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Abstract
Analysis of forest disturbance patterns in relation to precipitation seasonality is important for
understanding African tropical forest dynamics under changing climate conditions and different
levels of human activities. Newly available radar-based forest disturbance information now enables
an investigation of the intra-annual relationship between precipitation and forest disturbance in a
spatially and temporally explicit manner, especially in the tropics, where frequent cloud cover
hinders the use of optical-based remote sensing products. In this study, we applied
cross-correlation on monthly precipitation and forest disturbance time series for 2019 and 2020 at
a 0.5◦ grid in the African rainforest. We used the magnitude of the correlation and time lag to
assess the intra-annual relationship between precipitation and forest disturbance, and introduced
accessibility proxies to analyse the spatial variation of the relationship. Results revealed that a
significant negative correlation between forest disturbance and precipitation dominates the study
region. We found that significant negative correlations appear on average closer to settlements with
overall smaller variations in travel time to settlements compared to grid cells with non-significant
and significant positive correlation. The magnitude of the negative correlation increases as the
travel time to settlements increases, implying that forest disturbances in less accessible areas are
more affected by precipitation seasonality and that in particular human-induced disturbance
activities are predominantly carried out in the drier months. Few areas showed a significant
positive correlation, mainly resulting from natural causes such as flooding. These new insights in
the interaction between forest disturbance, precipitation and accessibility provide a step forward in
understanding the complex interactions that underlie the complexity of forest loss patterns that we
can increasingly capture with Earth Observation approaches. As such, they can support forest
conservation and management in coping with climate change induced changes of precipitation
patterns in African rainforest countries.

1. Introduction

The African humid tropical forests is the second
largest rainforest and among the most biodiverse
ecosystems in the world (Malhi et al 2013, Sullivan
et al 2017). It accounts for 28% of the aboveground
biomass in the world’s tropical forests (Baccini
et al 2012), with an aboveground biomass ranging

between 200 and 400 Mg ha−1 (Lewis et al 2009,
2013). Being an important natural carbon sink (Pan
et al 2011), the African rainforest plays a funda-
mental role in the global carbon cycle (Ploton et al
2020). However, the African rainforest experiences
increased forest disturbances rates with over 7 Mha
forest loss for the period between 2002 and 2020
(Hansen et al 2013). Forest disturbance rates will
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likely further increase in the upcoming decades due
to an expected strong population growth in the region
(Tyukavina et al 2018).

Forest disturbances in the African rainforest are
largely driven by smallholder agriculture (Curtis
et al 2018), with more recent major contributions
from logging, mining and commercial agriculture
(Mitchard 2018, Pacheco et al 2021). For example,
Tyukavina et al (2018) related 84% of forest disturb-
ance in the Congo Basin to smallholder agriculture.
Specific anthropogenic forest disturbance activities
can vary locally (Tegegne et al 2016), with major
selective logging operations inGabon (Tyukavina et al
2018), cocoa agroforestry in Ghana and Côte d’Ivoire
(Ruf et al 2015), large-scale agriculture in Cameroon
(Pacheco et al 2021), and fuelwood and charcoal
production in the northern part of the Democratic
Republic of Congo (DRC) (Pacheco et al 2021).

As forest disturbance is dominated by small-
holder agriculture with the majority of which is rain-
fed (FAO 2016), analysing the relationship between
precipitation and forest disturbance is important to
understand the trend and pattern of anthropogenic
forest disturbance in the African rainforest. Various
local-to-regional scale studies in the African rain-
forest have investigated the interactive effects between
forest cover, forest disturbances, and precipitation
(Malhi and Phillips 2004, Malhi et al 2013, Kos-
mowski et al 2016, Desbureaux and Damania 2018,
Leblois 2021). Precipitation has a direct impact on the
distribution of the rainforest cover (Malhi et al 2013).
Small changes in precipitation total or in intensity
or duration of the dry season can cause large-scale
changes in African rainforest cover (Malhi et al 2013).
Precipitation changes can affect the occurrence of
natural forest disturbances by altering the frequency,
intensity, duration and timing of fire, droughts and
flooding (Overpeck et al 1990, Dale et al 2001).

