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Abstract

Lee, Y-L. (2022). Structural variants in the bovine genome. PhD thesis, Wageningen Univer-
sity, the Netherlands

Genome and environment together greatly influence how an organism develops and functions. 

Cattle is a livestock species with high economic significance; thus, deciphering how its genome 

and genomic information relates to its phenotype is crucial. Nevertheless, our understanding 

of bovine genomes is incomplete: investigation of bovine genomes thus far has mainly focused 

on single-nucleotide variants, leaving complex and less tractable variants, such as structural 

variants, underexplored. In this thesis, I present a comprehensive and in-depth investigation 

of structural variants in bovine genomes. Two structural variant catalogues, generated from 

genotyping data and deeply sequenced bovine genomes, revealed ~32 and ~5,000 SVs per 

genome, respectively. Furthermore, I integrated statistical associations and ~omics data, and 

delineated a 12-Kb copy number variant (CNV) as the likely causal variant of a major clinical 

mastitis QTL. This CNV encompasses an enhancer that targets the group-specific component 

gene, which encodes a vitamin D binding protein. Lastly, I investigated the emergence of de 

novo structural variants by exploiting 127 multi-generational deeply sequenced genomes. The 

pedigree-based germline mutation rate corresponded to one de novo structural variant per 

8.5 births. The de novo structural variants were strongly biased towards male germlines and 

in vitro produced animals, unravelling sex and reproductive technology effects. Together, this 

thesis highlights a broad spectrum of bovine structural variants: from extremely rare de novo 

mutations to population variants, highlighting one that exerts strong effects on economically 

important traits. This thesis contributes to advancing our understanding of bovine structural 

variation. 
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1.1. The basis of cattle breeding

Humans have been living with, living off, relying on, and domesticating cattle for the last 
~10,000 years (Frantz et al. 2020). Through domestication, ancient farmers likely selected 
and bred animals that suited their demands, such as tame behaviour and unique morphology 
(Georges 2007). Notably, the foundation of selective breeding is heredity, where genetic mate-
rial is passed on from one generation to the next, however, the molecular basis was unknown 
for most of the bovine domestication process.

Modern cattle breeding is greatly enhanced and accelerated by state-of-the-art technologies, 
progress of which is driven by advancements in multiple scientific fields (Georges et al. 2019). 
Breeding programmes routinely collect pedigree information and phenotypes of diverse traits. 
The genetic information of cattle can now be elucidated at a molecular level, via e.g. geno-
typing arrays and whole genome sequencing (Womack 2012). A large amount of genomic and 
phenotypic data available for cattle populations provides opportunities for studying the bovine 
genome and how the genomic information relates to phenotypes. In this thesis, I look into 
structural variants, a subset of genetic variants present in bovine genomes. To introduce this 
topic, I provide an explanation of the bovine genome and of genetic variants below. 

1.2. The bovine genome

A genome is a blueprint for a living organism containing deoxyribonucleic acid (DNA); this 
blueprint is used to encode all proteins that work together to form and maintain the organism. 
Genome and environment together influence greatly how an organism develops and functions. 
The cattle (bovine) genome spans over six billion nucleotides, which are distributed over 30 
chromosome pairs. So far, ~22,000 genes have been discovered in the bovine genome, many 
of which encode proteins, and the rest serves regulatory functions. A stretch of DNA can be 
sectioned according to its functions: for instance, a small part of DNA is occupied by genes, 
many of which have a canonical structure, alternating between exons (coding part, encoding 
proteins) and introns (non-coding part). Intergenic DNA, which is not covered with genes, is 
mostly filled with repetitive sequences. Besides the functional nucleotide sequences, the ge-
nome also harbours the epigenome, which refers to biochemical and structural modifications 
that can alter the genome’s function, and thus add another layer of information to the genome.

This thesis presents an in-depth investigation of hundreds of bovine genomes, which is not triv-
ial, given that already a single genome contains an extensive amount of information, as elab-
orated above. A caveat is that when genomes of multiple animals are compared, a large part 
of the genomes is identical, meaning that they rarely vary. Those varying sites in genomes can 
potentially explain phenotypic differences observed in animals, and hence genomic variations 
are the basis for deciphering genome-to-phenome relationships. Variations in genomes come in 
different shapes and sizes, and hereafter I will call them genetic variants. Below, I introduce 
different types of genetic variants, including structural variants, the main focus of this thesis.
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1.2.1. Genetic variants

Genetic variants come in different shapes and sizes. Single nucleotide variants (SNVs) include 
one base-pair nucleotide substitutions, insertions, or deletions. Small-scale insertions and dele-
tions ranging between 1 and 50 base-pairs are grouped together as indels. Structural variations 
(SVs) are variants of 50-bp or larger, and include deletions, duplications, inversions, inser-
tions, mobile elements insertions, translocations, segmental duplications, repeat expansions, 
and complex rearrangements (Figure 1.1). Among these, copy gain and loss events are referred 
to as copy number variants (CNVs). Upon the completion of the full sequence of the human 
genome in the early 2000s, it was expected that SNVs explain the majority of genetic differenc-
es between individuals. However, later discoveries showed that SVs are abundant, affect more 
nucleotide changes in the genome than small variants, and are present in healthy individuals 
(as opposed to previous textbook views that SVs are associated with diseases (Sudmant et al. 
2015)). Below, I elaborate on how views on SVs have evolved over time and their relevance to 
genetic studies.
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Figure 1.1. Different types of structural variants. A schematic overview of four different SVs 
(deletion, duplication, multiallelic CNV, and inversion). The structural alleles segregating at each SV are 
marked with D (derived) and non-affected alleles are marked with R (reference). The panel on the right 
side shows the diploid copy numbers (CN) that can appear for the four different SVs. Notably, a multiallel-
ic CNV can have high CNs, as it harbours structural alleles with high CNs. The copy number of inversion 
is always CN 2, as it is balanced SV, which does not involve gain or loss of DNA. 
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1.2.2. Discovery of SVs 

Initial discovery of SVs goes back to the early 20th century. Sturtevant (1913), whilst generat-
ing a genetic map of fruit flies (Drosophila melanogaster), realized a genetic factor inhibiting 
crossing over, that is, an inversion, in the third chromosome. Follow-up studies reported the 
Bar allele, a locus harboring a duplication that alters the shape of eyes in Drosophila (Tice 
1914; May 1917; Zeleny 1919). Notably, these findings were achieved without sequencing and 
PCR, but solely relied on experimental breeding of numerous flies (Wolfer and Miller 2016).

Following these initial reports, our understanding of and the ability to study SVs expanded, 
along with technological advancements. McClintock (1931) exploited a cytological approach 
to observe inversions and translocations, and later discovered mobile genetic elements altering 
kernel color in Maize (Zea mays; McClintock 1950). Development of karyotyping techniques 
enabled the detection of large-scale chromosomal aberrations (Tjio and Levan, 1959), elucidat-
ing the etiology of important human diseases. These include the Down syndrome (caused by 
an additional copy of chromosome 21; Lejeune et al. 1959), Klinefelter syndrome, and Turner 
syndrome (caused by a missing X chromosome (X0) and an additional X chromosome (XXY), 
respectively; Ford et al. 1959; Jacobs and Strong 1959).

Following developments in banding technology, fluorescence in situ hybridization (FISH), 
and comparative genomic hybridization (CGH) improved the resolution and sensitivity of 
analyses from chromosomal to microscopic scale events of several million base pairs (Trask 
2002). Exploiting these techniques, two landmark papers showed hundreds of large-scale CNVs 
(>100-Kb), segregating in phenotypically healthy individuals (Sebat et al. 2004; Iafrate et al. 
2004). Many of these CNVs are rare, likely reflecting a strong selective pressure in relation to 
their high impact size. However, some of the CNVs are polymorphic and affect coding genes, 
suggesting that SVs can contribute to phenotypic differences.

Recent developments in Next Generation Sequencing (NGS) technology and SV detection 
tools have advanced SV detection further (Sudmant et al. 2015). Current NGS data (short-
read sequencing at >30X coverage) and the most up-to-date detection algorithms can discover 
~9,000 SVs in the human genome, including diverse types of SVs that are as small as 50-bp in 
size (Byrska-Bischop et al. 2021). These recent developments suggest that SVs might become 
a part of routine genetic analysis, which thus far has been focused on SNPs.

1.2.3. Why are SVs important? 

Reports on SVs showed that they play a crucial role in evolutionary processes, and also are 
key determinants for phenotypic variations. In particular, SVs associated with a unique breed 
defining trait (e.g. color-sidedness) and economically important traits have been delineated in 
cattle populations, highlighting the importance of SVs in cattle breeding (Kadri et al. 2014; 
Durkin et al. 2012) Here, I explain some notable examples of SVs in cattle and other animals 
to demonstrate their significance.
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Firstly, SVs can have significant evolutionary consequences at the population level, accelerat-
ing evolutionary processes such as differentiation and speciation. A 2.25-kb retrotransposon 
insertion in a European crow species gives rise to different plumage colors, resulting in a 
pre-zygotic barrier to other crow species (Weissensteiner et al. 2020). Alternatively, large chro-
mosomal events, such as fusion and fission of chromosomes, result in animals with different 
karyotypes. Mating of these animals might result in viable but infertile offspring, functioning 
as a post-zygotic barrier.

Secondly, the roles of SVs are crucial at an organismal level within a population. As noted 
earlier, human studies underlined that SVs are not necessarily associated with diseases. Many 
SVs are common and segregate in healthy human cohorts, and they affect more base pairs than 
small variants. Hence, the genetic basis of various traits can be attributed to SVs. Some of 
the well-characterized molecular mechanisms of trait-associated SVs include (i) dosage effect, 
where changes in copy numbers affect gene expression and alter phenotype(s), (ii) gene inter-
ruption, (iii) gene fusion, and (iv) disruption of topologically associating domain (see Harel 
and Lupski (2017) for a detailed explanation for each mechanism).

In this thesis, I aim to characterize SVs in cattle genomes. Accordingly, I describe some unique 
and noteworthy SVs that are delineated at the molecular level among farm animals (see Clop 
et al. (2012) and Bickhart and Liu (2014) for review). Breed-defining coat color traits are often 
associated with well-characterized genes, such as KIT and ASIP. A few studies showed that 
SVs disrupting either the coding sequence or the regulatory regions of these genes could give 
rise to unique coat colors. For instance, serial translocation of KIT was associated with col-
or-sidedness in Belgian Blue cattle (Durkin et al. 2012), whereas complex SVs of the same gene 
in domestic pigs leads to white coat color, as opposed to the dark coat in wild boars (Giuffra 
et al. 1999; Rubin et al. 2012). Likewise, an SV scan of goat breeds with diverse coat colors 
revealed that these breeds have unique SVs, disrupting either coding sequences or regulatory 
elements of KIT and ASIP genes (Henkel et al. 2019).

Morphologies valued by humans may lead to the formation of new breeds. A comparison be-
tween sheep populations exhibiting fleece variations (long and hairy fleece in ancestral breeds 
vs short and woolly fleece in modern breeds) revealed an EIF2S2 retrogene insertion into the 3’ 
untranslated region of the IRF2BP2 gene, resulting in abnormal IRF2BP2 transcripts and the 
woolly fleece phenotype (Demars et al. 2017). Furthermore, distinctive morphologies in farm 
animals can be utilized for herd management. The sex of young layer chicks can be determined 
based on their feather development, and the underlying mutation was a 176-kb tandem dupli-
cation disrupting the PRLR and SPEF2 genes (Elferink et al. 2008).

Trait associated SVs are not limited to morphologic traits like those discussed above. Various 
disease-associated deletions have been delineated, including a 3.3-Kb partial deletion of the 
FANCI gene, leading to embryonic loss in homozygous carrier in cattle (Charlier et al. 2012). 
Furthermore, recent studies discovered a large deletion under balancing selection, where a 
pleiotropic 660-kb deletion in Nordic red cattle increased milk production, despite resulting 
in an embryonic loss in a homozygous carrier (Kadri et al. 2014). Similarly, a 212-kb deletion 
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segregating in a commercial pig population showed pleiotropic effects. This deletion is located 
within the BBS9 gene and harbors an enhancer for the BMPER gene, which is located down-
stream of BBS9, resulting in suppressed expression of BMPER. This deletion results in faster 
growth of heterozygous carriers, yet leads to an embryonic loss in homozygous carriers (Derks 
et al. 2018). 

1.2.4. How do we detect SVs?

As elaborated earlier, the understanding of SVs has been driven by technological advance-
ments. Among various techniques that enabled SV studies, I will elaborate on two approaches, 
SNP genotyping array and short-read WGS, both of which were used in the research described 
in this thesis.

1.2.4.1. SNP genotyping array

A SNP genotyping array contains probes that hybridize to polymorphic sites in the genome. 
B allele frequency and hybridization intensity values are used to infer underlying copy num-
ber states (Alkan et al. 2011). Globally, millions of animals are being genotyped, as genomic 
prediction has become a routine practice in many cattle breeding programmes (Wiggans et al. 
2017). Thus, SV detection, based on the already generated SNP array data, is a cheap option 
for high throughput SV screening. A caveat of the array-based approach is that the detection 
resolution is bound to the density of the probes. The most widely used bovine SNP arrays are 
the 50K density and BovineHD array, harboring 50K and 770K SNPs, respectively. CNVs of a 
mean size of ~150-Kb and ~50-Kb can be discovered using the 50K and 770K density arrays 
(Sasaki et al. 2016; Bae et al. 2010). However, despite the economic benefits, this approach has 
some downsides: (i) detectable events are limited to unbalanced SVs (e.g. CNVs), (ii) repetitive 
regions are poorly covered by probes (ascertainment bias), and (iii) breakpoints are unresolved.

