological processes in animals are sensitive to arousal, they do not
accurately quantify valence [7,52]. For example, sampling of cortisol levels from blood is an
excellent method for quantitatively measuring arousal but is much less informative regard-
ing valence. Measuring valence is key to improving animal welfare, as maintaining positive
affective states has been shown to increase both health and happiness in animals [31,53].
Studies suggest that animals, like humans, experience affective states at multiple timescales,
ranging from transient affective states to longer-lasting moods, and even relatively stable
emotional dispositions akin to personality [54–57]. However, existing methods of assessing
affective state in farm animals are time-consuming and fail to capture dynamic changes in
affective states over time [14,30], which are key to building a comprehensive understanding
of the complex factors influencing animal welfare and developing effective interventions to
mitigate disease and distress. This is especially important in stressful situations, such as
during transportation and preparation for slaughter [58–60], in which understanding how
affective states are triggered in animals by environmental stimuli such as calls from other
animals are vital to maintaining their welfare.

Sensor technology advances promise to empower farmers to exploit these moment-to-
moment changes in the affective states of their animals, thereby increasing their wellbeing
and productivity [9]. A variety of non-invasive sensors are deployed in farm environments
to monitor physical, behavioural, physiological, and biochemical cues that correlate with
affective states in farm animals [9,33,34]. Research into automated affective state classifi-
cation and measurement in humans has led to the development of AI and ML methods
suitable for analysing data from each of the different modalities such as facial features,
vocalization, gait, posture, physiological data, thermal data, activity. Below, I discuss key
sensor types used in farm settings, the aspects of emotional expression they measure, and
the state-of-the-art in AI and ML methods for quantifying affective states based on data
from each sensor type.

2.1. Visual Sensors—Facial Features and Expression

Using video cameras, the entire facial expression, or the appearance of particular
facial features, such as the eyes, ears, nose (snout), cheeks, or jaw, can be monitored.
The movement and attitude of specific facial features have been noted to reflect affective
state in farm animals, for instance, backward-pointing ears indicates fear in pigs [16].
However, at present no systematic analyses of facial expressions in farm animals have been
conducted [9,15,17]; therefore, an AI/ML big data approach to affective state recognition
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and analysis can radically deepen our understanding of correlations between facial features
and affective states in farm animals.

In addition to analysing specific facial features, facial expression in animals can be
assessed quantitatively using the Facial Action Coding System (FACS) [61], in which the
activities of facial muscles or groups of muscles are manually scored to identify specific
affective states. FACS, which was originally designed to analyse affective states on hu-
man faces, has been adapted to develop Grimace Scales [31], which quantify pain-related
facial expressions in animals undergoing unpleasant procedures, such as tail docking or
castration [14,62–65].

2.2. Thermal Imaging Cameras—Body Temperature

Thermal (infrared) imaging cameras can measure the peripheral temperature of the
whole or parts of an animal’s body [66–68], which correlates with changes in affective state
and autonomic nervous system activity [21,24,69]. A decrease in the peripheral temperature
of a particular body part followed by an increase in core temperature may indicate a change
in affective state [67,68]. For example, in sheep a drop in nasal temperature indicates
a change in emotional valence (from negative to positive, and vice versa) [23]. To date,
studies using thermal imaging cameras have not fully exploited the potential for automated
real-time processing of these data. Hence, there is a need for application of image-based
ML methods, such as convolutional neural networks [70,71], to improve the sensitivity,
accuracy and speed of temperature-derived measures of affective states in farm animals.
Convolutional Neural Network (CNN) is a deep learning algorithm and a class of artificial
neural network typically used for analysing images.

2.3. Microphones—Vocalisations

Microphones installed in the farm environment can capture and discriminate vocali-
sations from many animals simultaneously, making them a powerful tool for monitoring
affective state. Vocalisations have been demonstrated to convey information about affective
states in a wide range of farm animals [8,72,73], including pigs [74], cows [75] and chick-
ens [76]. Vocalizations are often involuntary, especially those indicating negative affective
states, and so are good indicators of immediate emotional reactions in animals [9]. ML
approaches to farm animal sound analyses have been extensively explored and successfully
applied to analysing vocalizations from pigs [77], chickens [76,78] and cows [79,80].

2.4. Heart Rate Monitors—Heart Rate and Heart Rate Variability

Wearable heart monitoring devices for farm animals are beginning to emerge that
can provide continuous monitoring of heart rhythm via electrocardiographic (electrical)
or photoplethysmographic (optical) methods [81]. The heart rate and the variability in
inter-beat intervals, known as heart rate variability (HRV), provide physiological measures
(Figure 2) of affective state reflecting the activity of the autonomic nervous system [19,82,83].
For example, cows undergoing a stressful veterinary procedure show a decrease in HRV,
accompanied by an increase in serum and saliva levels of the stress-related hormone
cortisol [20]. An attempt to collect heart rate and HRV continuously from cows and pigs
using the novel wearable TNO Holst Centre 3-in-1 patch, which measures heart rate,
respiratory rate, and activity level simultaneously would be a break-through and will open
up multimodal data collection possibilities.

2.5. Accelerometers—Body Movement

Accelerometers embedded in wearable devices attached to livestock allow data to
be collected corresponding to an animal’s three-dimensional movement patterns [84–86].
Analyses of these data can yield valuable insights into the behaviour, health, and welfare
of livestock [87]. ML analyses of activity data have been widely applied to successfully
identify specific disease states in animals, such as lameness in sheep [88], and to accu-
rately distinguish between multiple behaviours, such as grazing, lying down, ruminating,
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standing and walking in cows and sheep [89–91]. However, despite their extensive use
to investigate and analyse farm animal behaviour, the potential contribution of activity
monitors to estimating affective states in farm animals has not been developed [9,92].

Figure 2. Photo of the wearable 3-in-1 sensor patch for measuring heart and respiration rates, and
activity simultaneously (Source: TNO Holst Centre, The Netherlands).

2.6. Respirometers—Respiratory Rate

The velocity or depth of respiration is an indicator of changes in affective state [93–95],
but this measure is confounded by many factors, including activity level, milk yield, preg-
nancy, ambient heat levels, and pathological conditions [96]. Therefore, respiratory rate
analysis works best when combined with other physiological measures, especially heart
rate [94] given the close relationship between the circulatory and respiratory systems.
Traditionally, manual observations of flank movements have been used to measure respira-
tory rate in farm animals, but these are very time-consuming. To address this, electronic
respiratory rate sensors are now being developed for a range of farm animals, including
cows [22] and pigs [21], such as the sensor incorporated into the wearable TNO Holst
Centre 3-in-1 patch.

