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SUMMARY
Flying insects have evolved theability to evade loomingobjects, such aspredators andswatting hands. This is
particularly relevant for blood-feeding insects, such asmosquitoes that routinely need to evade the defensive
actions of their blood hosts. To minimize the chance of being swatted, a mosquito can use two distinct stra-
tegies—continuously exhibiting an unpredictable flight path or maximizing its escape maneuverability. We
studied how baseline flight unpredictability and escape maneuverability affect the escape performance of
day-active and night-active mosquitoes (Aedes aegypti and Anopheles coluzzii, respectively). We used a
multi-camera high-speed videography system to track how freely flyingmosquitoes respond to an event-trig-
gered rapidly approachingmechanical swatter, in fourdifferent light conditions ranging frompitchdarkness to
overcast daylight. Results show that both species exhibit enhanced escape performance in their natural
blood-feeding light condition (daylight forAedes anddark forAnopheles). To achieve this, they showstrikingly
different behaviors. The enhanced escape performance of Anopheles at night is explained by their increased
baseline unpredictable erratic flight behavior, whereas the increased escape performance of Aedes in over-
cast daylight is due to their enhanced escapemaneuvers. This shows that both day and night-active mosqui-
toesmodify their flight behavior in response to light intensity such that their escape performance ismaximum
in their natural blood-feeding light conditions, when these defensive actions by their blood hosts occur most.
Because Aedes and Anophelesmosquitoes are major vectors of several deadly human diseases, this knowl-
edge can be used to optimize vector control methods for these specific species.
INTRODUCTION

To get a blood meal for egg development, hematophagous

female mosquitoes need to interact with blood hosts, such as hu-

mans, cattle, or birds. Because mosquitoes are both a nuisance

to hosts and vectors of diseases, such as malaria and yellow fe-

ver, these hosts can exhibit defensive behaviors, such as swat-

ting, pecking, or tail swishing, to kill, push away, or discourage

the mosquito.1–6 Additionally, flying mosquitoes can be attacked

by predators such as dragonflies, birds, or bats.7–9 Many of these

animals exhibit advanced attacking strategies, such as mini-

mizing changes in the visual angle of their target, either to follow

or intercept their prey.10 Dragonflies approach their prey from

below11,12 and camouflage into immobile distant objects during

the attack.13 Bats use a comparable motion-camouflage strat-

egy.14 However, it is not known if mosquitoes exhibit counter-

strategies against the attacks of predators or blood hosts.

To successfully escape from looming threats produced by

defensive blood hosts or predators, a flying mosquito might
1232 Current Biology 32, 1232–1246, March 28, 2022 ª 2022 Elsevie
rely on three behavioral components: first, its baseline protean

movement; second, its systematic evasive maneuvers; and

lastly, the protean aspect of its evasive maneuvers. Protean

behavior is defined as resembling that of Proteus, thus behaving

variably or irregularly. In this context, a protean behavior would

be an erratic flight behavior that prevents the predator or host

from predicting accurately the position of the flying mos-

quito.15,16 Although protean behaviors are a widespread anti-

predator strategy, their effect on escape performance has

been studied very little.15,17 If exhibited continuously or in risky

situations (e.g., while host-seeking), such protean behavior

could be seen as an insurance against attacks that might be diffi-

cult to detect or to avoid15 and, if exhibited during evasive

maneuvers, protean movements can increase the chance of

success of the maneuvers by making them less predictable.

To avoid a threat, mosquitoes might also exhibit systematic

evasive maneuvers, such as the ones observed in other insects

and birds when attacked by visually looming targets.18–20 Such

stimulus-triggered maneuvers are usually directed away from
r Inc.
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Figure 1. Experimental setup, tested condi-

tions and recorded flight trajectories

(A–C) Schematic views of flight arena with the five-

camera real-time tracking system and the event-

triggered mechanical swatter.

(D and E) The swatter was triggered when a

mosquito was predicted to fly into a virtual sphere

in the middle of the flight arena. (D) Attack kine-

matics of the mechanical swatter. (E) Examples of

two flight tracks that triggered the swatter and

resulted in an escape or a collision (green and red,

respectively). Examples of a collision, a miss,

and an escape can be seen in the Videos S1, S2,

and S3, respectively.

(F) Temporal dynamics of the positions of the

swatter and of all recorded mosquito flight tra-

jectories.

(G) During each experimental day, mosquitoes flew

in three semi-randomly changed light conditions

during their active period of the day (night-time and

day-time for Anopheles and Aedes, respectively).

Because Anopheles and Aedes fly very little in

daylight and in the dark, respectively, we did not

perform experiments in these conditions.
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the danger,18 or toward safety zones at the flank of the attacking

animal.21 Similar to horse flies, female mosquitoes make fast up-

ward maneuvers after encountering specific host cues or airflow

conditions,22–25 suggesting that these maneuvers might be ex-

amples of such evasive maneuvers.

To detect a threat, a mosquito may rely on its sophisticated

sensory system. Mosquitoes can detect CO2, body odors, visual

cues, and heat generated by a nearby blood host.26–28 However,

among these sensory cues, only looming visual cues could be

used to detect an incoming attack. It is also possible thatmosqui-

toes use their mechanoreceptors (antennas and sensory hairs) to

detect and react to the air movements generated by an

attacker.29 Such an airflow-mediated response has already

beendescribed in large ground-dwelling insects, such as praying

mantis and crickets,30–32 and could be an alternative to vision-

mediated responses in low light intensities. This would be partic-

ularly relevant for night-active mosquitoes. Additionally, it is
Current Bio
possible that escaping mosquitoes are

simply swept by the airflow produced by

an attacker. However, such passive us-

age of attacker-induced air gusts remains

to be described in the scientific literature.

There is also a lack of knowledge about

how environmental conditions affect the

escape performances and strategies of

insects. Because vision allows an animal

todetecta threat froma relatively largedis-

tance, the light condition is probably the

most important factor that can influence

the success rate of escapes.33 Therefore,

we expect that diurnal mosquitoes will

rely principally on vision to detect a threat

in bright light conditions. In contrast,

nocturnal mosquitoes flying in pitch dark-

ness cannot use vision to detect a threat;
thus, they may rely principally on the detection of the attacker-

induced air gust, or potentially a passive use of it. Alternatively,

these night-activemosquitoesmight relymore on distinct protean

behavior to increase their escape performance. Comparing

escape performances of day-active and night-active mosquitoes

in various light conditions should inform us on how these differ-

ences in natural light conditions influence escape strategies.

We studied the escape dynamics of female mosquitoes being

attacked by a looming object. For that, we used a real-time vide-

ography-based mosquito tracking system to record the 3D

movements of mosquitoes flying freely in a flight arena

(Figures 1A–1C). Based on the position and velocity of the flying

mosquito, we automatically triggered a 10 cm diameter mechan-

ical swatter to simulate the attack of a human hand, generating

both visual and air movement cues. By varying the light intensity

inside the flight arena from dark night-time conditions to over-

cast daylight conditions, we studied the effect of light conditions
logy 32, 1232–1246, March 28, 2022 1233
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Figure 2. Collision probabilities of mosquitoes with the mechanical and simulated swatter (swatter on and off, respectively)

(A–C) Collision frequency, defined as the number of collisions per number of triggers, in each tested condition. Standard box-and-whisker plots are shown. For

the control experimentswith the swatter turned off, we estimated virtual collisions by simulating themovement of a virtual swatter. BecauseAnopheles andAedes

fly very little in daylight and in the dark, respectively, we did not perform experiments in these conditions. Boxplots of various escape performance parameters can

be found in Figure S4.