1.2.4.2. Next generation sequencing (NGS)

DNA sequencing determines the order of nucleotides in a genome. Given the overwhelming 
length of the bovine genome, sequencing from start to the end of the genome can be arduous 
and low-throughput. NGS technology revolutionized this sequencing process by shearing the 
whole genome into short fragments of 500-800-bp length, and then sequencing them in parallel. 
The sequencing will be done for ~100-250-bp ends of each fragment in paired-end sequencing 
technology. Then the fragments are aligned to a reference genome. Genomic positions where 
the reads are abberantly aligned suggest structurally variant site(s) present in the sample, 
relative to the reference genome. Such aberrant alignments can be screened to infer presence 
of SVs (Figure 1.2). 

Largely, SVs can be inferred from three different signals: read-depth (RD) signals, clusters of 
discordantly mapped read-pairs (RP), and clusters of split reads (SR). Firstly, RD of copy 
number variant regions will differ compared to diploid regions. Detection methods screen ge-
nome-wide RD signals, using a window-based approach (Abyzov et al. 2011). RD-based SV 
detection is computationally fast and performs well in detecting large-scale CNVs (Kosugi et 
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al. 2019). However, detection is limited to CNVs, leaving copy number neutral events (e.g. 
inversions) uncaptured. Also, the detection resolution is low, and the breakpoints are left 
unresolved.

Figure 1.2. 
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Different sequencing reads alignment signals used in SV detection. (A) An exam-
ple of a sequencing read pair based on the WGS data used in this thesis. The insert size was 550-bp, where 
forward (marked with dark grey) and reverse (marked with light grey) each sequenced 100-bp of both ends 
of the insert. The inner ~350-bp is not sequenced. (B) A schematic representation of discordant and split 
reads compared to the normally aligned read pairs. Discordant read pairs are aligned further than expected 
(hence the distance between the reads are larger than 350-bp for the WGS data used in this thesis) and 
the orientation of the reads (either forward or reverse) may be different than the canonical orientation. 
Split reads are marked with light grey shade. (C) A schematic overview of detection of SVs using NGS 
data based on read depth, discordant read pairs, and split reads signals.
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Secondly, RP may have aberrant insert size (longer than normally mapped RP) or non-canon-
ical orientation(s). In principle, aberrantly mapped RPs can detect many types of SVs (dele-
tions, duplications, inversions, and translocations). However, detection relying solely on RP 
signals was shown to generate many false positive calls (Cameron et al. 2019). Also, detectable 
events are larger than the fragment size, leaving smaller events undetected.

Thirdly, SR refers to sequencing fragments where reads are split and aligned to different re-
gions. Clusters of SR appear at breakpoints of SVs, and hence are informative in delineating 
the underlying structure. SV detection solely relying on SR is computationally expensive and 
time-consuming, but can achieve finer resolution compared to RD- and RP- based methods 
(Cameron et al. 2019).

Extensive benchmarking of SV detection performance of numerous tools concluded that (i) 
software packages exploiting multiple signals perform better than those relying on a single 
signal and (ii) no single software package detected all SV types of various size ranges with high 
detection sensitivity (Cameron et al. 2019; Kosugi et al. 2019). Instead, hybrid callers, combin-
ing different detection signals, can have better performance compared to single signal callers. 
Also, a large genetics study ventured into combining multiple SV detection software packages, 
to build an ensemble SV calling and QC pipeline (Abel et al. 2020; Collins et al. 2020).

1.2.5. How many SVs are present in the bovine genome?

Until now, more than 20 studies characterized SVs in bovine genomes, reporting a variable 
number of SVs. In Table 1, three representative studies using different datasets are shown, 
and these resulted in large differences in the number of loci discovered. Such discrepancies are 
expected, given the inherent tendency to detect different SVs in varying size ranges depending 
on input data and detection method used. 

Table 1.1. Number of SVs discovered in bovine genomes

Study No. 
samples* Data No. loci# No. 

per genome

Bae et al (2010) 265 (1) 50K SNP array 368 CNVRs ~3.2 CNVs

Sasaki et al (2016) 1,481 (1) BovineHD array 861 CNVRs ~35 CNVs

Mesbah-Uddin et al (2017) 175 (3) WGS (~10X) 8,480 DELs ~2,000 deletions
*Number in the brackets indicates the number of breeds; #CNVR stands for CNV regions 

1.3. Emergence and fate of de novo mutations

So far, I discussed SVs as if they are present in the genome by default. In reality, most SVs 
are inherited from the parents via parental reproductive cells (gametes), whereas only a small 
fraction of SVs in a given individual are novel mutations that arose spontaneously (de novo 
SVs). Gametes are haploid cells derived from the germlines, serving the specialized function of 
carrying DNA from one generation to the next. To deliver the DNA intact, fidelity, an ability 
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to proofread replication errors and to repair DNA damage, is crucial in the germline. An ex-
tensive survey on the mutational landscape in different cell types confirmed that the germline 
maintains high fidelity throughout the lifespan, compared to other somatic cell types (Coorens 
et al. 2021).

1.3.1. Emergence of de novo mutations

From the moment of fertilization, a zygote undergoes rapid cell replications. During each cell 
division, DNA is replicated. This process may involve replication errors, or DNA damage may 
occur. These changes to the DNA result in de novo mutations (DNMs) if they are not or only 
erroneously repaired, unless they cause cell death (apoptosis). Although the scope of this thesis 
is limited to SVs, here I explain about DNMs of all types, not only those limited to de novo 
SVs (dnSVs). DNMs can arise in all cells. Somatic DNMs might induce diseases in the individ-
ual carrying the DNM, but not in the next generation. On the contrary, germline DNMs can 
be transmitted to the next generation. Thus high impact germline DNM forms an important 
research subject for sporadic disease studies.

Germline DNMs were assumed to occur in parental germlines, mainly due to spontaneous 
mutations, thus affecting a single, if not a few, gametes. Particularly, the male germline was 
considered more prone to mutations, even before a direct investigation was possible at a molec-
ular level (Haldane 1947). This view was confirmed in NGS data-driven, direct investigation on 
human data (Conrad et al. 2011; Kong et al. 2012). However, contrary to the assumption that 
DNMs mostly arise in germlines, a study on bovine pedigrees showed that the first zygotic cell 
division is highly mutation-prone (Harland et al. 2017). This study underlines that a signifi-
cant fraction of detectable DNMs is post-zygotic in origin (not from a parental gamete). Such 
post-zygotic DNMs can develop into cell lineages that later differentiate into the germline. As 
a consequence, the germline affected by mosaic DNMs can produce multiple gametes carrying 
the post-zygotic DNM, showing recurrent transmission of the DNM.

1.3.2. How does a DNM become a population variant?

So far, I have explained DNMs arising in a single animal. However, livestock populations con-
sist of a large number of animals, where evolutionary forces, such as drift, selection, and the 
effect size of DNMs, orchestrate the fate of DNMs within a population.

1.3.2.1. From a DNM to a population variant

Animals are born carrying millions of SNPs and thousands of SVs. Of these numerous variants, 
only a fraction consists of DNMs that arose either in the parental gametes or the offspring it-
self, while the vast majority were transmitted from ancestors over generations. These variants, 
which have been transmitted through generations, are present and segregate in a population, 
and hence are referred to as population variants. A population variant also once was a DNM 
that occurred in an ancestral animal and underwent drift and/or selection.

The neutral theory of molecular evolution states that mutations, if they do not have deleteri-
ous effects, will be neutral (thus have no-to-benign effects), hence they are under neutral selec-
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tion, and some may be fixed due to genetic drift. In contrast, beneficial DNMs are rare and if 
present at all, they can reach fixation rapidly (Kimura 1968). Applying this view not only at 
an organismal but also a cell and zygote level, one can conclude that a DNM (here, assuming 
germline DNM in parental gametes, for brevity) can segregate as a population variant, if (i) 
the DNM does not lead to cell death in the germline, (ii) DNM carrying gametes are viable, 
and hence can be fertilized, (iii) viable offspring can be produced, meaning no embryonic loss, 
(iv) the liveborn offspring does not suffer from disease(s) that prevent it from reproducing. 
DNMs that pass these multiple selection steps can segregate as population genetic variants, 
although many will be lost due to genetic drift.

1.3.2.2. A strong bottleneck in livestock populations: artificial selection 
and drift

On top of the selection steps discussed above, DNMs in livestock populations face further com-
plications. Livestock animals are under artificial selection, where especially animals with de-
sired phenotypes are allowed to pass on their DNA to the next generation. Selection in modern 
dairy cattle breeding relies on genomic selection (GS), where the genetic merit of SNP markers 
that evenly cover the genome is known (Meuwissen et al. 2001). As GS does not take into ac-
count the effect of DNMs, the DNMs in non-selected animals are lost due to drift, even if the 
DNMs have a positive effect on the traits under selection (Mulder et al. 2019). Contrastingly, 
this also results in segregation of DNMs, even the ones with a negative effect, if they arose in 
animals selected for mating. The fate of DNMs, which survived the strong bottleneck induced 
by artificial selection, is then dependent on their effect and mode of inheritance.

1.3.2.3. Fate of a DNM with a positive effect

The fate of a DNM with a positive effect on a desired phenotype may be determined by the 
effect size and mode of inheritance. A dominant variant with a strongly positive effect will 
rapidly segregate in a population. It does so more strongly when appearing in elite sires, which 
tend to have a large offspring pool, ultimately reaching fixation. When it comes to recessive 
DNMs, they may be lost by drift before reaching a meaningful frequency. Yet, if the phenotype 
in homozygous carriers is strongly desired, as shown in the double muscling phenotype caused 
by an 11-bp deletion in MSTN gene in beef cattle breeds, it may reach fixation in popula-
tions, in which it is heavily selected for (e.g. Belgian Blue cattle breed; Grobet et al. 1997; 
McPherron and Lee 1997). An exception is balancing selection, where a single variant confers a 
heterozygous advantage, thus remaining in a population unfixed, despite its undesirable effects 
on homozygous carriers (Derks and Steensma 2021). To what degree dnSVs can have positive 
effects on economically important traits of dairy cattle is currently unknown. 

1.3.2.4. Fate of a DNM with a negative effect

As with positive effects, the fate of a DNM with a negative effect will be determined depend-
ing on the mode of inheritance and effect size. Animals born with a dominant DNM causing 
severe deleterious effects (e.g. physical abnormalities) can be identified and consequently the 
DNM will be purged. In contrast, a recessive DNM with negative effects may be unnoticed in 
a heterozygous state, and hence can segregate in a population. If this mutation occurs in an 
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elite sire with a large offspring pool, the population frequency will increase rapidly, eventually 
leading to a recessive defect outbreak (Charlier et al. 2008). Analyses on deeply sequenced 
human genomes (n>4,000) using in silico methods estimated that an individual carries on av-
erage ~120 deleterious variants. Of these, 17% were SVs, showing a strong overrepresentation 
of SVs in deleterious variants (840-fold), given the numerical abundance of SNVs and indels 
(Abel et al. 2020).

1.4. Aims and scope of this thesis 

Modern dairy cattle populations represent a unique opportunity for genetic studies, given (i) 
the large amount of genomic data generated, (ii) population structure and pedigree records, 
(iii) routine phenotyping performed by breeding programmes, and (iv) the wide adoption of 
assisted reproduction technology (ART), thereby providing a model to investigate the impact 
of ART on de novo SVs.

In this thesis, I catalogued genome-wide SVs in dairy cattle populations, using high density 
genotyping array and whole-genome sequencing (WGS) data. Furthermore, I performed an 
in-depth investigation on two types of SVs, (i) a common variant associated with economically 
important traits and (ii) an extreme form of rare structural variants, de novo SVs. 

In Chapter 2, I catalogued CNVs in two dairy cattle populations, Holstein Friesian and 
Jersey, using high-density SNP genotyping array data. Population genetics tools were applied 
to CNVs, which provided insight into divergently selected CNVs between the two cattle pop-
ulations.

I further refined the SV catalogue by exploiting WGS data in Chapter 3. I quantified how 
many SVs affect coding sequences and thus are likely to have functional consequences. By 
mapping expression QTL of selected SV loci, I showed that some SVs have a functional impact 
at the expression level.

In Chapter 4, I performed an in-depth analysis of a 12-kb CNV overlapping the Group-specif-
ic Component (GC) gene, a candidate causal gene for a major QTL for clinical mastitis (CM) 
resistance. I dissected this QTL by integrating association analyses, expression QTL mapping, 
and the bovine epigenome map and showed that the 12-kb CNV is likely the causal variant 
underlying the major CM resistance QTL.

In Chapter 5, I screened de novo SVs from the WGS SV catalogue obtained from a healthy 
bovine family cohort. The germline de novo SVs unraveled an extreme paternal bias and a 
strong ART effect.

Finally, in Chapter 6, I discuss the key findings of the current thesis and discuss trends in 
SV research.

Frequently used abbreviation can be found in the glossary section in appendices. 
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2.1. Abstract

Background Copy Number Variations (CNVs) are gain or loss of DNA segments that are 
known to play a role in shaping a wide range of phenotypes. In this study, we used two dairy 
cattle populations, Holstein Friesian and Jersey, to discover CNVs using the Illumina Bovine-
HD Genotyping BeadChip aligned to the ARS-UCD1.2 assembly. The discovered CNVs were 
investigated for their functional impact and their population genetics features.