The range of sensors available offer the opportunity to collect data from many different
modalities simultaneously. However, analysis of data from any one sensor type alone is
insufficient to accurately measure affective states in farm animals; therefore, a multimodal
approach to affective state estimation is key, but this is yet to be realized in livestock
farming [9]. Combining sensors across multiple modalities has the potential to significantly
advance our capacity to estimate affective states and could yield valuable data and insights
into affective states across species and the interrelationship between environmental factors
and affective states [9,45,97]. However, to harness the tremendous potential of real-time
multimodal sensor data to deepen our understanding of affective states, novel methods
must be developed to collect, integrate, and analyse these data.

To address this challenge, there is an urgent and immediate need for the development
and delivery of next-generation technology that integrates and analyses cues from multiple
sensors simultaneously to quantify and predict affective states in farm animals. To achieve
this, AI and ML methods can be applied to analyse the large data sets of high temporal
resolution, multidimensional data generated by the distributed, multimodal sensor net-
work [37,40–42,45,97]. This innovative application of a big data analytics approach will
enable faster, more accurate and more sensitive monitoring of affective state and welfare
in farm animals compared with traditional methods, meeting the challenge of identifying
uncharacterized mental and affective states at high temporal resolution. By capitalizing on
the immense potential of biometric sensors and computational methods, the methodologies
and instrumentation aspects will substantially advance welfare standards and help caretak-
ers to respond more effectively to maintain the welfare of their animals [34,35,43,87]. This
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quantitative assessment of affective states will open the door to exploring the interrelation-
ship between environmental factors and affective states. The critical insights gained into
the mechanisms underlying emotional processing should be of significance in developing
tools to enhance animal welfare and in advancing our understanding of animal–human
interactions.

3. Modelling Farm Animal Affective State and Behaviour Using Multimodal
Sensor Fusion

High-fidelity, integrated multimodal imaging and sensing technologies have the
potential to revolutionize how livestock are monitored and cared for [33,34]. Currently,
there are no commercially available multimodal biosensing platforms capable of monitoring
the affective and behavioural states of farm animals in real time [9]. Developing such a
platform would allow comprehensive quantitative analyses of these states, potentially
leading to significant insights and advances in our understanding of optimal approaches
to animal care. The development and integration of next-generation multimodal sensor
systems and advanced statistical methods to estimate and predict affective and behavioural
states in farm animals would significantly open pathways for enhancing animal welfare.

Establishing a distributed network of non-obtrusive, non-invasive sensors to collect
real-time behavioural and physiological data from farm animals could be the initial step in
the realization of framework development (Figure 3). Non-invasive sensors comprising
video and thermal imaging cameras, microphones, and wearable TNO Holst 3-in-1 patches
(monitoring heart rate, respiration rate, and activity) will help in the collection of data on
behavioural and affective states. Data collected during natural behaviour, without any
interference from experimenters, and the data collected during protocols in which defined
positive and negative affective states will be induced in the animals using established pro-
tocols, including withholding high-value food from animals to induce disappointment [98];
placing animals in crowded situations to induce frustration [99,100]; and petting and
socializing the animals to induce contentment [101,102] are some possibilities.

Figure 3. Multimodal affective state recognition data analysis workflow framework of the per-animal
quantified approach. EEG—electroencephalogram; FNIRS—functional near-infrared spectroscopy;
ML—machine learning; CNN—convolutional neural networks.

3.1. Classification and Annotation of Affective States and Behavioural Events

Common methods to identify affective and behavioural events in farm animals using
sensors and AI enabled sensor data are: (a) An automatic affective state classification ap-
proach, capitalizing on preliminary work [103] conducted by FarmWorx of the Wageningen
University. Pre-existing trained farm animals’ facial recognition platform such as WUR
Wolf (Wageningen University and Research—Wolf Mascot) [103] can be used to classify
changes in affective state over time in pigs and cows based on the video camera data
(Figure 4). (b) Manual annotation of behavioural and emotional events in the data sets by
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ethologists and behavioural scientists with specific expertise in cow and pig behaviour,
providing “gold-standard” annotated data sets. The annotators could potentially evaluate
one category of behaviour (e.g., feeding, playing, resting) or affective state (e.g., fearful,
happy, relaxed) at a time for all the animals under study, to maintain consistent scoring
across animals. Krippendorff’s alpha coefficient could be calculated to compute the reliabil-
ity across annotators and metrics, and to assess the influence of unequal sample sizes and
disparities between dimensional and categorical variables on the results.

Figure 4. Pipeline of WUR Wolf (Wageningen University and Research—Wolf Mascot) automatic
approach [103] in coding affective states from facial features of cows using machine learning models.
SVM—support vector machine; AU—arbitrary units.

3.2. Sensor Network Fusion Protocols and Instrumentation Framework

Integrating heterogeneous sensor types into a multimodal network involves imple-
menting a sensing platform capable of fusing data streams with differing precisions, update
rates, and data formats to produce a common framework in which these data can be
correlated and analysed. At present, there exist no platforms that possess the necessary
functionality to correlate heterogeneous data streams, integrate diverse data sets, and
identify data from individual animals [9].

There is a need for developing an instrumentation framework capable of integrating
sensor data from diverse sensor types, opening the door to acquiring and analysing large
data sets of multimodal sensor data on animal behaviour and affective state for the first time.
It has to focus on establishing the hardware infrastructure to reliably gather large quantities
of multimodal sensor data, along with the high-performance cloud server architecture to
store and process these data.

In order to stream data in real time from multiple sensor types simultaneously, making
use of long-range wide area network (LoRaWAN) communications technology, which
is rapidly emerging as the state of the art in smart farming [104–106] would be ideal.
LoRaWAN can wirelessly transmit data from 300 different types of sensors at a time,
which will thereby allow the researchers to avoid the technical complexity and cost of a
conventional wired setup. Extending the functionality of the LoRaWAN system to use
low-energy Bluetooth technology, by increasing the length of time that data can be acquired
from portable sensors before they need to be recharged [107–109] would save time and
resource overload. To accelerate and facilitate the real-time analysis of the data, cloud
servers connected via the internet must be used to store and process the data [33,110],
avoiding the need to install complex and expensive computer servers at each individual
farm site. The Microsoft AZURE platform is a commercial application that could allow
seamless integration between the sensor data streams and the high-performance AI and
ML methods used to analyse the data.
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3.3. Build Predictive Models of Affective State and Behaviour

By using the data sets collected from the distributed sensor network, robust pre-
dictive models of farm animal behaviour and affective states can be built. Advanced
statistical analyses applied to the annotated data set using supervised AI and ML methods,
namely the Latent Growth Curve Modelling, Random Forest and Support Vector Machine
models [111–113], offers established approaches in capturing and measuring patterns in
dynamic interactive variables, such as behaviour and affective states of farm animals. These
methods employed to extract features from the visual, thermal, auditory, physiological and
activity sensor data, enables different behavioural and affective states to be distinguished
with high accuracy, sensitivity, and selectivity [37,40,41,114].