(D–F) Results (violin plots) of the Bayesian-GLM thatmodeled themean collision probability as a function of experimental conditions (including swatter on and off).

Each panel is a slice plot showing only the effect of one predictor with the other predictors set at their mean values. Distributions are estimates of the mean

(legend continued on next page)
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on the escape performance of the mosquito. Finally, we per-

formed this study with both night-active mosquitoes (Anopheles

coluzzii) and day-active Aedes aegypti. This allowed us to test

how escape performance differed between species that are

specialized in blood-feeding in dark night conditions and

daylight conditions, respectively.

The mosquito species studied here have a strong innate pref-

erence for human hosts34 and are twomajor vectors of a range of

human diseases, including malaria, yellow fever, Zika, and

dengue. Therefore, our results can be used to optimize existing

or develop new species-specific mosquito trapping systems.

RESULTS

We recorded the flight behavior of mosquitoes during 54 exper-

imental trials of 160min in length each (144 h in total). These trials

consisted of 18 controls during which the mechanical swatter

was turned off and 36 trials with the mechanical swatter turned

on. Half of these trials were performed onAnophelesmosquitoes

in the dark, twilight, and sunrise light conditions, and the other

half were performed on Aedes in the twilight, sunrise, and over-

cast conditions.

We recorded and analyzed a total of 13,730 mosquito flight

tracks (Figure 1F). This included 10,064 flight tracks in experi-

ments with the swatter activated and triggered and 3,666 flight

tracks in control experiments. During these control experiments,

the swatter was turned off, and we instead simulated an in-silico

virtual swatter attack. If the reconstructed flight track of themos-

quito crossed the path of this virtual swatter, then the mosquito

was classified as virtually hit. These virtual hits occurred in 15%

of the 3,666 cases, whereaswith the swatter activated, 8%of the

approaching mosquitoes were hit (Figure 2A). See Video S1 for a

video recording of a mosquito being hit, and Videos S2 and S3

for two video recordings of mosquitoes being missed by the

swatter.

Using a statistical modeling approach, we investigated how the

studied mosquito species adjust their flight dynamics to optimize

their escape performance. We did this in four steps. First, we

determined how the chance of being hit by the swatter (including

virtual hits) differed between species, light conditions, and swatter

mode (on/off). Second, we studied how baseline protean flight

behavior affected the escape performance. Third, we determined

how the swatter-induced escape maneuver dynamics affected

escape performance. Finally, we quantified the relative contribu-

tions of baseline protean flight behavior and escapemaneuver dy-

namics to the overall escape performance.

Modeling the probability of being hit by the mechanical
swatter
Using a Bayesian generalized linear model (B-GLM), we first

tested how the probability of being hit by the swatter (either

real or virtual) varied between species, light conditions, and
collision probability for a given condition. Red crosses indicate data points used

(PDF) are shown for all tested conditions.

(G–I) Distributions of the standardized slopesmeans b1, b2, and b3. The null-hypothe

of practical equivalence (ROPE). Here, all slopes differ significantly from zero exce

(J and K) Bayesian estimation of the mean collision probabilities in the various ex

(SES) are shown in Figure S2.
swatter activation (on/off) (Figures 2D–2I). Here, we modeled

light as a binary variable, either the light condition during which

each species naturally host-seeks (dark for Anopheles and

overcast daylight for Aedes) or the other light conditions com-

bined. From here on, we will refer to these as the reference light

conditions and the altered light conditions, respectively. After

doing a forward selection procedure (see STAR Methods), the

minimal model contained four predictors: swatter activation

(on/off), species, and reference light versus altered light

(modeled as the interactions between Anopheles or Aedes

with the light condition). An effect was found to be significant

(i.e., null-hypothesis rejected) if the 89% highest density interval

(HDI) of the standardized effect size (SES) was found

completely outside of the region of practical equivalence

(ROPE = [�0.1, 0.1]) (Figures 2G–2I).

The model shows that Aedes mosquitoes had a significantly

lower probability of being hit than Anopheles mosquitoes

(Phit = 6% and Phit = 13%, respectively; SES mode = �0.75).

Also, Anopheles mosquitoes were significantly less likely to be

hit by the swatter if they were flying in their reference dark con-

ditions (SES mode = 0.42). A comparable trend in reference

versus altered light was observed for Aedes mosquitoes, but it

was not significant (Figure 2I).We finally compared the estimated

means of hit probabilities between light conditions (Figures 2J

and 2K). Results show that Anopheles has a lower chance of be-

ing hit in the reference dark condition, both with the swatter on

and off (Figures 2J and 2K). For Aedes mosquitoes, hit percent-

ages only differed significantly among light conditions when the

swatter was activated, as it was increased in the intermediate

sunrise condition (Figure 2K).

The baseline protean flight behavior of mosquitoes
explains the low number of hits
We tested whether the previously found low numbers of (real and

virtual) hits were the result of a baseline protean flight behavior of

mosquitoes. The temporal dynamics of the distance between

mosquito and swatter showed that the average mosquito was

flying at a minimal distance of more than 6 cm from the swatter,

even if the swatter was turned off (Figures 3A and 3C). This ex-

plains why most mosquitoes were not hit, which would have

occurred when the distance between mosquito and swatter

was reduced to zero. Video S2 shows an example of a flying

mosquito missed by the swatter, apparently without having to

perform an evasive maneuver.

To explain why most mosquitoes did not get closer to the

swatter, we determined the temporal dynamics of the flight

path deviation as the distance between the real flight path and

the predicted one (dpath, Figure 3B). With the swatter turned

off, the mean flight path deviation increased approximately line-

arly with time, directly after the moment of triggering (Figure 3D).

At the moment of maximum virtual swatter extension (time t =

0 s), the flight path deviation was on average 8 cm.
in the B-GLM. Highest density intervals (HDI) and probability density functions

siswas rejected if the 89%highest density intervals (HDI) was outside the region

pt for the effect of Aedes in the reference or altered light conditions (yellow).

perimental conditions. Histograms of the associated standardized effect sizes

Current Biology 32, 1232–1246, March 28, 2022 1235
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Figure 3. The majority of flying mosquitoes are missed by the swatter
(A and B) Definitions of the flight kinematics parameters: (A) escape velocity and the minimum distance between mosquito and swatter, and (B) the flight path

deviation as the Euclidian distance of the mosquito from its predicted flight path.

(C–E) Temporal dynamics of the minimum distance between mosquito and swatter (real or virtual), distance from the predicted flight path, and escape velocity,

respectively. Here, data for each recorded flight track are shown in gray; the mean and standard deviation of all tracks when the swatter was turned on and off are

in orange and black, respectively.

(F) Flight tracks of mosquitoes that never entered the sphere in the middle of the arena, despite flying initially toward it and thereby triggering the swatter (blue

data).
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With the swatter turned on, the average flight path deviation of

mosquitoes initially increased with time in a similar linear way as

with the swatter turned off (control). However, just before the

swatter reached the center of the arena and when it was closest

to mosquitoes, this flight path deviation rapidly increased (Fig-

ure 3D). As a result, at t = 0 s the flight path deviation was on

average 11 cm, 36% larger than for the control. This rapid in-

crease in the flight path deviation elicited by the active swatter
1236 Current Biology 32, 1232–1246, March 28, 2022
occurred when the escape flight velocity of the mosquitoes

was maximal (Figure 3E).

Fast and curvy flight paths prior to swatter attack
reduces the chance of being hit
To determine what flight kinematics characteristics are

responsible for the baseline protean flight behavior, we char-

acterized each flight prior to the swatter attack using the linear
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(D) Mean initial linear and angular speeds of all recorded tracks, color-coded with the swatter mode.