Results We discovered 14,272 autosomal CNVs, which were aggregated into 1,755 CNV re-
gions (CNVR) from 451 animals. These CNVRs together cover 2.8% of the bovine autosomes. 
The assessment of the functional impact of CNVRs showed that rare CNVRs (MAF<0.01) 
are more likely to overlap with genes, than common CNVRs (MAF>0.05). The Population 
differentiation index (Fst) based on CNVRs revealed multiple highly diverged CNVRs between 
the two breeds. Some of these CNVRs overlapped with candidate genes such as MGAM and 
ADAMTS17 genes, which are related to starch digestion and body size, respectively. Lastly, 
linkage disequilibrium (LD) between CNVRs and BovineHD BeadChip SNPs was generally 
low, close to 0, although common deletions (MAF>0.05) showed slightly higher LD (r2=~0.1 
at 10kb distance) than the rest. Nevertheless, this LD is still lower than SNP-SNP LD (r2=~0.5 
at 10kb distance). 

Conclusions Our analyses showed that CNVRs detected using BovineHD BeadChip ar-
rays are likely to be functional. This finding indicates that CNVs can potentially disrupt the 
function of genes and thus might alter phenotypes. Also, the population differentiation index 
revealed two candidate genes, MGAM and ADAMTS17, which hint at adaptive evolution 
between the two populations. Lastly, low CNVR-SNP LD implies that genetic variation from 
CNVs might not be fully captured in routine animal genetic evaluation, which relies solely on 
SNP markers.

Keywords: Copy number variations, Bos taurus, Linkage disequilibrium, population genetics
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2.2. Background

Genetic variations exist in various forms in genomes. Although single nucleotide polymor-
phisms (SNPs) have been the choice of variants in numerous studies, there is a growing body 
of evidence that copy number variations (CNVs) can have functional impact. Copy number 
variations are DNA segments of 1 kb or larger, and are present in varying copy numbers, com-
pared to a reference genome (Feuk et al. 2006). Since the initial discovery of large sub-micro-
scopic CNVs (some hundred kb; Iafrate et al. 2004; Sebat et al. 2004), rapid developments in 
detection platforms and algorithms have advanced knowledge about CNVs, mainly in humans 
(Alkan et al. 2011; Sudmant et al. 2015). 

In the early phase of their discovery, CNVs were expected to resolve the missing heritability 
(significant SNPs identified from genome-wide association studies (GWAS) together account 
small part of the heritability; Manolio et al. 2009; Eichler et al. 2010). It was because, as in 
terms of base pairs, they cover a larger proportion of the genome, compared to SNPs. With 
the accumulation of data and analyses, the occurrence in the genome of CNVs was shown to 
be biased outside of functional elements (Sudmant et al. 2015). Nevertheless, numerous studies 
have shown that CNVs play a role in determining a wide range of human health conditions, 
from obesity to neurodevelopmental diseases (Bochukova et al. 2010; Coe et al. 2014; Macé et 
al. 2017; Marshall et al. 2017). For instance, high copy numbers of the CCL3L1 and CYP2D6 
genes confer reduced susceptibility to infection with HIV and the development of AIDS (Gon-
zalez et al. 2005). Also, the role of CNVs in adaptive evolution is further exemplified by mean 
copy numbers of the AMY1 gene (which codes for amylase alpha1, an essential enzyme for 
starch digestion). The mean copy number of AMY1 gene was shown to differ in human pop-
ulations depending on dietary starch composition (Perry et al. 2007). These findings demon-
strate that CNVs may contribute to adaptive potential, and thus contain information about 
population history. 

Studies in livestock species also highlighted the role of CNVs in affecting various phenotypes. 
For example, several genes affected by CNVs determine coat colours of specific breeds. Du-
plications of the KIT gene in pigs are related to white coat, which is only shown in domestic 
pigs (Rubin et al. 2012; Giuffra et al. 2002). In cattle, serial translocation of the KIT gene was 
related to a colour-sidedness phenotype (Durkin et al. 2012). Moreover, CNVs were shown to 
be associated with quantitative traits that are economically important in livestock breeding, 
in various cattle populations (Xu et al. 2014; Zhou et al. 2018; Prinsen et al. 2017). One study 
investigated whether trait associated CNVs are in linkage disequilibrium (LD) with, and thus 
are tagged by, SNP markers, and revealed that ~25% of CNVs were not in LD with SNP mark-
ers (Xu et al. 2014). However, this study was based on Illumina BovineSNP50 array data, in 
which SNP density and CNV resolution were low.

Holstein Friesian (HOL) and Jersey (JER) are the two main commercial dairy cattle breeds 
that have been bred under different breeding schemes. Although there have been studies in-
vestigating the link between CNVs and individual production traits (Zhou et al. 2018; Durán 



2

CHAPTER 2. ARRAY-BASED CNV CATALOGUE

24

Aguilar et al. 2017; Prinsen et al. 2017; Ben Sassi et al. 2016; Xu et al. 2014), in-depth as-
sessment of functional impacts of CNVs in cattle genomes has been limited. Also, whether 
CNVs that have an impact on phenotypes are captured in genomic evaluation, in other words, 
whether CNVs are in sufficient LD with SNPs, is largely unexplored. Furthermore, CNVs have 
been shown to be useful in disentangling population history and provide valuable insights in 
understanding how populations have evolved over time (Xu et al. 2016; Bickhart et al. 2016; 
Upadhyay et al. 2017; Pierce et al. 2018). However, population genetics analyses exploring 
CNVs, with their main focus on HOL and JER, have been sparse. 

Here, we aimed at discovering CNVs in bovine genomes based on genome assembly ARS-
UCD1.2 (USDA ARS 2018) using high density SNP array data, in two dairy cattle popula-
tions. Subsequently, we performed in-depth analyses on the functional impact of CNVs and 
further explored the population genetic features of CNVs by analysing population differentia-
tion index (Fst) and LD. 

2.3. Results

2.3.1. CNV discovery in the genome build ARS-UCD1.2

The data consisted of Illumina BovineHD BeadChip (Illumina, San Diego, CA, USA) geno-
types from two distinct dairy breeds (Holstein Friesian – HOL (n=331), Jersey – JER (n=115)) 
and their crossbreds (n=29). A previous study using PennCNV on BovineHD data, of which 
47 HOL animals overlapped with our study, showed high rate of CNV confirmation based 
on qPCR validation (91.7% for CNVs found in multiple animals, 40% for singleton CNVs; 
Upadhyay et al. 2017). Therefore, we chose to perform CNV detection on bovine autosomes 
using the PennCNV software (Wang et al. 2007).The Bovine HD SNPs were aligned to genome 
assembly ARS-UCD1.2.

We discovered 14,272 CNV calls from 451 individuals that passed the quality control criteria 
(31.6 calls/individual). Deletion calls were 1.8 times more frequent but 40% shorter (n=9,171, 
mean length=44.2 kb) than duplication calls (n=5,101, mean length=74.6 kb; Supplementary 
Table 1 and Supplementary Fig. 1). The mean probe density (number of supporting SNPs 
per Mb CNV) was 403 SNPs/Mb. The 14,272 CNV calls were aggregated into 1,755 CNV 
regions (CNVRs), based on at least 1 bp overlap, following Redon et al.(2006a). These CN-
VRs cover 2.8% of the autosomal genome sequence (69.6/2,489.4 Mb; Figure 2.1; A full list of 
CNVR is in Supplementary Table 2.). These CNVRs consist of 1,125 deletion CNVRs (mean 
length=29.2 kb), 513 duplication CNVRs (mean length=36.8 kb), and 117 complex CNVRs 
(mean length=152.7 kb). The distribution of CNVR length is exponential, where the majority 
CNV are short to medium length (<100 kb, 93%), while only a few observations were made 
for long CNVRs (>100 kb, 7%). 

The CNVRs are non-randomly distributed over the chromosomes: chromosome-wide CNVR 
coverage varies from 0.6% on BTA24 to 4.9% on BTA12 (Table S3). BTA12 is most densely 
covered with CNVR in terms of bp (4.2 Mb), and especially enriched for complex type CNVRs 
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(2.2 Mb). Allele frequency of CNVRs ranges between 0.001 and 0.21. 

Figure 2.1. Circular map of autosomal copy number variant regions and their population 
genetics features. From the outside to the inside of the external circle: chromosome name; genomic 
location (in Mb); histogram representing density of deletion CNVRs in 5 Mb bin (pink); histogram rep-
resenting density of duplication CNVRs in 5 Mb bin (purple); histogram representing density of complex 
CNVRs in 5 Mb bin (blue); number of BovineHD BeadChip array SNPs in 5 Mb bin (dark grey); histo-
gram representing density of segmental duplications in 5 Mb bin (light grey). 

Since most cattle CNV studies used genome assembly UMD3.1, we also repeated the CNV 
detection procedures, using UMD3.1. Subsequently, we used these calls to assess our CNV 
discovery results with other cattle CNV papers. From the 447 individuals that passed the QC 
criteria, 24,264 CNVs were called (54.3 calls/individual) and the mean probe density was 326 
SNPs/Mb. These CNVs were aggregated into 1,866 CNVRs (1,130 deletions, 593 duplications, 
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and 143 complex CNVRs). The mean length of deletion, duplication, and complex CNVRs was 
29, 36, and 193 kb, respectively (Supplementary Table 1). These CNVRs together cover 82 Mb 
(3.3%) of bovine autosomes. The chromosome-wide coverage varies between 1% on BTA24 and 
10% on BTA12 (Table S4 and Supplementary Fig. 2). Compared to other cattle CNV studies 
conducted using the same SNP array and the genome assembly UMD3.1 (Jiang et al. 2013; 
Sasaki et al. 2016; Xu et al. 2016; Prinsen et al. 2016; Upadhyay et al. 2017; Nandolo et al. 
2018), our CNV discovery results are in a similar range (Table S5). 

When we compared to our CNVs discovered based on UMD3.1 and ARS-UCD1.2, we observed 
several differences. Firstly, the number of CNVs called per individual based on ARS-UCD1.2 
is 42% lower than what was obtained using UMD3.1. Also, the mean probe density increased 
from 326 SNPs/Mb in UMD3.1 to 404 SNPs/Mb in ARS-UCD1.2, indicating that with ARS-
UCD1.2, CNVs are supported by more SNPs. Lastly, the mean length of complex CNVRs 
decreased by 40kb, from 193 kb in UMD3.1 to 152.7 kb in ARS-UCD1.2. We further inspected 
BTA12:70-77 MB region where a large change between UMD3.1 and ARS-UCD1.2 was ob-
served. This region was reported to have a large number deletion and duplication calls by other 
cattle CNV studies based on UMD3.1, regardless of the studied breeds (Hou et al. 2012; Jiang 
et al. 2013; Sasaki et al. 2016; Prinsen et al. 2016; Upadhyay et al. 2017; Nandolo et al. 2018). 
In our CNV discovery, we identified 7 CNVRs (total length of ~6.2 Mb) in this region based 
on UMD3.1, whereas ARS-UCD1.2 based results revealed 9 CNVRs that covered ~1 Mb. We 
compared the positions of BovineHD SNPs in UMD3.1 and ARS-UCD1.2 to see whether the 
changes in genome assemblies caused this discrepancy. The results showed that 43% of the 
SNPs located in BTA12:70-77Mb based on UMD3.1 were either moved to unmapped contigs 
or reference and alternative SNPs were undefined. The genome-wide ratio of SNPs that were 
moved to different chromosomes or contigs was much lower (2.3%) than 43%. This indeed 
indicates that the two genome assemblies differ in this regions, and thus led to different CNV 
discovery results.

2.3.2. Functional impact of CNVRs

The expression of genes can be altered by CNVs. Deletions and duplications of a part of and/
or complete gene can disrupt the gene expression and can potentially lead to changes in vari-
ous phenotypes (Lupski and Stankiewicz 2005). Therefore, identification CNVRs that coincide 
with genes can be a primary step to assess their functional impact. To achieve this, we explored 
CNVRs found based on ARS-UCD1.2 further. The overlap of CNVRs with Ensembl annotated 
genes were analysed, and among the 1,755 CNVRs, 912 (52%) are genic and 843 (48%) are 
intergenic. Genic CNVRs overlap with 1,739 genes out of 27,570 Ensembl annotated genes 
(6.3%) and 2,936 out of 43,949 gene transcripts (6.7%). Among the 1,739 genes that overlap 
with CNVRs, 957 (55%) are completely within the CNVRs and the rest (45%) are partially 
affected (genic features were inside the CNVRs). 

The following functional impact categories were assigned to each CNVR depending on types of 
overlap between CNVRs and genes (numbers in the brackets indicate number of CNVRs and 
genes respectively for each category; see materials and methods for detailed explanation for 
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the classification): 1) intergenic (843 CNVRs; 0 genes), 2) intronic (214 CNVRs; 234 genes), 3) 
whole gene (253 CNVRs; 957 genes), 4) stop codon (147 CNVRs; 203 genes), 5) promoter re-
gions (124 CNVRs; 187 genes), and 6) exonic (174 CNVRs; 165 genes). Then, these functional 
categories were intersected with other features of CNVRs such as types (deletion, duplication, 
complex), MAF (common, intermediate, and rare; see methods for detailed explanation), and 
the populations (HOL and JER; Figure 2.2). 

Figure 2.2. Functional impact of CNVRs by type, frequency, and population. Functional 
impact of CNVRs were investigated by type, frequency, and population. CNVRs were cate-
gorized into different types (deletion, duplication, and complex) and frequency (common: 0.05≤MAF in 
any population, intermediate: 0.01≤MAF<0.05, rare: MAF<0.01 in all populations). The numbers in the 
brackets indicate the number of CNVRs in each category.

