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soil properties and their recovery across land-uses on 
a densely populated volcanic slope.
Methods  We measured the canopy cover and vol-
canic ash thickness six years after the 2014 Mt. Kelud 
eruption in four land-use systems: remnant (degraded) 
forests, complex agroforestry, simple agroforestry, 
and annual crops. Each system was monitored in 
three landscape replicates (total 12 plots). For the soil 
recovery study, we measured litter thickness, soil tex-
ture, Corg, soil C stocks, aggregate stability, porosity, 
and soil infiltration in three different observation peri-
ods (pre-eruption, three, and six years after eruption).
Results  Post-eruption volcanic ash thickness varied 
between land-use systems and was influenced by the 
plots slope position rather than canopy cover. The 
average soil texture and porosity did not vary signifi-
cantly between the periods. Surface volcanic ash and 
soil layers initially had low aggregate stability and 
limited soil infiltration, demonstrating hydrophobic-
ity. While Corg slowly increased from low levels in the 
fresh volcanic ash, surface litter layer, aggregate sta-
bility, and soil infiltration quickly recovered.
Conclusions  Different land-use management 
resulted in different recovery trajectories of soil phys-
ical properties and function over the medium to long 
term after volcanic ash deposition.

Keywords  Volcanic eruption · Resilience · 
Agroforestry · Hydrophobicity · Soil quality · Soil 
degradation · Soil restoration · Tephra

Abstract 
Background and purpose  Volcanic eruptions of 
pyroclastic tephra, including the ash-sized fraction 
(< 2 mm; referred to as volcanic ash), have negative 
direct impacts on soil quality. The intensity (deposit 
thickness, particle-size distribution) and frequency 
(return period) of tephra deposition influence soil 
formation. Vulnerability and subsequent recovery 
(resilience) of the plant-soil system depend on land-
uses (vegetation and management). Few previous 
studies covered the whole deposition-recovery cycle. 
We investigated the volcanic ash deposition effects on 
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Abbreviations 
CAF	� Complex coffee-based agroforestry
Corg	� Soil organic carbon
CR	� Annual crops
DF	� Remnant (degraded) forest
LUS	� Land-use systems
m a.s.l	� Meter above-sea-level
MWD	� Mean weight diameter
SAF	� Simple coffee-based agroforestry
YAE	� Year after eruption

Introduction

Volcanic soils have extraordinarily high soil fertil-
ity once ash deposited on the surface has become 
soil with Andic properties (Sanchez 2019). However, 
farming on volcanic slopes and adjacent valleys also 
involves exposure to extreme circumstances during 
volcanic eruptions. This includes pyroclastic materi-
als deposition of < 2 mm tephra fractions (it includes 
sand, silt and clay particles in conventional texture 
analysis) which is often directly referred to  as ‘vol-
canic ash’ (Arnalds 2013; Fuentes et al. 2020; Müller 
et  al. 2019; Rossi et  al. 2021; Suh et  al. 2019), and 
subsequent volcanic ash movement in the landscape 
(Anda et  al. 2016; Ayris and Delmelle 2012; Zobel 
and Antos 2017). Parts of the literature on volcanic 
soils describes long-term soil genesis (Babiera and 
Takahashi 1997; Dahlgren and Ugolini 1989; Fian-
tis et al. 2021; Fiantis et al. 2017; James et al. 2016; 
Ontiveros et al. 2016; Schlesinger et al. 1998). Other 
authors have a focus on the short-to-medium term 
consequences for vegetation dynamics (del Moral 
and Lacher 2005; Magnin et al. 2017; Swanson et al. 
2016; Zobel and Antos 2017), the hydrological char-
acteristics and sedimentation in the drainage basin 
(Hendrayanto et  al. 1995; Leavesley et  al. 1989; 
Major et al. 2009; Manville et al. 2009; Pierson and 
Major 2014), or soil development and biological com-
munities (Fernández et al. 2018; Ferreiro et al. 2018; 
Fiantis et  al. 2019; Fiantis et  al. 2016; Tateno et  al. 
2019; Yamanaka and Okabe 2006). However, few 
studies have described the extensive short-medium-
long term changes and recovery of soil physical char-
acteristics and functions.

Indonesia has the largest number of active vol-
canoes on earth (Nihayatul et  al. 2017), and nearly 
all are densely populated. Six out of ten of the most 

populous active volcanoes in the world are located 
in Indonesia (Small and Naumann 2001). Among 
them is Mt. Kelud (also known as Kelut) in East Java, 
which had a human population density of more than 
800 km−2 in 2020. Mt. Kelud has erupted more than 
30 times since 1000 AD (Nawiyanto and Nurhadi. 
2019), including the most recent significant eruptions 
in 1990 and 2014 (Goode et  al. 2019; Maeno et  al. 
2019; Nakada et al. 2016).

The severity and variety impacts of volcanic mate-
rials depositions depend on the intensity metrics 
(tephra characteristics, such as layer thickness and 
grain size) and vulnerability of the exposed land-use 
system(s) (Arnalds 2013; Craig et  al. 2016). Differ-
ences in vegetation structure (stem and leaf architec-
ture, height and density) may influence the amount 
of volcanic ash captured, but will certainly affect the 
volcanic ash layer thickness retained on the soil pro-
file (Cutler et al. 2016). A tree canopy or a shrub is 
expected to locally modify air turbulence, and cap-
ture and retain a portion of the air-borne volcanic 
ash (Ayris and Delmelle 2012). This volcanic ash is 
subsequently transferred to the ground as leaves drop 
or wind and rain mobilize the ash out of the canopy 
(Swanson et  al. 2013). Dugmore et  al. (2018) found 
that tephra layers developed underneath tall shrubs 
were 36% thicker than the original fallout when 
evenly distributed. This implies that tree-based sys-
tems may be more susceptible to change its soil 
properties due to thicker tephra deposits compared to 
monoculture crop systems.

