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A B S T R A C T   

We evaluated the impact of 6-month probiotics and calcium supplementation at 1–6 years of age on neuro
development in adolescence, along with the effects of other biomedical and socioenvironmental factors. We re- 
enrolled 238 adolescents 10-years after supplementation with low-lactose milk with either low calcium (LC; ~50 
mg/d; n = 53), regular calcium (RC; ~440 mg/d; n = 70), RC with 5x108 CFU/d Lactobacillus reuteri DSM17938 
(reuteri; n = 55), or RC with 5x108 CFU/d L. casei CRL431 (casei; n = 60). Compared to RC, the casei group 
scored 0.38 SD (effect size, 0.04–0.72) higher on the Raven’s Progressive Matrices; the reuteri group was 0.38 SD 
(0.01–0.75) lower on the Children’s Depression Inventory; and the LC and younger adolescents in the reuteri 
group were 0.36 (0.01–0.71) and 0.49 SD (0.02–0.95) lower in brain-derived neurotrophic factor. Diet quality, 
physical activity, and home environment contributed similar effect sizes. Probiotics supplementation in child
hood have strain-specific long-term neurodevelopmental benefits and integration with socioenvironmental in
terventions are warranted.   

1. Introduction 

Promoting child and adolescent neurodevelopment is a global pri
ority, especially in low-to-middle-income countries (LMICs). Risk factors 
for poor neurodevelopment include recurrent gastrointestinal and other 
infections, poor nutritional status, and a suboptimal home environment, 
all of which are prominent in LMICs (Grantham-McGregor et al., 2007). 
A recent report on 35 LMICs between 2005 and 2015 estimated that 80.8 

million children aged 3–4 years experienced low cognitive or socio
emotional development, with large proportions from sub-Saharan Af
rica, South Asia, East Asia, and the Pacific (McCoy et al., 2016). 
Moreover, about 37% of all children from LMICs performed poorly in at 
least one developmental domain. This raises concerns for both child
hood and throughout life. Given the emerging evidence of probiotics on 
reduced morbidity in children, and the interplay between the childhood 
gut microbiome and brain development, probiotics may promote 
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healthy gut and brain development in childhood and into adolescence 
and later life (Cusick & Georgieff, 2016; Furnham & Cheng, 2016). 

Current studies suggest the existence of a gut-brain axis wherein the 
gut microbiome influences brain development and function across the 
lifespan (Jasarevic et al., 2016; Liang et al., 2018). The dynamics of the 
gut-brain axis in early childhood underscore this symbiosis; and because 
gut microbiota colonization occurs in childhood, targeted intervention 
at this critical time could affect short and long-term neurodevelopment 
(Diaz Heijtz, 2016; Gensollen et al., 2016). To promote a robust gut- 
brain axis, interventions have been explored including childhood pro
biotics and calcium supplementation. Probiotics bacteria can produce 
short-chain fatty acids (SCFAs) with a broad range of effects, including 
immunomodulation, and regulation of brain-derived neurotrophic fac
tors (BDNF) through inhibition of histone deacetylase (Moens et al., 
2019; Stilling et al., 2016). In addition, calcium intake may increase 
resistance to enterotoxigenic bacteria (Bovee-Oudenhoven et al., 1997; 
Bovee-Oudenhoven et al., 2003), thereby reducing the risk of diarrhea 
and adverse effects of lipopolysaccharide (LPS) translocation to the 
bloodstream, which can disrupt the blood–brain barrier and increase 
neuroinflammation, leading to suboptimal brain development (Noble 
et al., 2017). However, randomized controlled trials (RCTs) of probiotics 
in children and their effects on neurodevelopmental outcomes are 
limited. 

A recent systematic review of probiotics supplementation on child 
cognition found only 7 RCTs, with one demonstrating benefits of 
reduced risk of attention deficit hyperactivity disorder (ADHD) or 
Asperger syndrome (i.e. autism) (Rianda et al., 2019). However, while 
children in LMICs are at higher risk of suboptimal neurodevelopment, 
only a few properly designed RCTs were conducted in LMICs, and the 
majority of the trials did not examine long-term effects. Perhaps most 
important, studies may not have used probiotics strains that affect 
neurodevelopment (Fernald et al., 2017; Prado et al., 2017). For 
example, a previous follow-up study of maternal and child supplemen
tation of Lactobacillus rhamnosus HN001 and Bifidobacterium animalis 
subsp. lactis HN019 given until 2 years of age in New Zealand found no 
effect on child cognition, behavior, and mood after 11 years (Slykerman 
et al., 2018). In contrast, a 13-year follow-up study in Finland observed a 
long-term benefit of maternal L. rhamnosus GG supplementation on 
reduced risk for ADHD or autism (Pärtty et al., 2015). 

In 2007–2008, Agustina et al. (Agustina et al., 2012, 2013) con
ducted a double-blind RCT of probiotic L. reuteri DSM17938 or L. casei 
CRL 431 and calcium supplementation in Indonesian children1–6 years 
old. The L. reuteri DSM17938 reduced the risk of diarrhea, particularly 
among children with low nutritional status. Both L. reuteri DSM17938 
and L. casei CRL431 demonstrated modest effects on improved child 
growth. These effects portend long-term neurodevelopmental impact 
mediated by better nutritional status, fewer infections, and potentiation 
of the gut-brain axis. Hence, this study aimed to evaluate the long-term 
effect of probiotics and calcium supplementation during childhood, and 
other biomedical and socioenvironmental factors, on cognition, mood, 
behavior, and serum BDNF levels in adolescents aged 11–18 years old in 
a LMIC. 