The functional consequences of CNVRs differ depending on the type of CNVRs: Complex 
CNVRs were skewed towards genic regions (68% are genic), whereas deletions and duplication 
CNVRs were biased away from genic regions (51-52% are genic), and the difference is signifi-
cant (chi-square test P <10-13). Also, we observed that MAF have impact on different types of 
overlap between genes and CNVRs. Rare CNVRs tend to be genic more often (60%), whereas 
common CNVRs have less overlap compared to it (48%; chi-square test P < 0.002). However, 
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when seen it separately for deletion CNVRs and duplication CNVRs, we saw a different pat-
tern. Common deletion CNVRs are more often intergenic (61%), yet the common duplication 
CNVRs are often genic (68%). When CNVRs between HOL and JER are compared, common 
JER CNVRs are more often genic (51%), than common HOL CNVRs (44%). Subsequently, 
we performed permutation tests on overlaps between CNVRs and autosomal genes, to test 
whether the overlap is significantly higher than expected under a neutral scenario. The results 
show that CNVRs overlap with autosomal genes more often than what is expected from per-
mutation tests with random genomic regions (P<0.001). Nextly, gene ontology analyses were 
performed to understand the functions of the genes that overlap with CNVRs. Genes overlap-
ping deletions, duplications, and complex CNVRs were tested for GO enrichment as separate 
classes (Table 1). Among the findings, genes overlapping with the complex CNVRs (n=407) 
show a pronounced enrichment in response to stimulus (GO:0050896; FDR=1.8x10-6), immune 
response (GO:0006955; FDR=1.9x10-3), and detection of stimulus involved in sensory percep-
tion (GO:0050906; FDR=1.1x10-2). These findings are similar to the findings from earlier cattle 
CNV studies (Hou et al. 2012; Sasaki et al. 2016). 

Table 2.1. GO enrichment results for different types of CNVR

Type of 
CNVRs GO ID GO Term Size Count EXP

*

En-
rich-
ment

FDR
P-val

Deletion GO:0007268 chemical synaptic transmission  278  22 8.3 2.65 0.126

Deletion GO:0098916 anterograde trans-synaptic signaling  278  22 8.3 2.65 0.063

Deletion GO:0099537 trans-synaptic signaling  279  22 8.33 2.64 0.044

Deletion GO:0099536 synaptic signaling  279  22 8.33 2.64 0.033

DuplicationGO:0002821 positive regulation of adaptive immune 
response  32  6 0.44 13.76 0.019

DuplicationGO:0050778 positive regulation of immune response  57  7 0.78 9.01 0.021

DuplicationGO:0048584 positive regulation of response to stim-
ulus  75  7 1.02 6.85 0.053

DuplicationGO:0002250 adaptive immune response  108  9 1.47 6.11 0.018

DuplicationGO:0002252 immune effector process  104  8 1.42 5.64 0.049

Complex GO:0050896 response to stimulus  1,718  45 16.63 2.71 0.000

Complex GO:0006955 immune response  298  14 2.88 4.85 0.002

Complex GO:0050906 detection of stimulus involved in sensory 
perception  477  16 4.62 3.47 0.011

Complex GO:0042113 B cell activation  17  4 0.16 24.31 0.013

Complex GO:0050907 detection of chemical stimulus involved 
in sensory perception  477  16 4.62 3.47 0.014

Complex GO:0051606 detection of stimulus  501  16 4.85 3.3 0.015

Complex GO:0002376 immune system process  322  12 3.12 3.85 0.025

Complex GO:0050853 B cell receptor signaling pathway  23  4 0.22 17.97 0.027
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2.3.3. Population genetics of CNVRs

Population genetics analyses provide a framework to understand genetic variation seen in spe-
cific (cattle) populations. Understanding general properties of genetic variants is important, 
but further characterization of specific variants of interest can bring insights in recent adap-
tation and genome biology (Conrad and Hurles 2007). Although SNPs have been extensively 
used in characterizing various cattle populations (The Bovine Hapmap Consortium 2009), we 
explored the population genetic properties of CNVRs.

We focused our analyses on HOL (n=315) and JER (n=107) animals, derived from distinct or-
igins and with a different breed formation history (Welch 1940). First, we coded the genotypes 
of our bi-allelic CNVRs (n=1,154 for HOL; n=700 for JER) as “+/+”, “+/-”, and “-/-”. The 
CNVR allele frequency was classified as rare (MAF<0.01), intermediate (0.01≤MAF<0.05) 
and common (0.05≤MAF). In HOL, the allele frequency ranged from 0.002 to 0.29, and 5%, 
13%, and 82% of the 1,154 CNVRs were categorized as common, intermediate, and rare CN-
VRs, respectively. For the JER population, allele frequency ranged from 0.005 to 0.37, and  
11%, 20%, and 69% of the 700 CNVRs were categorized as common, intermediate, and rare 
CNVRs, respectively.

Figure 2.3.  Site frequency spectrum of CNVRs. Site frequency spectra of CNVRs in HOL (A) 
and JER (B) population. Deletion CNVRs (pink) and duplication CNVRs (blue) are shown separately. 
Deletions tend to be enriched for rare CNVRs, whereas duplications tend to be enriched in common vari-

ants.

We constructed site frequency spectra of CNVRs for HOL and JER separately (Figure 2.3). 
For both populations, we observed that deletions and duplications have slightly different spec-
tra, where deletions were more skewed towards rare CNVs, whereas duplications were observed 
relatively more frequent than deletions in each MAF class. We further explored the allele 
frequencies by applying Wright’s fixation index (Fst; Wright 1950) to characterize population 
structure (Jakobsson et al. 2008) and detect loci that underwent selection(The International 
HapMap Consortium 2005), as done in Xue et al. (2008). Given that HOL and JER have dis-
tinctive origins and breed formation history (Welch 1940), we hypothesized that Fst on their 
CNVRs can reveal regions that underwent recent population differentiation. 
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Figure 2.4. Manhattan plot for population fixation index (Fst) of CNVRs between HOL 
and JER. Population fixation index (Fst) of bi-allelic CNVRs between HOL and JER is shown in a Man-
hattan plot. 17 intergenic CNVRs (magenta) and 15 genic CNVRs (dark blue) were above the suggestive 
threshold (0.12; Fst>mean + 3 S.D.). CNVRs containing candidate genes are marked with arrows. 

The Fst distribution followed an exponential decay pattern, as expected, underlining that ma-
jority of CNVRs have values close to 0, whereas only a few outliers (~3%) that are potentially 
under positive selection reached high Fst values (Supplementary Fig. 3). We identified 32 
highly diverged CNVRs (Fst>mean + 3 S.D.) of which 15 are genic and 17 are intergenic (Fig-
ure 2.4 and Table S6). Among the 17 intergenic CNVRs with high population differentiation 
(Fst=0.12-0.44), 7 CNVRs had regulatory elements such as lncRNA and snoRNA within ~300 
kb from the CNVRs. Among the genic CNVRs, CNVR 380 (Fst=0.21; duplication), which is 
more frequent in JER (MAF = 0.24) than in HOL (MAF=0.04), contains three genes, CLE-
C5A (Wade et al. 2014), TAR2R38 (Destito et al. 2014), and MGAM. The known functions 
of these genes include abnormal eating behaviour, bitter taste perception, and the synthesis 
of maltase glucoamylase, a starch digestive enzyme. Furthermore, CNVR 826, 1312, and 1458 
overlap with genes that are known to regulate body size: LRRC49 (Dickinson et al. 2016), 
CA5A (Smith et al. 2018), and ADAMTS17 (Bouwman et al. 2018; Frischknecht et al. 2016; 
Allen et al. 2010), respectively. Interestingly, these CNVRs are duplications and have a high 
allele frequency in JER (MAF=0.08–0.37), and a low allele frequency in HOL (MAF=0–0.06).

Subsequently, we calculated Vst statistic, which is a widely used statistic in CNV studies 
(Strillacci et al. 2018; Bickhart et al. 2016). This statistic is analogous to Fst, but using LRR 
values instead of allele frequencies (Redon et al. 2006). The Vst statistic ranges between 0 and 
1, where 1 indicates population differentiation. To strengthen our confidence in the high Fst 
outlier regions we compared Fst and Vst statistics. Firstly, we calculated Vst for 1,464 CNVRs 
where Fst values are available. The Pearson correlation coefficient between Fst and Vst was 
low (0.22), and many selection candidate CNVRs that were found privately in Vst were either 
driven by rare CNVRs (less than 5 copies), or with a small number of SNPs (the numbers 
of average SNPs for top 20 Vst CNVRs and Fst CNVRs was 3.7 and 20.7 respectively; Sup-
plementary Fig. 4 A-C). To correct for this, we removed CNVRs with less than 5 CNVs are 
called from either HOL or JER population (n=1,154 CNVRs). We observed that this filtering 
removed outlier CNVRs that were private to Vst, that were consisting of a small number of 
SNPs. After this filter, the 32 high Fst CNVRs were kept and the correlation coefficient was 
0.52 (n=310 CNVRs; Supplementary Fig. 4 D-F). Also, CNVR 1458 which overlaps with 
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ADAMTS17, showed a high Vst of 0.17 (mean Vst mean=0.03, Vst S.D.=0.04). Furthermore, 
when the copy number filter was applied to both populations, and therefore both HOL and 
JER had more than five copies of CNVs at each CNVRs (n=44), the correlation coefficient 
increased to 0.81 (Supplementary Fig. 5). 

2.3.4. Linkage disequilibrium of CNVRs

There has been a large number of genome-wide associations (GWAS) performed using SNPs in 
livestock species, aiming to unravel genomic regions related to phenotypes of interest (Sharma 
et al. 2015). This approach exploits a large number of tagging SNPs that are in sufficient LD 
with causal variants. Under this framework, genetic variation caused by the causal variants 
is captured by the tagging SNPs, without knowing the exact causal variants. Thus, the ge-
nome-wide level of LD between SNP markers and causal variants is an important foundation 
of GWAS (Visscher et al. 2017). 

We showed that CNVRs overlap with genes more often than would be expected by chance, and 
that CNVs are thus likely to have an influence on phenotypes. The important follow-up ques-
tion is whether the variations from CNVs are already captured by SNPs typed on commercial 
arrays, which are commonly used in livestock breeding programmes. We, therefore investigated 
pairwise LD between bi-allelic CNVRs and neighbouring SNPs on the BovineHD SNP chip. 
We observed generally low r2, close to zero, regardless of the distance between CNVRs and 
SNPs (results not shown). Subsequently, we categorized CNVRs by their allele frequency 
and type to investigate whether these factors influence the degree of LD. Common CNVRs 
have markedly higher LD (r2=~0.1 for deletion CNVRs at ~10-kb distance), compared to 
other CNVR categories (Supplementary Fig. 6). As common CNVRs had higher LD than the 
rest, we compared the LD of common CNVRs with the LD of SNPs in the same MAF range 
(0.05≤MAF<0.29 for HOL and 0.05≤MAF<0.37 for JER). 

We observed distinct LD decay patterns between the CNVR-SNP pairs and SNP-SNP pairs 
(Figure 5A and 5B). SNP-SNP LD follows a typical LD decay pattern where strong LD is 
observed with SNPs in vicinity and gradual decline as the distance increases, whereas CN-
VR-SNP LD does not follow this pattern. Also, compared to the CNVR-SNP LD (r2=~0.1 at 
~10 kb distance), the frequency matching SNP-SNP LD was stronger (r2=~0.5 at ~10 kb dis-
tance). Afterwards, we used another metric to assess LD: taggability. Taggability is the max-
imum r2 among the r2 values that are obtained from a variant of interest and SNP pairs. We 
calculated taggability for SNP-SNP pairs and CNVR-SNP pairs. For the CNVR-SNP pairs, 
we considered common deletion CNVRs only, as they showed the highest LD in the previous 
analyses. Then, mean taggability for each MAF class (bin size=0.05) was plotted (Figure 5C 
and 5D).The mean taggability of common deletion CNVRs is low (<0.1) when MAF is below 
0.05, and it increases as MAF increases. The SNP mean taggability follows the same pattern as 
shown in common deletion CNVRs. However, in spite of the similar pattern, common deletion 
CNVRs taggability is below the level of the SNP taggability. This shows that there is a gap in 
SNP taggability and CNVR taggability. 
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Figure 2.5. Linkage disequilibrium properties of CNVRs. Average strength of linkage disequi-
librium (mean r2) as a function of distance from a SNP is shown for HOL (A) and JER (B). Common 
CNVRs (0.05≤MAF) were used for the calculation; common deletion CNVRs (magenta) and common 
duplication CNVRs (blue) are shown together with common SNPs (black) for comparison. Taggability for 
HOL (C) and JER (D) was expressed as ratio of variants in high LD (r2>0.8) with SNPs within 100-kb 
distance. Common deletion CNVRs (magenta) and common SNPs (black) are shown in the figure. Illumi-

na BovineHD Genotyping BeadChip SNP set was used for the LD calculation.

2.3.5. Interesting CNVR

A large number of QTLs has been identified from various GWAS on a wide range of traits. As 
most GWAS have been done using SNP markers, chances are that genetic variation caused by 
a CNV could have been captured by QTLs that are in a high-to-perfect LD (r2=~1) with the 
CNV. Hence, inspecting CNVRs that are in high LD with QTLs is a preliminary step to iden-
tify potentially causal CNVs. To identify candidate causal CNVs, we subset the CNVR-QTL 
pairs, from the total CNVR-SNP pairs, based on the QTL information from the animal QTLdb 
(Hu et al. 2016). We then subset the CNVR-QTL pairs further based on r2, and kept high LD 
CNVR-QTL pairs only. 