Besides the effect of precipitation on forest cover
extent and natural forest disturbance, recent stud-
ies have focused on the impact of precipitation on
human-induced forest disturbance. Precipitation is
considered as an underlining driver for human-
induced forest disturbance, the influence of which
is mainly exerted through altering the pattern of
land management. Forest disturbance patterns can
be influenced by changes in the total, frequency and
intensity of precipitation, and a shift in seasonality
(Aragao et al 2008, Costa and Pires 2010, Lawrence
and Vandecar 2015). Extensive studies in the Amazon
rainforest indicate that a longer or more intense dry
season can lead on average to higher amounts of forest
being converted to croplands (Leite-Filho et al 2020,
Staal et al 2020). Similar patterns have been observed
in African rainforest regions in Madagascar (Desbur-
eaux and Damania 2018) and West Africa (Leblois
2021).

Drier conditions facilitate human-induced forest
disturbance in the tropics mainly in two ways. Firstly,

traditional slash-and-burn agriculture or clearing of
undergrowth by fire, is easier when the conditions are
drier (Barlow et al 2020, Staal et al 2020). Secondly,
drier conditions produce negative impacts on crop
productivity, which in turn can lead to more clear-
ing of forests for agriculture (Costa and Pires 2010,
Desbureaux and Damania 2018, Sonwa et al 2020,
Leblois 2021). Kosmowski et al (2016) concluded
that changes in the rainy season length influences
decisions of farmers in Niger on when and howmuch
to open new fields, leading to different forest dis-
turbance patterns. Droughts and a short rainfall sea-
son have shown to lead to a large forest disturbance
increase, with studies in Madagascar (Desbureaux
and Damania 2018) and Western Africa (Leblois
2021) showing up to 17% and 20% increase in forest
disturbance respectively, mainly as a response to
decreased agricultural productivity.

Accessibility is found to be a dominant pre-
dictor for forest disturbance in the African rain-
forest (Ernst et al 2013, Sandker et al 2017). Roads
facilitate forest disturbance by providing access for
resource extraction and/or conversion (Chomitz and
Gray 1996, Kleinschroth et al 2019), and by reducing
travel time to markets which further boosts agricul-
ture or selective logging activities (Ordway et al 2017,
Jayathilake et al 2021). Moreover, a positive correla-
tion between forest fragmentation and forest disturb-
ance has been found in primary forest in the tropics
(Hansen et al 2020). Fragmented forest with better
accessibility are more targeted by logging or agri-
cultural activities compared to intact forest (Bogaert
et al 2008). Complex interaction exists between
accessibility, forest disturbance and changing pre-
cipitation patterns in the African rainforest (Asefi-
Najafabady and Saatchi 2013, Staal et al 2020, Leblois
2021).

Understanding the intra-annual relationship
between precipitation and forest disturbance and how
the relationship varies in areas with different access-
ibility will help to unravel the complexity of forest
disturbance patterns in response to the changing pre-
cipitation patterns. This is particularly important in
the African rainforest where the length and frequency
of dry seasons is predicted to increase due to chan-
ging climate patterns (Paeth and Friederichs 2004,
Jiang et al 2019, Bennett et al 2021). It seems reas-
onable to hypothesise that precipitation change has
a strong impact on anthropogenic forest disturbance
in African rainforest, where 95% of the small-scale
agriculture is rain-fed (FAO 2016). However, the rela-
tionship is understudied in both scale and temporal
frequency as no study has yet looked at the intra-
annual relationship between precipitation and forest
disturbance in the African rainforest. In addition,
spatially explicit analysis of the influence of access-
ibility on the relationship between precipitation and
forest disturbance over the whole African rainforest
region is still missing.
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Although precipitation data provides more tem-
poral details (e.g. in monthly, daily or even hourly),
forest disturbance data was not available with such
high temporal resolution. Most studies assessing the
relationship between precipitation and forest dis-
turbance depended on annual forest disturbance
data derived from optical remote sensing imagery
(Asefi-Najafabady and Saatchi 2013, Desbureaux and
Damania 2018, Staal et al 2020, Leblois 2021). Other
studies aggregated data across a large geography (e.g.
entire Amazon basin) and neglect important spa-
tial variation in precipitation and forest disturbance
by, for example, averaging opposing seasonality of
locations north and south of the equator (Aragao
et al 2008). Relying on annual information does not
allow for a detailed assessment on forest disturbance
seasonality and on how this seasonality is affected
by precipitation seasonality. Additionally, persistent
cloud coverage in the African tropics often decreases
the availability of optical satellite imagery, result-
ing in omission errors or strongly delayed detec-
tion of forest disturbances (Hirschmugl et al 2020,
Reiche et al 2021). The missing temporal detail
and potential delays in detecting forest disturbances
are a research gap that can be tackled by gener-
ated radar-based forest disturbance maps. With tem-
porally dense imagery from the cloud-penetrating
Copernicus Sentinel-1 radar satellites forest disturb-
ance can now be mapped at a high temporal and spa-
tial detail (Reiche et al 2021).