Following the supervised training stage, unsupervised ML models applied aids in
the determination of clusters of similar behavioural and affective state descriptors from
unannotated sensor data obtained from farm animals [36,115,116]. These descriptors
function as numerical “fingerprints” that allow distinct behavioural or affective states
to be reliably identified, even in entirely novel data. The best features from each sensor
modality corresponding to these descriptors can then be selected to define high-level
specific indicators, which will then be fused to build an ML classifier-based model. There
are two potential approaches to fusing sensor data from different modalities to predict
behavioural and affective states which are (i) decision-level fusion, in which prediction
scores from the unimodal models will be linearly combined; (ii) feature- and indicator-level
fusion, in which feature vectors and indicators will be integrated across modalities to
yield the prediction scores. The performance levels of different ML methods at estimating
behavioural and affective states can be assessed using regression methods [117–119].

3.4. Challenges in the Quantification and Validation of Performance Models for Affective
States Measurement

The assessment effectiveness of the platform at estimating behaviour and affective
state in real time from farm animals is quite challenging. The predictive model can be
evaluated by calculating its accuracy at estimating affective and behavioural states in
novel data sets collected from the sensor network. In addition, the accuracy of the model
can further be validated by correlating the affective and behavioural states it identifies
against: (i) Quantitative assays of cortisol, lactate and oxytocin levels in blood and/or
saliva samples from the animals [120,121]. These provide a reliable biochemical reference
measure of emotional arousal and stress. (ii) Physiological indices associated with specific
affective states in the animals, such as heart rate, respiratory rate, and body temperature.
Physiological signals are more reflective of autonomic nervous system activity than non-
physiological signals [122], such as facial expressions or vocalizations. Autonomic nervous
system activation during emotional expression is involuntary in animals and therefore
provides an unambiguous, quantitative reference measure for evaluating affective states.

3.4.1. Sensor Durability

There is a risk that a wearable sensor cannot be attached securely to the animals, or the
animals may damage the sensors by chewing or crushing. To mitigate the former, animal
scientists or researchers could improve the adhesion protocol or use a belly belt, which is
more secure.

3.4.2. Low Sensitivity of the Model at Detecting Affective and Behavioural States

To address this, optimization of the AI algorithms and the sensors to increase sensitiv-
ity turn out to be useful.

3.4.3. Lack of Correlation between Sensor Data and Biochemical Reference Values

Researchers collaborate with veterinarians to set up the biochemical validation assays.
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3.4.4. Limiting the Numbers of Animals Used in the Experiments

Increasing the sample size opens up ethical and practical issues [123]. The numbers of
pigs and cows to be used in animal experiments should meet optimal research standards
and experimental design but also meet the 3R (reduce, replace, refine) policies. Bayesian
approaches could be used to increase the statistical power of the animal experiments using
historical control data [123], while developing indices.

4. Scales and Indices of Animal Affective States—Bio-Instrumentation Perspective

The ability to accurately identify and measure affective states in farm animals is the
gateway to creating more effective strategies for animal welfare. However, measuring
affective states quantitatively remains a challenge, with no widely accepted methods
or standards for doing so in farm animals [9]. While the recently developed Grimace
Scales for pigs, cows and sheep provide a manual approach to quantifying pain via facial
muscle movements [14,31,62], much work remains to develop comprehensive, quantitative
measures for the full range of affective states. Standardized, scientifically validated scales
and indices are of paramount importance to ensuring a consistently high quality of animal
welfare across the livestock sector [1,5]. Using affective state paradigms previously applied
to animals to collect behavioural and physiological data associated with positive and
negative affective states (Figure 5) is the easy path towards development of scales or
indices. Deep learning models can be trained to classify these affective states using the
sensor collected data [46,93], and based on the insights gained, more accurate, scientifically
validated scales and indices of animal welfare will be developed.

Figure 5. Overview of the farm animal affective measurement experimental set-up and block scheme
of heart-rate signal processing and data classification chain.

By collecting data sets from a range of affective state paradigms to identify distinct
biometric sensor signal signatures and then correlating with specific affective states in farm
animals can provide a way to develop reliable indices [124]. Data Sets of multimodal sensor
data can be collected and annotated with presumed affective states (Figure 6) based on the
results of experimental paradigms that either directly induce affective states or assess them
without inducing them. The following three paradigms can be shown as an example to
directly induce affective states in farm animals:

(i) Video Stimulus Test: This test can measure approach/avoidance reactions in pigs
or cows in response to videos of presumed positive and negative stimuli of varying
valence and intensity [125–127]. Positive stimuli could involve unfamiliar pigs of
the same breed, age and sex, while negative stimuli might involve a threat such as a
barking dog [126]. The stimuli can then be projected onto a wall in a testing arena.
The farm animals can then be tested either in pairs or alone to assess their levels of
playfulness vs. nervousness during the trial [128].
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(ii) Reward Gain/Loss Test: Anticipatory behaviour in relation to reward has been used
to assess the affective state of cows [129] and pigs [130], with animals in a more
negative state expected to show greater reward sensitivity and enhanced expression
of anticipatory behaviours [97]. In addition to reward gain, reward loss can be used
to induce behaviours related to a negative affective state by reducing or removing
an expected reward in trained animals [129,130]. To conduct this test, cows and pigs
would first be trained using a conditioning paradigm involving pairing a tone with
access to the reward pen, where they will receive a food reward. Over the training
period, the delay between the tone and reward will gradually be increased. Once the
training is complete, anticipatory behaviours and associated biometric sensor data
during the delay period can then be assessed. To induce reward loss, the size of the
food reward will be reduced and the change in anticipatory behaviour over successive
trials will be examined as the animals adjust their expectation of reward.

(iii) Social Recognition Test: Studies indicate that a number of animals, including sheep,
are capable of recognising familiar faces of their conspecifics and human
handlers [25,131]. Viewing familiar sheep but not goat faces was found to reduce
behavioural and physiological indices of stress in sheep [25], thereby demonstrating
a link between social recognition and emotional regulation. To conduct the test, the
animals could be placed in a test pen for 15 min while an image of either a familiar
face of a conspecific or a neutral stimulus (an inverted triangle of approximately
the same contrast level) is projected onto a wall overlooking the test pen. Biometric
sensor signals between the two conditions will then be compared, with the familiar
face expected to induce a calmer state than the inverted triangle in the cows and
pigs. To complement these tests, the current affective state of experimental animals
can also be determined without deliberately inducing an affective state using the
following paradigm:

(iv) Judgement Bias Task: This task can be used to evaluate the affective states of ex-
perimental cows and pigs (or other farm animals) by examining their response to
an emotionally ambiguous stimulus [132]. Typically, the animal’s response is as-
sessed (Figure 7) based on their response latency or a go/no-go decision, with a
faster response or decision to approach indicating a positive affective state, and vice
versa [133,134]. Animals will be pre-trained to respond differently to two distinct
stimuli (e.g., low- and high pitch tones, or two spatial locations) and then tested using
an ambiguous stimulus (e.g., an intermediate-pitch tone or intermediate location).
Based on published studies in cows [135] and pigs [136], researchers and animal
scientists are poised to explore both the auditory and spatial versions of the task to
establish the optimal protocol: the former will test animals on a single feeding location
coupled with a rewarded or unrewarded tone, while the latter will test them using
two feeding locations, one rewarded and one unrewarded.
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Figure 6. A framework for animal welfare assessment incorporating multimodal robust measures.