Tephra interception by tree canopies may lead 
to leaf abrasion and/or induce litterfall (Ayris and 
Delmelle 2012; Korup et  al. 2019; Swanson et  al. 
2013). Changes in soil characteristics following vol-
canic events may have a substantial effect on plant 
establishment and development (Fernández et  al. 
2018). Tephra deposits on soil surface may change 
soil structure (Blong et  al. 2017) and impede water 
infiltration, a characteristic sometimes described as 
hydrophobicity (Anda et al. 2016; Hairiah et al. 2016; 
Pierson and Major 2014). However, plant growth 
will eventually recover with time, and new soil will 
develop simultaneously. A conceptual diagram of 
volcanic ash deposition and its aftermath (Fig.  1) 
describes a typical sequence of processes as:

	 1.	 Volcanic eruption ejects tephra (including vol-
canic ash) into the atmosphere, deposited on 
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forests and agricultural land, depending on the 
height of the eruption plume, wind direction, 
wind speed. The deposition pattern is potentially 
modified by the surface roughness of the vegeta-
tion and its turbulence effects.

	 2.	 Volcanic ash causes direct and indirect damage 
to trees-some trees survive, others die due to 
the loss of canopy and/or leaf abrasion from the 
heavy ash load.

	 3.	 Volcanic ash and fresh litter partially or fully 
cover the original soil. After interacting with 
rainwater, ash may be redistributed downhill 
and/or quickly become compacted due to the 
lower aggregate stability and porosity. This 
compacted layer (crust) can temporarily discon-
nect the underlying soil from the atmosphere.

	 4.	 The disconnection may disrupt the water and 
nutrient balance in the soil due to lower soil 
infiltration and aeration, including inhibition of 
soil organic matter decomposition and minerali-
sation.

	 5.	 Severely damaged leaves combined with low 
soil nutrient and water availability reduce tree 
photosynthesis, and lead to low production dur-
ing the early years post volcanic event, as trees 
may skip flowering and fruiting.

	 6.	 To improve the soil condition after the eruption, 
some farmers mixed the volcanic ash and fresh 
litter with the original soil and added inorganic 
fertilizer and organic matter (from manure).

	 7.	 Mixing fresh volcanic ash, litter and manure 
with original soil increases soil organic matter 
content and triggers higher soil organism activi-
ties (bioturbation). This process may improve 
the soil structure as indicated by a higher soil 
aggregate stability and macroporosity, thus 
improving the water and nutrient balances.

	 8.	 Weathered volcanic ash starts to provide nutri-
ents for plants.

	 9.	 A better nutrient and water balance in the soil 
accelerates the recovery of the trees that sur-
vived immediate impacts and/or the growth of 
the newly established or planted trees.

	10.	 Trees that are recovered and/or newly planted 
consistently begin to produce litter and contrib-
ute to the further accumulation of soil organic 
matter. Higher soil organic matter contents may 
increase the presence and activity of soil biota, 
thus improving soil structure and increasing the 

availability of water and nutrients. This favour-
able condition may further accelerate soil devel-
opment and recovery of the land-use system – 
until the next disturbance restarts the cycle.

The rate of ecosystem recovery post-eruption 
depends on the interrelation between volcanic ash 
characteristics and environmental factors, including 
climate, the resilience of the ecosystem and farmer 
management. Ferreiro et  al. (2018) showed that two 
years post-eruption, the forests tephra accumulated 
more biomass and litter than bare tephra, accelerat-
ing the invertebrate and microbial development. The 
development of biological activity in fresh volcanic 
ash layers may enhance the soil organic carbon and 
nitrogen availability, positively affecting plant growth 
(Fiantis et al. 2019). On the other hand, human inter-
vention after volcanic events in agricultural systems 
such as replanting trees, adding organic matter, and 
incorporating volcanic ash with original soil may 
contribute to ecosystem recovery (Craig et  al. 2016; 
Ishaq et al. 2020; Sword-Daniels et al. 2011; Wilson 
et al. 2011).

The timeframe for ecosystem recovery depends on 
volcanic ash thickness: decades necessary for thin, 
centuries for moderate, and millennia for very thick 
layers (Arnalds 2013). However, the knowledge on 
change in soil characteristics and soil functions in 
natural and agricultural ecosystems has not been well 
developed, as most studies only cover limited phases 
of the eruption-recovery cycle. In addition, the next 
disturbance may come earlier before recovery of the 
system is achieved, particularly for the locations with 
frequent volcanic ash deposition.