Here, we combined monthly precipitation and
monthly forest disturbance time series to assess how
forest disturbances respond to precipitation seasonal-
ity in the African rainforest and to what extent access-
ibility affects this relationship. More specifically, we:

(a) Assessed the spatially explicit intra-annual rela-
tionship between precipitation and forest dis-
turbance in the African rainforest.

(b) Investigated the influence of accessibility on the
intra-annual relationship between precipitation
and forest disturbance.

2. Study area

The study area covers the African rainforest ranging
across 26 countries with the majority located in the
Congo basin (figure 1(a)). Other major rainforests
are located in the Guinean Forests of West Africa, the
Coastal Forests of Eastern Africa and the forests of
Madagascar (Turubanova et al 2018). We define the
African rainforest extent for the year 2018 as primary
humid tropical forest (Turubanova et al 2018) with
2001–2018 annual forest loss (Hansen et al 2013) and
mangrove (Bunting et al 2018) removed. The annual
precipitation for the study area varies between a min-
imum of 600 mm at the edge of the rainforest and
up to 3000 mm along the equator (Funk et al 2014).
The precipitation seasonality is also highly variable

Figure 1. The extent of the African rainforest and countries
in the study region (a), precipitation seasonality index for
2019 and 2020 (b), and forest disturbance seasonality index
for 2019 and 2020 (c). Precipitation and forest disturbance
seasonality index are presented at 0.5◦ resolution. Refer to
table A1 to translate precipitation seasonality index and
forest disturbance seasonality index to precipitation regime
and forest disturbance seasonality regime.

and covers annual (one wet season per year), bian-
nual (two wet seasons per year) and humid (may
not exhibit a dry season in all years) precipitation
seasonality regimes (Dunning et al 2016). Over the
last decade major deforestation fronts in the African
rainforest were located in Cameroon, Gabon, and
DRC (Pacheco et al 2021). New forest disturbance
fronts have also appeared in West and East Africa
(e.g. Liberia, Ivory Coast, Ghana and Madagascar)
(Pacheco et al 2021) (figure 1(c)).

3. Data andmethods

We investigated the intra-annual relationship
between precipitation and forest disturbance for the
African rainforest for 2019 and 2020 on a monthly
and grid cell basis. We masked each dataset at a 30 m
resolution using the forest baseline product defined in
section 2, before resampling it to the grid cell scale.We
defined a grid size of 0.5◦ (∼3080 km2) and removed
grid cells without precipitation data, or with forest
disturbance totals <10 ha. In total, 1498 out of the
total 2002 forested grid cells are considered for the
analysis.
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Table 1. Precipitation, forest disturbance and accessibility indexes used in this study.

Index Definition Reference

Precipitation Precipitation total Accumulated sum of monthly precipitation Data: CHIRPS
(Funk et al 2014)

Precipitation
seasonality index

Degree of variability in monthly precipitation
throughout the year. A relative measure that assesses
seasonal contrasts between precipitation amounts
rather than defines wet or dry season in an absolute
sense. Increasing index values show a more defined
dry season (figure 1(b) and table A1).

Data: CHIRPS
(Funk et al 2014)
Method: Walsh
and Lawler (1981)

Number of
precipitation
peaks

Number of months with precipitation larger than
their two neighbouring months.

Data: CHIRPS
(Funk et al 2014)
Method: Kendall
(1976)

Length of dry
season

Number of consecutive months with monthly
precipitation < 100 mm.

Data: CHIRPS
(Funk et al 2014)
Method: Otto et al
(2013)

Forest
disturbance

Forest disturbance
total

Accumulated sum of monthly forest disturbance. Data: RADD
(Reiche et al 2021)

Forest disturbance
seasonality index

Degree of variability in forest disturbance
throughout the year. A relative measure that assesses
seasonal contrasts between forest disturbance
amounts rather than defines low or high forest
disturbance intensities in an absolute sense.
Increasing index values show a more defined forest
disturbance season (figure 1(c) and table A1).

Data: RADD
(Reiche et al 2021)
Method: Walsh
and Lawler (1981)

Number of
disturbance peaks

Number of months with forest disturbances larger
than their two neighbouring months.

Data: RADD
(Reiche et al 2021)
Method: Bogaert
et al (2000)

Accessibility Forest
edge-interior ratio

Ratio between edge and interior pixels of all forest
patches in 2018. It is a measure of the forest
fragmentation.