2. Materials and methods 

2.1. Study design 

The 6-month RCT of probiotics and calcium supplementation in 
children has been described elsewhere (Agustina et al., 2012, 2013). In 
brief, a randomized double-blind, controlled trial was conducted in two 
low socioeconomic urban areas in East Jakarta, Indonesia, representing 
flooding and non-flooding areas. Subjects were stratified by dwelling 
location, flooding vs. non-flooding, age, and gender at enrollment and 
randomly assigned to receive one of four types of milk. The four types of 
milk, all of which were low-lactose ultra-high temperature sterilized 
milk, differed (a) in their calcium content and (b) whether they 

contained Lactobacillus, and (c) the strain of Lactobacillus they contained. 
The four groups were: LC, low calcium providing ~50 mg/day of cal
cium and no Lactobacillus, (2) RC, regular calcium providing 440 mg/ 
day and no Lactobacillus, (3) reuteri, regular calcium providing 440 mg/ 
day along with 5x108 colony-forming unit (CFU)/day L. reuteri 
DSM17938, and (4) casei, providing 440 mg/day and 5x108 CFU/day 
L. casei CRL431 (casei group). The products given to the four groups 
were indistinguishable to the subjects and investigators, and their 
composition has been detailed elsewhere (Agustina et al., 2012, 2013). 

The original trial is registered at clinicaltrials.gov (NCT00512824) 
and was approved, along with the re-enrollment study (NCT04046289), 
by the Medical Ethics Committee of the Faculty of Medicine, Universitas 
Indonesia, and the local government (Agustina et al., 2012, 2013). All 
participants and the parents submitted written informed consent and 
assent for the original and follow-up studies. 

2.2. Participants 

From the 494 children enrolled and analyzed for primary outcomes 
of the RCT in 2007–2008, we re-enrolled 238 (48.2%) subjects in 
adolescence for the 10-year follow-up study (Fig. 1). Of 256 adolescents 
who were not re-enrolled, 41 (8.3%) had moved outside Jakarta prov
ince, 46 (9.3%) refused to participate, 3 (0.6%) died, and 166 (33.6%) 
could not be traced. These proportions were similar across intervention 
groups. Of 238 subjects tested for the neurodevelopmental outcomes 
and serum BDNF, 53 (22.3%) were in the LC group, 70 (29.4%) in the RC 
group, 60 (25.2%) in the casei group, and 55 (23.1%) in the reuteri 
group. Among them, 1 participant in the RC group refused to perform 
the Raven’s Progressive Matrices (RPM) test and 1 in LC group refused to 
take the serum BDNF measurement. All participants, parents, field 
workers, laboratory personnel, and investigators, except the principal 
investigator and team of the original study (R.A., F.J.K.), were blinded to 
the treatment group until data analyses were finished and the blinded 
review of results was completed. 

2.3. Procedures 

Biomedical (i.e. anemia, diet quality) and socioenvironmental (i.e. 
living area, home environment) factors related to neurodevelopmental 
outcomes were assessed in the re-enrollment study. The data for exclu
sive breastfeeding, the proportion of stunting at the end-line of the trial, 
and age at enrollment were from the original study. Parents or legal 
guardians were interviewed to obtain the data related to the socioeco
nomic status of the family, participants provided the history of antibiotic 
consumption ≥ 10 days and the presence of chronic infection (e.g. 
tuberculosis, leprosy, chronic suppurative otitis media, chronic rhino
sinusitis) in the past 10 years. 

Anthropometry at re-enrollment was performed by certified nutri
tionists (Setiawan et al., 2021). Adolescents were weighed without shoes 
using an electronic scale (Seca model 876) and the mean of two mea
surements to the nearest 0.1 kg was used. Height was assessed with a 
wooden board (ShorrBoard) and the mean of two measurements to the 
nearest 0.1 cm was used. Hemoglobin was measured from venous blood 
using the HemoCue 201. Anemia was defined according to WHO rec
ommendations (WHO, 2011). 

We evaluated dietary quality using the Diet Quality Index for Ado
lescents (DQI-A) (Vyncke et al., 2013). Dietary data were collected by 
trained personnel using two non-consecutive 24-h food recalls repre
senting weekends and weekdays. Food models and a book displaying 
portion sizes of the foods were used to guide the estimation of portion 
sizes. Data obtained were grouped into 9 recommended food groups 
consisting of (1) water, (2) bread and cereals, (3) grains and potatoes, 
(4) vegetables, (5) fruit, (6) milk products, (7) cheese, (8) meat, fish, 
eggs and substitutes, and (9) fat and oils. Furthermore, dietary quality, 
dietary diversity, and dietary equilibrium scores based on the grouping 
were calculated to obtain DQI-A for each food recall. The mean of daily 
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DQI-A scores for each respondent was calculated and ranged from –33 to 
100%, in which a higher score reflects better diet quality. 

Physical activity was quantified by the Physical Activity Question
naire for Older Children (PAQ-C), which consists of 9 items of 7-day 
activity recalls designed to assess elementary and middle school chil
dren’s activity in a field-based setting (Wang et al., 2016). Adolescents 
were asked to recall their activities in the past seven days to answer all 9 
items to calculate the PAQ-C score in which a higher score represents 
higher engagement to physical activity. If respondents were prevented 
from engaging in regular physical activity (e.g. due to an illness) or 
reported that their physical activity would change after the initial con
tact, the questionnaire was re-administered the following week. 