(E and F) Distributions of the means of the standardized slopes b1 and b2 show that all effects are significant (i.e., the 89% highest density intervals (HDI) was

outside the region of practical equivalence (ROPE)).

(G and H) Temporal dynamics of the distance to the predicted flight path, at (G) three initial speed bins (slow, medium, and fast), and (H) three initial angular speed

bins (straight, low-curved, and high-curved flights). See histograms on the top for the binning definitions. Gray lines show results of the separate flight tracks and
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and angular flight speeds at the moment of triggering (U0 and

q0, respectively; Figure 4A). We then used a B-GLM to deter-

mine how these flight characteristics affect the probability of

being hit (real or virtual; Figures 4B, 4C, 4E, and 4F). The
minimal model showed that the hit chance rapidly decreases

with an increase in both the linear and angular speeds, and

the effect is larger when the swatter is turned off

(Figures 4B and 4C).
Current Biology 32, 1232–1246, March 28, 2022 1237
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Figure 5. The initial flight speed varies with experimental conditions

(A and B) The mean initial linear and angular flight speed of mosquitoes in the various test conditions of the control experiment (swatter turned off). Boxplots of

various flight kinematics metrics can be found in Figure S5.

(C–E) Results of the two Bayesian-GLMs that modeled the mean initial flight speed and mean angular speed as a function of (C) species, (D) time, and (E) light

condition for the control experiments only (swatter off). Each panel is a slice plot showing only the effect of one predictor, with the others set at their mean values.

Highest density intervals (HDI) and probability density functions (PDF) are shown for all tested conditions.

(F–H) Distributions of the means of the standardized slopes b1, b2, and b3. Here, the null-hypothesis was rejected if the 89% highest density intervals (HDI) was

outside the region of practical equivalence (ROPE).

(legend continued on next page)
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To study the underlying cause of this, we tested how the tem-

poral dynamics of the flight path deviation varied with initial linear

and angular flight speed (Figures 4G and 4H, respectively). This

shows that initially faster flying mosquitoes deviated more from

their predicted flight paths (Figure 4G), but this flight path devia-

tion did not clearly vary with their initial angular speed (Figure 4H).

Anopheles and Aedes mosquitoes use different
mechanisms to maximize their baseline protean
behavior
The distribution of linear and angular speeds (Figure 4D) sug-

gests that there is a trade-off between high linear speeds and

high angular speeds; thus, mosquitoes could only adjust their

flight dynamics to maximize one of the two. Using B-GLMs, we

modeled how the initial linear and angular flight speeds

(Figures 5A and 5B) varied between species, with light condi-

tions, and with time during the experimental trial (Figures 5C–

5H). Because we were interested here in the baseline protean

flight behavior, we performed this analysis on the control flights

(swatter off) in order to exclude escape responses.

Comparing the flight characteristics between the species

shows that Anopheles flies with a 16% higher angular speed

and a 16% lower linear flight speed than Aedes (Figures 5C

and 5F). The temporal dynamics of the flight path deviation

shows that the faster flying Aedes mosquitoes deviate more

from their predicted flight path than the slower flying Anopheles

mosquitoes (Figures 5I, 6A, and 6B). As a result, at themoment of

maximum virtual swatter extension (t = 0 s) Aedes has a 50%

higher flight path deviation than Anopheles (dpath = 12 cm and

dpath = 8 cm, respectively). We also tested how linear and angular

flight speeds varied with time (Figure 5D), but the observed

trends were not significant (Figure 5G).

Finally, we tested how linear and angular flight speeds varied

with light conditions for the two species (Figures 5E and 5H).

This showed thatAnophelesmosquitoes flew faster in their refer-

ence light condition (dark) than in the altered conditions. For

Aedes mosquitoes, we observed a similar trend of higher flight

speeds in the reference light condition (overcast daylight), but

the difference was not significant. Angular speed did not differ

significantly between the reference and altered light conditions.

For Anopheles, flight path deviation increased with time more

rapidly in the dark reference condition than in the altered light con-

dition (Figures 5J). As a result, at t = 0 s, this deviation was on

average 40% larger in the dark than for the other conditions com-

bined (dpath = 7 cm and dpath = 4 cm, respectively). This indicates

that, when flying in the dark, Anopheles mosquitoes maximized

their baseline protean behavior by increasing their flight speed.

Both mosquito species exhibit fast swatter-induced
evasive maneuvers more often in brighter light
conditions
Following our analysis of the baseline protean flight behavior, we

studied the evasive maneuver dynamics of the mosquitoes. For

this, we combined a hidden Markov model (HMM) and a
(I and J) Temporal dynamics of the flight path deviation for all tracks when the swa

the colored data show themean and standard error for (I)Anopheles (blue) andAed

Temporal dynamics of various flight kinematics parameters for the separate mosq
B-GLM to estimate the probability that the swatter triggered a

rapid escape maneuver (Pescape) in the various experimental con-

ditions and how this varied between species (Figures 6C and 6D).

Videos S2 and S3 show examples of two non-hit mosquitoes,

where one performed an escape maneuver and the other did not.

The combined HMM and B-GLM analysis showed that Anoph-

eles mosquitoes that were attacked by the swatter had a 38%

higher chance of performing a fast escape maneuver than Aedes

(Figures 6E and 6H). Also, fast escape probability was positively

correlatedwith the logarithmof light condition luminance,whereby

Pescape increaseswith light intensity from14%in thedark to25%in

overcast daylight (Figures 6F and 6I). Finally, when including the

effect of luminance in the model, the fast escape probability did

not differ significantly between the referenceand altered light con-

ditions, for both species (Figures 6G and 6J).

The escape strategies of day and night-active
mosquitoes vary differently with light conditions
Thus, mosquitoes rely both on baseline protean flight behavior

and escape maneuverability to avoid a rapidly looming object

(Figures 5 and 6, respectively). In this analysis section, we tested

how the relative contribution of both behaviors affects escape

performance and how this differs between species and light con-

ditions (Figure 7).

For this, we quantified the escape performance of the flying

mosquito using its flight path deviation at time t = 0 s (d0) when

the swatter reached its most forward position (Figures 3B and

3D). Using a B-GLM, we found that this flight path deviation

was on average 45% higher when the swatter was turned on

(Figures 7A, 7D, and 7G), and it was 63% higher for Aedes than

for Anopheles (Figures 7B, 7C, 7E, and 7H). Additionally, Anoph-

eles mosquitoes deviated more from their predicted path when

they flew in the dark reference condition than in the other light

conditions (Figures 7B, 7C, 7F, and 7I). A similar trend was found

for the reference overcast condition of Aedes, but this was not

significant, owing to the small effect size (Figures 7F and 7I).

These results are verymuch in linewith the results of theB-GLM

used to model the probability of being hit by the swatter

(Figures 2D–2I), suggesting that the deviation from predicted po-

sition is a good metric to describe escape performance. There-

fore, we used this parameter to quantify the relative contributions

of baseline protean flight behavior and escape maneuverability

to the escape performance. For this, we defined the relative

baseline protean contribution to flight path deviations asRprotean =

doff/don$100% (Figures 7J–7L), where doff and don are the flight

path deviations at t = 0 s when the swatter was turned off and

on, respectively.Note thatdoff is the result of only thebaseline pro-

tean behavior, and don is the result of the baseline protean

behavior and the escape maneuver combined. Thus, Rprotean =

100% if a flight path deviation is fully caused by the baseline pro-

tean behavior, and Rprotean = 0% when a flight path deviation is

fully caused by the escape maneuver. The average Anopheles

mosquito has a significantly highermean relative baseline protean

contribution in the dark (Rprotean = 90%) than in twilight (Rprotean =
tter was turned off (control experiments). Gray lines show separate tracks, and

es (yellow), and (J)Anopheles in reference light (blue) and altered light (orange).

uito species and for the various track types can be found in Figures S6 and S7.
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Figure 6. The probability of making a fast escape varies between species and with light condition

(A and B) Temporal dynamics of the flight path deviations and escape velocities of all flight tracks when the swatter was turned on. Gray lines show separate

tracks, and the colored data show the mean and standard error for Anopheles (blue) and Aedes (yellow).