The general aims of this study were (1) to provide 
an assessment of the volcanic ash thickness in natural 
and agricultural land-use systems and (2) to explore 
the resilience of natural and agricultural systems after 
volcanic ash deposition by investigating the litter 
thickness, and soil physical characteristics and func-
tion in relation to vegetation development and system 
recovery. Our research opportunity arose when Mt. 
Kelud erupted in February 2014 and precipitated up 
to 20 cm of volcanic ash in the Ngantang sub regency, 
East Java (Nakada et al. 2016). This eruption affected 
existing long-term research plots established in 2007 
in a landscape mosaic with degraded forests, cof-
fee and fruit tree agroforestry, and open field veg-
etable production. We resampled these plots after the 
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immediate relief phase of three and six years after the 
2014 eruption, allowing us to monitor the changes in 
vegetation and soil characteristics, and to explore the 
local ecological knowledge and farmer decisions in 
response to the event. We will focus on the soil physi-
cal properties and soil function changes post volcanic 
ash deposition as consideration for farmer decisions 
to modify their land-use systems. In this study, we 
have three research questions:

1.	 Are there indications of any causal relation 
between canopy cover and volcanic ash thickness 
six years after the volcanic eruption?

2.	 Do the present land-use systems and farmer prac-
tices affect the recovery of litter thickness, soil 
organic carbon, soil structure, and soil infiltration 
after tephra deposition?

3.	 How does litter thickness in various land-use sys-
tems relate to soil organic carbon and recovery of 
infiltration rates?

We hypothesized that: (1) Canopy cover increases 
the volcanic ash thickness; (2) Tree-based land-use 
systems (forests and agroforestry) had a thicker litter 
layer, a higher soil organic carbon, a better soil struc-
ture, and higher water infiltration rates compared to 
annual crops; (3) Infiltration rates in tree-based sys-
tems were recovering faster than the annual crops. 
We expected that a more detailed understanding of 
soil changes in response to farmer management could 
contribute to the successful planning and implemen-
tation of restoration activities in the aftermath of 
future volcanic eruptions, based on the tree and soil 
management optimization.

Methods

Study area and research approach

This study took place in the Kalikonto Watershed 
(7°45′57"- 7°56′53"S and 112°19′18"- 112°29′57" 
E, with elevation ranging from 600–2800  m 
above-sea-level (m a.s.l.), located in Ngan-
tang Sub-district, Malang Regency, Indonesia. 
The study area is 13–15  km north of Mt. Kelud 
(7°55′48″S—112°18′29″E) (Online resource 1). 
The Kalikonto watershed is characterized by a tropi-
cal monsoon climate, with a dry season from June 

to October and a rainy season from November to 
March. The annual rainfall varies from 2995 to 
4422  mm  year−1, with the annual average tempera-
ture between 20°–22  °C, without much seasonality 
(BMKG 2018).

A ‘chronosequence’ of plots in four land-use sys-
tems with different degrees of change from the origi-
nal natural forest cover was established in 2007/08 
and resampled in 2016/17 and 2019/2020. Relative to 
the 2014 Mt. Kelud eruption, we labelled the 2007/08 
data as ‘pre-eruption (PRE)’ condition. Meanwhile, 
the 2016/17 and 2019/20 datasets were labelled as ‘3 
and 6 years after eruption (YAE)’ respectively. Given 
the 24-years between the last major events (1990 
– 2014), datasets also represent the short-medium (3 
to 6 years) and long term (17 years) impacts of ash 
deposition.

Land‑use systems

To test the hypotheses, we measured the soil physi-
cal properties of soil and volcanic ash (particles 
size < 2  mm) layer in four land-use systems (LUS): 
remnant (degraded) forests, coffee-based complex 
agroforestry system, coffee-based simple agroforestry 
system, and monoculture annual crops. Each land-use 
system included 3 plots on different locations, which 
can be considered landscape-level replications (total 
of 12 plots). A relative similar distance between the 
study site and the volcano implied that they prob-
ably received similar amounts of tephra with identi-
cal composition during the recent eruption (Cutler 
et  al. 2016). All soils of these plots were classified 
as Inceptisols according to the USDA classification 
and Cambisols according to the FAO classification 
(Driessen et al. 2001).

Remnant (degraded) forests (DF)

The term remnant (degraded) forests as used in this 
article is based on the FAO definition: “changes 
within the forests which negatively affect the struc-
ture or function of the stand or site, and thereby lower 
capacity to supply products and/or services” (Schoene 
et al. 2007). Relatively open forests (but still having 
more than 10% of canopy cover that met the forest 
definition used by FAO) mainly resulted from human 
activities such as overexploitation of forest trees for 
timber or fuelwood. In the local context, degradation 
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implies a reduction of woody biomass, and changes in 
tree species composition, structure and productivity 
compared to natural forests expected for such climate 
and soil conditions. All DF plots were located at alti-
tudes ranging from 900–1133 m a.s.l. with an average 
gradient of 40% at the lower slopes of local relief.