Home environment nurturing, support, and stimulation was assessed 
using the Abbreviated Early Adolescent Home Observation and Mea
surement of the Environment (EA-HOME-A) Inventory (Green et al., 
2018). Trained assessors with a Bachelor’s of Psychology or Communi
cation degree visited participants’ homes and evaluated the 44-items of 
the EA-HOME-A Inventory through both interview and observation. The 
six domains measured were (1) physical environment, (2) learning 
materials/enriched surroundings, (3) variety of experiences and family 
social engagement, (4) acceptance and responsivity, (5) regulatory ac
tivities: risk tasking, and (6) regulatory activities: rules and routines. 
Binary (Yes = 1; No = 0) scoring was used to calculate the total score, 

which ranged from 0 to 44. 

2.4. Outcomes 

The RPM test was administered by experienced psychologists who 
were otherwise not involved in the original nor follow-up study and 
were blinded to the randomization. RPM is designed to measure non- 
verbal general intelligence in field-based settings using the progressive 
matrices method which is purported to be independent of formal 
schooling and language. The RPM test has been widely used in many 
studies across Asia, including Indonesia (Sandjaja et al., 2013). Tests 
were conducted in a well-lit comfortable place that was free of noise. 
Data from the RPM was obtained as raw scores which were converted 
into age and sex-adjusted z-scores before final analysis. A higher RPM 
score indicates better performance on the test. 

Children’s Depression Inventory (CDI) was a 27-item self- 
administered questionnaire that is sensitive to changes in depressive 
symptoms over time and intended to assess children’s and adolescents’ 
levels of depression (Bang et al., 2015; Yusuf, 2019). Participants were 
asked to choose 1 of 3 provided statements for each item, resulting in a 
3-point ordinal scale, based on what they felt in the last two weeks 
related to the depressive state, such as anhedonia, irritability, indeci
siveness, loneliness, and feeling unloved. Total scores were adjusted 

Fig. 1. CONSORT diagram of the 10-year follow-up study.  
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with age and sex and converted to z-scores. The lower depressive state 
was indicated by a lower CDI score. 

Participants were required to administer the Strength and Difficulties 
Questionnaire (SDQ) to evaluate their emotional and behavioral prob
lems (Wiguna et al., 2010; Yusuf, 2019). SDQ comprises 25 items in 
which each item is scored as 0,1, or 2. The total difficulties score was 
quantified by summing the domain scores for hyperactivity, conduct 
problems, emotional symptoms, and peer problems. A lower total dif
ficulties score is interpreted as having lower emotional and behavioral 
problems. 

We evaluated the serum brain-derived neurotrophic factor (BDNF) as 
a tracer neurotrophin for the gut-brain axis. Previous reports have 
associated reduced BDNF levels with depression (Aydemir et al., 2007; 
Galvez-contreras et al., 2016). BDNF was measured in venous blood 
samples of the subjects obtained at 08.00–10.00 AM after overnight 
fasting. About 2 mL of blood were placed into a clean dry tube, left to 
clot at room temperature, and serum was collected after 15-min 
centrifugation. The serum was stored at –80 ◦C until analysis. We 
avoided repeated freeze–thaw cycles to prevent the loss of bioactive 
substances. Free serum BDNF was measured by sandwich-ELISA using a 
commercial kit according to the manufacturer’s instructions (Quanti
kine ELISA, R&D Systems, Inc., USA) with a lower detection limit of <
20 pg/mL, and recorded in ng/mL. 

2.5. Statistics 

We used SPSS version 20.0 to analyze all data. We evaluated whether 
baseline characteristics were comparable between the found and 
unfound (i.e. subjects who moved, died, lost to follow-up, refused to 
participate) children within each intervention group, in addition to 
comparing the biomedical and socioenvironmental characteristics be
tween groups in the follow-up study. BMI of each subject was converted 
into a z-score using WHO AnthroPlus software based on the WHO 
Reference 2007 (WHO, 2009). We converted our outcome variables, 
RPM, CDI, and SDQ scores, measured in adolescence into z-scores 
adjusted for age at follow-up and sex due to the associations of the 
outcome scores with those variables. DQI-A score, PAQ-C score, and EA- 
HOME-A score, risk factors measured in adolescence, were converted 
into z-scores based on age at which the outcome was measured and sex. 

General linear models (GLM) were used to investigate the effect of 
probiotics and calcium supplementation, and the associations with 
biomedical and socioenvironmental factors, on our outcome variables, 
RPM score, CDI score, and SDQ score. Higher RPM, lower CDI, and lower 
SDQ scores indicated better adolescent status. Living area, history of 
stunting, PAQ-C score, and EA-HOME-A inventory z-score were included 
in the model analyzing the effect of the supplementation on RPM, CDI, 
and SDQ scores. For the outcome of BDNF, results were presented as 
effect sizes calculated by dividing the B coefficient with the pooled 
standard deviation. 

To understand other factors that may have affected each neuro
developmental outcome in this extended 10-year interval study, we 
included covariates from the original trial and those collected at the 
follow-up into the model and compared their effect sizes on outcomes. 
The covariates from the original trial were exclusive breastfeeding and 
stunted at the end-line of the trial, while from the follow-up study 
covariates were anemia, DQI-A score, PAQ-C score, living area, family 
financial distress, maternal education, and EA-HOME-A Inventory score. 
These were categorized as biomedical or socioenvironmental factors. 