In total ~100,000 bovine QTLs for various traits have been reported in the animal QTL da-
tabase, and we identified 2,519 QTLs to be paired with 679 CNVRs within a distance of 100 
kb in the HOL population. Among these, CNVR 547 (BTA6:84,395,081-84,428,819, deletion, 
MAF=0.24) had the highest LD with 13 QTLs (average r2=0.59; max r2=0.74). The 13 QTLs 
were associated with casein proteins, which constitute four out of six bovine milk proteins. The 
four genes coding for the casein proteins are located in the so called casein cluster, which is ~1 
Mb distant region from CNVR 547 (BTA6:85.4-85.6 Mb). Given the degree of LD for CNVR 
547 and the QTLs that is lower than perfect linkage, it is unlikely that the CNVR 547 is the 
causal variant for the casein protein traits. Nevertheless, CNVR 547 was an interesting variant 
as it was private to in HOL population with high MAF (0.24), and was close to the casein 
cluster that are highly relevant for dairy production. 

Assuming that CNVR 547 is not the causal variant for the casein traits, a possible explanation 
for the high MAF can be selective sweeps. Selective sweeps increase allele frequencies of neutral 
variants that are in LD with the selection target variant, which in this case probably is the ca-
sein cluster. Two studies of Holstein populations support this hypothesis. Firstly, one selective 
sweep study in a German Holstein population revealed an extended range of LD in haplotypes 
that contain the casein cluster (Qanbari et al. 2010). Secondly, GWA study on casein traits in 
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a Danish Holstein population identified a broad GWAS peak (BTA6:60-100 Mb) that contains 
the casein cluster (Buitenhuis et al. 2016). The broad GWAS peak also indicate high LD in this 
regions, that matched with the findings from Qanbari et al. (Qanbari et al. 2010) 

Another explanation for the high MAF of CNVR 547 might be the direct selection on the 
variant itself. For instance, CNVR 547 overlaps with the UGT2B4 gene, which is involved in 
the detoxification pathway of exogenous compounds (Barre et al. 2007). To see whether CNVR 
547 overlaps with regulatory elements, besides overlapping with the upstream region of the 
UGT2B4 gene directly, we called promoters and enhancers from ChipSeq data from Villar et 
al. (Villar et al. 2015). CNVR 547 overlaps not only with the upstream (a start codon and the 
first two exons), but also with the enhancer of UGT2B4 (BTA6: 84,413,246-84,413,740), and 
is thus likely to disrupt the function of the UGT2B4 gene. To summarize, our analyses imply 
that a high MAF of CNVR 547 might be due the selective sweep in the casein cluster or the 
consequence of direct selection on CNVR 547 itself due to the functional impact of the overlap 
with UGT2B4 and its enhancer. Nonetheless, we cannot exclude drift as a possible driver for 
the high allele frequency of the CNVR 547.

2.4. Discussion

In this study, we discovered CNVs using bovine high density SNP array. Using CNVRs that 
are constructed using the CNVs, we reported the functional impact and population genetic 
features of the CNVRs. They are further discussed below.

2.4.1. CNV discovery in the genome build ARS-UCD1.2

We observed different CNV discovery results between UMD3.1 and ARD-UCD1.2. The differ-
ent results were to be expected, given the different sequencing platforms used for the assem-
blies. Long-read sequencing platforms are shown to perform better in retrieving repeat regions, 
which is considered to be challenging in short-read sequencing (Nakano et al. 2017). Among 
others, the most intriguing difference was observed for the BTA12:70-77 MB region. Based on 
the changes in BovineHD SNPs between UMD3.1 and ARS-UCD1.2, we postulated that the 
two genomes assemblies differ in this regions largely. Subsequently, the changes in the genome 
assemblies led to different CNV discovery results. We, then, further postulated that this region 
(BTA12:70-77Mb in UMD 3.1) might contain repeated sequences, rather than the reported 
CNV, for two reasons. Firstly, the SNP density in this region is a quarter of the genome-wide 
average SNP density in UMD3.1 (71 SNPs/Mb and 292 SNPs/Mb, respectively; Supplemen-
tary Fig. 2). SNP probes in repeat regions can reduce specificity of hybridization, and hence 
are often filtered out during SNP probe selection (ArrayGen; Koltai and Weingarten-baror 
2008; Lemoine et al. 2009), which can explain why some regions show a sharp decrease in SNP 
density. Secondly, SNP probes in segmental duplications (sequence identity > 90%) can induce 
confounded deletion calls due to cross-hybridization of paralogous sequences (Cooper et al. 
2008). Our data set based on UMD3.1 was indeed enriched for a large number of deletion calls 
in this region. We regard this large difference as evidence underlining the importance of the 
quality of the reference genomes and the impact this has on CNV calling results.
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2.4.2. Functional impact of CNVRs

In our functional impact analyses, we showed that the overlap between genes and CNVRs is 
higher than the overlap in a neutral scenario. This finding is in line with human and rat CNV 
studies, which showed that the overlap between CNVs and genes is significantly higher than 
expected by chance (Nguyen et al. 2006; Guryev et al. 2008; Cooper et al. 2007). These stud-
ies were based on medium-to-large size human CNVs, and rat CNVs were found from exome 
arrays (CNV length ranged between 5-kb and 256-kb). However, more recent studies, based on 
a finer resolution of CNVs, concluded that CNVs are biased away from genes and functional 
elements (Conrad et al. 2010; Sudmant et al. 2015; Mesbah-Uddin et al. 2017; Boussaha et al. 
2015). 

Also, we observed that MAF have impact on different types of overlap between genes and CN-
VRs. In our findings, common deletion CNVRs were biased away from the genic regions, yet 
the common duplication CNVRs were skewed toward the genic part. This was contradicting 
with findings from another study, which showed both common deletions and duplications are 
skewed away from genic part (Conrad et al. 2010).

We assume that these conflicting findings might arise from a curation of SNP array based 
CNVs in our dataset, which is affected by an ascertainment bias. An ascertainment bias of 
SNPs in commercial arrays can introduce a two-fold bias in CNV discovery. Firstly, the SNP 
density of a given array will constrain the size of CNVs that can be discovered. Secondly, 
SNP probes are designed such that complex regions, such as segmental duplications (SD), are 
under-represented (McCarroll et al. 2008; Cooper et al. 2008). The SNP density of BovineHD 
BeadChip array in unique regions is 292 probes/Mb, whereas it drops to 95 probes/Mb in SD 
regions, showing a 67.5% reduction. Based on this, we speculate that the uneven genome-wide 
SNP coverage might introduce a systematic bias in CNV discovery. Taken together, the studies 
that focused on mid-sized CNVs (Guryev et al. 2008; Cooper et al. 2007; Nguyen et al. 2006) 
are in line with our findings, whereas studies based on tiling oligonucleotide microarrays (Con-
rad et al. 2010) and whole genome sequencing data (Mesbah-Uddin et al. 2017; Sudmant et al. 
2015), which can provide rather complete genome-wide coverage with a various size range of 
CNVs (Alkan et al. 2011), show different results. 

Furthermore, another layer of bias in CNV discovery using SNP array is that discovery of 
duplication is less sensitive than that of deletions. Consequently, most small CNVs are over-
whelmingly deletions, whereas duplications usually are discovered based on relatively large 
number of SNPs than deletion, which makes duplications longer than deletions (Alkan et 
al. 2011). Indeed, our CNV discovery we found two folds more deletions than duplications 
(9,171 vs. 4,101), and the mean length of duplication was longer (44.2-kb vs 74.6-kb). This 
deletion-duplication bias might explain why common duplication CNVRs in our dataset are 
more likely to affect genic region compared to the rare duplication CNVRs, whereas it was the 
opposite in a study mentioned above (Conrad et al. 2010).

The need to re-evaluate the functional impact of CNVs, as CNV detection resolution became 
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finer, along with the advancement in assay technologies and detection algorithms, was already 
pointed out (McCarroll et al. 2008). Moreover, a recent study exploiting long-read sequencing 
data detected 237% and 34% more insertions and deletions, respectively, compared to known 
variants detected from short-read sequencing data (Audano et al. 2019). Taken together, the 
CNVs discovered in our dataset (>1kb) were shown to be biased towards genic regions. How-
ever, we stress the need of re-visiting CNVs with finer resolution and unbiased genome-wide 
coverage, to fully comprehend their functional consequences in cattle genomes.

2.4.3. Population genetics of CNVRs

We explored the population genetics of CNVRs by examining the site frequency spectra and 
Fst. The frequency spectra differed for deletion CNVRs and duplication CNVRs. Given the 
skewed number of rare deletions and common duplications, we corroborate that deletions 
might be under stronger purifying selection. Nevertheless, as explained earlier, inherent bias 
in CNVs from SNP array (deletion discovery is more sensitive than duplication discovery), we 
cannot entirely exclude a possibility that the differed frequency spectra might be an artefact. 

Furthermore, we used Fst to identify CNVRs that are highly diverged. Among the 32 CNVRs 
that pass the threshold, of which 7 intergenic CNVRs had regulatory elements in neighbour-
ing regions. This finding underlines that potential recent positive selection probably acted on 
regulatory elements. Among the 17 genic CNVRs, we identified CNVRs that overlap with 
interesting candidate genes. The CNVR 380 overlaps with CLEC5A, TAR2R38 and MGAM 
gene that are related to taste perception and a digestion enzyme, maltase. One selective sweep 
study revealed that a region containing TAR2R38 and MGAM is highly diverged between dogs 
and wolves. Dogs produce a longer form of maltase than wolves, due to a 2bp deletion that 
disrupts the stop codon, and the same mutation was also seen in herbivore species (rabbits and 
cows) (Axelsson et al. 2013). The longer form of maltase might be the consequence of adaptive 
evolution in response to a starch-rich diet during dog domestication. Given that the partial 
duplication of MGAM can lead to increased length of maltase, a high duplication frequency 
seen in the JER population (MAF=0.24) might be a hint that feed related adaptive evolution 
occurred in the JER population. Also, we identified genes related to body size (LRRC49 in 
CNVR 826, CA5A in CNVR 1312, and ADAMTS17 in CNVR 1458). Among these genes, 
ADAMTS17 has been reported as one of the height determining genes in various species, 
such as cattle, horse, and human (Allen et al. 2010; Frischknecht et al. 2016; Bouwman et al. 
2018). Also, a deletion variant overlapping with ADAMTS17 was shown to be highly diverged 
between HOL and JER in a previous study (Mesbah-Uddin et al. 2017). Given that CNVR 
1452 we found is a duplication locus, it might be a different mutation than the one found by 
Mesbah-Uddin et al. (Mesbah-Uddin et al. 2017). Nonetheless, our and the previous findings 
revealed that CNVs overlapping with ADAMTS17 gene to be diverged between HOL and JER. 
This supports ADAMTS17 gene as a candidate gene that can explain the phenotypic differenc-
es (i.e. body size) between the two breeds. 

Additionally, we used Vst analyses to confirm the selection candidate CNVRs based on Fst 
analyses. The preliminary results from Vst statistic from 1,464 bialleleic CNVRs showed that 
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extreme Vst could be obtained from very rare CNVs (less than 5 CNVs observed) and short-
sized variants. We consider correcting for these factors in analysing Vst statistic is crucial, as 
it could reduce falsely derived selection signal from false positive singletons (Upadhyay et al. 
2017). We have seen that overall concordance between Vst and Fst was 0.52, when rare CN-
VRs (number of CNVs <5) were filtered out in either of the populations. Furthermore, when 
rare CNVs were filtered for both of the populations, which means CNVRs were present in 
both populations with more than 5 copies, the correlation coefficient was 0.81. This number 
is slightly lower than 0.9, which was shown in human CNV study. These findings underline 
high concordance of Fst and Vst when CNVRs are present in both populations with sufficient 
MAF. Thus, although we could obtain Vst confirmation for CNVR 1458, which overlaps with 
ADAMTA17, we could not obtain such confirmation for CNVRs that are at low MAF in either 
of the two populations.

2.4.4. Linkage disequilibrium of CNVRs 

To summarize our findings on LD properties of CNVRs, CNVRs are generally in low LD with 
SNPs, and CNVR taggability is lower than SNP taggability, which indicates a taggability gap. 
However, findings on the taggability are conflicting. Although some studies reported high CNV 
taggability (Conrad et al. 2010; Mills et al. 2011; Mccarroll et al. 2006; McCarroll et al. 2008; 
Hinds et al. 2006), as high as SNP-SNP taggability, some studies reported low CNV taggability 
(Kato et al. 2010; Redon et al. 2006; Locke et al. 2006; McCarroll et al. 2008; Cooper et al. 
2008) as shown in our results. 

The taggability gap can be explained by three factors. Firstly, LD is affected by allele fre-
quency. High LD can be obtained when the allele frequencies of the two loci match (Wray 
2005). Van Binsbergen et al. (2014) empirically showed that SNP-SNP pairs with small MAF 
difference (<0.05) had high predicted LD (r2 >0.8) using WGS data (Binsbergen et al. 2014). 
In our dataset, the majority of CNVRs is at low allele frequency (88% and 95% of CNVRs in 
JER and HOL are at MAF≤0.05), whereas BovineHD SNPs are biased away from rare MAF 
(10% of SNPs are at MAF≤0.05). Thus, the allele frequencies of CNVRs and SNPs were largely 
unmatched, which can be explain the low LD. Secondly, deletions are tagged better than dupli-
cations. Even studies that found high taggability for common deletions, only found relatively 
poor taggability for duplications (Conrad et al. 2010; Mills et al. 2011; Sudmant et al. 2015). 
This might be due to dispersal duplications (Gondo et al. 1993), which relocate the duplicated 
segment of DNA in a different haplotype background than the “parental locus” (Schrider and 
Hahn 2010). Thus, the LD of duplications might be lower than that of deletions. Lastly, local 
SNP density can influence the level of LD. 