Figure 7. (A) Typical experimental paradigm for farm animal cognitive bias tasks. (B) Impact of bias
in machine learning algorithm on animal emotion estimates.

Comparative Analysis of Annotated Affective and Behavioural Events in Data Sets

The annotation of behavioural and emotional events carried out by ethologists and
behavioural scientists with specific expertise in cow and/or pig behaviour will provide
“gold standard” data sets for the supervised training of AI and ML. The reliability of the
annotation across annotators and metrics can be compared, and the influence of unequal
sample sizes and disparities between dimensional and categorical variables on the results
will provide reliable framework. The annotated biometric sensor data collected can be used
to train a range of ML models, which will be iteratively improved to obtain a high accuracy,
sensitivity and selectivity for the different affective states [37,40,41]. Three different types
of ML model have previously been applied to accurately classify affective states from
sensor data [137,138]: (i) Hybrid deep learning models, combining a convolutional neural
network with a long short-term memory (LSTM) model to achieve multi-model data
fusion; (ii) Multiple-fusion-layer based ensemble classifiers of stacked autoencoders; (iii)
Combined extreme learning machine and support vector machine models. The transfer
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learning performance of the models [139] (their ability to generalise by classifying affective
states from unfamiliar contexts) can be evaluated using a leave-one-out cross-validation
procedure [140]. This typically involves training the models on a subset of data from all
except one of the paradigms and then measuring the model’s performance on the “left-out”
data [139].

Emotional contagion indicates the phenomenon of spontaneous spreading and au-
tomatic adoption of emotional state of another animal. Investigating the contributions
of social interaction and emotional contagion at the herd level to affective states in indi-
vidual farm animals [11,38,39,141–145] would be a requirement to strengthen the welfare
monitoring framework reliability. Antagonistic social interactions, such as aggressive be-
haviours, are a serious health and welfare problem that affects not only the animals but
also the animal caretakers. They include tail biting among pigs [146], feather pecking and
cannibalistic behaviour among poultry [99], and microaggressions among cattle [147]. In
contrast, synergistic interactions between individuals in a herd decrease stress, reduce
inter-animal aggression, and help to prevent challenging or dangerous human–animal
interactions from arising. Therefore, identifying the factors associated with antagonistic vs.
synergistic interactions in a herd is an important step for developing effective and targeted
animal welfare enhancement and intervention programs [148].

Development of social network analysis methods for analysing interactions within and
outside the herd is an essential requirement in welfare monitoring platform development.
To develop an analytical model building on the social network analysis (SNA) method to
analyse quantitatively and objectively, the factors below should be considered.

(i) Inter-animal social interactions;
(ii) Emotional contagion (positive or negative) within the herd;
(iii) Human–animal interactions;
(iv) Non-social interactions (e.g., with feeding stations).

SNA focuses on analysing the structure of relationships between animals, using a
graph theoretical approach in which agents (animal, human or site of interaction) are
represented as nodes in a network, while types of interactions and their strengths are
represented by edges. Interactions between agents will be determined by their spatial
proximity based on the visual sensor data. When combined with the other multimodal
sensor data and the annotations it will provide a rich picture of the physical, physiological,
and behavioural events accompanying these interactions. This integration of multimodal
sensor data into the SNA model developed here will allow in-depth analyses for the
first time of how affective states influence and emerge from interactions, including the
phenomenon of emotional contagion [11,142], and how interpersonal interactions (between
specific individual animals) are maintained and develop over time.

The ‘Affective State’ models developed should pass the scientifically validated scales
and indices of affective state and welfare. Currently, only physiological and behavioural
measurements have been used to evaluate affective state and welfare in farm animals, and
scientifically validated benchmarks are lacking [9]. Although Grimace Scales provide a
well-defined and objective method for manually scoring facial muscle movements, they
are limited to quantifying pain-related expressions [31]. Therefore, there is a pressing
need to develop standards capable of measuring the full range of affective states in farm
animals [17]. The accuracy of the models at classifying and quantifying different affective
states can be efficiently validated using three reference standards:

(i) Grimace Scales for pigs and cows [14,31,62]
(ii) Standard blood biomarkers of stress or relaxation, including cortisol, lactate and

oxytocin [25,79]
(iii) Physiological measures from wearable sensors (e.g., heart and respiratory rates),

indexing autonomic nervous system activity [94]
(iv) Functional near-infrared spectroscopy (FNIRS) measurements, assessing cortical ac-

tivity related to affective states [149].
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The models would then be further refined based on comparisons to the references
above, to develop scales and indices of affective state and welfare that are robustly cross
validated. Finally, an animal welfare auditing platform is expected to be developed to make
it straightforward for animal caretakers to visualize and act on the results from the scales
and indices.

Some of the associated challenges are the subjectivity of affective and behavioural an-
notation by experts. This challenge can be mitigated through an interdisciplinary approach
involving researchers across multiple backgrounds, to resolve any inconsistencies in the
annotations made by experts vs. the trained models. However, the models and standards
are essential for the future development of effective welfare monitoring platforms; thus,
the risks justify the potential gain.

5. Digital Twin Systems to Report and Predict Affective States in Real Time

To respond rapidly to changes in the behaviour, affective state, and health of their
animals, caretakers need to be continuously updated with the status of the animals under
their charge. Digital twin models of individual animals promise a next generation approach
to realizing this real-time flow of biometric information [48,49]. A digital twin is a “real-
time” digital model of a physical entity that is updated continuously with data from the
entity [150]. It simulates the inner dynamics and environmental interactions of the entity to
identify patterns in its behaviour, learn cause–effect relationships, and suggest remedial
actions to human operators, based on predictions. Although digital twin models have had
a dramatic impact in the manufacturing, construction and healthcare sectors, by increasing
efficiency and reducing costs, they are yet to be applied to the agricultural sector [49,151].