We evaluated the effect of the supplementation during childhood on 
serum BDNF with an adjustment for age, sex, and body mass index-for- 
age z-score. To explore whether the effect was consistent in any sub
group among the subjects, age and sex-based stratification were per
formed. Furthermore, we analyzed the determinants predicting serum 
BDNF among adolescents by multivariable regression analysis. Because 
of its nature as a biological outcome as compared to the other outcomes, 
different covariates were used, which included age, sex, exclusive 

breastfeeding, stunting at the end-line of the trial, anemia, BMI-for-age 
z-score, DQI-A score, PAQ-C score, and living area of the adolescents. 

3. Results 

Baseline characteristics of the 238 found and 256 unfound children 
within each intervention group were relatively similar, except for the 
gender proportion in reuteri group, which was accommodated by using 
age and sex-adjusted z-score for the neurodevelopmental outcomes. 
Among the 238 re-enrolled participants, adolescents in each interven
tion group were comparable with regard to the biomedical and socio
environmental factors, except for the proportion of stunting at the end of 
the trial which was the outcome of the original trial (Table 1), and was 
taken into account in the multivariable analysis of the long-term effects 
of supplementation. 

Table 2 presents the effects of probiotics and calcium supplementa
tion in childhood on the RPM score, CDI score, and total difficulties 
score as measured by SDQ at the age of 11–18 years. The effect of L. casei 
CRL431 (casei group) on RPM score was 0.38 SD (95 %CI 0.04–0.72; p 
= 0.03) higher as compared with the RC group. However, we found no 
significant effect on this score in the other groups. On the outcome of 
CDI score in which a lower score indicates lower depressive state, chil
dren in the reuteri group scored 0.38 SD (95% CI 0.01–0.75; p = 0.044) 
lower than the RC group. Neither children in the casei group nor the LC 
group demonstrated significant differences compared to the RC group. 
For SDQ there was no effect found across all comparisons. 

Multiple regression models using GLM to assess biomedical and 
socioenvironmental factors on RPM score, CDI score, and total diffi
culties score of SDQ are presented in Table 3. Specifically, better diet 
quality, higher engagement in physical activity, and EA-HOME-A in
ventory at follow-up were associated with better scores for RPM and 
CDI. The biomedical factor significantly associated with a better RPM 
score was diet quality, with an effect size of 0.13 SD. Meanwhile, a 
higher EA-HOME-A inventory score as part of socioenvironmental fac
tors accounted for a similarly higher RPM score. In predicting CDI score, 
only biomedical factors showed significant association at the 95% CI 
level. Higher PAQ-C score at follow-up, which illustrates a higher 
physical activity, had effect sizes of 0.14 SD in lowering the CDI score at 
the age of 11–18 years. However, no covariate was found to be associ
ated with SDQ. 

When we evaluated the effect of probiotics and calcium supple
mentation on the serum BDNF in all subjects, a higher mean of 0.36 SD 
(95 %CI 0.01–0.71; p = 0.048) was observed in the RC group as 
compared to LC (Table 4). In adolescents above 15 years old and male, 
the RC group consistently showed higher serum BDNF level of 0.75 SD 
(95 %CI 0.28 to 1.23 SD; p = 0.002) and 0.48 SD (95 %CI 0.08–0.89; p =
0.02), respectively. Although children in the casei and reuteri groups 
had lower serum BDNF concentration as compared to the RC group, the 
effects were not significant. However, when stratified by age, L. reuteri 
DSM17938 demonstrated a lower mean of 0.49 SD (95 %CI 0.02–0.95; p 
= 0.04) compared to RC in subjects 15 years old and below. Finally, 
among covariates included in regression analysis, increased BMI-for-age 
z-score and higher DQI-A score at follow-up were associated with higher 
serum BDNF among adolescents as shown in Fig. 2. 

4. Discussion 

In this study, the addition of probiotics of L. casei CRL431 and 
L. reuteri DSM17938 to regular-calcium milk in childhood demonstrated 
potential long-term benefits on neurodevelopmental outcomes, and with 
strain-specific effects. To the best of our knowledge, this is the first study 
for L. casei CRL431 and the second for L. reuteri DSM17938, to evaluate 
the effects of childhood supplementation on neurodevelopmental out
comes (Akar et al., 2017; Rianda et al., 2019). 

Several factors support the validity of these findings. First, the 
original trial showed balance at baseline, high compliance for its 6- 
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months duration, limited loss to follow-up, and clear impact (Agustina 
et al., 2012, 2013). Second, in this 10-year follow-up study, while about 
half were re-enrolled, subject characteristics across intervention groups 
were comparable with the exception of gender in one group, which we 
could adjust for, and stunting in the casei and reuteri groups which were 
part of the original impact, and potentially part of the mechanism of the 
observed effects. Third, assessment of outcomes and other covariates, 
such as home environment, was done by trained and standardized 
graduate students with relevant expertise. Lastly, our data confirmed 
known associations between socioenvironmental factors and cognitive 
performance, thereby supporting the validity of our methods. 

In addition, our results are in line with studies that investigated the 
effect of L. casei on various outcomes, including neurocognition. Multi- 
strain probiotics supplementation which included L. casei was shown to 
improve cognitive reactivity and the Mini-Mental State Examination 
score in adult populations (Akbari et al., 2016; Steenbergen et al., 2015). 
However, only a few studies specifically evaluated the effect of the strain 
L. casei CRL431. In the original study by Agustina et al. (Agustina et al., 
2013), L. casei CRL-431 supplementation modestly increased monthly 
weight gain velocity. Interestingly, animal and transcriptomic studies 
have demonstrated the specific role of L. casei CRL431 in immune 
activation in the intestinal and respiratory tract through mucosal gene- 

Table 1 
Baseline characteristics of adolescents by treatment group.   