Coffee‑based complex agroforestry (CAF) and simple 
agroforestry (SAF)

We used the relative basal area of the dominant tree 
crop and the number of companion tree species to dif-
ferentiate between complex and simple agroforestry 
(Sari et al. 2020). Agroforestry systems combine cash 
crops and shade trees with a relative basal area of the 
main crop (coffee) of less than 80%; otherwise, they 
are described as ‘monocultures’. Agroforestry sys-
tems with at least 5 tree species in a 20 m by 20 m 
plot were defined as complex agroforestry and those 
with 2–4 tree species as simple agroforestry (Hairiah 
et al. 2020). Relative coffee basal area was calculated 
for a standard 20 m by 20 m observation plot (Hairiah 
et al. 2006; Sari et al. 2020). CAF plots were mainly 
located on slopes with an altitude ranging from 
750–950  m a.s.l., and an average gradient of 11%. 
SAF plots were found at similar elevations but further 
from the settlement on steeper terrain with an aver-
age gradient of 23%. Both CAF and SAF were situ-
ated in the middle part of the local relief. After the 
eruption, CAF and SAF farmers reportedly removed 
the volcanic ash near the tree trunk manually, and 
applied an organic (2.5–3.5 Mg ha−1 manure year−1) 
and inorganic fertilisers (120 kg N, 30–60 kg P, and 
30–60 kg K  ha−1  year−1). Important trees in farmer-
managed agroforestry system include Durio zibethi‑
nus (‘durian’) as an indigenous fruit and timber tree, 
Swietenia mahagoni (‘mahogani’), an introduced tim-
ber tree, and Toona sureni (‘suren’), an indigenous 
timber tree.

Annual crops (CR)

CR plots were situated at a lower altitude than other 
LUS (673–761 m a.s.l.) with an average gradient of 
2%. The main crops were napier grass (Cenchrus 
purpureus), maize (Zea mays), groundnut (Arachis 
hypogea), cabbage (Brassica oleracea), chilli pep-
per (Capsicum annuum), and upland rice (Oryza 
sativa). Land management mainly was intensive, 

with 2–3 planting cycles in a year. Soil tillage, ferti-
lizer (organic and inorganic) application, weeding and 
pest control were associated with the planting cycles. 
After the eruption, some farmers mixed the soil and 
volcanic ash using a  small hand tractor and applied 
organic (5.6  Mg  ha−1 manure year−1) and inorganic 
fertilisers (200 kg N, 120 kg P, 120 kg K ha−1 year−1).

Data collection and statistical analysis

Canopy cover and volcanic ash thickness

We measured the canopy cover and ‘preserved’ vol-
canic ash thickness in the plots on October 2020 or 
six years after 2014’s Mt. Kelud eruption (6 YAE). 
Three sampling points were placed on the diagonal 
of the plots for canopy cover and volcanic ash thick-
ness measurements (Online resource 2). We split each 
sampling point into four sampling directions (based 
on the slope direction), with the coffee tree as a center 
point in CAF and SAF. Each direction was then 
divided into 30  cm length grids. Canopy cover was 
measured with an upward-facing photograph and the 
‘CanopyApp’ in each grid, 30 cm above the soil level 
surface. This method was reported to show a strong 
and linear relationship (R2 = 0.87) to canopy cover 
measurement using a spherical densitometer (Davis 
et al. 2019).

We exposed a cross-section of the volcanic ash 
and soil layers for the preserved ash thickness meas-
urements by creating a shallow trench with a sharp 
spade (Dugmore et al. 2018). The trench was dug up 
underneath the canopy cover measurement points. We 
directly measured the volcanic ash thickness with a 
ruler perpendicular to the soil surface. The preserved 
volcanic ash layer was easily differentiated as it laid 
very close to the surface and showed a different col-
our and texture from the original soil underneath 
(Fig.  4c). For further statistical analysis, the canopy 
cover and volcanic ash thickness were averaged per 
plot.

The  Mt. Kelud 2014 eruption is sufficiently 
recent that vegetation cover in tree-based systems 
has not changed dramatically. Therefore, we only 
included the data points from tree-based systems 
and excluded the CR data for the correlation anal-
ysis between canopy cover and volcanic ash thick-
ness. However, we included data from all land-use 
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systems for the correlation analysis between slope 
position and volcanic ash thickness.

Litter thickness and soil parameters

We used the litter thickness to assess litter layer 
development (Marín-Castro et  al. 2017). Standing 
litter thickness was measured using a ruler inside a 
0.5 m × 0.5 m frame (Hairiah et al. 2006), placed on 
the same three diagonal points as the volcanic ash 
thickness measurement. Soil samples were collected 
from the upper 30 cm of the soil layer at three dif-
ferent periods (PRE, 3 YAE, and 6 YAE). This layer 
includes volcanic ash deposits and some parts of 
original soil material, that were mixed in naturally 
and/or anthropogenic ways.

The disturbed and undisturbed soil samples were 
collected from 2 sampling points near the litter 
measurement. We mixed the disturbed soil sample 
from two sampling points to create a composite 
sample. Composited soil samples were air-dried for 
48 h and stored at room temperature (28 °C) before 
further analysis.

Soil and volcanic ash texture (% of sand, silt, 
and clay) was determined using the pipette method, 
while soil organic carbon (Corg) was determined 
using Walkley and Black method (Anderson and 
Ingram 1993). The top 30 cm of soil C stocks was 
calculated based on the IPCC guideline for national 
greenhouse gas inventories standard by multiplying 
soil Corg with the bulk density (Hairiah et al. 2011). 
Soil aggregate stability was measured through 
wet sieving methods and was represented as mean 
weight diameter (MWD, mm) (Carrizo et al. 2015). 
Soil porosity was calculated as Nimmo (2004): 
porosity (%) = 100 * (1 – bulk density/particle 
density). All soil samples were prepared and ana-
lysed in the Soil Science Laboratory of Brawijaya 
University.