In prior theoretical work, I proposed an animal digital twin architecture composed of
the following interlinked components (Figure 8) [49]:

(i) remote and wearable sensors that collect data from the animal;
(ii) cloud servers that interact with the sensors to receive, store, and process the sensor

data, and to change sensor states;
(iii) AI models that learn to spot patterns in the data and ML models that make predictions;
(iv) a user interface, via which human caretakers receive and interact with the information

and predictions of the digital twin.

Figure 8. Digital Twin system reference architecture for smart animal welfare platform in predicting
the behaviour of farm animals.

By developing digital twins of animals, it will be possible to answer questions such as:
What physical and social conditions best support the animal’s emotional wellbeing? How
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is this animal going to behave in the near future based on its prior behaviour? Digital twin
models open novel data-driven approaches to modelling animal behaviour and affective
state, which empower caretakers to provide individualized care to their animals based
on continuous tracking and prediction of each animal’s behaviour and affective state. By
displaying the information and predictions of the digital twin in an intuitive way on an
interactive dashboard, caretakers will be better informed about their animals, enabling them
to respond rapidly and effectively to mitigate distress and ensure their animals’ wellbeing.

Developing a digital twin architecture for modelling and predicting farm animal be-
haviour and affective state will build on the sensor and cloud computing infrastructure.
For testing the capacity of the infrastructure to collect and process sensor data without
interruption over periods of days, multimodal, biometric sensor data need to be contin-
uously collected from a pilot group of farm animals. The sensor network will generally
be comprised of video and thermal imaging cameras, microphones, and functional near-
infrared spectroscopy (fNIRS) sensors, along with wearable skin impedance sensors and
TNO Holst 3-in-1 patches (measuring heart and respiratory rates, and activity level) fitted
to the animals. Radio-frequency identification (RFID) tags can also be used to reliably
identify and locate individual animals [152]. Time-stamped sensor data captured from each
of the animals and from videos will provide enriched information (Figure 9) to synchronize
the digital twin representation with the animal itself.

Figure 9. Sensor-based Digital Twin animal emotion modelling process.

The environmental context of the facility and its influence on the animal’s behaviour
should be incorporated into the digital twin model. These environmental influences are
important as they affect the animal’s behaviour: for example, cows tend to seek a secluded
place during calving, while pigs may seek a warmer place in the pen because of airflow or
ventilation issues. To account for this, environmental data must be continuously acquired
from ventilation, light level, and feed and water intake sensors at the facility.
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5.1. Development of Digital Twin Processing Pipeline for Classifying and Estimating Affective
State and Behaviour in Real Time

Development of the sensor data processing pipeline (Figure 9) at the core of the digital
twin model, involves pre-processing, modelling and simulation stages. Initially, temporal,
and spatial data acquired from the animals could be pre-processed using moving-average
and least-squares fitting algorithms, which have been applied successfully in prior work on
affective state classification from biophysical signals [153]. To aggregate the large quantity
of sensor data and to facilitate ML model training, a metric for classifying sensor data into
positive, neutral, and negative affective states could be established based on the validated
data sets and models.

The optimal approach to modelling affective state and behaviour within the digital
twin using AI and ML models can be explored using deep neural network models [152],
support vector machine (SVM), linear discriminant analysis (LDA), random forest (RF),
and k-nearest neighbours (kNN). The best features selected from the AI models can be used
to train ML models, such as the random forest regressor [113,154], which will simulate
potential future behavioural and emotional scenarios. Using a basic output interface,
human operators using the digital twin will be able to visualize and interact [155] with the
predictions of the ML models. This will allow caretakers to act on the predictions made
and to provide supervision to the digital twin to iteratively improve its performance.

The digital twin system can deepen our understanding of the factors contributing to
physical and emotional resilience in the animals during their maturation. This in-depth
understanding is important for making evidence-based changes to animal husbandry
practices that can enhance animal welfare and facilitate the detection and prevention of dis-
ease [1,6]. To achieve this, the following indices can be compared between the experimental
group of farm animals such as piglets and a control group without digital twins:

(i) Physical wellbeing, such as body weight and health/disease status;
(ii) Emotional wellbeing, such as heart rate variability and facial expression;
(iii) Social wellbeing, such as synergistic or antagonistic interactions with conspecifics;
(iv) Environmental factors, such as ventilation quality and light levels.

In addition, interventions made by the caretaker could be analysed to quantify if and
how the digital twin supports caretaker decision-making to improve the welfare and the
physical and emotional resilience of the animals. This ability will provide a robust pilot
test of the potentials and challenges of using a digital twin to guide and improve animal
caretaking decisions across a significant period of maturation in pigs.

To date there has been no attempt to develop a digital twin of a livestock animal.
Therefore, the potential gain and the risk in the design and development of a farm animal
digital twin are both high. Some risk assessments are given below.

5.1.1. Interruption of the Continuous Data Feed

The digital twin system relies on a continuous data feed from sensors monitoring the
physical entity. However, the wearable sensors attached to animals need to be changed
every 7 days because of their limited battery life. This will make certain time lapses in the
data collection, meaning that any data from this period will be lost. In addition to these
battery issues, maintaining the continuous acquisition of data over the course of several
weeks will be a significant technical challenge. This could potentially be overcome by data
extrapolation methods and or advancements in the instrumentation approaches.

5.1.2. Damage to Wearable Sensors

The wearable devices may be damaged or destroyed by the animals, especially by pigs
who may chew or crush the devices during natural behaviours such as rooting. Therefore,
adjustments should be made to make the wearable devices animal-friendly, so that it can
withstand harsh environmental conditions such as mud/soil and allow the pigs to display
their natural behaviours. To mitigate this challenge, the feasibility of a hard-packaged but
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skin compatible belly belt, which will enable the 3-in-1 sensor to be worn behind the pig’s
right leg could be explored.

5.1.3. Lack of Reference Models

This is a high-risk regarding development of digital twin of farm animals. There are
currently no reference models available to directly guide or inform the research in the
development of an animal twin. Initially, developing conceptual guidelines to support the
implementation of digital twin models capable of measuring affective states, in addition to
those for automated welfare monitoring systems could be established followed by actual
development of a twin.

5.1.4. Standardizing Outputs from the Digital Twin

It will be a challenge to standardize the measurement and prediction of animal be-
haviour and affective state, which is necessary to provide the animal caretakers with
comparable decision-making information across different animal species and monitoring
periods. Addressing this challenge would help to reduce biases in the caretaker’s view of
animal welfare, reduce operating and maintenance costs, and improve farm management
by intervening via organizational and technological means. To overcome this, the ISO
framework established in the automation systems and integration as reference architecture
(ISO/DIS 23247-2) could be deployed.