Data: RADD
(Reiche et al 2021)
Method: Kendall
(1976)

Travel time to
settlements

Travel time to the nearest settlements with
populations over 5000.

Data and method:
Nelson et al (2019)

3.1. Precipitation total and seasonality
Monthly precipitation data from the Climate Hazards
Group Infrared Precipitationwith Stations (CHIRPS)
version 2.0 were used to generate monthly precipita-
tion time series (Funk et al 2014). We resampled data
from the original resolution of 0.05◦ to 0.5◦ using the
average and calculated the accumulated sum for both
years.We further derived the precipitation seasonality
index, number of precipitation peaks and the length
of dry season from the time series to describe the tem-
poral distribution of precipitation on a monthly basis
(table 1). The precipitation seasonality index was cal-
culated for 2019 and 2020. Number of precipitation
peaks was calculated as the number of local maxima
of the kernel smoothed time series. We only included
local maxima greater than median/2 of the respective
time series.

3.2. Forest disturbance total and seasonality
Monthly time series of forest disturbance were
derived from the RAdar for Detecting Deforestation
(RADD) alerts (Reiche et al 2021). The RADD alerts

provide forest disturbance information every 6 or
12 d at a pixel spacing of 10 m. To account for delay
in forest disturbance detection due to the 6- or 12 d
repeat cycle of the Sentinel-1 satellites, 3 and 6 d were
subtracted from the detection date, respectively. We
summed up all detected disturbances with the adjus-
ted detection date within a 0.5◦ grid cell to generate
monthly forest disturbance data.

Forest disturbance total and its temporal distribu-
tionmeasured by forest disturbance seasonality index
and number of disturbance peaks were derived from
the monthly forest disturbance time series (table 1).
Forest disturbance seasonality index was calculated
for 2019 and 2020. Number of forest disturbance
peaks was calculated as the number of local maxima
of the kernel smoothed time series. We only included
local maxima greater than median/2 of the respective
time series.

3.3. Accessibility
We introduced forest edge-interior ratio and travel
time to settlements to study the influence of
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accessibility on the magnitude of the intra-annual
correlation between precipitation and forest disturb-
ance (Asefi-Najafabady and Saatchi 2013, Aguiar et al
2022). Because the interior of a forest is likely to
be less accessible to human-induced disturbances,
a lower edge-interior ratio normally corresponds
to a less fragmented forest or landscape with more
circular-shaped forest patches, which leads to less
accessibility to forest resources. We located all forest
patches within the boundaries of the 2018 African
rainforest extent (section 2). A one-pixel edge buffer
(30 m) was applied to define the edge pixels, whilst
the remaining pixels were defined as interior pixels.
The edge-interior ratio was calculated by dividing
the number of edge pixels by the number of interior
within each 0.5◦ grid cell.

Travel time to settlements was derived froma suite
of global accessibility indicators for 2015 (Nelson et al
2019), and was averaged from its original resolution
of 1 km to 0.5◦ grid cell. We define settlements as loc-
ations with populations over 5000.

3.4. Analysis of the intra-annual correlation
between precipitation and forest disturbance
Due to varying forest disturbance processes, man-
agement practices and shifts in rainfall seasonal-
ity, there might be delays in forest disturbance in
response to precipitation. We used cross-correlation
functions (CCFs) to analyse the time-lagged relation-
ships between forest disturbance and precipitation.
The CCFs are based on auto-correlation functions
which detect seasonality of a univariate time series by
calculating the correlation of a shifted version of itself
(Venables and Ripley 2013). The CCFs use the same
principle for multi-variate time series in order to cal-
culate the similarity between two signals as a function
of their displacement relative to one another (Holmes
et al 2021).

We shifted the forest disturbance time series for-
ward and backwards in time (resulting positive and
negative time lag respectively) with precipitation time
series being stationary. For each monthly shift the
correlation coefficient between two time series was
calculated (equation (1), based on Vio and Wam-
steker (2001)). We limited the shift to 3 months to
avoid including seasonality from previous and/or fol-
lowing years, especially in biannual climate areas. The
direction of the shift was determined by the direction
of the relationship at the initial time step of both time
series. The forward shiftmeant that forest disturbance
peak was more correlated to the peak of the precipit-
ation; whilst a backward shift represented a stronger
correlation between the forest disturbance peak and
the driest months of the year. We used a 95% confid-
ence interval to distinguish between significant and
non-significant correlations. The significance level of
the relationship was based on the length of the time
series and the time lag, calculated by equation (2)
(Vio and Wamsteker 2001, Hanson and Yang 2008,

Holmes et al 2021). With the length of 24 months for
our investigation, a time lag of 0, 1, 2 and 3 months
resulted in ±0.408, ±0.417, ±0.426, and ±0.436 as
the threshold for the significance level for a negative
and a positive correlation respectively.