Soil infiltration was measured using a single ring 
infiltrometer (Sahin et  al. 2016). The infiltration 
rate was determined from two measurement points 
for each plot. The infiltration rate was expressed 
in water volume per ground surface and per unit 
of time (cm hour−1). Steady-state infiltrability was 
afterwards estimated by mean of curve fitting to 
Horton’s equation (Toebes 1962) using SigmaPlot 
14.5 edition.

Statistical analysis

To assess the likely effect of land-use systems, we 
used a space-for-time substitution or chronosequence 
approach, checking for indications of a priori soil dif-
ferences due to landscape position. We analysed data 
on canopy cover, volcanic ash thickness, litter thick-
ness, and soil variables with a standard analysis of 
variance (ANOVA, α = 0.05). Post-hoc multiple com-
parisons between LUS and observation periods were 
performed using Tukey’s HSD (honestly significantly 
difference) test. Statistical differences were consid-
ered significant when p ≤ 0.05. A Pearson correla-
tion and stepwise linear regression were performed 
to investigate the relationships between variables. All 
statistical analysis was performed in R 4.0 (R-Core-
Team 2020).

Results

Canopy cover and preserved volcanic ash thickness 
6 years after the volcanic eruption

Canopy cover differed significantly between land-use 
systems (Fig. 2a). The lowest canopy cover was found 
in CR (12.7%). No significant differences were found 
in canopy cover between CAF and SAF (an aver-
age of 75%). Finally, the highest canopy cover was 
observed in DF (88.2%). The canopy cover variability 
under tree-based systems was lower compared to CR.

Preserved volcanic ash thickness across all differ-
ent sampling points ranged from 2 – 14 cm, with an 
average of 8.5 cm (Fig. 2b). DF had the highest vol-
canic ash thickness (9.9 cm) followed by CAF (7 cm), 
with no significant difference between SAF and CR. 
Volcanic ash thickness in SAF and CR was 23% 
thicker than CAF, with an average of 8.6 cm. The vol-
canic ash thickness variability under CR was higher 
compared to DF and agroforestry systems.

We found no relationship between canopy cover 
and preserved volcanic ash thickness six year post 
volcanic eruption (R2 = 0.03, p = 0.3). However, we 
identified a more consistent pattern and significant 
relationship between volcanic ash thickness and plot 
position in each local relief (R2 = 0.28, p < 0.001). 
Plot situated in lower slope position (valley) had 25 
and 85% thicker of volcanic ash layer than in the mid-
dle and upper part, suggesting that land-used systems 
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and slope position were confounded on volcanic ash 
preservation.

Litter thickness recovery across land‑use systems 
post volcanic eruption

Litter thickness differed significantly across land-use 
systems and between observation periods (p < 0.001). 
The highest average of litter thickness was found in 
DF (1.17 cm), followed by SAF, CAF, and CR (0.88, 
0.68, and 0.05 cm, respectively). Overall, litter thick-
ness in 3 YAE (on average 0.38 cm) was noticeably 
lower than in PRE and 6 YAE (0.75 and 0.82  cm, 
respectively).

Litter thickness of tree-based land-use systems was 
increased significantly within 3 to 6 YAE (Fig.  3). 
Litter thickness in CAF in 6 YAE was higher than 
PRE condition, indicating complete recovery. Assum-
ing that the original litter layer was entirely covered 
with tephra deposition, the highest litter accumu-
lation rate during the first three years was in DF 
(0.22  cm  year−1), followed by CAF, SAF, and CR 
(0.16, 0.12, and 0.007 cm  year−1, respectively). The 
accumulation rate in DF and CAF was reduced to 
0.15 and 0.10 cm year−1 within 3 to 6 YAE. In con-
trast, the litter accumulation rate in SAF remained 
high with 0.13 cm year−1. Based on the 6 YAE data-
sets, we found that litter thickness increased with 

Fig. 2   (a) Canopy cover 
and (b) Volcanic ash 
thickness in various land-
use systems (DF = rem-
nant (degraded) forest, 
CAF = coffee-based 
complex agroforestry, 
SAF = coffee-based simple 
agroforestry, CR = annual 
crop). Different letters indi-
cate significant differences 
between land-use systems 
(p ≤ 0.05)

Fig. 3   Litter thickness in 
various land-use systems 
(DF = remnant (degraded) 
forest, CAF = coffee-based 
complex agroforestry, 
SAF = coffee-based simple 
agroforestry, CR = annual 
crop) and three differ-
ent periods (PRE = pre 
eruption, 3 YAE = 3 years 
after eruption, and 6 
YAE = 6 years after erup-
tion). Different letters indi-
cate significant differences 
between land-use systems 
and periods (p ≤ 0.05)
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the denser canopy cover (R2 = 0.78, p < 0.001). The 
increase of 10% canopy cover estimated could add 
0.25 cm of litter layer.

Soil properties recovery across land‑use systems post 
volcanic eruption

Soil organic carbon (Corg) and soil carbon stocks 
(soil C stocks)

We found that Corg and soil C stocks differed signifi-
cantly across land-use systems (p < 0.001). The aver-
age Corg and soil C stocks were substantially higher 
in DF (2.15% and 54.36 Mg ha−1), followed by CAF 
(1.24% and 37.48  Mg  ha−1) and SAF (0.97% and 
28.1  Mg  ha−1), while CR was the lowest (0.7% and 
22.05  Mg  ha−1). We found no significant difference 
in average Corg and soil C stocks between observation 
periods (1.26% and 35.5 Mg ha−1). However, Corg and 
soil C stocks of DF and CAF in 6 YAE were margin-
ally higher than in PRE conditions, indicating soil 
rejuvenation (Table 1).