6. Conclusions

Because of the influence of insights into emotional intelligence in the decision making
processes for autonomous monitoring of animal welfare, AI is becoming an inherent com-
ponent of digital livestock farming. As a result, animal science relies on sensor technologies
and data like never before. AI powered emotional measurement will significantly transform
and influence how farmers and animal caretakers manage the emotions and interactions
with farm animals. Enhanced understanding of farm animal emotional intelligence will
assist farm managers to move towards the dual goal of increasing productivity and pro-
viding enriched quality of life experiences for animals. AI technologies offer a hands-on,
realistic and practical approach to affective states recognition that assists animal caretakers
and ethologists to comprehend the reasons why animals behave the way they do and how
to maximize their welfare and productivity.
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rearing systems. Ank. Üniversitesi Vet. Fakültesi Derg. 2019, 66, 423–428. [CrossRef]

100. Verdon, M.; Rault, J.-L. 8—Aggression in Group Housed Sows and Fattening Pigs; Špinka, M., Ed.; Woodhead Publishing: Sawston,
UK, 2018; pp. 235–260.

101. Ujita, A.; El Faro, L.; Vicentini, R.R.; Lima, M.L.P.; Fernandes, L.D.O.; Oliveira, A.P.; Veroneze, R.; Negrão, J.A. Effect of positive
tactile stimulation and prepartum milking routine training on behavior, cortisol and oxytocin in milking, milk composition, and
milk yield in Gyr cows in early lactation. Appl. Anim. Behav. Sci. 2021, 234, 105205. [CrossRef]

102. Lürzel, S.; Bückendorf, L.; Waiblinger, S.; Rault, J.-L. Salivary oxytocin in pigs, cattle, and goats during positive human-animal
interactions. Psychoneuroendocrinology 2020, 115, 104636. [CrossRef]

103. Neethirajan, S. Happy Cow or Thinking Pig? WUR Wolf—Facial Coding Platform for Measuring Emotions in Farm Animals. AI
2021, 2, 342–354. [CrossRef]

104. Abdullahi, U.S.; Nyabam, M.; Orisekeh, K.; Umar, S.; Sani, B.; David, E.; Umoru, A.A. Exploiting IoT and LoRaWAN Technologies
for Effective Livestock Monitoring in Nigeria. AZOJETE 2019, 15, 146–159. Available online: https://azojete.com.ng/index.php/
azojete/article/view/22 (accessed on 5 April 2021).

105. Waterhouse, A.; Holland, J.P.; McLaren, A.; Arthur, R.; Duthie, C.A.; Kodam, S.; Wishart, H.M. Opportunities and challenges
for real-time management (RTM) in extensive livestock systems. In Proceedings of the The European Conference in Precision
Livestock Farming, Cork, Ireland, 26–29 August 2019. Available online: https://pure.sruc.ac.uk/en/publications/opportunities-
and-challenges-for-real-time-management-rtm-in-exte (accessed on 6 April 2021).

106. Citoni, B.; Fioranelli, F.; Imran, M.A.; Abbasi, Q.H. Internet of Things and LoRaWAN-Enabled Future Smart Farming. IEEE
Internet Things Mag. 2019, 2, 14–19. [CrossRef]

107. Liu, L.-S.; Ni, J.-Q.; Zhao, R.-Q.; Shen, M.-X.; He, C.-L.; Lu, M.-Z. Design and test of a low-power acceleration sensor with
Bluetooth Low Energy on ear tags for sow behaviour monitoring. Biosyst. Eng. 2018, 176, 162–171. [CrossRef]

108. Trogh, J.; Plets, D.; Martens, L.; Joseph, W. Bluetooth low energy based location tracking for livestock monitoring. In Proceedings
of the 8th European Conference on Precision Livestock Farming, Nantes, France, 12–14 September 2017. Available online:
http://hdl.handle.net/1854/LU-8544264 (accessed on 8 April 2021).

109. Bloch, V.; Pastell, M. Monitoring of Cow Location in a Barn by an Open-Source, Low-Cost, Low-Energy Bluetooth Tag System.
Sensors 2020, 20, 3841. [CrossRef]

110. Fote, F.N.; Mahmoudi, S.; Roukh, A.; Mahmoudi, S.A. Big data storage and analysis for smart farming. In Proceedings of the
2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech),
Marrakesh, Morocco, 24–26 November 2020. Available online: https://ieeexplore.ieee.org/abstract/document/9365869 (accessed
on 8 April 2021).

111. Zhang, W.; Liu, H.; Silenzio, V.M.B.; Qiu, P.; Gong, W. Machine Learning Models for the Prediction of Postpartum Depression:
Application and Comparison Based on a Cohort Study. JMIR Med. Inform. 2020, 8, e15516. [CrossRef]

112. Meire, M.; Ballings, M.; Poel, D.V.D. The added value of auxiliary data in sentiment analysis of Facebook posts. Decis. Support
Syst. 2016, 89, 98–112. [CrossRef]

113. Elhai, J.D.; Tiamiyu, M.F.; Weeks, J.W.; Levine, J.C.; Picard, K.J.; Hall, B. Depression and emotion regulation predict objective
smartphone use measured over one week. Pers. Individ. Differ. 2018, 133, 21–28. [CrossRef]

114. Chang, F.-J.; Tran, A.T.; Hassner, T.; Masi, I.; Nevatia, R.; Medioni, G. Deep, Landmark-Free FAME: Face Alignment, Modeling,
and Expression Estimation. Int. J. Comput. Vis. 2019, 127, 930–956. [CrossRef]

115. Valletta, J.J.; Torney, C.; Kings, M.; Thornton, A.; Madden, J. Applications of machine learning in animal behaviour studies. Anim.
Behav. 2017, 124, 203–220. [CrossRef]

116. Gris, K.V.; Coutu, J.-P.; Gris, D. Supervised and Unsupervised Learning Technology in the Study of Rodent Behavior. Front. Behav.
Neurosci. 2017, 11, 141. [CrossRef]

117. Chandrasekaran, B.; Gangadhar, S.; Conrad, J.M. A survey of multisensor fusion techniques, architectures and methodologies. In
Proceedings of the SoutheastCon, Concord, NC, USA, 30 March–2 April 2017. Available online: https://ieeexplore.ieee.org/
abstract/document/7925311 (accessed on 7 April 2021).