Intervention group 

LC RC Casei Reuteri  

Found (n 
= 53) 

Unfound1 (n 
= 73) 

Found (n 
= 70) 

Unfound1 (n 
= 54) 

Found (n 
= 60) 

Unfound1 (n 
= 60) 

Found (n 
= 55) 

Unfound1 (n 
= 69) 

Baseline characteristics of original trial         
Aged < 5 years old 31 (58.5) 29 (40.8) 34 (48.6) 26 (46.4) 30 (50) 25 (41.7) 27 (49.1) 32 (46.4) 
Living in flooding area, n (%) 36 (67.9) 45 (63.4) 43 (61.4) 39 (69.6) 40 (66.7) 38 (63.3) 39 (70.9) 43 (62.3) 
Male, n (%) 25 (47.2) 42 (59.2) 34 (48.6) 34 (60.7) 33 (55) 33 (55) 20 (36.4) 48 (69.6) 
Born by vaginal delivery2, n (%) 48 (90.6) 69 (97.2) 66 (94.3) 55 (98.2) 58 (96.7) 54 (91.5) 51 (92.7) 64 (92.8) 
Exclusively breastfed3, n (%) 10 (18.9) 14 (19.2) 14 (20) 11 (20.8) 8 (13.3) 8 (13.3) 11 (20) 11 (15.9) 
Without anemia4, n (%) 40 (75.5) 60 (84.5) 51 (73.9) 41 (73.2) 45 (75) 51 (85) 42 (76.4) 58 (84.1)  

Follow-up characteristics         
Age at follow-up assessment, years 15.3 ±

1.25 
– 15.3 ±

1.21 
– 15.4 ±

1.34 
– 15.3 ±

1.22 
– 

Living in flooding area, n (%) 35 (66) – 43 (61.4) – 40 (66.7) – 39 (70.9) – 
Stunted at the end-line of the trial5, n (%) 14 (26.4) – 22 (31.4) – 9 (15) – 7 (12.7) – 
Without anemia at follow-up6, n (%) 36 (67.9) – 50 (71.4) – 48 (80) – 41 (74.5) – 
BMI-for-age z-score − 0.45 

(1.1) 
– − 0.2 (1.4) – − 0.2 (1.3) – − 0.08 

(1.3) 
– 

History of antibiotic consumption ≥ 10 days or 
presence of chronic infection, n (%) 

11 (20.8) – 16 (22.9) – 11 (18.3) – 8 (14.5) – 

Maternal education < 9 years, n (%) 22 (41.5) – 23 (32.9) – 17 (28.3) – 15 (27.3) – 
No financial distress7, n (%) 39 (73.6) – 57 (81.4) – 50 (83.3) – 44 (80) – 

Values are mean ± standard deviation or median (min – max), or n (%). BMI, body mass index. 
1 Including subjects who moved, died, loss to follow-up, and refused to participate in the follow-up study. 
2 1 unfound children in LC group did not have complete information on this variable. 
3 1 unfound children in RC group did not have complete information on this variable. 
4 Defined as hemoglobin > 11 g/dL for child < 5 years or hemoglobin > 11.5 g/dL for child ≥ 5 years. One found children in RC group did not have complete 

information on this variable. 
5 Defined as height-for-age Z-score < -2 SDs at the end-line of the original trial. 
6 Defined as hemoglobin ≥ 11.5 g/dL (child < 12 years) or ≥ 12.0 g/dL (child aged 12 to < 15 years and female adolescent aged ≥ 15 years) or ≥ 13.0 g/dL (male 

adolescent aged ≥ 15 years). 
7 Defined as a condition of a family whose monthly income met their financial outlay. 

Table 2 
Effects of childhood probiotics and calcium supplements on cognitive function, mood, and behavior in adolescence.   

Intervention group Effect size1 (95% CI)  

LC (n = 53) RC2 (n = 70) Casei (n =
60) 

Reuteri (n =
55) 

RC vs LC p3 Casei vs RC p3 Reuteri vs RC p3 

RPM z-score4 − 0.11 ±
0.95 

− 0.18 ±
0.99 

0.25 ± 0.98 0.06 ± 1.01 − 0.03 (− 0.38 to 
0.31)  

0.85 0.38 (0.04 to 
0.72)  

0.03 0.21 (− 0.15 to 
0.56)  

0.26 

CDI z-score5 − 0.003 ±
0.91 

0.18 ± 1.15 − 0.04 ±
0.90 

− 0.19 ± 0.94 0.18 (− 0.19 to 
0.55)  

0.34 − 0.22 (− 0.58 to 
0.14)  

0.23 − 0.38 (− 0.75 to 
− 0.01)  

0.044 

Total difficulties z- 
score6 

0.05 ± 0.99 − 0.004 ±
0.97 

− 0.001 ±
1.07 

− 0.05 ± 0.98 − 0.05 (− 0.40 to 
0.30)  

0.77 − 0.02 (− 0.38 to 
0.33)  

0.89 − 0.15 (− 0.50 to 
0.19)  

0.39 

Z-score are adjusted for age and gender. BDNF, brain-derived neurotrophic factor; CDI, Children Depression Inventory; LC, low calcium. RC, regular calcium; RPM, 
Raven’s Progressive Matrices. 