If we assume that Corg of fresh volcanic ash is zero, 
the Corg accumulation rate during the first three years 
was significantly higher in DF (0.67% year−1), fol-
lowed by SAF, CAF, and CR (0.34, 0.32, and 0.32% 
year−1, respectively). Corg of DF and CAF continu-
ously increased within 3–6 years post-eruption (0.17 
and 0.07% year−1, respectively), conversely to SAF 

and CR, which were reduced at a rate of 0.01 and 
0.13% year−1, respectively.

Mean weight diameter (MWD) and soil porosity

Soil aggregate stability as represented by MWD dif-
fered significantly across land-use systems and obser-
vation periods (p < 0.001). The weakest soil aggregate 
stability was found at 3 YAE (1.55 mm). There was 
no significant difference in MWD between PRE and 
6 YAE (average 2.67  mm), indicating complete soil 
aggregate recovery (Table  1). Within land-use sys-
tems, the lowest MWD was found in SAF and CR 
(average 1.8  mm), while DF had almost two times 
higher MWD than SAF and CR (3.47 mm).

We found no significant difference in soil porosity 
within observation periods (average of 55%). How-
ever, soil porosity differed across land-use systems. 
The highest average soil porosity was found in DF 
(61%), followed by CR (56%). The lowest soil poros-
ity was found in CAF and SAF (average 53%). There 
was no significant difference in soil porosity found 
between PRE and 6 YAE across land-use systems 
(Table 1), which may correlate to negligible soil tex-
ture changes during observation periods. The com-
position of volcanic ash deposition (81% sand, 14% 
silt, and 5% clay) slightly changed the soil texture in 
the early years after a volcanic eruption. The texture 
of mixed soil and volcanic ash layer in 3 YAE was 
sandy loam (54% sand, 34% silt, and 13% clay), while 

Table 1   Soil organic carbon (Corg), soil carbon stocks (Soil C 
stocks), mean weight diameter (MWD), and porosity in each 
land-use system (DF = remnant (degraded) forest; CAF = cof-
fee-based complex agroforestry; SAF = coffee-based simple 

agroforestry; CR = annual crops; LUS = land-use systems). 
Each value indicates means ± standard error (SE). Different 
letter indicate significant differences between land-use sys-
tems and periods (p ≤ 0.05)

LUS Periods Corg, % Soil C stocks, Mg ha−1 MWD, mm Porosity, %

DF PRE 1.93 ± 0.15ab 50.93 ± 3.84ab 4.65 ± 0.08a 58.57 ± 0.86ab

DF 3 YAE 2.00 ± 0.35ab 45.43 ± 8.48ab 1.59 ± 0.20 cd 64.53 ± 0.91a

DF 6 YAE 2.50 ± 0.26a 66.70 ± 5.98a 4.18 ± 0.40ab 58.53 ± 0.96ab

CAF PRE 1.60 ± 0.35abc 48.60 ± 9.49ab 3.05 ± 0.27bc 51.63 ± 1.20cde

CAF 3 YAE 0.97 ± 0.09bc 28.40 ± 2.25bc 1.59 ± 0.19 cd 53.90 ± 2.06bcd

CAF 6 YAE 1.17 ± 0.20bc 35.40 ± 6.70bc 1.73 ± 0.52 cd 54.00 ± 0.17bcd

SAF PRE 0.83 ± 0.12c 27.57 ± 2.99bc 1.76 ± 0.15 cd 47.87 ± 2.50de

SAF 3 YAE 1.03 ± 0.19bc 26.90 ± 4.66bc 1.52 ± 0.28d 55.87 ± 1.27bc

SAF 6 YAE 1.00 ± 0.06bc 29.87 ± 1.30bc 2.87 ± 0.13bcd 53.23 ± 0.39bcde

CR PRE 0.57 ± 0.19c 16.00 ± 5.26c 1.69 ± 0.36 cd 59.77 ± 1.13ab

CR 3 YAE 0.97 ± 0.19bc 34.17 ± 6.38bc 1.51 ± 0.30d 47.33 ± 1.37e

CR 6 YAE 0.57 ± 0.07c 15.97 ± 1.82c 1.46 ± 0.28d 59.57 ± 0.57ab
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in PRE and 6 YAE were loam (50% sand, 36% silt, 
and 14% clay).

Soil infiltration recovery across land‑use systems post 
volcanic eruption

Steady-state infiltration rate markedly differed after 
tephra deposition, from an average of 28.9 cm hour−1 
in PRE plummeting to 3.7  cm hour−1 in 3 YAE 
(Fig.  4). However, the soil infiltration was quickly 
recovered to its PRE condition after six years. The 
fastest average soil infiltration was found in DF 
(38  cm hour−1), while the lowest was in CR (4  cm 
hour−1). There was no significant difference between 
CAF and SAF (average 20.5 cm hour−1).

Relationships between litter thickness, soil properties 
and infiltration

We expected that the litter thickness has a definite 
correlation to Corg. However, we found an insignifi-
cant positive association between Corg and litter thick-
ness during the early years after volcanic eruption 
(Fig. 5). The relationship between litter thickness and 
Corg became substantial with time (Fig. 6), suggesting 
that a land-use system with a thick litter layer is more 
likely to have higher Corg content.