(C and D) Percentage of non-hit flight tracks that included a fast escape state, (C) for all flights with the swatter turned on or off, and (D) for the two separate

species at various light conditions.
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75%) or in sunrise (Rprotean = 79%). Aedes has the lowest relative

protean contribution in the overcast daylight condition (Rprotean =

78%) and the highest Rprotean in sunrise (Rprotean = 89%).

DISCUSSION

We studied the escape performance of flying mosquitoes by

testing how freely flying mosquitoes avoid being hit by an auto-

mated mechanical swatter, generating both visual cues and air

movements. We tested how the attacked mosquitoes rely on

their baseline flight path unpredictability and escape maneuver-

ability to maximize escape performance. Finally, we studied how

this differed between day-active and night-active mosquitoes

and how escape dynamics varied with light intensities ranging

from dark to overcast daylight.

Simulating a realistic attack
Of all 10,064 swatter attacks, only 8% lead to a collision between

mosquito and swatter, highlighting the surprisingly high

escaping performance of these flying mosquitoes. In our exper-

iments, we triggered the mechanical swatter based on the pre-

diction that a mosquito would fly into a sphere in the middle of

the arena when and where the swatter would hit the mosquito

(Figure 1D). Thus, at the time of triggering, the swatter was on

an intercepting course with the flying mosquito. In addition, the

swatter kinematics consists of a rapid linear attack movement

that stops slightly past the predicted point of interception.

Both the simplified prediction method and the single degree-

of-freedom kinematics of our swatter might explain the low colli-

sion percentage.

The prediction method that we used to activate our swatter is

similar to howhumans and dragonflies have been found to attack

moving targets,11,35–38 although they both use more sophisti-

cated prediction models than we used here. Unlike our swatter,

humans and dragonflies are continuously updating their predic-

tions, at least in bright light conditions.39,40 However, updating a

prediction is not always possible (e.g., when the target is

occluded) and is limited by sensory and neuromuscular delays.38

The single degree-of-freedom kinematics of our mechanical

swatter is analogous to the kinematics of a swatting hand but dif-

fers highly from the sophisticated attacks of flying predators.10,11

Flying predators such as birds or dragonflies may pursue

mosquitoes when hunting them, which would most likely in-

crease capture success. Also, a swatting hand tends to continue

its movement for longer than our swatter, which would also in-

crease its swatting success.

This suggests that the simplified kinematics of our mechanical

swatter is most likely the main cause of the low collision percent-

age. Nevertheless, the employed standardized simplified

swatting kinematics allowed us to assess the effects of different

treatments more precisely on the escape performance from a

mechanical looming object. Also, the use of our mechanical

swatter instead of the simpler visual looming targets used in
(E–G) Results of the two Bayesian-GLMs that modeled the mean fast escape pro

(non)reference light condition. Each panel is a slice plot showing only the effect of

(HDI) and probability density functions (PDF) are shown for all tested conditions.

(H–J) The distributions of themeans of the standardized slopes show that b1 and b

was outside the region of practical equivalence (ROPE)).
previous studies,18,41 allowed for the generation of a more real-

istic range of cues. Finally, the main conclusions of our study

do not depend on the absolute number of collisions; thus, we

expect similar effects of light conditions on the escape perfor-

mance ofmosquitoes in response tomore sophisticated attacks.

Mosquitoes increase their escape performance using
erratic flight behavior
Similar to the relatively low hit percentages of the active swatter,

also during the control trials when the swatter was turned off, only

13% of the reconstructed mosquito flight tracks were virtually hit

by the simulated in-silico swatter (Figure 2D). In other words, 13%

of themosquitoes would have been hit by the mechanical swatter

if it had been turned on but would not have had any effect on the

flight path of the mosquitoes. This low virtual hit percentage can

be explained by the combination of the relatively high movement

latency of the swatter (525 ms), its simple kinematics, and the un-

predictable nature of the flight trajectories of the mosquitoes. Our

analysis of the control experiments showed that, after triggering

the virtual swatter, many mosquitoes deviated quickly from their

predicted flight paths, which often resulted in avoiding a virtual

hit without having to perform an evasive maneuver (Figure 3D).

This flight behavior is interpreted as a kind of protean insurance

against attacks that the mosquito could find difficult to detect or

avoid.15 Because the predators and hosts of mosquitoes have

been found to wait for optimal conditions before eliciting an

attack,38,42 such erratic flight behavior should also reduce the

chance of attack initialization.

Additionally, mosquitoes that flew faster and with a higher

angular speed prior to the attack had a lower chance of being

hit (Figures 4B and 4C) and deviated more from their initial flight

path (Figures 4G and 4H). This indicates that flight unpredict-

ability is modulated by the mosquitoes using their linear and

angular flight speeds. By definition, these two variables cannot

be considered as protean sensu stricto, as they do not describe

behavior randomness; instead, linear and angular flight speeds

most likely function as an amplification factor that increases

the effect of an underlying unpredictability in the flight behavior

(Figures 4G and 4H). These results are in line with previous find-

ings showing that the targeting accuracy of humans is best pre-

dicted by an interaction between the speed and turn angle of the

target.17 Thus, by flying faster or with sharper turns, mosquitoes

decrease the chance of being hit or caught by an attacker.

Finally, despite recent examples of learning and habituation

among mosquitoes,43,44 our results were inconclusive about the

effectof timeafter thestart of theexperimentsonmosquitoescape

behaviors (as shown in Figure 5D and by the fact that time-related

predictors were otherwise left out of our minimal models).

Rapid escape maneuvers are induced by both airflow
and visual cues produced by the looming object
Comparing the real and virtual hit percentages between the con-

trol and active swatter experiments (Figure 2A) shows that
bability (with swatter on) as a function of (E) species, (F) light intensity, and (G)

one predictor with the others set at their mean values. Highest density intervals

2 are significantly different from zero (i.e., the 89%highest density intervals (HDI)
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evasive maneuvers reduce the chance of being hit by a factor of

two (Phit = 15% and Phit = 8% of the virtual and real swatter,

respectively). This suggests that the fast escape maneuvers

that we identified in 19% of all flight tracks with the swatter acti-

vated were executed effectively because they halved the num-

ber of hits in the approximate 15% of mosquitoes at risk of being

hit.

The temporal dynamics of the escape velocity of mosquitoes

attacked by the swatter (Figures 3E and 6B) shows that the

fast escapes mostly occurred just before the swatter entered

the sphere of interest, where the mosquito was predicted to be

hit. Our B-GLM analysis of the escape maneuvers shows that

the probability of eliciting a fast escape is strongly affected by

light intensity (Figures 6F and 6I), as it almost doubles from

dark conditions to overcast daylight (Pescape = 14% andPescape =

25% in the dark and overcast, respectively). Thus, visual detec-

tion of the swatter is an important factor in triggering an escape

maneuver, showing that rapid escapes are, at least in large part,

performed actively in bright light conditions. Because rapid es-

capes still occur in 14%of flights in full darkness, at least Anoph-

elesmosquitoes also rely on the swatter-induced airflow to avoid

being swatted. More research is needed to determine whether

the swatter-induced airflow triggered an active escape maneu-

ver, or if the airflow primarily causes a passive displacement of

the mosquito.