Redon et al. (Redon et al. 2006) and Locke et al. (Locke et al. 2006) suggested that a paucity of 
SNPs in repeat-rich regions to serve as potential tags can be an explanation for the taggability 
gap. Indeed, Cooper et al. (Cooper et al. 2008) and McCarroll et al. (McCarroll et al. 2008) 
used different SNP sets in their CNV LD analyses. The first SNP set was HapMap phase 2 
SNP set, which is known to cover the whole genome uniformly (~3.1M probes). Next to this, 
they used SNP sets obtained from commercial SNP arrays, which have uneven SNP density 
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along the genome (550K ~ 1M probes). They found that ~80 % of CNVs are in high LD (r2> 
0.8) when HapMap phase 2 SNP set was used, whereas ~50 % of CNVs were in high LD with 
the commercial array SNP sets. 

Based on our and previous findings, we postulate that LD between common deletion CNVRs 
and SNPs is not necessarily low. However, we could not obtain high LD with our CNVRs, be-
cause our CNVRs were skewed towards rare MAF. The MAF difference between CNVRs and 
SNPs can explain lower LD shown in rare CNVRs, compared to common CNVRs. However, 
as shown in another study (Upadhyay et al. 2017), singletons found from PennCNV software 
could be false positives, which could lead to low LD as well. Thus, we could not exclude the 
possibility that the low LD in rare CNVRs was partly caused by false positive singleton CNVs 
driving low LD. Also, BovineHD SNPs were underrepresented in SD regions, where SNP probe 
design is difficult due to high sequence identity. Deprivation of SNPs in these regions probably 
led to lack of markers that can serve as tagging markers. Follow-up research using a SNP set 
that uniformly covers the whole bovine genome might unravel more complete LD properties 
of CNVs.

2.4.5. Interesting CNVR

Furthermore, in search of CNVRs that are causal variants of traits, we investigated CNVRs 
that are in high LD with known QTLs. CNVR 547 was shown to be in high LD with casein 
QTLs, although it was below perfect linkage, thus unlikely to be the causal variant. However, 
this opened up an interesting avenue to see the CNVR 547 in light of LD and selection. We 
proposed three possible explanation for CNVR 547 to reach high MAF:1) selective sweeps, 2) 
direct selection on CNVR 547 that affects the enhancer of UGT2B4, and 3) drift. Although we 
could not unravel how CNVR 547 has reached high MAF in the current study, we deem it as an 
interesting case, which a CNVR can be understood in standard population genetics theories, 
such as selective sweeps and drift. Also, we had a limited number of CNVRs obtaining high 
LD with QTLs. This was partially due to because most CNVRs were rare, thus predisposed to 
have low LD. Therefore, re-visiting CNVR-QTL pairs, based on CNVs that are detected from a 
different platform (i.e. WGS) might reveal more candidate CNVs that might be the underlying 
causal variants of traits. 

2.5. Conclusions

In this study, we discovered CNVs in bovine genomes and explored their functional impact and 
population genetics features. Using commercial high-density SNP arrays, we identified 14,272 
CNVs, that built 1,755 CNVRs (cover ~2.8% of the bovine autosomes), and the CNVRs were 
further used as genetic loci this study. In the functional impact analyses, we showed that 
CNVRs are likely to have functional impact based on their overlap with genes. Also, we inves-
tigated CNVRs in light of population genetics. We identified 32 highly differentiated CNVRs 
between HOL and JER based on Fst values. Two of the highly diverged CNVRs overlapped 
with the ADAMTS17 gene and MGAM gene, which are involved in body size and starch diges-
tion enzyme, respectively. In the LD analyses, CNVR-SNP LD was lower than SNP-SNP LD, 
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mainly due to low MAF in CNVRs and uneven SNP density. 

These findings together impose several implications for future CNV studies. The first impli-
cation is about the functional impact of CNVs. SNP based GWAS is a commonly used design 
to find functional SNPs that are associated with traits. Given the low CNVR-SNP LD, SNP 
based GWAS are unlikely to detect CNVRs with functional impact. Consequently, GWA 
studies that associate CNVRs and traits directly can add valuable insights into understanding 
economically important traits. Secondly, the low CNVR-SNP LD implies that the majority of 
CNVRs in our study is probably not captured in the current genomic prediction, where SNP 
markers are used. Thus, we underline the importance of follow-up studies on investigating 
methods to include CNVs in genomic prediction and evaluating the usefulness of CNVs in 
improving the accuracy of genomic prediction. 

2.6. Methods

2.6.1. Animal samples and ethics

The study population consisted of two dairy cattle breeds, 331 Holstein Friesian (HOL), 115 
Jersey (JER), as well as 29 crossbreds of HOL and JER. Among these, 18 HOL and 17 JER 
animals were cows and the rest were bulls. All samples were genotyped using an Illumina Bo-
vineHD Genotyping BeadChip (Illumina, San Diego, CA, USA), which contains 777,692 SNPs. 
All of these genotypes are owned by commercial dairy breeding company CRV (Arnhem, the 
Netherlands). The Genotype data was provided by CRV.

2.6.2. Identification of CNVs

We identified CNVs using PennCNV software (Wang et al. 2007) which exploits a Hidden Mar-
kov Model algorithm. For each individual, log R ratio (LRR) and B allele frequency (BAF) per 
SNP were inferred using the Illumina Genome Studio software package (Illumina, San Diego, 
CA, USA). Autosomal SNPs of BovineHD Genotyping BeadChip (n=735,965; Illumina, San 
Diego, CA, USA) were used, and their positions were based on the genome assembly ARS-
UCD1.2. We called CNVs in 29 Bovine autosomes. The waviness in LRR values caused by 
GC contents were adjusted afterwards. We chose PennCNV software, together with BovineHD 
Genotyping BeadChip, as this method showed high confirmation based on qPCR validation 
in a previous study (91.7% for CNVs found in multiple animals and 40% for singleton CNVs) 
(Upadhyay et al. 2017). 

After the initial CNV detection, poor quality individuals (n=13) were filtered out with the de-
fault criteria suggested by the developer of the PennCNV software (LRR standard deviation> 
0.30, BAF standard deviation>0.001 and Waviness factor>0.05). Afterwards, the distribution 
of the number of CNVs per individual was inspected using QQ plots (Supplementary Fig. 7). 
The distribution was continuous until 100, and individuals with more than 100 CNVs largely 
deviated from the distribution (n=10). The same filter on the distribution of the total length 
of CNVs per individual was applied and identified outlier samples (n=11). These two filter 
steps identified 11 outlier individuals (among the 11 outlier animals identified in the second 
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filter, 10 were identified as outliers in the first filter), and subsequently these individuals were 
removed to prevent the introduction of a large number of possible false positive CNVs. Lastly, 
we merged two adjacent CNVs that have the same copy number state, when the gap between 
the two CNVs was less than 10% of the total length, using the clean_cnv.pl script provided 
by PennCNV software, which resulted in 451 individuals with 14,272 CNVs in the combined 
dataset of the two breeds. 

2.6.3. Constructing CNVRs

The CNVs were aggregated into CNV regions (CNVR) based on 1 bp overlap, following Redon 
et al. (2006) (Redon et al. 2006). CNV regions that exclusively contain deletions or dupli-
cations were classified as deletion CNVRs and duplication CNVRs and treated as bi-allelic 
loci. In case of CNVRs that consisted of both deletions and duplications, we defined them as 
complex CNVRs. The CNVRs were compared together with SD and SNP density in . The SDs 
detected by Feng et al.(2017) based on UMD3.1 were remapped to ARS-UCD1.2 using NCBI 
Genome Remapping Service. Afterwards, the density of SDs and SNPs were calculate for 5 
Mb bin using BEDtools (Quinlan and Hall 2010). Circos software (Krzywinski et al. 2009) was 
used to visualize CNVRs, SD density, and SNP density.

2.6.4. Assessment of CNV discovery results 

We repeated the same CNV calling steps using 735,293 autosomal SNPs based on the genome 
assembly UMD3.1. After the initial CNV detection, the same quality control filters were ap-
plied as explained above. The default criteria filtered out 18 individuals, and another 11 outli-
ers detected from QQ plots of the number of CNV per individual and the total length of CNV 
per individual were removed (Supplementary Fig. 7). Subsequently, split CNVs that have small 
gaps in between were merged as described for ARS-UCD1.2. From the 447 individuals that 
passed the quality control criteria, 24,264 CNVs were called, and 1,866 CNVRs were construct-
ed as explained above. Finally, we compared the CNVs and CNVRs between the two different 
genome assemblies, UMD3.1 and ARS-UCD1.2, in terms of number and length. 

2.6.5. Functional impact of CNVRs

The CNVRs were overlapped with gene annotations using Ensembl Variant Effect Predictor 
(McLaren et al. 2016) (Cow release 95) to explore their functional impact. Subsequently, 
CNVRs were classified depending on their functional impact, as done in Conrad et al.(2010). 
First, we identified intergenic CNVRs, which did not overlap with genes, and genic CNVRs 
which overlapped with genes. Among the genic CNVRs, ones containing a complete gene or 
genes are classified as “whole gene”. Genic CNVRs that overlapped with some part of genes 
were further classified as “intronic”, when CNVRs overlapped with introns exclusively; as “stop 
codon”, when CNVRs overlapped with stop codon; as “promoter region”, when CNVRs includ-
ed promoter region (500-bp from transcription start site). The remaining CNVRs that overlap 
with an exon or exon(s) and intron(s) were considered as “exonic”. In the case of CNVRs 
overlapping with more than one gene, and thus having more than one category assigned, (i.e. 
that contains a complete gene and also a promoter region of another gene), we assigned one 
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unique category in the following order: 1) whole gene, 2) stop codon, 3) promoter region. With 
the steps explained above, each CNVR was assigned a unique category. Then, we investigated 
whether the functional impact classes were influenced by type of CNVRs (1,125 deletion, 513 
duplication, 117 complex CNVRs). Also, the influence of allele frequency on the functional 
impact classes were analysed and the allele frequency classes were defined as common (MAF 
≥0.05 in any population, 56 CNVRs), intermediate (0.1>MAF≥0.01, 267 CNVRs), and rare 
(MAF<0.01 in HOL and JER, 115 CNVRs). To see whether the functional impact category 
differs significantly depending on type of CNVRs and MAF classes, Pearson’s Chi-square tests 
were performed. Afterwards, CNVRs were classified depending and type and allele frequency 
in HOL and JER separately and the overlap with functional classes were analysed. Afterwards, 
we performed permutation tests to understand whether the observed overlap between CNVRs 
and a genomic feature is high or low, compared to random genomic regions. The permutation 
tests were performed with the R package “regioneR” (Gel et al. 2016). We generated a random 
set of regions in the genome, with the same number and length of genomic features, and did 
this 1,000 times. For each permutation, the number of overlaps between random CNVRs and 
the genomic features was recorded and then used to estimate the expected number of obser-
vations. The observed and the expected numbers of overlaps were then tested for significance 
(z-test). Subsequently, the PANTHER classification system (Thomas et al. 2003) was used to 
perform gene ontology enrichment tests for the genes that overlapped with CNVRs. All known 
bovine genes (Ensembl release 95) were used as a reference set to test whether the CNVR over-
lapping genes were enriched for or deprived of a specific biological process, cellular composi-
tion, and molecular function, with False Discovery Rate correction (α<0.05) for multiple tests.

2.6.6. Population genetics of CNVRs 

We explored bi-allelic CNVRs in HOL and JER in light of population genetics. We geno-
typed bi-allelic CNVRs in HOL and JER into “+/+”, “+/-”, and “-/-”, following McCarroll et 
al.(2006). These genotypes were used to calculate the allele frequency of each CNVR locus. 
Subsequently, we constructed site frequency spectra in HOL and JER to understand selection 
pressure on CNVRs. Wright’s population differentiation index (Fst; Wright 1950) was used 
to investigate recent divergent selection in HOL and JER populations. Fst was calculated for 
1,471 bi-allelic CNVRs, using PLINK (version 1.9.; Purcell et al. 2007). 

2.6.7. Linkage disequilibrium of CNV 

We estimated the degree of LD between bi-allelic CNVRs and SNPs by calculating r2 in the 
JER and HOL populations, respectively. To have a reference, we also estimated SNP-SNP LD, 
limited to SNPs with the same MAF range as common CNVRs (0.05<MAF<0.30 for JER and 
0.05<MAF<0.24 for HOL). The SNPs inside the CNVRs were masked to prevent a bias intro-
duced during the phasing step, as done in Conrad et al.(2010). SNPs with low minor allele fre-
quency (MAF <0.001), with low call rates (<90%), or with deviations from the Hardy–Wein-
berg equilibrium (P<1e-9) were removed. For CNVRs, the same filters were applied, except 
the call rate criteria. Phasing was done with Shapeit (Delaneau et al. 2012) and the r2 values 
of CNVR-SNP pairs within a 100 kb distance were calculated in PLINK (version 1.9.; Purcell 



2

CHAPTER 2. ARRAY-BASED SV CATALOGUE

41

et al. 2007). Afterward, QTLs that were shown to be significant in association studies were 
downloaded from Animal QTLdb (Hu et al. 2016) (release 37) and intersected with the CN-
VR-SNP pairs to see whether CNVRs are in high LD with known QTLs. To overlap the CNVR 
547 and functional elements in bovine genomes, we used the data from Villar et al.(2015). We 
downloaded the ChipSeq data and aligned them to ARS-UCD1.2 using BWA-MEM(0.7.15) (Li 
2013), and called the enhancers and promoters as explained in the original paper. 