1 Adjusted for living area, history of stunting, PAQ-C score, and EA-HOME-A inventory score. 
2 n = 69 for RPM score in RC group. 
3 P values were calculated using general linear model. 
4 Higher RPM z-score indicates better performance on the test. 
5 Lower CDI z-score indicates lower depressive state. 
6 Lower total difficulties z-score as assessed by the Strength and Difficulties Questionnaire indicates lower emotional and behavioral problems. 
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expression networks regulating the balance between Th1 and Th2 
(Marranzino et al., 2012; Van Baarlen et al., 2011), which resulted in a 
greater increase of IFN-γ and mobilization of CD3+CD4+IFN-γ+ T cells 

from the gut to the lungs; an observation not seen for other strains of 
probiotics. However, there has been no previous study investigating 
whether the strain-specific capability of L. casei CRL431 on immune 

Table 3 
Adjusted effect sizes of determinants on neurodevelopmental outcomes from multivariable regression analysis.   

RPM z-score (n = 237) p1 CDI z-score (n = 238) p1 Total difficulties z-score (n = 238) p1 

Biomedical factors       
Exclusively breastfed − 0.11 (− 0.43 to 0.22)  0.52 − 0.16 (− 0.35 to 0.32)  0.92 0.24 (− 0.10 to 0.57)  0.17 
Not stunted at the end-line of the trial − 0.11 (− 0.42 to 0.21)  0.50 − 0.003 (− 0.32 to 0.32)  0.99 0.05 (− 0.27 to 0.38)  0.76 
Without anemia at follow-up − 0.18 (− 0.46 to 0.10)  0.22 0.08 (− 0.21 to 0.37)  0.61 0.22 (− 0.07 to 0.51)  0.14 
DQI-A score at follow-up (z-score) 0.13 (0.01 to 0.26)  0.03 − 0.03 (− 0.16 to 0.09)  0.60 − 0.05 (− 0.18 to 0.08)  0.42 
PAQ-C score at follow-up (z-score) − 0.05 (− 0.18 to 0.07)  0.42 − 0.14 (− 0.27 to − 0.01)  0.03 − 0.03 (− 0.16 to 0.10)  0.64  

Socioenvironmental factors       
Living in non-flooding area 0.25 (− 0.02 to 0.51)  0.07 0.06 (− 0.21 to 0.34)  0.66 0.02 (− 0.26 to 0.30)  0.90 
No financial distress − 0.07 (− 0.38 to 0.23)  0.64 0.22 (− 0.10 to 0.54)  0.17 0.14 (− 0.18 to 0.47)  0.38 
Higher maternal education (≥6 years) 0.17 (− 0.10 to 0.44)  0.22 0.07 (− 0.20 to 0.35)  0.60 − 0.05 (− 0.33 to 0.23)  0.73 
EA-HOME-A inventory z-score 0.14 (0.01 to 0.26)  0.03 − 0.02 (− 0.15 to 0.11)  0.75 0.04 (− 0.09 to 0.17)  0.52 

Values are effect sizes in standard deviation. CDI, Children Depression Inventory. DQI-A, Diet Quality Index for Adolescents; EA-HOME-A, Abbreviated Early 
Adolescent Home Observation and Measurement of the Environment; PAQ-C, Physical Activity Questionnaire for Older Children; RPM, Raven’s Progressive Matrices. 

1 P values were calculated using general linear model. 

Table 4 
Effects of childhood probiotics and calcium supplements on serum BDNF by age and sex of the adolescents.   

Mean serum BDNF in ng/mL Effect size1 (95% CI)  

RC (n =
69) 

LC (n =
53) 

Casei (n =
60) 

Reuteri (n =
55) 

RC vs LC p2 Casei vs RC p2 Reuteri vs RC p2 

Overall 31.7 ± 7.6 28.6 ± 7.9 30.3 ± 8.2 29.6 ± 7.7 0.36 (0.01 to 
0.71)  

0.048 − 0.19 (− 0.52 to 
0.15)  

0.27 − 0.27 (− 0.61 to 0.08)  0.14 

Age           
≤ 15 
years 

31.8 ± 8.3 30.7 ± 8.0 29.9 ± 6.8 28.3 ± 7.2 0.1 (− 0.38 to 
0.59)  

0.67 − 0.24 (− 0.69 to 
0.21)  

0.30 − 0.49 (− 0.95 to 
− 0.02)  

0.04 

> 15 
years 

31.6 ± 7.0 25.6 ± 6.6 30.6 ± 9.5 31.1 ± 8.0 0.75 (0.28 to 
1.23)  

0.002 − 0.12 (− 0.63 to 
0.38)  

0.63 − 0.07 (− 0.56 to 0.41)  0.77 

Sex           
Male 31.6 ± 6.4 30.0 ± 6.6 31.7 ± 7.6 29.6 ± 8.2 0.48 (0.08 to 

0.89)  
0.02 − 0.02 (− 0.44 to 0.4)  0.93 − 0.29 (− 0.78 to 0.19)  0.24 

Female 31.7 ± 8.8 29.3 ± 9.1 28.5 ± 8.7 29.6 ± 7.5 0.02 (− 0.56 to 
0.6)  

0.94 − 0.27 (− 0.82 to 
0.28)  

0.34 − 0.24 (− 0.72 to 0.24)  0.32 

BDNF, brain-derived neurotrophic factor; LC, low calcium; RC, regular calcium. 
1 Adjusted for age, sex, and BMI-for-age z-score. 
2 P values were calculated using general linear model. 