Five indicators were generated from the CCFs:
(a) the highest correlation coefficient of all calculated
time shifts, (b) the direction of the highest correlation
coefficient, (c) the number of shifts needed to reach
this correlation coefficient, (d) the direction of the
shift, and (e) the significance level of the correlation.
They were used to identify the nature of the intra-
annual relationship between precipitation and forest
disturbance and how they are correlated in time.

We examined the locations where the significant
and non-significant, positive and negative correlation
coefficient occur and investigated the spatial distribu-
tion of the magnitude of the correlation coefficient
and their corresponding accessibility.

CCcortlagk =

∑n−k
t=1 (yt − ȳ)(xt+k − x̄)√∑
n
t (yt − ȳ)2

∑
n
i (xt − x̄)2

. (1)

with CCcortlagk being the correlation coefficient for
the time lag k, yt being the precipitation at time t, ȳ
being the mean of precipitation, xt being the forest
disturbance at time t, x̄ being the mean of forest dis-
turbance and k ∈ −3,−2,−1, 0,+1,+2,+3 being
the applied shift to x.

± 2√
n− k

(2)

with n being the length of the time series and k the
absolute value of the time lag.

4. Results

4.1. Seasonality of forest disturbance,
precipitation, and their intra-annual relationship
We found 77% (1151) and 2% (29) out of the grid
cells (1498) to have a significant negative and positive
correlation between forest disturbance and precipita-
tion, respectively (figure 2(a)). For 21% (318) of the
grid cells a non-significant correlation was found.

For the majority of the significantly negatively
correlated grid cells (79%, 907 out of 1151) the
highest correlation was found with no time lag or a
time lag of one month, meaning that forest disturb-
ance peaks one month before (with positive time lag)
or after (with negative time lag) the driest month(s)
of the year (figure 2(b)). A clear seasonal pattern of
both precipitation and forest disturbance time series
are necessary to result in a significant negative cor-
relation (figure 3(a)). Most of the significantly negat-
ively correlated grid cells have a precipitation season-
ality index between 0.3 and 0.7, which falls within the
precipitation regime of ‘Rather seasonal with a short
drier season’ or ‘Seasonal’, and with a length of dry
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Figure 2. The strongest correlation coefficient between monthly precipitation and forest disturbance after adjusting the time lag
between the two time series (a), and the number of months that the forest disturbance time series was shifted to reach the
strongest correlation coefficient (b). A summary of the statistics of the correlation coefficient and time lag are provided in
table A2.

season ranging between 2 and 4 months (figure A1).
The forest disturbance seasonality of these grid cells
exhibit a marked pattern with one peak per year
(figure A1).

We found 79% (23 out of 29) of the significantly
positively correlated grid cells to have the peak of
forest disturbance one month before or after the peak
of precipitation (figure 2(b)). Grid cells with a signi-
ficant positive correlation cluster near the equator, at
the border between the Republic of Congo and the
DRC (figure 2(a)) in regions with mainly ‘Precipita-
tion spread throughout the year’ (precipitation season-
ality index between 0 and 0.4) (figure 1(b)). Various
patterns of forest disturbance seasonality are found in
those grid cells, but generally with a lower magnitude
of forest disturbances compared to grid cells with a
significant negative correlation (figure A1).

Grid cells with a non-significant correlation are
located either in the dense rainforest near the equator,
or at the edge of the rainforest (figure 2(a)). Various
precipitation and forest disturbance seasonality pat-
terns can be found in those grid cells, for example,
areas with less precipitation seasonality (humid all
year or very short dry season, figure 3(c)), and
areas with major differences in forest disturbance
or precipitation amounts between 2019 and 2020

(figure 3(d)). In general, they have less forest disturb-
ance seasonality compared to the other two groups
(figure A1).

The time lag to reach the highest correlation
coefficient between the precipitation and forest
disturbance shows a distinct spatial distribution
(figure 2(b)). Gabon is dominated by a one-month
positive time shift. Other positive time lag grid cells
clustered in small regions in the Southeast of the
DRC and Nigeria. Grid cells with no time shift loc-
ate along the coast of Cameroon, in the southeast
of the DRC, and between Gabon and the Republic
of the Congo. Grid cells with a one-month negat-
ive time shift occupy large areas in the DRC, Central
African Republic and Cameroon. Liberia and clusters
in Angola and at the borders between the Republic
of the Congo and DRC show a 2–3 month negative
shift.