The soil surface protection from the litter layer 
contributed to the higher soil infiltration, as shown by 
the solid and consistent relationships between varia-
bles throughout observation periods. Additionally, the 

differences in vegetation and soil management prac-
tices of each land-use system potentially influenced 
soil infiltration through soil properties modification. 
Litter thickness and Corg were strongly correlated to 
porosity in the early years after the volcanic eruption. 
Higher soil porosity indeed had a positive impact on 
soil infiltration. However, a substantial difference in 
infiltration rate between 3 and 6 YAE showed that 
higher soil porosity was insufficient to deliver faster 
infiltration without better soil aggregate stability. We 
found a significant correlation between litter thick-
ness, Corg, and MWD with soil infiltration in 6 YAE, 
supporting our previous finding.

Discussion

The relation between canopy cover and volcanic ash 
thickness

We observed that the average volcanic ash thickness 
6 YAE of each LUS was within 7—9.9 cm. However, 
the initial volcanic ash layer may be thicker than the 
’preserved’ volcanic ash we measured. Blong et  al. 
(2017) discovered that the average tephra thickness in 
various vegetation types and slopes was 40% less than 
its original fallout after two years of tephra redistribu-
tion and compaction process. Based on that, we esti-
mated that the initial volcanic ash fallout deposited 
in our study area was approximately 9.8 – 13.9  cm. 
These estimates were within the range (10–20  cm) 

Fig. 4   Soil infiltration in 
various land-use sys-
tems and three different 
periods (DF = degraded 
forest, CAF = coffee-based 
complex agroforestry, 
SAF = coffee-based simple 
agroforestry, CR = annual 
crops; PRE = pre eruption, 
3 YAE = 3 years after erup-
tion, and 6 YAE = 6 years 
after eruption). Different 
letters indicate significant 
differences between land-
use systems and periods 
(p ≤ 0.05)
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of the initial/original ash fallout measured near the 
research area in an open field a month after the 2014 
Mt. Kelud eruption (Nakada et al. (2016).

We expected that volcanic ash thickness had a 
positive association with the canopy density. How-
ever, volcanic ash thickness correlated more to the 
plots’ slope position in the local relief rather than 
canopy cover. The lateral mobilisation and stabilisa-
tion of volcanic ash by water and air erosion occurred 
after the volcanic eruption resulting in a downslope 
thickening of the volcanic ash layer. Additionally, we 
found that the volcanic ash thickness in monoculture 
crops had higher variability than in the forests and 
agroforestry systems (Fig.  2b). Our results agreed 
with Dugmore et  al. (2018), which found that slop-
ing sites with a consistent canopy cover such as for-
ested areas might produce more reliable and uniform 
stratigraphic records of fallout than the flat sites with 
varied vegetation. The exposed condition in the open, 
scatter, and short vegetation resulted in sharp local air 
and water erosion variation, leading to tephra thicken-
ing under the vegetation patches and marked small-
scale variability in tephra thickness (Cutler et  al. 
2016).

Soil properties and function recovery after volcanic 
ash deposition across land‑use systems

Soil recovery is essential in ecosystem succession 
after significant disturbance from volcanic ash depo-
sition following a volcanic eruption. The recovery 
starts with the interactions between remaining/surviv-
ing organisms and new colonists that could modify 
the site conditions such as nutrient input and water 
availability (Antos and Zobel 2005). As an energy 
source, organic matter availability drives these inter-
actions. For the context of the volcanic soil, the 
increase of organic matter inputs from organic ferti-
liser and/or above- and belowground plants biomass, 
alongside the exceptional capability of volcanic ash to 
sequester and store a large quantity of carbon, could 
accelerate the soil organic carbon and soil C stocks 
accumulation (Fiantis et al. 2016).

However, the lower litter thickness in CR was not 
reflected in smaller Corg content. The correlations 
between litter thickness (representing aboveground 
biomass production and decomposition balance) and 
Corg was insignificant, particularly in 3 YAE (Fig. 6). 
This result indicates that the manure application Fi
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(5.4  Mg  ha−1  year−1) in CR during the early year 
post-eruption could accumulate Corg comparable to 
agroforestry systems with its thick litter layer. How-
ever, CR roughly needs two times higher organic mat-
ter input to maintain its Corg at the level of agrofor-
estry systems in the long term. A study by Ferreiro 
et  al. (2020) in Argentina confirmed that the appli-
cation of organic matter (compost) could promote 
short-term rehabilitation of open bare-soil affected by 
tephra deposition.

Three years after the eruption, DF had a higher 
Corg accumulation rate (average of 0.68% year−1) 
than the other LUS (0.32 – 0.35% year−1). These 
early years Corg accumulation rate of volcanic ash 
was similar to the study conducted by Fiantis et  al. 
(2019) in Mt. Talang with a sequestration rate of 0.2 
– 0.5% year−1 but relatively lower than Mt. Sinabung 

(0.53 – 1.4% year−1). However, it was relatively high 
compared to those found in temperate regions (Fer-
reiro et al. 2018; Halvorson and Smith 2009; Halvor-
son et al. 2005). Nevertheless, it appears that the high 
soil carbon sequestration rate in soil material derived 
from volcanic ash is not reflected in the existing IPCC 
national accounting standard that is based on the 
0–30 soil layer, without acknowledging the addition 
of ’new’ soil. Adjustments in the accounting systems 
may be needed (Hairiah et  al. 2020; Minasny et  al. 
2021) before these volcanic soils are recognized for 
exceeding the targets of the ’4 per mille Soil for Food 
Security and Climate’ initiative (Minasny et al. 2017).