2.7. List of abbreviations
CNV: copy number variation; 

CNVR: CNV region; 

Fst: Fixation index;

HOL: Friesian Holstein;

JER: Jersey;

LD: Linkage disequilibrium;

MAF: Minor allele frequency;

QTL: quantitative trait loci;

SD: segmental duplications;

SNP: single nucleotide polymorphism
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3.1. Abstract

Structural variations (SVs) are large segments that differ between genomes, such as deletions, 
duplications, insertions, inversions and translocations. Genomic revolution enabled the discov-
ery of sub-microscopic SVs via array and whole-genome sequencing (WGS) data, paving the 
way to unravelling the functional impact of SVs. Recent large-scale human expression QTL 
(eQTL) mapping study underlined that SVs play a disproportionally large role in altering 
gene expression, underlining the importance of including SVs in genetic analyses. However, 
incorporating SVs in routine genetic analyses has been hindered due to inaccurate genotyping, 
which is particularly compounded in low depth WGS data. This study generated a high-quality 
bovine SV catalogue, exploiting 266 deeply sequenced genomes obtained from a dairy cattle 
family cohort, including 127 trios (mean sequencing coverage=26X). We curated 13,925 SVs 
segregating in the population, consisting of 12,200 deletions, 1,531 duplications, 22 multi-allelic 
CNVs, and 172 retrogene insertions. Of these, we validated a subset of copy number variants 
(CNVs; n=372) utilising a direct genotyping approach in an independent cohort, underlining 
that at least 80% of the CNVs are true variants, segregating in the population. Among genic 
sequence disrupting SVs, we prioritised two likely high impact duplications, encompassing 
ORM1 and POPDC3, respectively. Our liver eQTL mapping results on these genes revealed 
that the duplications are likely causal variants for the altered gene expression, confirming the 
functional importance of SVs. Although most of the accurately genotyped CNVs are tagged by 
SNPs ascertained in WGS data, most CNVs were not captured by SNPs obtained from a 50K 
genotyping array. Accordingly, many SVs may not be exploited in large scale genomic analy-
ses relying on sparse density SNP data (e.g. 50K). The current SV catalogue is an invaluable 
resource for future genetics studies for SVs. Lastly, we stress that the effort to capture SVs 
accurately will be beneficial in exploiting the full spectrum of genetic variants.

3.2. Introduction

Structural variations (SVs) are genomic segments (>50-bp) for which the structure between 
genomes differs, and may include deletions, duplications, insertions, inversions, and transloca-
tions (Sudmant et al. 2015). Due to a larger affected portion of the genome, their phenotyp-
ic impact are assumed to be relatively larger compared to single nucleotide polymorphisms 
(SNPs) or small insertions and deletions (indels; Campbell and Eichler 2013; Alkan et al. 2011; 
Conrad et al. 2010). Following this idea, large-scale expression QTL (eQTL) studies in humans 
showed that SVs have a disproportionately larger contribution to altering gene expression than 
SNPs and indels (Chiang et al. 2017; Scott et al. 2021; Handsaker et al. 2015). Many functional 
SVs associated with various traits have been elucidated in humans (Weischenfeldt et al. 2013). 
Likewise, identifying functional SVs associated with economically important trait(s) has been 
a prime interest for animal breeders. Until now, catalogue of functional SVs reported in farm 
animals contain many deletions that often are associated with disease traits. In contrast, du-
plications often are associated with distinguishable coat colours and morphologies (e.g. breed 
defining traits), with few exceptions (Bickhart and Liu 2014; Clop et al. 2012). 
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Discovery and genotyping of genetic variants provide a foundation for performing genetic anal-
yses. In recent decades, the genomics revolution enabled accurate detection and genotyping of 
millions of SNPs through arrays and whole-genome sequencing (WGS) technologies. However, 
unlike SNPs, detection and genotyping methodologies for structural variants (SVs) have been 
lagging behind (Huddleston and Eichler 2016). Array data is widely used in animal breeding 
and can detect unbalanced SVs, such as copy number variants (CNVs, a subset of SVs includ-
ing deletions and duplications). Still, low resolutions and undefined breakpoints are considered 
major drawbacks of array-based methodologies (Alkan et al. 2011). Alternatively, short-read 
WGS data can be used to detect SVs, including CNVs and balanced SVs (e.g. inversions) 
at a finer resolution (Sudmant et al. 2015). Despite such advancement, WGS data with low 
sequencing depth (e.g. <10X) suffers from low sensitivity, unresolved breakpoints, and low 
genotyping accuracy (Huddleston and Eichler 2016; Sudmant et al. 2015; Alkan et al. 2011). 
These issues can be alleviated by (i) exploiting WGS data with higher sequencing depth (e.g. 
>30X), (ii) including family samples, and (iii) confirming the discovery results using orthogo-
nal validation (e.g. long-read sequencing data; Huddleston and Eichler 2016). Furthermore, the 
choice of SV detection methods can affect the discovery results. SV detection tools scan WGS 
data for split reads (SR) and discordant read pairs (RP) clusters. In contrast, some detection 
tools measure read-depth (RD) changes relative to the depth of genome-wide diploid regions 
to determine the copy number variable regions. Recent benchmark studies showed that com-
bining these principles outperforms detection methods solely relying on a single principle (e.g. 
generating less false calls) (Cameron et al. 2019). 

A high-quality catalogue of SVs with high detection sensitivity, including a diverse event size, 
base-pair resolved breakpoints, and accurate genotyping can benefit genetic studies and accel-
erate the discovery of functional variants. Yet, until now, lack of suitable data sets hindered 
obtaining a high-quality SV catalogue in the Holstein Friesian (HF), a major dairy cattle breed 
(Britt et al. 2021). Absence of a high-quality SV catalogue has left some questions unanswered. 
Firstly, the potential for SVs for animal breeding is unknown. Whether a widely used 50K SNP 
genotyping array captures, genome-wide SVs remains to be investigated. Secondly, current 
SV catalogues based on genotyping arrays consist of large, breakpoint unresolved CNVs with 
spurious genotyping (Lee et al. 2020), and hence, estimating their functional and phenotypic 
impact has been limited.

This study aimed to generate a high-quality SV catalogue using deeply sequenced genomes 
obtained from a cattle family cohort (including 127 trios). We detected four different classes 
of SVs (deletions, duplications, multi-allelic copy number variants (mCNVs), retrogene inser-
tions) based on a methodology exploiting both SR and RP signals in WGS data, with post hoc 
RD-based filtering. Furthermore, SVs were validated in an independent cohort of animals using 
a direct genotyping approach. Using a high-quality call set, we explored population genetics 
features of SVs and finally, we performed in-depth characterisation of putative high impact 
duplication events.
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3.3. Results

3.3.1. CNV discovery 
3.3.1.1. Initial discovery 

We discovered SVs using short-read WGS data from 266 Dutch dairy cattle samples (mean 
coverage of 26X, min=15X, max=47X). Our pipeline found SVs in the individual samples 
based on SR and RP evidence. The number of discovered SVs per sample increased in relation 
to the sequencing depth, suggesting the absence of spurious technical bias and high quality un-
derlying WGS data (Supplementary Figure 1). Aggregating the SVs found across all samples, 
we obtained 38,094 non-redundant SVs (17,826 deletions, 4,652 duplications, 1,811 inversions, 
13,805 non-canonical SVs), for which the entire cohort was genotyped. Further analyses were 
focused on CNVs (simple biallelic deletions and duplications), mCNVs, and retrogene inser-
tions. We applied preliminary filters removing spurious calls based on fold-coverage change in 
RD for CNVs (e.g. a 2-Mb duplication with no coverage increase was removed). After exclud-
ing spurious CNVs, 12,200 deletions and 1,531 duplications were retained. Hereafter, a total of 
13,731 CNVs that passed the preliminary filters is referred to as “clean call set” (Figure 3.1). 
In addition, we catalogued 22 duplications as mCNVs based on their multi-modal RD distribu-
tions (Supplementary Figure 2). Together, these CNVs were in a size range between 50-bp and 
424-kb (Supplementary Figure 3). During a manual inspection on false calls, we found clusters 
of false deletions occurring in intronic regions exclusively (Supplementary Figure 4). This indi-
cates processed pseudogenes, which occur when processed mRNAs are reverse transcribed into 
DNA inserted into a different location in the genome (Ewing et al. 2013). By systematically 
re-evaluating such false deletions corresponding to the intronic region, we identified 172 source 
genes, where 169 retro-transposed sites were retrieved. Overall, a median number of 5,252 
CNVs per genome was discovered (4,865 deletions and 387 duplications). 

3.3.1.2. Differentiating Stringent vs. Lenient call sets

The 13,731 CNVs belonging to the clean call set were further scrutinized. Our pipeline assigned 
genotypes (GT) based on SR and RP evidence, and corresponding RD (Figure 3.1 A). When 
all samples are accurately genotyped and the RD reflects the true underlying GT, we expect 
to see a cloud of dots per GT and the distribution of RD per GT do not overlap. Alternatively, 
a dispersed cloud of dots within a GT indicates inaccurate genotyping, which do not reflect 
the true underlying GT (Figure 3.1 D). Hence, we divided the clean CNV call set into a “strin-
gent” call set, with CNVs of which their RD corresponds unambiguously to the reads-based 
genotypes, and a “lenient” call set, with CNVs of which their RD does not always match with 
the reads-based genotypes. 

The stringent call set consisted of 3,827 deletions and 184 duplications which contained accu-
rately genotyped biallelic CNVs, mostly larger than 500-bp (Figure 3.2 A). On the contrary, 
CNVs in the lenient call set were often (i) small (<500-bp), hence the RD did not manifest 
a clear change depending on genotype, or (ii) incorrectly genotyped due to a complex local 
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genomic context (e.g. discordant RPs in repeat-rich regions lead to low mapping quality, thus 
were not taken into account in genotyping, see Figure 3.2 A), or (iii) multiplication events, 
where genotyping relying on biallelic duplications cannot capture the accurate allelic state (e.g. 
where allelic copy numbers are 2, 5, and 8, instead of 2, 3, and 4). 
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Discovery and quality control on SVs in the bovine genome. (A) An example of 
population-side SV detection results. Animals are genotyped for each site, and for CNVs, the fold-cov-
erage change in read-depth is annotated. Marked with yellow is a spurious call where RD do not change 
according to genotypes. (B) An overview on filtering steps and number of calls in different call sets. (C) 
The overall CNVs calls were divided into stringent and lenient call sets, exploiting the post hoc filter based 
on RD. The former stands for accurately genotyped biallelic sites. (D) Quality control (QC) plots were 
generated for all CNVs exploiting the genotype and read-depth information. The panel on the left side 
shows an example of a stringent site where animals GT and RD are unambiguously assigned. Each blue 
dot represents a sample. The black dots and vertical bars in the violin plot represent the mean and one 
standard deviation. The right panel represents the RD distribution for each GT group. The QC plot for a 
lenient site is shown on the right side. In such a case, RD distribution of animals genotyped as 0/0 and 0/1 
are overlapping (marked with a red dotted circle), indicating inaccurate genotyping results. 

Subsequently, the quality of each CNV call set was evaluated using the family structure in the 
current data set (127 trios). A quality metric was coined expressing a fraction of trios having 
Mendelian errors at each site (e.g. with 15 out of 127 trios manifesting Mendelian errors, the 
fraction corresponds to 0.12). As expected, the stringent call set showed lower Mendelian er-
rors overall than the lenient call set (Figure 3.2 B). Notably, duplications showed higher error 
rates than deletions in both call sets, suggesting that duplications are prone to have more 
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genotyping errors even when strict filters are applied. We inspected the site frequency spectra 
limiting to the stringent call set, which contains accurately genotyped CNVs. Both deletions 
and duplications showed similar frequency spectra in a sense that they showed many rare vari-
ants. However, some deletions were common or even fixed. These deletions suggest assembly 
issues or mobile elements present in the reference genome, but not in the samples (such cases 
will be classified as deletions by SV detection tools). Notably, the majority of the stringent 
duplications were rare, where a handful of them reached allele frequency of ~0.25 (Figure 3.2 
C). Finally, we inspected the breakpoints of CNVs. 68% of CNVs had single-base resolved 
breakpoints, both in stringent and lenient call sets. The high number of single-base resolved 
breakpoints in the lenient call set, gives confidence that the CNV are correctly called, despite 
the low genotyping accuracy. 

Figure 3.2. 
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3.3.1.3. Direct genotyping approach

SVs discovered in the WGS data set, if discovered in unrelated animals in the same population, 
would confirm the presence of the SVs segregating in the population. To this end, we aimed 
at validating a subset of the WGS CNVs by directly genotyping the breakpoints of CNVs in 
unrelated animals. Among the CNVs in the catalogue, breakpoints of 9,642 CNVs had a sin-
gle-base resolution; thus, genotyping probes could be designed. Of these, we designed probes 
for 372 CNVs (342 deletions and 30 duplications) appeared in non-repetitive regions and add-
ed them to the custom part of the EuroGenomics custom SNP chip genotyping array, which 
include ~50K SNPs (hereafter referred to as 50K SNP array for brevity; Boichard et al. 2018). 
Genotyping was done in 815 HF animals, not overlapping with the WGS animals. Of the 284 
CNVs (262 deletions and 22 duplications) that passed the quality control (QC) criteria, 210 
deletions and 19 duplications were segregating in the genotyped population. The allele frequen-
cy of CNVs was skewed towards rare alleles, compared to that of the 50K SNPs obtained from 
the same array (Figure 3.3). The CNV genotyping results independently validate at least 80% 
of the 284 CNVs selected from the WGS CNV catalogue. Given that the discovery data is a 
family cohort, we cannot rule out that the undetected 20% CNVs might be variants private to 
small families. Furthermore, the 229 CNVs observed in non-related animals confirm that these 
are variants segregating in the population, which may be exploited in selection. 