Day-active Aedes mosquitoes exhibit higher escape
performance than night-active Anopheles

Our analysis showed that both tested mosquito species, the

night-active Anopheles coluzzii and the day-active Aedes ae-

gypti, rely on baseline protean flight behavior and escape

maneuverability to avoid being swatted. But they do this in strik-

ingly different ways. The chance of being hit (real or virtual) by the

swatter was twice as high for Anopheles mosquitoes than for

Aedes, irrespectively of the light conditions or whether the swat-

ter was turned on or off (Figure 2D). This was explained by the

higher flight unpredictability of Aedes, quantified by their higher

flight path deviation (Figure 5I). Aedes mosquitoes achieve this

higher unpredictability by flying faster than Anopheles prior to

the attack (Figure 5C). Interestingly, Anopheles mosquitoes fly

slower but with higher angular speeds than Aedes, suggesting

that they increase their baseline protean behavior using a

different mechanism by flying at more curved flight paths

(Figure 5C).

In contrast with the higher baseline protean performance of

Aedes mosquitoes, Anopheles mosquitoes performed a higher

number of rapid escapemaneuvers thanAedesmosquitoes (Fig-

ure 6E).Anophelesmosquitoes are night-active and thus need to

navigate complex environments with limited to no visual feed-

back. To be able to do this, they might be forced to fly consis-

tently at relatively low flight speeds, and as a result, their protean

performance is reduced compared with the faster flying Aedes

mosquitoes. Our results suggest that Anopheles mosquitoes

partially compensate for their reduced protean performance by
(J) Bayesian estimation of themeans of the relative baseline protean contribution t

in the various light conditions.

(K and L) Standardized effect size of the comparisons of the estimatedRprotean mea

distributions outside the red ROPE box depict significant differences.
flying at higher angular speeds and by responding more strongly

to the looming object.

Night-active Anopheles mosquitoes have the highest
escape performance in the dark
A striking result of our study is that Anopheles mosquitoes were

least likely to be hit when flying in the lowest light condition (dark:

luminance = 0.0201 cd/m2) despite the greatly reduced visual

cues compared with the other tested light conditions (Figure 2F).

This suggests that these night-active mosquitoes adjust their

flight behavior in such away that theymaximize their escape per-

formance in the light conditions in which they are most at risk of

being attacked.

In the dark, the collision probability of Anopheles with the

swatter (virtual or physical) is similar between the experiments

with the swatter off and on (Figures 2J and 2K, Phit = 13% and

Phit = 7%, respectively). This suggests that Anopheles primarily

increases its escape performance in the dark by increasing its

baseline protean flight behavior, which is captured by the swat-

ter off experiments. This is confirmed by the distinctly high rela-

tive contribution of baseline protean behavior on the flight path

deviation in the dark (Figure 7J). This rapidly increases from

75% in twilight to 90% in darkness, highlighting the strong

dependence of Anopheles on baseline protean behavior to avoid

being swatted in the dark (Figure 7J).

We also determined the mechanisms that cause this high

dependence on protean behavior, which is 2-fold. First, Anoph-

eles perform the lowest number of fast escape maneuvers in the

dark (Figure 6D), most likely due to the lack of visual looming

cues. But this effect is relatively small between dark and twilight

conditions (Figure 6F). In contrast, the enhanced baseline pro-

tean flight behavior of Anopheles in the dark is explained by

the distinctly high flight speeds in this condition (Figures 5B

and 5E). By flying relatively fast in the dark, Anopheles amplify

the effect of their erratic curved flight behavior and therefore

enhance their flight unpredictability in this condition. Thus,

Anopheles exhibit enhanced baseline protean flight behavior in

darkness and thereby increase their escape performance in

dark conditions in which they are naturally active and host-

seeking. Maintaining high flight unpredictability is most likely

energetically costly. Therefore, Anopheles mosquitoes may

only rely on such an increased level of protean insurance in the

light conditions where they are at high risk of being swatted.

Day-active Aedes mosquitoes show enhanced escape
performance in overcast daylight
In contrast with Anopheles, the day-active Aedes mosquitoes

exhibit the lowest collision probabilities in the brightest tested

light conditions (Figure 2C). Although the collision probability in

overcast daylight was not significantly different from the other

light conditions combined (Figures 2F and 2I), it was significantly

lower than in sunrise conditions with the swatter turned on (Fig-

ure 2K). This suggests that the day-active Aedes mosquitoes

also adjust their flight behavior in function of the light conditions,
o flight path deviations (Rprotean) for non-hitAnopheles (blue) and Aedes (yellow)

ns between light conditions, for non-hitAnopheles (K) andAedes (L). Black HDI
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allowing them to maximize their escape performance in the con-

ditions in which they are most at risk of being attacked. Our anal-

ysis of the baseline protean flight behavior and escape maneuver

dynamics allowed us to identify how Aedes maximized their

escape performance in the high light conditions. The escape per-

formance of Aedes in the control experiments with the swatter

turned off did not change with light intensity (Figure 2J, respec-

tively), showing that Aedes mosquitoes did not modulate their

baseline protean behavior with light. This was confirmed by the

equally non-significant change in linear and angular flight speeds

of Aedes under varying light conditions (Figure 5). In contrast, fast

escapeprobability increased rapidlywith light intensity (Figure6F),

suggesting that instead of modulating their baseline protean

behavior, Aedes primarily increased their escape performance

with light intensity by enhancing their escape maneuverability.

Our analysis of the relative contributions of baseline protean

flight behavior and escape maneuverability on escape perfor-

mance confirmed this (Figure 7). In the highest overcast light

condition in which Aedes exhibited enhanced escape perfor-

mance, the relative contribution of baseline protean behavior

was particularly low (Figure 7J). This highlights that here Aedes

rely to a relatively large extent on escape maneuverability to

avoid being swatted. Our results confirmed that Aedes mosqui-

toes exhibit increased escape performance in overcast daylight,

which they achieve primarily by enhancing their escape maneu-

verability. These rapid escapes in bright light are most likely trig-

gered by visual detection of the looming object.

Escape flight behavior and evolutionary adaptations in
diurnal and nocturnal mosquitoes
In this study, we combined sophisticated biomechanics experi-

mentswith a detailed two-species comparative analysis approach

to identify the differences in escape flight behavior between a

diurnal and nocturnal mosquito species. Such two-species

comparativeanalysiscannotbeused todirectlyproveevolutionary

adaptations because thiswould require comparative analyses of a

larger number of mosquito species.45–47 We limited ourselves to

this two-species comparative approach because of the time-

consuming and complex nature of our biomechanics study. A

future comparative study on multiple species could explicitly

address the underlying evolutionary adaptations of diurnal and

nocturnal flying insects. To do so, one should use a simpler

approach to measure escape performance metrics, such as

escapespeedand free-flightproteanbehavior, andcontrol for var-

iations in morphological traits (such as wing loading and wing

shape) and ecology (such as habitat and host preference).45,46

CONCLUSIONS

Flying mosquitoes attacked by a looming object possess a good

escape performance due to both their hard-to-predict flight

paths and their effective escapemaneuvers. Flight path baseline

unpredictability is modulated by both the linear and angular

speeds of the undisturbed flying mosquito; escape maneuvers

are triggered by both visual cues and the airflow induced by

the attacker. The night-active Anopheles mosquitoes exhibited

maximum escape performance in the dark, whereas day-active

Aedes showed enhanced escape performance in the highest

daylight light intensity. Thus, for both species, escape
1244 Current Biology 32, 1232–1246, March 28, 2022
performance is enhanced in the light conditions in which they

naturally seek blood hosts and are thus most at risk of being

swatted by defensive hosts. Finally, for both species, the base-

line unpredictability of their flight paths had the largest effect

on escape performance. This protean insurance against attacks

might bemore important for flying insects than is often assumed.
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Deposited data