4.2. Influence of accessibility on the
precipitation-forest disturbance relationship
We found that significant negative correlation
appears on average closer to settlements with over-
all smaller variations of travel time to settlements
(238 ± 200 min) compared to grid cells with a
non-significant (341 ± 326 min) and significant

6
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Figure 3. Four example grid cells with typical patterns in
the monthly precipitation and forest disturbance time
series that will lead to a significant negative correlation (a),
significant positive correlation (b), and non-significant
correlation. Non-significant correlation can be resulted
from a very short dry season (c), or from a large difference
between the time series of 2019 and 2020.

positive (443 ± 430 min) correlation (figure 4(a)).
Moreover, among all grid cells with a significant
negative correlation, stronger negative correlation
showed longer time travel to settlements than grid
cells with weaker negative correlation. Grid cells with
a significant positive correlation showed an increasing
trend in travel time to settlements with a big variation
as the correlation increased.

The Forest edge-interior ratio showed differences
between grid cells with weak (correlation coefficient
between −0.408 and −0.7) and strong negative cor-
relation (correlation coefficient ⩽−0.7). The negat-
ive correlation becomes stronger as forest become
less fragmented (figure 4(b)). Overall, grid cells
with strong negative correlation show the lowest
edge-interior ratio in the mean and the standard
deviation (0.22 ± 0.20), whilst grid cells with weak

negative correlation show the highest edge-interior
ratio (0.36 ± 0.26). In contrast, grid cells with a
significant positive correlation show on average less
fragmentation albeit with a high spread of values
(0.29 ± 0.30). Grid cells with a non-significant cor-
relation depicted a similar trend with the weaker neg-
atively correlated grid cells with a mean and a stand-
ard deviation of 0.27± 0.25.

5. Discussion

The majority of the African rainforest (figure 2)
showed a significant negative correlation between
precipitation and forest disturbance seasonality with
more forest disturbances during the drier months,
which is in accordance with findings from the
Amazon rainforest (Aragao et al 2008). Our find-
ings suggest that the strength of a significant negat-
ive correlation is driven by accessibility (figure 4). By
correlating monthly precipitation data and weather-
independent monthly forest disturbance data, we
showed that the negative correlation between pre-
cipitation and forest disturbance not only existed as
an annual relationship (Asefi-Najafabady and Saatchi
2013, Desbureaux andDamania 2018, Staal et al 2020,
Leblois 2021), but also as a significant intra-annual
relationship.

Stronger negative correlation generally occurred
further away from the edges and inside remote and
less fragmented intact forests (figure 4), and fur-
ther away from the equator (figure 2). A stronger
negative correlation found in less accessible areas
showed that the forest disturbance peak was exclus-
ively and strongly correlated to the driest months of
the year. Forest disturbances in the African rainforest
are strongly associated to road accessibility (Ernst
et al 2013, Sandker et al 2017) and land availability
for the extension of cropland (Leblois 2021). Areas
with less accessibilities can potentially prohibit con-
tinued access to the forest interior in the wet season
(Kleinschroth et al 2019), and are less likely to be
limited by land availability (Leblois 2021). This leads
to the strong correlation between forest disturbance
and precipitation in less accessible areas. The findings
suggest that less accessible areas will likely be more
influenced by precipitation change and forest disturb-
ance activities are more likely to be exclusively car-
ried out in the drier months (figure 4). This result
is in line with findings, based on annual forest dis-
turbance data, in West and Central Africa where a
short rainfall season led to a higher increase in forest
disturbance in unconnected areas with a small pro-
portion of crop area, compared to more connected
areas, or areas with significant forest cover (Leblois
2021). Asefi-Najafabady and Saatchi (2013) observed
a strong response to drought with widespread can-
opy disturbance in fragmented landscapes of the
northern Congo Basin and West Africa, whilst intact
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Figure 4. Boxplot of the travel time to settlements (a) and edge-interior ratio (b) for increasing correlation coefficients.

humid forest in Central Africa showed no significant
response to the same drought events. Recent theory-
driven results in Argentina (Aguiar et al 2022) and
existing land use theories and neo-classical economic
theories of land rent also support our findings (Mey-
froidt et al 2018). Longer or more intensive dry sea-
sons may increase forest fragmentation by facilitat-
ing the escape of fires into larger neighbouring areas
in already fragmented landscapes, potentially mak-
ing more accessible areas even more attractive for
subsequent forest disturbance activities (Staal et al
2020). However, whether a production loss from pre-
cipitation change will push smallholder farmers to
increase the size of the cultivated area is also depend-
ent on the presence of alternative income sources and
the availability of land for the extension of cultiv-
ated area (Leblois 2021). Both factors are also strongly
influenced by accessibility, with more accessible areas
likely to have other income sources and less available
land, and thus under less impact from precipitation
change (Leblois 2021).