118. Shah, N.H.; Milstein, A.; Bagley, S.C. Making Machine Learning Models Clinically Useful. JAMA 2019, 322, 1351. [CrossRef]
119. Lapuschkin, S.; Wäldchen, S.; Binder, A.; Montavon, G.; Samek, W.; Müller, K.-R. Unmasking Clever Hans predictors and

assessing what machines really learn. Nat. Commun. 2019, 10, 1096. [CrossRef]
120. Tuteja, S.K.; Ormsby, C.; Neethirajan, S. Noninvasive Label-Free Detection of Cortisol and Lactate Using Graphene Embedded

Screen-Printed Electrode. Nano-Micro Lett. 2018, 10, 41. [CrossRef]

http://doi.org/10.2478/aoas-2019-0026
http://doi.org/10.1016/j.applanim.2020.104968
http://doi.org/10.33988/auvfd.597496
http://doi.org/10.1016/j.applanim.2020.105205
http://doi.org/10.1016/j.psyneuen.2020.104636
http://doi.org/10.3390/ai2030021
https://azojete.com.ng/index.php/azojete/article/view/22
https://azojete.com.ng/index.php/azojete/article/view/22
https://pure.sruc.ac.uk/en/publications/opportunities-and-challenges-for-real-time-management-rtm-in-exte
https://pure.sruc.ac.uk/en/publications/opportunities-and-challenges-for-real-time-management-rtm-in-exte
http://doi.org/10.1109/IOTM.0001.1900043
http://doi.org/10.1016/j.biosystemseng.2018.10.011
http://hdl.handle.net/1854/LU-8544264
http://doi.org/10.3390/s20143841
https://ieeexplore.ieee.org/abstract/document/9365869
http://doi.org/10.2196/15516
http://doi.org/10.1016/j.dss.2016.06.013
http://doi.org/10.1016/j.paid.2017.04.051
http://doi.org/10.1007/s11263-019-01151-x
http://doi.org/10.1016/j.anbehav.2016.12.005
http://doi.org/10.3389/fnbeh.2017.00141
https://ieeexplore.ieee.org/abstract/document/7925311
https://ieeexplore.ieee.org/abstract/document/7925311
http://doi.org/10.1001/jama.2019.10306
http://doi.org/10.1038/s41467-019-08987-4
http://doi.org/10.1007/s40820-018-0193-5


Animals 2022, 12, 759 23 of 24

121. Bienboire-Frosini, C.; Chabaud, C.; Cozzi, A.; Codecasa, E.; Pageat, P. Validation of a Commercially Available Enzyme ImmunoAs-
say for the Determination of Oxytocin in Plasma Samples from Seven Domestic Animal Species. Front. Neurosci. 2017, 11, 524.
[CrossRef]

122. Siegel, P.B.; Gross, W.B. General Principles of Stress and Well-Being; Grandin, T., Ed.; CABI: Wallingford, UK, 2000; pp. 27–41.
123. Bonapersona, V.; Hoijtink, H.; Sarabdjitsingh, R.A.; Joëls, M. Increasing the statistical power of animal experiments with historical

control data. Nat. Neurosci. 2021, 24, 470–477. [CrossRef] [PubMed]
124. Chen, J.; Chen, H.; Ma, L.; Jiang, Y. A Review of Studies on Unconscious Emotional Priming. Sci. Res. 2020, 7, 99633. [CrossRef]
125. Vögeli, S.; Lutz, J.; Wolf, M.; Wechsler, B.; Gygax, L. Valence of physical stimuli, not housing conditions, affects behaviour and

frontal cortical brain activity in sheep. Behav. Brain Res. 2014, 267, 144–155. [CrossRef] [PubMed]
126. Crump, A.; Arnott, G.; Bethell, E.J. Affect-Driven Attention Biases as Animal Welfare Indicators: Review and Methods. Animals

2018, 8, 136. [CrossRef]
127. Raoult, C.; Gygax, L. Valence and Intensity of Video Stimuli of Dogs and Conspecifics in Sheep: Approach-Avoidance, Operant

Response, and Attention. Animals 2018, 8, 121. [CrossRef]
128. Murphy, E.; Nordquist, R.E.; van der Staay, F.J. A review of behavioural methods to study emotion and mood in pigs, Sus scrofa.

Appl. Anim. Behav. Sci. 2014, 159, 9–28. [CrossRef]
129. Neave, H.W.; Webster, J.R.; Zobel, G. Anticipatory behaviour as an indicator of the welfare of dairy calves in different housing

environments. PLoS ONE 2021, 16, e0245742. [CrossRef]
130. Luo, L.; Reimert, I.; Graat, E.A.M.; Smeets, S.; Kemp, B.; Bolhuis, J.E. Effects of early life and current housing on sensitivity to

reward loss in a successive negative contrast test in pigs. Anim. Cogn. 2019, 23, 121–130. [CrossRef] [PubMed]
131. Knolle, F.; Goncalves, R.P.; Morton, A.J. Sheep recognize familiar and unfamiliar human faces from two-dimensional images. R.

Soc. Open Sci. 2017, 4, 171228. [CrossRef]
132. Roelofs, S.; Boleij, H.; Nordquist, R.E.; van der Staay, F.J. Making Decisions under Ambiguity: Judgment Bias Tasks for Assessing

Emotional State in Animals. Front. Behav. Neurosci. 2016, 10, 119. [CrossRef]
133. Lagisz, M.; Zidar, J.; Nakagawa, S.; Neville, V.; Sorato, E.; Paul, E.S.; Bateson, M.; Mendl, M.; Løvlie, H. Optimism, pessimism and

judgement bias in animals: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020, 118, 3–17. [CrossRef] [PubMed]
134. Mendl, M.; Paul, E.S. Animal affect and decision-making. Neurosci. Biobehav. Rev. 2020, 112, 144–163. [CrossRef] [PubMed]
135. Crump, A.; Jenkins, K.; Bethell, E.J.; Ferris, C.P.; Kabboush, H.; Weller, J.; Arnott, G. Optimism and pasture access in dairy cows.

Sci. Rep. 2021, 11, 4882. [CrossRef]
136. Brajon, S.; Laforest, J.-P.; Schmitt, O.; Devillers, N. The Way Humans Behave Modulates the Emotional State of Piglets. PLoS ONE

2015, 10, e0133408. [CrossRef] [PubMed]
137. Hossain, M.S.; Muhammad, G. Emotion recognition using deep learning approach from audio-visual emotional big data. Inf.

Fusion 2019, 49, 69–78. [CrossRef]
138. Yin, Z.; Zhao, M.; Wang, Y.; Yang, J.; Zhang, J. Recognition of emotions using multimodal physiological signals and an ensemble

deep learning model. Comput. Methods Programs Biomed. 2017, 140, 93–110. [CrossRef]
139. Bawa, V.S.; Kumar, V. Emotional sentiment analysis for a group of people based on transfer learning with a multi-modal system.

Neural Comput. Appl. 2018, 31, 9061–9072. [CrossRef]
140. Berrar, D. Cross-Validation; Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C., Eds.; Academic Press: Oxford, UK, 2019; pp.