Database S1 DRYAD repository as part of this paper https://doi.org/10.5061/dryad.ttdz08m09

Experimental models: Organisms/strains

Anopheles coluzzii Via Prof. M. Coluzzi, Suakoko,

Liberia, 1987

Suakoko strain

Aedes aegypti Bayer AG Monheim, Germany,

via the Swedish University of

Agricultural Sciences, Lund,

Sweden, 2015

Rockefeller strain

Software and algorithms

Methods S1 DRYAD repository as part of this paper https://doi.org/10.5061/dryad.ttdz08m09

Matlab R2019b Mathworks https://www.mathworks.com/

MATJAGS, a Matlab

interface for JAGS

Steyvers and Kalish48 https://github.com/msteyvers/matjags

JAGS 4.3.0 - Just Another

Gibbs Sampler

JAGS https://mcmc-jags.sourceforge.io

Matlab Toolbox for Bayesian

Estimation (MBE)

Kruschke49

Winter50
https://github.com/NilsWinter/

matlab-bayesian-estimation;

https://doi.org/10.1037/a0029146

Hidden Markov Model (HMM)

Toolbox for Matlab.

Murphy51 https://www.cs.ubc.ca/�murphyk/

Software/HMM/hmm.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Florian T.

Muijres (florian.muijres@wur.nl).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d Three-dimensional tracking data and corresponding meta-data are publicly available asDatabase S1 in the DRYAD repository

https://doi.org/10.5061/dryad.ttdz08m09 (see key resources table).

d All original code is publicly available as Methods S1 in the DRYAD repository https://doi.org/10.5061/dryad.ttdz08m09 (see

key resources table).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental animals
In our experiments, we used female Anopheles coluzzii and Aedes aegyptimosquitoes. Anopheles coluzziimosquitoes came from a

colony that originated from Suakoko, Liberia in 1987. The colony of Aedes aegypti mosquitoes (Rockefeller strain) was obtained via

Bayer AG Monheim, Germany in 2015. Both colonies are housed in the Laboratory of Entomology (Wageningen University &

Research, The Netherlands) with a shifted clock 12h light:12h dark cycle. Mosquitoes were reared at fixed temperature of 27�C
and relative humidity of 70%. Adults were kept in BugDorm cages (30 3 30 3 30 cm, MegaView Science Co. Ltd., Taiwan). They

had constant access to 6% glucose sugar water solution and were blood-fed daily with human blood (Sanquin, Nijmegen, The

Netherlands) using a membrane feeding system (Hemotek, Discovery Workshop, UK). In the cages, female mosquitoes had access
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to wet filter papers for egg-laying. Upon collection, eggs were dried for three days after which they were moved to plastic larval trays

filled with 27�Cwater containing several drops of Liquifry No. 1 fish food (Interpet, UK). Emerging larvae were fed with TetraMin Baby

(Tetra Ltd, UK). The handling of pupae differed slightly between the two species. Anopheles pupae were placed directly in new

BugDorm cages to emerge, whereas Aedes pupae stayed in their larvae trays covered with nylon netting material. Twice a week,

emerged Aedes adults were vacuumed to new BugDorm cages. Males and females were kept together so they could mate. Non-

blood-fed adult females (age=7.6±2.3 days post-emergence, mean±standard deviation) were used in our experiments.

METHOD DETAILS

The flight arena
In this study, we filmed free flying mosquitoes in a custom-made octagonal flight arena (50350348 cm, height3width3length) with

transparent Plexiglas walls (see Figure 1A). A visible light panel (20348 cm) with 176 LEDs (Osram OSLON SSL 80�, CS8PM1.PM)

was positioned above the flight arena. Multiple polyester neutral density filters of 0.8ND (LEE filters, Panavision Inc.) were used to

stop down the light intensity of four LEDs to mimic twilight condition. Additionally, 4 infrared light panels (three panels of

20348 cm and one panel of 50350 cm) with a total of 600 LEDs (Osram OSLON Black Series (850 nm) 150�, SFH 4716A) were

set around the flight-arena. The spectrums of the light conditions used in our experiments were measured and can be found in

the Figure S2. Becausemosquitoes cannot see infrared light,52 the infrared light panels were used for backlighting flyingmosquitoes.

Mosquitoes could then be tracked in real time using Flydra (version 0.20.30)53,54 and the live footage from 5 infrared-enhanced cam-

eras (Basler acA2040-90umNIR). To each camera were attached one 12.5mm lens (Kowa LM12HC F1.4). A pixel-binning of 3 was

used resulting in a recording resolution of 680x680 pixels and a framerate of 90 frames-per-second. Lens distortions were corrected

using a backlighted print of a checkerboard pattern.55

To simulate an attacking threat, we build a swattermade of a 1 cmdiameter black aluminium shaft and a transparent plexiglass disk

with a diameter of 10 cm and a thickness of 1 cm, thus similar in size to a human hand. In order to vary the generated visual swatter

cues, we covered the disk with either a clear or black mesh (Ornata plus 95135, howitec.nl, Figure S2). Here, we did not study this

visual effect on the escape dynamics because it was outside the scope of the study.

The swatter (disk + shaft) wasmoved by a 50 cm long toothed-belt axes (drylin ZLW-1660-G0BW0-D0A3B-0A0A-500) powered by

an AC servo motor (Schneider Electric Lexium BCH2 LD0433CA5C). The servo motor was controlled by a programmable motion

servo driver (Schneider Electric Lexium LXM28A) programmed using the software SoMove 2 (Schneider Electric). The swatter kine-

matics (Figure 1E), was designed to have a peak velocity of around 1 m/s. This kinematic was based on preliminary experiments of

human swatting hanging ping-pong balls and quantified data on mosquito flight speed that generally does not exceed 1 m/s.22,56–58

The airflow velocity generated by the attack was quite similar to the one generated by an attacking bat.31

The temperature and relative humidity inside the experimental room were controlled by a previously described climate system.58

To facilitate air circulation and cleaning inside the flight arena, there were circular holes in the front (diameter of 17.4 cm) and back

(diameter of 43.7 cm) plexiglass panels. These holes were closed using easily removable high density polyethylene insect screenings

(Howitec, The Netherlands). On the floor of the flight arena, we placed visual markers, randomly shaded grey squares printed on a

plasticized paper sheet. Finally, a sensor recording local temperature and relative humidity (AM2302, ASAIR) was also placed inside

the flight arena. Microcontroller boards (Arduino UNO) and custom-made scripts were used to communicate with the sensor, to

trigger the swatter movement and to change the light condition from a nearby Linux computer. The setup was automated with

the Robotic Operation System (ROS version Kinetic Kame).

Experimental procedure
In the late afternoon before each experimental day, the flight-arena was cleaned using a 15% ethanol solution and paper towels.

Calibration was done by tracking a manually waved single LED inside the flight-arena. Then the new calibration was aligned to

the flight arena coordinate system using a calibration device made of 8 LEDs positioned at various known three-dimensional loca-

tions. The flight arena was then closed. 50 female mosquitoes were transferred from a rearing cage to a release cage, which was then

plugged to the side of the flight-arena. All handling of the mosquitoes and of the materials was done wearing nitrile gloves to avoid

skin odour contamination. A dedicated Python 2.7 script was started to automatically run consecutive experiments with the different

light conditions the succeeding day. By removing a metal mesh door, the mosquitoes could enter the flight arena and the experi-

menter left the room at 6 p.m. ± 1.2 h. The first experimental trial started 11.2 ± 3.0 h later the following morning.