About 2% of the study area showed a positive
relationship, mainly areas located along the equator
and within the Cuvette Centrale, the single largest
peatland complex known in the tropics (Dargie et al
2017). The Republic of the Congo part of the Cuvette

Centrale is very sparsely populated and human forest
activities are rare (Dargie et al 2019, OCHA 2019a).
The positive correlation can be linked to flooding-
related forest disturbances peaks during the wet sea-
son month. In October 2019 heavy rains caused a
major flood and forest disturbances along the Congo
and Ubangi River (figure 3(b)) (Sunnen and Yama
2019).

In general, non-significant correlation was either
found in regions with consistently high precipitation
rates in combination with consistently low forest dis-
turbance rates resulting in weak seasonality for both
parameters (figure 3(c)), or in regions with a large
difference in forest disturbance seasonality in 2019
and 2020 (figure 3(d)). A non-significant correlation
can also reflect a mix of forest disturbance processes
which lead to a weak seasonality pattern in forest dis-
turbance. For example, the DRC part of the Cuvette
Centrale was also hit by the described 2019 flooding
event (OCHA 2019b). Contrary to its adjacent part
in the Republic of the Congo, a non-significant cor-
relation instead of a positive correlation was detec-
ted (figure 2(a)). This might be explained by the fact
that the region also experiences major commercial
logging activities (Dargie et al 2019) during the dry
season and this signal ismixed upwith the signal from
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flooding-related forest disturbances during the wet
season.

In summary, a significant negative correlation
is observed in areas dominated by human-induced
forest disturbances including commercial logging or
smallholder agriculture (e.g. DRC), while signific-
ant positive correlation was observed mainly in areas
dominated by natural flood-related forest disturb-
ances. Non-significant correlation occurred in areas
dominated by various forest disturbance drivers. This
indicates that correlation coefficients alone are not
sufficient to separate different forest disturbance pro-
cesses. Follow-up studies with longer time series in
areas dominated by different forest disturbance pro-
cesses may reveal more information on how the
strength of the intra-annual relationship betweenpre-
cipitation and forest disturbance is linked to differ-
ent deforestation processes. One example can be the
DRC part of the Cuvette Centrale where recently large
areas of commercial logging concessionswere granted
(Farand 2021).

Our results suggest a clear spatial distribution
of the time lag between the monthly precipitation
and forest disturbance time series. Forest disturb-
ance in most regions peaks ±1 month around the
driest month(s) of the year. The distinct spatial
pattern in time lags (figure 2) might link to cer-
tain forest disturbance processes in the African rain-
forest. For example, positive time lags were visible
especially in Gabon, showing that forest disturbance
peaks one month before the driest month(s) of the
year. Large-scale commercial agriculture and select-
ive logging are the main driving factors for forest
disturbance in Gabon (Legault and Cochrane 2021,
Pacheco et al 2021). Heavy machinery commonly
used for selective logging might allow for the begin-
ning of logging activities very early in the dry sea-
son or end of the wet season resulting in a positive
time lag (Tyukavina et al 2018). Further investiga-
tion is needed to assess whether observed time shifts
can be causally linked to varying forest disturbance
processes.

Although the availability of dense radar-based
forest disturbance information (Reiche et al 2021)
limited our study period to two years, the correl-
ation found between monthly precipitation and
monthly forest disturbance is statistically signific-
ant and exhibited a clear spatial distribution. The
cross-correlation showed great ability in exploring
the lagged intra-annual relationship between precip-
itation and forest disturbance (Vio and Wamsteker
2001). Compared to an exponentiation model
without considering the time shifts between two
time series, we found nearly 55% more grid cells
to show a significant relationship (without shift
51%, and with shift 79%). Furthermore, using a

cross-correlation can overcome potential late detec-
tion of forest disturbances due to various environ-
mental influences (e.g. soil moisture) on the radar
signal (Reiche et al 2021).