Fig. 2. Adjusted effect sizes of serum BDNF determinants from multivariable regression analysis.  
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activation extends to improved cognition through the ‘gut-immune- 
brain axis’ (van Sadelhoff et al., 2019). 

Our study also identified the long-term impact of L. reuteri 
DSM17938 in reducing depressive state measured using CDI. We note a 
previous study by Akar et al. wherein supplementation of preterm in
fants with 1x108 CFU/d L. reuteri DSM17938 did not demonstrate any 
effect on neurosensory, neuromotor and cognitive outcomes at 18–24 
months (Akar et al., 2017). However, the younger subjects, lower 
dosage, and shorter duration of intervention compared to our study 
limits comparability. In several studies, L. reuteri DSM17938 has 
consistently shown benefits in reducing the diarrhea duration and 
incidence in children (Agustina et al., 2012; Gutierrez-Castrellon et al., 
2014; Urbanska et al., 2016). Moreover, the beneficial impact on growth 
as indicated by greater weight gain, weight-for-age Z-score, and monthly 
weight and height velocities was also observed in our original study 
(Agustina et al., 2013). These effects of L. reuteri DSM17938 support 
improved intestinal tight junction integrity, which might contribute to 
reduced lipopolysaccharides translocation and prevent disruption of the 
blood–brain barrier (Noble et al., 2017). However, to the best of our 
knowledge, no previous study had linked the role of L. reuteri DSM17938 
in supporting intestinal integrity to better neurodevelopment. 

Our study supports the idea that specific strains of probiotics may 
impact brain function and specific outcomes. L. casei CRL431 provided 
an effect on cognition as measured by RPM but not on the depressive 
state (i.e. mood). Conversely, the benefit on mood using CDI was 
observed in L. reuteri DSM17938 with no effect on cognitive abilities. To 
explain strain-and outcome-specific effects, further studies are needed 
that integrate the transcriptomic and proteomic profiles of strains and 
their effect in the gut and brain. This will require sensitive markers of 
changes in brain activity within specific regions related to particular 
neurodevelopmental outcomes. Hence, the distinctive characteristic of 
specific brain regions should be considered in designing studies to 
explore pathways of the gut-brain axis. For instance, a recent meta- 
analysis reported that divergent nerve clusters were activated under 
emotional versus cognitive stimulation. Cognitively demanding condi
tions altered the right medial frontal and insula regions, whereas 
emotional (cognitively undemanding) conditions were associated with 
greater activation of the bilateral amygdala (Palmer et al., 2015). Bio
logical perturbations that easily impact these regions could be man
ifested in specific neurodevelopmental outcomes. For instance, brain 
regions related to cognition such as the hippocampus, the dorsolateral 
caudate nucleus, and the reticular nucleus of the thalamus are sensitive 
to reduction in blood flow and disturbances in brain energy metabolism 
(Hossmann, 1999). Considering this, certain strains of probiotics which 
are beneficial in supporting the blood flow and balance of energy might 
improve cognition. Interestingly, a study of human mucosal in vivo 
transcriptome responses to L. casei CRL431 demonstrated an up- 
regulation of genes involved in blood-vessel development, such as 
endothelin-1 (Van Baarlen et al., 2011). Thus, the distinctive nature of 
each strain in influencing the gut-brain axis (e.g. through the immune 
system, vagal nerve, SCFA production), and specific regions in the brain, 
warrants exploration. 

Long-term benefits of milk consumption with regular calcium con
tent as compared to low calcium during childhood on serum BDNF was 
observed in our study, wherein this effect was more pronounced in 
males and > 15 years of age. This is consistent with recent studies that 
reported the association between variants of the BDNF gene with lower 
calcium intake (Dušátková et al., 2015; Marcos-Pasero et al., 2019). 
BDNF has a core role in synaptic plasticity by regulating its structure and 
function. Furthermore, this role may be modulated by changes in 
feeding and fasting (Locke et al., 2015). For example, some BDNF var
iants have been associated with energy homeostasis in relation to 
obesity in childhood and adolescence (Zhao et al., 2009). A few studies 
have described the role of calcium influx in regulating the transcription 
of BDNF in cortical neurons through the calcium response sequence, 
CRS-I, and activation of the cAMP response element-binding protein 

(CREB) (Shieh et al., 1998). Although we found a more profound benefit 
of calcium supplementation on serum BDNF in male and older adoles
cents (i.e. older age at enrollment), it remains unknown whether the 
finding is related to varied fractional calcium absorption during the 
lifespan and between genders, thereby enabling a particular group to 
gain benefits from better calcium intake and absorption (Institute of 
Medicine (US) Committee to Review Dietary Reference Intakes for 
Vitamin D and Calcium, 2011). Along with calcium supplementation, 
better diet quality and higher BMI-for-age z-score were associated with 
higher serum BDNF, in which the former has been known to maintain 
membrane integrity for BDNF signaling through TrkB receptor (Gomez- 
Pinilla & Tyagi, 2013), whereas the association with the latter might be 
due to the increased fat mass accompanied by elevation of leptin level 
and further stimulation of BDNF production (Noble et al., 2011). 