Upon the start of the Python script controlling the experimental conditions, the light condition was set to follow the mosquito’s

normal light cycle in the rearing. Then the first experimental light condition was set, either at 2:30 a.m. for Anopheles mosquitoes

(during their night phase) or at 8 a.m. for Aedes mosquitoes (during their day phase), in order to give mosquitoes two hours buffer

time to adjust to their active phase. Three different light conditions were tested consecutively every day, each during an experimental

window of 160min. The order of these light conditions was changed following a quasi-randomized planning (see Table S1). The three

light conditions tested for Anophelesmosquitoes were dark (visible light turned off), twilight and sunrise, whereas the ones for Aedes

mosquitoes were twilight, sunrise, and overcast, resulting in an overlap of two light conditions between the two species (Figure 1G;

Table S1). Neither Anopheles or Aedeswere recorded flying in respectively overcast or dark because of their observed low flight ac-

tivity in those light conditions.
e2 Current Biology 32, 1232–1246.e1–e5, March 28, 2022
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Real-time estimations of mosquito positions and velocities were used to compute their predicted positions 367.5 ms in the future.

Such latency corresponds to the time the swatter takes to be around halfway toward its most forward position. If the predicted po-

sition was found to be inside a sphere of interest, defined as a 10 cm diameter sphere in the centre of the flight arena, the swatter was

triggered (Figure 1D). After one second, the swatter was moved back to its initial position and a delay of 10 seconds was respected

before any new trigger of the swatter. During post-processing, mosquito initial positions andmean initial velocities (i.e. at trigger time)

were used to filter out tracks that were not predicted to be inside the sphere of interest when the swatter would reach itsmost forward

position. Thus, for the rest of the analysis, we only kept the tracks that were predicted to be entirely in the sphere of interest during the

second half of the swatter movement (-157.5 to 0 ms).

When all the experiments of the day were finished, the experimenter came back into the room. A vacuum cleaner was plugged to

the flight arena in place of the handling cage, and was used to capture all mosquitoes while avoiding potential escapes. The captured

mosquitoes were left inside the vacuum cleaner to desiccate. Finally, the disk and mesh attached to the swatter rod were changed

according to the previously mentioned plan (Table S1) for the next experimental day.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of three-dimensional flight tracks
Pre-processing was done using Python 2.7. For each trigger, collisions were manually identified by looking at the two-dimensional

tracking results of the side cameras. A mosquito track with a collision was labelled as such when the tracked points of the swatter

were intercepting the track. By projecting the swatter’s three-dimensional shape into the two-dimensional view of each camera, the

two-dimensional points of the swatter were filtered out for each trigger. The three-dimensional tracks of all mosquitoes were then

reconstructed again, thus optimizing tracking performance near the swatter.

The rest of the analysis was done using Matlab R2019b. A first filtering of outlying three-dimensional points was done using the

covariance matrices estimated by the extended Kalman filter used by the Flydra tracker. Then, less than four points long segments

of mosquito tracks were filtered out, and segments that were separated by more than 15 missing points were divided in two different

tracks. Remaining missing values were interpolated using the modified Akima piecewise cubic Hermite method (makima, Matlab).

Then, in order to analyse only complete manoeuvres, we filtered out all the tracks that were not starting at least 60 frames before

the most forward position of the swatter was reached (t = 0 s on Figures 2–7). Similarly, except for collisions, we filtered out tracks

that ended less than 30 frames after the time when the swatter reached its most forward position. Finally, three-dimensional tracks

were smoothed using a Savitzky-Golay filter with a moving window of five frames. Mosquito velocities and accelerations over time

were computed using a second order derivate central finite difference scheme. Initial and final values were estimated respectively

using forward and backward finite difference schemes. The angular flight speed was computed as in.22 Then, the distance between

the nearest point on the swatter disk was estimated using the synchronized position of the swatter over time (Figure 3A). The escape

speedwas defined and computed by projecting mosquito speed over time on themoving line between the nearest point on the swat-

ter and mosquito three-dimensional position (see Figure 4A). The initial mean and standard deviation (std) of flight speed or angular

speed was computed over the 11 frames around the frame at which the swatter was triggered. Finally, to see howmuch mosquitoes

deviated from their initial trajectory, for each point in time we computed the Euclidian distance between their current position and the

predicted position based on their initial position and initial mean velocity (Figure 3B). And the mean final Euclidian distance to pre-

dicted position of each mosquito was computed over the 11 frames around the frame at which the swatter reached its most forward

position.

To be able to compare the chance of being hit by the swatter with or without potential mosquito responses (i.e. with the swatter on

or off), collisions with a virtual swatter were predicted. These virtual collisions were estimated by computing if and when mosquito

flight tracks would have crossed the path of the swatter (here virtual), assuming it had been triggered according to the triggering rules

defined earlier.

Bayesian generalized linear model development
Here, we used several Bayesian generalized linearmodels (B-GLM) tomodel the flight behaviour and escape performance ofmosqui-

toes.We used Bayesian statisticsmainly because the Bayesian approach provides richer results than Frequentist statistics, by giving

the probability distributions of the estimated parameters as well as an intuitive way of testing the null-hypothesis (see next para-

graph). Additionally, in Bayesian statistics there is no need for multiple testing correction.59,60 Also, we appreciate its conceptual

clarity, whereas in Frequentist statistics there are common misconceptions about important concepts like p-values and confidence

intervals (e.g. interpreted as credibility intervals). Finally, in Bayesian statistics there is no need for multiple testing correction.59,60

In Bayesian statistics, before estimating the posterior distribution of a parameter mean (e.g. the slope of a statistical model), our

prior knowledge of this distribution needs to be defined.49 For this study, we had no prior knowledge of the standardized estimated

mean parameters, therefore we used diffuse priors with a wide normal distribution (mean=0 and standard deviation=100). Then, the

posterior distribution of the parameter is estimated by updating the prior distribution with new data (e.g. experimental results). This is

computationally costly, and was done using Just Another Gibbs Sampler (JAGS) which use Markov chain Monte Carlo (MCMC).61

Finally, null-hypothesis testing was done using the ‘‘HDI+ROPE decision rule,’’62 where the null-hypothesis is rejected if the 89%

Highest Density Interval (HDI) of the standardized parameter is outside the Region of Practical Equivalence (ROPE = [-0.1, 0.1]).

The 89% HDI being defined as the interval in which all the points have a higher probability density than points outside. The ROPE
Current Biology 32, 1232–1246.e1–e5, March 28, 2022 e3
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is defined as the range around zero (i.e. the null-hypothesis) where, if estimated there, a parameter would be found to have ‘‘prac-

tically no effect’’. Thus, to reject the null-hypothesis, the HDI of an estimated parameter must fall outside the ROPE.

We estimated means of mosquitoes probability of being hit (Figure 2) for each combination of light condition and species using

MATJAGS, a Matlab interface for JAGS,48 and the Matlab Toolbox for Bayesian Estimation (MBE),50 a Matlab implementation of

Kruschke’s R code.49 To model the probability of being hit we used a Bernoulli distribution and a logistic link function. Then we

compared the estimated mean distribution by computing standardized effect sizes. Here we defined the effect size between two

groups as the difference of their means divided by the norm of their standard deviations.

For this study, we wrote a B-GLM package based on the two Matlab toolboxes previously mentioned MATJAGS,48 and MBE.50

JAGS modelling codes were based on examples from63 and can be found in the Methods S1 (and can be used with the Database

S1). Binary response variables (like the probability of being hitPhit) weremodelled using Bernoulli distributions and a logistic link func-

tion. Flight metrics, like initial mean speed or mean angular speed, were modelled using gamma distributions and a log link function.