542–545.
141. Boumans, I.J.; de Boer, I.J.; Hofstede, G.J.; Bokkers, E.A. How social factors and behavioural strategies affect feeding and social

interaction patterns in pigs. Physiol. Behav. 2018, 194, 23–40. [CrossRef]
142. Düpjan, S. Emotional contagion and its implications for animal welfare. CAB Rev. 2020, 15, 1–6. [CrossRef]
143. Foister, S.; Doeschl-Wilson, A.; Roehe, R.; Arnott, G.; Boyle, L.; Turner, S. Social network properties predict chronic aggression in

commercial pig systems. PLoS ONE 2018, 13, e0205122. [CrossRef]
144. Adriaense, J.; Koski, S.; Huber, L.; Lamm, C. Challenges in the comparative study of empathy and related phenomena in animals.

Neurosci. Biobehav. Rev. 2020, 112, 62–82. [CrossRef] [PubMed]
145. Baciadonna, L.; Duepjan, S.; Briefer, E.F.; De La Torre, M.P.; Nawroth, C. Looking on the Bright Side of Livestock Emotions—The

Potential of Their Transmission to Promote Positive Welfare. Front. Vet. Sci. 2018, 5, 218. [CrossRef] [PubMed]
146. Valros, A. Chapter 5—Tail Biting; Špinka, M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 137–166.
147. Jensen, M.B. 6—The Role of Social Behavior in Cattle Welfare; Tucker, C.B., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp.

123–155.
148. Neethirajan, S.; Kemp, B. Social network analysis in farm animals: Sensor-based approaches. Animals 2021, 11, 434. [CrossRef]

[PubMed]
149. Chincarini, M.; Qiu, L.; Spinelli, L.; Torricelli, A.; Minero, M.; Costa, E.D.; Mariscoli, M.; Ferri, N.; Giammarco, M.; Vignola, G.

Evaluation of Sheep Anticipatory Response to a Food Reward by Means of Functional Near-Infrared Spectroscopy. Animals 2018,
9, 11. [CrossRef]

150. Schwartz, S.M.; Wildenhaus, K.; Bucher, A.; Byrd, B. Digital Twins and the Emerging Science of Self: Implications for Digital
Health Experience Design and “Small” Data. Front. Comput. Sci. 2020, 2, 31. [CrossRef]

151. Tao, F.; Zhang, M.; Nee, A.Y.C. Digital Twin Driven Smart Manufacturing; Academic Press: Cambridge, MA, USA, 2019; p. 283.
152. Brown-Brandl, T.M. 1 Using RFID in Animal Management and More. J. Anim. Sci. 2019, 97, 1–2. [CrossRef]

http://doi.org/10.3389/fnins.2017.00524
http://doi.org/10.1038/s41593-020-00792-3
http://www.ncbi.nlm.nih.gov/pubmed/33603229
http://doi.org/10.4236/oalib.1106284
http://doi.org/10.1016/j.bbr.2014.03.036
http://www.ncbi.nlm.nih.gov/pubmed/24681090
http://doi.org/10.3390/ani8080136
http://doi.org/10.3390/ani8070121
http://doi.org/10.1016/j.applanim.2014.08.002
http://doi.org/10.1371/journal.pone.0245742
http://doi.org/10.1007/s10071-019-01322-w
http://www.ncbi.nlm.nih.gov/pubmed/31720926
http://doi.org/10.1098/rsos.171228
http://doi.org/10.3389/fnbeh.2016.00119
http://doi.org/10.1016/j.neubiorev.2020.07.012
http://www.ncbi.nlm.nih.gov/pubmed/32682742
http://doi.org/10.1016/j.neubiorev.2020.01.025
http://www.ncbi.nlm.nih.gov/pubmed/31991192
http://doi.org/10.1038/s41598-021-84371-x
http://doi.org/10.1371/journal.pone.0133408
http://www.ncbi.nlm.nih.gov/pubmed/26244335
http://doi.org/10.1016/j.inffus.2018.09.008
http://doi.org/10.1016/j.cmpb.2016.12.005
http://doi.org/10.1007/s00521-018-3867-5
http://doi.org/10.1016/j.physbeh.2018.04.032
http://doi.org/10.1079/PAVSNNR202015046
http://doi.org/10.1371/journal.pone.0205122
http://doi.org/10.1016/j.neubiorev.2020.01.021
http://www.ncbi.nlm.nih.gov/pubmed/32001272
http://doi.org/10.3389/fvets.2018.00218
http://www.ncbi.nlm.nih.gov/pubmed/30258847
http://doi.org/10.3390/ani11020434
http://www.ncbi.nlm.nih.gov/pubmed/33567488
http://doi.org/10.3390/ani9010011
http://doi.org/10.3389/fcomp.2020.00031
http://doi.org/10.1093/jas/skz122.001


Animals 2022, 12, 759 24 of 24

153. Bălan, O.; Moise, G.; Petrescu, L.; Moldoveanu, A.; Leordeanu, M.; Moldoveanu, F. Emotion Classification Based on Biophysical
Signals and Machine Learning Techniques. Symmetry 2019, 12, 21. [CrossRef]

154. Wang, G. Machine learning for inferring animal behavior from location and movement data. Ecol. Inform. 2019, 49, 69–76.
[CrossRef]

155. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 2, Montreal,
Canada, 8–13 December 2014; Available online: https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3
-Paper.pdf (accessed on 5 April 2021).

http://doi.org/10.3390/sym12010021
http://doi.org/10.1016/j.ecoinf.2018.12.002
https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

	Quantified Animal Welfare—A Perception or a Reality? 
	Multi-Dimensional Sensor Data for Monitoring of Affective States 
	Visual Sensors—Facial Features and Expression 
	Thermal Imaging Cameras—Body Temperature 
	Microphones—Vocalisations 
	Heart Rate Monitors—Heart Rate and Heart Rate Variability 
	Accelerometers—Body Movement 
	Respirometers—Respiratory Rate 

	Modelling Farm Animal Affective State and Behaviour Using Multimodal Sensor Fusion 
	Classification and Annotation of Affective States and Behavioural Events 
	Sensor Network Fusion Protocols and Instrumentation Framework 
	Build Predictive Models of Affective State and Behaviour 
	Challenges in the Quantification and Validation of Performance Models for Affective States Measurement 
	Sensor Durability 
	Low Sensitivity of the Model at Detecting Affective and Behavioural States 
	Lack of Correlation between Sensor Data and Biochemical Reference Values 
	Limiting the Numbers of Animals Used in the Experiments 


	Scales and Indices of Animal Affective States—Bio-Instrumentation Perspective 
	Digital Twin Systems to Report and Predict Affective States in Real Time 
	Development of Digital Twin Processing Pipeline for Classifying and Estimating Affective State and Behaviour in Real Time 
	Interruption of the Continuous Data Feed 
	Damage to Wearable Sensors 
	Lack of Reference Models 
	Standardizing Outputs from the Digital Twin 


	Conclusions 
	References