However, the results on serum BDNF level should be interpreted 
carefully as some conflicting results were found in studies investigating 
the association between serum BDNF level with neuropsychiatric out
comes. Declining levels of serum BDNF in children were associated with 
depression (Sun et al., 2017). Whereas other studies observed elevated 
serum BDNF in children with autism spectrum disorder (ASD), including 
attention deficit hyperactivity disorder (Zhang et al., 2018). In the 
current study, we found that L. reuteri DSM17938 supplementation 
resulted in lower serum BDNF among adolescents aged 15 years and 
below, which may indicate a better impact of probiotics when given at a 
younger age when the development of the gut microbiota is more dy
namic (Jasarevic et al., 2016). The observed impact of L. reuteri 
DSM17938 on a reduced level of serum BDNF is similar to the result of a 
randomized trial by Riezzo et al. (Riezzo et al., 2019) that found a 
significantly lower serum BDNF concentration after 105 days of L. reuteri 
DSM17938 administration. The clinical outcomes of lower serum BDNF 
demonstrated by L. reuteri DSM17938 supplementation have not been 
extensively explored. However, it is worth mentioning that gut micro
biota dysbiosis is prominent in ASD, a disorder that has been associated 
with higher BDNF concentration as mentioned previously. The under
lying mechanism might be related to the BDNF hyperactivity resulting in 
the synaptic overgrowth and deficits of synaptic pruning, which are 
commonly found in ASD children (Chomiak & Hu, 2013; Tang et al., 
2014). However, we did not evaluate the effect of L. reuteri DSM17938 
on any autism-related outcomes. Thus, it is still unclear whether the 
lower BDNF serum found in the reuteri group as compared to the RC 
group is related to any clinical outcomes. Similarly, the impact of higher 
BDNF serum through regular-calcium milk consumption as compared to 
low-calcium content on clinical benefits is still unknown and should be 
addressed in further studies. Nonetheless, our findings on both reduced 
and increased serum BDNF via probiotic and calcium supplementation 
might hint at the importance of maintaining the level in a physiologi
cally optimum range (i.e. not too high and not too low), as this balance is 
observed in other biological substances, such as leptin, through feedback 
mechanisms (Jequier, 2002). 

Our study highlights the importance of combined biomedical (i.e. 
diet quality, physical activity) and socioenvironmental (i.e. home 
environment) factors in promoting better child and adolescent neuro
development. With similar effect sizes, both factors notably demon
strated their associations with cognition and depressive state among 
adolescents. Better diet quality, as reflected by high fiber consumption 
and low intake of saturated fat and refined sugar, may promote the 
growth of beneficial intestinal bacteria and enhance a balanced gut- 
brain axis environment (Graf et al., 2015; Noble et al., 2017). In a pre
vious study involving 5,200 grade 5 students (Florence et al., 2008), 
children with decreased diet quality performed poorly on academic 
performance assessments, a finding consistent with our study. Moreover, 
a better home environment to promote child development has consis
tently been a core determinant of child cognition, as reported here and 
elsewhere (Orri et al., 2019; Prado et al., 2017). Lastly, higher engage
ment in physical activity, which was associated with a lower state of 
depression in this study, should be encouraged among adolescents since 
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it may improve the neuroplastic processes altered in depression, and 
promote better self-esteem and social support (Kandola et al., 2019). 

The long-term benefits of probiotic and calcium supplementation 
along with the significant association of the socioenvironmental factors 
suggest the need for innovative and integrated interventions to achieve 
child and adolescent well-being. Still, some limitations have been noted 
in our study, such as the absence of other time points of observation in 
the cohort prior to the 10-year follow-up, and the relatively high number 
of unfound adolescents. However, we have included the essential 
covariates known to be associated with child and adolescent neuro
development obtained from the original study, and the recent data 
collection, to address the 10-year gap. Moreover, we have compared the 
found adolescents with unfound ones to accommodate for potential bias. 
While previous studies demonstrated that dramatic biological develop
ment of the human brain still exists until the age of six years of age 
(Brown & Jernigan, 2012; Dobbing & Sands, 1973; Vértes & Bullmore, 
2015), we recommend providing intervention at a younger age when the 
development of gut microbiome is highly dynamic and assessing the 
microbiome profile to evaluate the long term changes in intestinal 
colonization (Derrien et al., 2019). While the results for probiotics and 
calcium supplementation warrant future larger RCTs with thorough 
longitudinal data collection, this study suggests the importance of 
identifying strains affecting child neurodevelopment to accelerate the 
improvement of future generations. 

5. Conclusions 

Probiotics L. casei CRL431 and L. reuteri DSM17938 supplementation 
in childhood have long-term benefits on neurodevelopmental outcomes 
with strain-specific effects. L. casei CRL431 supplementation showed a 
beneficial effect on cognition as measured by RPM, while L. reuteri 
DSM17983 supplementation demonstrated benefit on reducing depres
sive state as assessed with CDI. Higher calcium intake through regular- 
calcium milk provision as compared to low-calcium milk resulted in 
higher serum BDNF. Biomedical (i.e. diet quality, physical activity) and 
socioenvironmental factors (i.e. home environment) were significant 
determinants in predicting RPM and CDI scores, whereas serum BDNF 
was only associated with biomedical factors, such as BMI and diet 
quality. The cumulative findings on the effects of L. casei CRL431, 
L. reuteri DSM17938, and higher calcium intake through regular-calcium 
milk consumption in childhood on particular neurodevelopmental out
comes warrant a future RCT using similar strains, and a thorough lon
gitudinal study, and include other biomedical and socioenvironmental 
determinants to improve child and adolescent well-being. 
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