To allow the use of the ‘‘HDI+ROPE decision rule’’, we standardized continuous predictors and response variable, by subtracting

their mean and dividing them by two standard deviations (instead of one for typical z-scores).64 All the other variables were binaries

(e.g. was hit = yes/no), and they were only centred (i.e. to have zero mean). In this way, the estimated standardized slopes (i.e. effect

sizes) are comparable across all models.64,65

B-GLMs were selected by applying a forward selection procedure, where compared models are increasingly complex by system-

atically including more predictors and their interactions. The best models were selected using the Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC). When comparing models of same complexity, we chose the model with the lowest AIC and

BIC. When comparing models of different complexity, we selected a more complex model only if it had at the maximum an AIC and a

BIC values 10 points inferior to less complex models.63 Finally, we checked that good mixing of chains and low autocorrelation co-

efficients could be observed. A summary of all the B-GLMs that were compared to each other can be found in the Data S1.

Hidden Markov model development
For studying the escape manoeuvre dynamics of mosquitoes in response to a swatter attack, we developed a HiddenMarkov model

(HMM) using the Matlab toolbox by Kevin Murphy.51 This HMM allowed us to determine in which of three behavioural escape flight

states amosquito was at each point in time, just by observing its escape velocity over time (Figure S3A). The probability of being in the

states depending only on the previous state. The model was trained on all flight tracks recorded with the swatter on (i.e. without con-

trols). The initial parameters of themodel were found by fitting amixture of three Gaussians to the distributions of all escape velocities

of the tracks (fitgmdist, Matlab). Then a Baum–Welch algorithm, with fixed means and standard deviations, was used to find the un-

known parameters of the HMM (see Figure S3). We labelled the first two states as ‘‘cruising’’ states toward or away from the swatter,

and the last one as the ‘‘escaping’’ state (with high escape velocities away from the swatter, Figures S3A–S3D). The Viterbi algorithm

was used to compute themost-likely corresponding sequence of states (see the example on Figure S3A). Almost all mosquitoeswere

found to initially be in one of the two cruising states (Figure S3). When the swatter started to move towards the centre of the flight

arena, the proportion of mosquitoes in the cruising state away from the swatter grew. Then, around the time when the swatter

was halfway towards its most forward position (t=0 s), mosquitoes started to get into the fast escape state. The maximum proportion

of mosquitoes to be in this state over time was 17.1% and this maximum was reached just before the swatter arrived at its most for-

ward position (Figure S3G). In the rest of the analysis, all the tracks that were predicted at least once to be in this fast escape state

were labelled as fast escapes. In this way, each track was put in one of three groups, the collisions, the slow escapes and the fast

escapes. The probability that a virtual swatter triggered a fast escape was lower than 1%, showing that the Hidden Markov Model

produced practically no false positive fast escapes (Figure S3C). In contrast, probability that a real swatter triggered a fast escape

was 20%. Because many flights do not get close to the swatter (Figures 3C and 3F), these percentages are not surprising.

Analysing the escape performance of mosquitoes
Using a combined statistical and mechanistic modelling of the mosquito flight dynamics, we studied how the two mosquito species

adjust their flight dynamics to optimize their escape performance. We did this in four steps. First, we determined how the chance of

being (virtually) hit by the swatter differed between species, light conditions, and swatter mode (on/off). Second, we studied how

baseline protean flight behaviour affected the chance of being hit by the swatter. Third, we determined how the swatter-induced

escape manoeuvre dynamics affected escape performance. Finally, we quantified the relative contributions of baseline protean

behaviour and escape manoeuvre dynamics (protean and systematic) to the overall escape performance.

Modelling the chance of being hit by the swatter

In our first sub-study, we estimated the probability of being hit Phit by determining in all flight tracks whether the mosquito was hit.

Based on these data, we used aB-GLM tomodel the probability of being hitPhit as a function of the experimental conditions (Figure 2),

with the following predictors: swatter off or on (0 or 1), species (Anopheles or Aedes), logarithm of light condition luminance (cd/m2),

reference (dark for Anopheles or overcast for Aedes) or altered light (twilight and sunrise), mesh colour (black or clear), time after start

of first trial, humidity, and temperature. In addition, to test for learning effect, we also used the interaction between the two following

predictors: swatter on/off and the time after start of first trial. Finally, in order to check for potential behavioural difference of the two

species, and if the predictor species was already in the model, we compared models with interactions between Anopheles or Aedes

with the other remaining predictors (e.g. Anopheles.*time to test if Anopheles mosquitoes’ behaviour was changing over time). The

final set of predictors included in the minimal model were swatter off or on, species, and the interaction Anopheles*light condition
e4 Current Biology 32, 1232–1246.e1–e5, March 28, 2022
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(altered or reference). To improve clarity and because it didn’t change the results, we added the interaction Aedes*light condition to

the model shown in Figure 2.

Modelling the baseline protean flight behavior

We studied how baseline protean flight behaviour affected the escape performance using two steps. First, we used a B-GLM to

model how Phit varied in function of the initial flight state of the mosquito. The minimum B-GLM was determined by using the

mean or standard deviation of the initial linear flight speed or angular speed as predictors (Figures 4B, 4C, 4E, and 4F). Then, we

modelled how the predictors left in the minimal model (initial mean of the speed and angular speed) changed with the experimental

conditions while the swatter was off, using the same predictors as the ones used for initially modelling of Phit. Note that for the case

with the swatter off, the escape performance is only determined by the baseline protean behaviour, because without the swatter on

no escape responses are elicited.

Studying the escape manoeuvre dynamics

In our third sub-study, we studied how the swatter-induced escape manoeuvres affected escape performance. We first used the

HiddenMarkovmodel to identify all rapid escapemanoeuvres in all flight tracks. Then, wemodelled with a B-GLMhow the probability

of performing a fast escape Pescape depended on the experimental conditions (Figure 6). The minimum model was determined using

the same initial predictors as the ones used for modelling Phit. We observed high autocorrelation and bad mixing of chains with the

predictor swatter on or off, most likely because the number of fast escapes was really low during the controls. Thus it was decided to

model Pescape separately for the tracks recorded while the swatter was triggered (Figures 6E–6J).

Modelling the contribution of escape strategies

In our forth sub-study, we tested how baseline protean flight behaviour and escape manoeuvre dynamics combined affected the

escape performance. For this, we used the flight path deviation at t=0 s (d0), because this parameter is an important metric for pre-

dicting escape performance. We did this in two steps.

First, we used a B-GLM to model the mean flight path deviation d0 as a function of the experimental conditions (Figures 7D–7I). To

get the minimal model, we used the same initial predictors as the ones previously described for the B-GLMs of Phit and Pescape. The

predictors included in the minimal model were the same as for the first B-GLM.

Secondly, we used the flight path deviation d0 to quantify the relative contributions of baseline protean flight behaviour and escape

manoeuvrability on the escape performance. For this we defined the relative baseline protean contribution to flight path deviations as

Rprotean=doff/don$100% (Figures 7J–7L), where doff and don are the flight path deviations at t=0 s when the swatter was turned off and

on, respectively. Note that doff is the result of only the baseline protean behaviour, and don is the result of the protean flight behaviour

and the escape manoeuvre combined. Thus, Rprotean=100% if a flight path deviation is fully caused by the baseline protean behav-

iour, and Rprotean=0% when a flight path deviation is fully caused by the escape manoeuvre. Using a Bayesian model, we estimated

means of Rprotean for each combination of light condition and species (Figures 7J and 7K).49 To model Rprotean we used a log-normal

distribution and estimated the means each combination from a sample of 10,000 randomly chosen values of Rprotean out of all the

computed Rprotean values. Then we compared the estimated mean distribution by computing standardized effect sizes.
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