With continuing and increasingly longer time
series of spatially and temporally detailed dense
radar-based forest disturbance information, analys-
ing the long-term intra-annual interaction between
climate and land use dynamics will become feasible.
This is particularly important for the African rain-
forest, where various climate models have projec-
ted increased drought periods and frequencies and
change in dry seasons (Paeth and Friederichs 2004,
Jiang et al 2019, Bennett et al 2021). Considering
the strong negative correlation found for most areas
in the African rainforest, these changes in precip-
itation might lead to even further increased forest
disturbances in the African rainforest. Although
annual forest disturbance already provides important
indications on how anthropogenic forest disturbance
responds to climate change, understanding the sea-
sonal interactions and factors that affect this relation-
ship will help to better understand the impact of cli-
mate change in bi-annual and humid climate regimes.
Moreover, this intra-annual relationship could help
to reveal different forest disturbance processes. This
information may provide further insights for forest
management in African rainforest to predict when
andwhere the hotspot or high-risk areas will be under
the changing climate.

6. Conclusion

For the first time temporally dense and spatially
detailed forest disturbance information derived from
cloud-penetrating radar satellites provides the level of
temporal detail that enables the investigation of the
intra-annual relationship between precipitation and
forest disturbances in the African rainforests.We ana-
lysed the response of forest disturbance to precipit-
ation using the direction and magnitude of the cor-
relation coefficient and time lag needed to reach this
correlation.

A significant negative correlation between forest
disturbance and precipitation dominates the study
region, with themagnitude of the negative correlation
strongly correlating with accessibility. Stronger neg-
ative correlation occurred in less accessible areas, sug-
gesting a stronger influence of precipitation change in
those areas. Most forest disturbance activities happen
during the driest month(s) of the year with a time lag
of ±1 month. The few areas with a significant pos-
itive relationship were most likely caused by natural
disturbances such as flooding.Non-significant correl-
ation is found in regions with weak precipitation or
forest disturbance seasonality.

9



Environ. Res. Lett. 17 (2022) 044044 Y Gou et al

New insights on the interaction between forest
disturbance precipitation and accessibility—as
presented here—provide a step forward in under-
standing the complex interactions that underlie
forest loss. These new insights can support forest
conservation and management in dealing with
climate change induced changes of precipitation
patterns in African rainforest countries. In the
future, the increasingly longer time series data offer
the potential to assess long-term forest disturb-
ance processes and its drivers in a more detailed
way.
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Appendix

Table A1. Precipitation seasonality index with related precipitation regime and forest disturbance seasonality index with related
seasonality regime adopted fromWalsh and Lawler (1981).

Index value Precipitation regime Forest disturbance seasonality regime

0.00–0.19 Precipitation through the
year

Forest disturbance through the year

0.20–0.39 Precipitation through the
year, but with a definite
wetter season

Forest disturbance through the year, but with
a definite break

0.40–0.59 Rather seasonal with a short
drier season

Rather seasonal with a short break

0.60–0.79 Seasonal Seasonal
0.80–0.99 Marked seasonal with a long

dry season
Marked seasonal with a long break

1.00–1.19 Most precipitation in
3 months

Most forest disturbance in 3 months

⩾1.20 Extreme seasonality, with
almost all precipitation in
1–2 months

Extreme seasonality, with almost all forest
disturbance in 1–2 months

Table A2. Statistics of the correlation coefficient and time lag found for each class.

Significance level

Correlation
coefficient
(mean± standard
error)

Class (cc is the abbre-
viation for correlation
coefficient)

Number of
grid cells

Correlation
coefficient
(mean± standard
error)

Correlation
coefficient (cc)

Significant
positive
correlation

0.56± 0.08 cc⩾ 0.6 10 0.65± 0.04
0.6 > cc⩾ 0.5 10 0.55± 0.02
0.5 > cc⩾ 0.408 9 0.47± 0.02

Non-significant
correlation

— — 318 —

Significant
negative
correlation

−0.61± 0.10 −0.5< cc⩽− 0.408 215 −0.46± 0.02
−0.6 < cc⩽− 0.5 352 −0.56± 0.03
−0.7 < cc⩽− 0.6 359 −0.65± 0.03
−0.8 < cc⩽− 0.7 192 −0.74± 0.03
cc⩽− 0.8 33 −0.82± 0.02

Time lag — — 3 27 −0.14± 0.33
— — 2 23 −0.09± 0.44
— — 1 143 −0.36± 0.37
— — 0 413 −0.51± 0.28
— — −1 574 −0.56± 0.20
— — −2 264 −0.53± 0.15
— — −3 54 −0.36± 0.19
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Figure A1. Distribution of the precipitation and forest disturbance index in areas with significant negative, significant positive
and non-significant correlation.
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