The most dramatic change following the volcanic 
eruption was the substantial shift in infiltration rate 
(Fig. 4). The average infiltration rate of 29 cm hour−1 
in PRE condition dropped to only 3.7  cm hour−1 

Fig. 6   Relationships between litter thickness and (a) Corg content, and (b) soil infiltration in three different periods of (1) PRE erup-
tion, (2) 3 YAE, and (3) 6 YAE. YAE = year after the eruption
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within three years after volcanic ash deposition. The 
latter can be exceeded during rainstorms, leading to 
overland flow. Our finding agrees with earlier stud-
ies that showed a double-digit soil infiltration change 
after tephra deposition (Arnalds 2013; Major and 
Yamakoshi 2005; Pierson and Major 2014). The vol-
canic ash deposition on top of the soil surface cre-
ates encrusted surface strata with low hydraulic con-
ductivity and infiltration (Anda et  al. 2016; Pierson 
and Major 2014; Tarasenko et  al. 2019). However, 
we found no substantial difference in soil porosity 
between PRE and 6 YAE. This result indicates that 
beyond total porosity as such, the distribution and 
orientation of soil particles, the diameter, tortuosity, 
and connectivity of macropores can influence soil 
infiltration. Faster soil infiltration has been linked to a 
higher proportion of surface-connected soil macropo-
res and more stable soil aggregate in volcanic (Mül-
ler et al. 2018; Tejedor et al. 2013) and non-volcanic 
soils (Bryk and Kołodziej 2021; Saputra et al. 2020). 
These two determining factors were the manifesta-
tion of higher organic matter availability combined 
with highly active soil ecosystem engineers through 
the bioturbation process. On the other hand, the rapid 
loss and recovery of infiltration capacity on volcanic 
soils may have additional causes. The lower soil infil-
tration may be related to the emergence of soil water 
repellency caused by the combination of the hydro-
phobic characteristic of volcanic ash (Berenstecher 
et al. 2017) and hydrophobic substances derived from 
soil organic matter decomposition (Jimenez-Morillo 
et al. 2017; Kawamoto et al. 2007; Neris et al. 2013; 
Poulenard et al. 2004).

Nevertheless, the soil regained its infiltration rate 
equal to the PRE condition after six years, except for 
CR. At this point, the predominant surface hydro-
logical functions in this watershed had returned to 
pre-eruption states under normal precipitation con-
ditions. Our result agrees with the study performed 
by Major and Yamakoshi (2005), which showed the 
rapid change in infiltration capacity after tephra depo-
sition. Tree-based systems could provide better soil 
infiltration rate compared to monoculture crops dur-
ing medium-long timeframes because: (1) the sys-
tems have a sufficient supply of soil organic matter 
used by soil ecosystem engineers to create a better 
soil macropore and aggregate stability; (2) dense can-
opy cover could regulate microclimate that favourable 
for more active soil organisms during the bioturbation 

process; (3) together with closed canopy cover, thick 
litter layer produces by trees could provide direct soil 
surface protection, and guarantee surface-connected 
macroporosity for a faster infiltration and lower soil 
erosion, thus improves water balance on the systems 
(Chen et al. 2017; Hairiah et al. 2006; Saputra et al. 
2020; van Noordwijk et al. 2019).

Overall, our study provides new insights into the 
short-medium term impact and recovery of soil prop-
erties and functions after volcanic ash deposition 
across different LUS. The severe but temporary shifts 
of some soil properties, such as aggregate stability and 
soil infiltration, were unavoidable in natural and agri-
cultural systems during the early years after volcanic 
ash deposition. The recovery phase of a particular 
LUS depends on its plants and soil management. How-
ever, not all soil attributes changes can be described as 
recovery. Some attributes might diverge farther from 
the pre-disturbance condition due to the continuing 
change of the system internally (soil and plant man-
agement) as well as climate change. As stated by 
Antos and Zobel (2005), “the fundamental difficulty 
assessing post-disturbance succession and rates or 
convergence on the previous condition is that even old 
forests are constantly changing”. Nevertheless, a com-
prehensive study using a proper simulation model that 
can minimise those uncertainties might improve our 
understanding of the complete cycle of soil functions 
recovery process after the volcanic eruption.

Conclusions

We found that preserved ash thickness was related 
to the plot position on the local relief rather than by 
canopy cover. The volcanic ash mobilization and sta-
bilization process resulted in a downslope thickening 
of the ash layer. The relatively closed canopy cover 
of tree-based systems generated more homogenous 
volcanic ash layers than the exposed and scattered 
short-vegetation in CR. Relatively thick volcanic ash 
deposition onto the soil surface affected soil physi-
cal properties positively and negatively. Volcanic ash 
deposition homogenized soil properties and function 
across different LUS during the short term. Litter 
thickness, MWD, and soil infiltration changed rapidly 
after volcanic ash deposition but quickly recovered. 
In contrast, soil Corg, soil C stocks, and porosity were 
unchanged. Different land-use management results in 



	 Plant Soil

1 3
Vol:. (1234567890)

different recovery trajectories of soil physical proper-
ties and function over the medium-long term.
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