Figure 3.3. 
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Direct genotyping approach and results. (A) A schematic overview on primer 
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T will be targeted in deletion carriers. A reverse assay can target G (marked with blue), whereas C will be 
targeted in deletion carriers. (B) Site frequency spectra of CNVs and SNPs obtained from the validation 
data (50K SNP genotyping array).  

3.3.1.4. Comparison with other call sets

We compared the current WGS-based SV catalogue with an array-based catalogue generated 
from 315 animals from the same HF population (Lee et al. 2020). The concordant CNVs be-
tween the WGS- and array- catalogues were mostly large CNVs (231 concordant CNVs, mean 
size of 33-Kb, min size=1.2-kb, max. size=402-Kb). Given that the size of WGS-based CNVs 
were discovered mostly around or smaller than 1-kb size (Figure 3.2 A), the WGS-based cata-
logue seems to contain a large number of finer scale variants undiscovered based on array data. 

All things considered, the current SV call set represents major advancements in terms of (i) 
improved detection sensitivity compared to the array-based catalogue, (ii) diverse types of SVs 
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included, (iii) high resolution, where 68% of CNVs have single-base resolved breakpoints, and 
(iv) two CNV subsets (stringent and lenient) representing different levels of genotyping accu-
racy. Thus, this high-quality call set can be a powerful resource for population and functional 
analyses. 

3.3.2. Population genetics features of detected CNVs
3.3.2.1. CNV-SNP LD in the WGS data set

Although some CNVs associated with complex traits have been delineated (Derks et al. 2018; 
Kadri et al. 2014), large scale genomic analyses are often centred around utilising SNPs, leav-
ing CNVs unexplored. In theory, if a CNV is in high linkage disequilibrium (LD) with SNPs, 
those SNPs should sufficiently capture the CNV (e.g. r2>0.8), functioning as a tagging marker. 
Hence, we calculated pairwise LD (r2) between CNVs and SNPs obtained from WGS data to 
evaluate whether SNPs tag the CNVs. First, we focused on the stringent CNV call set, as it 
contains accurately genotyped biallelic CNVs. In this call set, 97% and 93% of the deletions 
and duplications, respectively, were captured by sequence level SNPs, and the CNV-SNP 
LD broke down as the inter-marker distance increases (Figure 3.4 A and 3.4 B). Our results 
showed that even rare CNVs were well tagged by SNPs, likely due to rare haplotypes private 
to particular families (MAF<0.05). Next, we investigated the LD in the lenient CNV call set, 
and the fraction of tagged CNVs reduced to 83% and 61% for deletions and duplications, re-
spectively (Supplementary Figure 5). The discrepancy between stringent and lenient call sets 
suggests that the lower degree of LD in the lenient call set arises from inaccurately genotyped 
CNVs, instead of actual lack of tagging SNPs. We expected that the mCNV-SNP LD would 
be generally low given that biallelic SNPs would be in partial LD with a multi-allelic variant. 
Indeed, of 22 mCNVs, only 40% were in LD with SNPs (r2>0.8), suggesting that some mCNVs 
are likely missed out in biallelic sequence level SNP based analyses. 

3.3.2.2. CNV-SNP LD in the array data set

Our results from the stringent call set showed that sequence level SNPs could capture most 
of the biallelic CNVs as long as they are accurately genotyped. However, in animal breeding, 
large-scale genomic analyses (e.g. genomic prediction) rely on 50K, or lower density SNP data. 
To assess whether array level SNPs capture CNVs, we investigated CNV-SNP LD based on 
genotypes of 50K SNPs and 284 CNVs directly obtained from our custom 50K SNP array, 
explained above. In the 50K genotyping array data set, both CNV-SNP and SNP-SNP pairs 
showed LD decay where the degree of LD declines as a function of inter-marker distance. 
Intriguingly, CNV-SNP pairs showed lower LD than SNP-SNP pairs, regardless of the allele 
frequency (Figure 3.4 C and 3.4 D). Only 15.4% of deletions and 4.5% of duplications had 
tagging SNPs (r2>0.8), suggesting that the current set of SNPs on the 50K may not capture 
the variation from CNVs.

3.3.3. Functional impact of SVs

The functional consequence of SVs varies depending on many factors, including SV types, 
event sizes, the overlap with coding sequences (CDS), and the overlap with non-coding regula-
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Figure 3.4. 
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Linkage disequilibrium between SNPs and CNVs. (A) Mean r2 obtained 
from deletion-SNP pairs discovered in WGS data is displayed as a function of inter-marker distances. 
SNPs paired with common deletions (MAF≥0.05) are marked with a solid line, whereas SNPs paired with 
rare deletions (MAF<0.05) are marked with a dotted line. (B) Mean r2 obtained from duplication-SNP 
pairs discovered in WGS data is shown. The legend is the same as the panel (A). (C) Mean r2 obtained 
from 50K SNP genotyping array is displayed for common variants only (MAF≥0.05). SNP-SNP pairs are 
marked with a solid magenta line, and DEL-SNP pairs are marked with a solid grey line. The SNP-SNP 
pairs outnumbered DEL-SNP pairs. To keep the comparison not influenced by the difference in the number 
of pairs, a subset of SNP-SNP pairs, equivalent to the number of DEL-SNP pairs, was made 1,000 times, 
and the mean and the standard deviation are displayed in the figure. (D) Mean r2 obtained from 50K SNP 
genotyping array is displayed for rare variants only (MAF<0.05). Legends are identical to the panel (C).

tory elements. In case of deletions and retrogene insertions, they may overlap or occur within 
CDS of a gene, thus leading to loss-of-function of the gene. In contrast, duplications may have 
different consequences depending on overlap with CDS. For instance, if a duplication partially 
overlaps with a coding gene (e.g. overlapping with a subset of exons), it may alter the tran-
script(s). However, if a duplication harbours an entire gene, it could lead to increased gene 
expression in theory. Therefore, we categorised CDS overlapping SVs into predicted loss-of-
function (pLoF) for CDS disrupting deletions and retrogene insertions, intragenic exonic du-
plication (IED) for duplications with partial genic overlap, and copy gain (CG) for duplication 
encompassing entire gene(s), following (Collins et al. 2020) (Figure 3.5 A). 
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3.3.3.1. CDS affecting SVs

Our SV catalogue contained 426 genes where their CDS were affected (342 pLoFs, 41 CGs, 50 
IEDs), and each individual had on average 88 pLoFs, 7.8 CGs, and 8.1 IEDs events. The list of 
CDS disrupting SVs contained two known causal CNVs: (i) a pLoF event by a 3.3-Kb deletion 
ablating FANCI gene, causing foetal death and brachyspina (Charlier et al. 2012), (ii) a pLoF 
event by a 138-Kb deletion ablating TFB1M gene, which was associated with lethal haplotype 
mapped in HF population (Schütz et al. 2016), and (iii) an IED event by a 12-Kb mCNV over-
lapping with the last exon of GC gene, associated with mastitis resistance (Lee et al. 2021). As 
expected, common CDS disrupting SVs (MAF>0.05) were often affecting genes belonging to 
large gene families (e.g. olfactory receptors), whereas rare SVs often disrupted essential genes 
without paralogue. For example, we discovered a singleton 50-kb deletion ablating Centromere 
Protein C gene (CENPC), which was shown to be recessive lethal in a mouse knock-out study 
(Kalitsis et al. 1998). Moreover, we identified a 16-kb IED event in the BTA5:27.4Mb region 
that harbours a large repertoire of keratin genes (Figure 3.5 B). This IED event was classified 
as mCNV based on the multi-modal RD distribution, which indicated diploid CNs between 2 
and 6 (Figure 3.5 C). Furthermore, the QC plot implied inaccurate genotyping (e.g. mCNV 
carriers with high RD were genotyped as 0/0). Close inspection of carrier animals supported 
the presence of the mCNV (elevated sequencing coverage; Figure 3.5 D), however the reads 
spanning over breakpoints had low mapping quality likely resulting in inaccurate genotyping 
(Supplementary Figure 6). This 16-kb mCNV disrupts two keratin genes that are in the same 
orientation (KRT6B and KRT6C), and thus can give rise to a novel fusion gene (Figure 3.5 E). 
In such case, a diploid CN6 animal is expected to have intact KRT6B and KRT6C genes and 
4 copies of KRT6B-KRT6C fusion genes. 

3.3.3.2. Molecular characterisation of SV-eQTL

Recent human SV catalogue showed that most SVs are under purifying selection, thus segre-
gating at low allele frequency, except duplications encompassing entire gene(s) (Collins et al. 
2020). Therefore, we focused on the 41 CG events aiming at identifying functional duplications. 
The underlying assumption of functional CG events is that an extra copy of a gene can in-
crease gene expression. Thus, mapping SV expression QTL (SV-eQTL) for CG events seemed 
a plausible approach to elucidate SVs’ molecular contribution. Before SV-eQTL mapping, 
we prioritised CG events harbouring genes that previous studies reported associations with 
economically important traits in cattle. Based on the literature, we found two promising CG 
loci. The first is an 85-kb duplication harbouring Orosomucoid 1 (ORM1; chr8:103,486,032-
103,571,582) (Supplementary Figure 7 A-D). ORM1 is predominantly expressed in liver and 
encodes acute-phase plasma protein, and has been shown to be upregulated in response to 
acute inflammation (Sun et al. 2016). In dairy cattle, an increased ORM1 expression in post-
partum cows was associated with decreased feed intake (Brown et al. 2021; McGuckin et al. 
2020). The second is a 150-kb duplication harbouring Popeye Domain Containing 3 (POPDC3; 
chr9:44,725,475-44,875,600) (Supplementary Figure 7 E-H). POPDC3 is involved in skeletal 
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Figure 3.5. 
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 CDS disrupting SVs. (A) Three different categories of CDS disrupting SVs. CDS dis-
rupting deletions and insertions can lead to loss-of-function variants. If affecting an entire gene, Duplica-
tions are equivalent to obtaining an extra copy of a gene (copy gain). However, partial duplication of a 
gene may have different consequences depending on the context. Figure adapted from(Collins et al. 2020). 
(B) A 16-kb mCNV was found in the Keratin gene-rich region, harbouring more than 20 keratin genes, in 
the chr5:27Mb region (marked with green). This mCNV affects two keratin genes, KRT6B and KRT6C. 
(C) The QC plot of the 16-Kb implied that diploid CNs range between 2 and 6, yet reads-based GT 
indicated inaccurate genotyping. (D) WGS data of one of the mCNV carriers was inspected (diploid CN 
5). Increased sequencing coverage supports the presence of multiple copies of the 16-kb segment. (E) The 
Tandem arrangement of the 16-kb segment can give rise to a novel fusion gene made of part of KRT6B and 
KRT6C (marked with an asterisk; shown in blue and red). In this panel, we depicted a putative tandem 
arrangement of the haploid CN3 allele.

muscle tissue development and is broadly expressed in multiple tissues (Fang et al. 2020). This 
150-kb duplication was associated with hoof health traits in Canadian HF population; however 
the effect direction was not reported (Butty et al. 2021). 

We proceeded with SV-eQTL mapping exploiting BovineHD genotype and liver RNA-seq data 
obtained from postpartum (d14) dairy cows (n=175). To associate that gene expression with 
sequence level variants, we generated an imputation panel consisting of SNPs and SVs discov-
ered in 266 WGS animals (materials and method; Supplementary Figure 7I). The BovineHD 
genotype was imputed to sequence level variants, and then associated with gene expression. 
The ORM1 duplication was well imputed and ranked as the top variants for ORM1 eQTL. 
Same procedure was applied to POPDC3 duplications and likewise, the imputed POPDC3 
duplication was shown to be ranked among top eQTL variants for POPDC3 (Figure 3.6, 
Supplementary Figure 7I). Furthermore, bovine liver ChIP-seq data (H3K27ac and H3K4me3; 
Villar et al. 2015) confirmed the presence of promoters for these genes, providing a mechanistic 
explanation on these liver SV-eQTL (Supplementary Figure 7 C, G).
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Figure 3.6. 

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

Wt/Wt Wt/Dup Dup/Dup
POPDC3 Duplication Genotype

PO
PD

C
3 

Ex
pr

es
si

on

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●
● ●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ● ●●

●
●

●

● ●

●

●

●

●

−1

0

1

2

Wt/Wt Wt/Dup Dup/Dup
ORM1 Duplication Genotype

O
R

M
1 

Ex
pr

es
si

on8:103486033

2.5

5.0

7.5

10.0

12.5

102.5 103.0 103.5 104.0 104.5
chr8 (Mb)

O
R

M
1 

eQ
TL

 −
lo

g 1
0(

P)

9:44725476

0

10

20

44.0 44.5 45.0 45.5
chr9 (Mb)

P
O

P
D

C
3 

eQ
TL

 −
lo

g 1
0(

P
)

ORM1 
duplication

POPDC3
duplication

O
R

M
1 

O
R

M
1 

P
O

P
D

C
3 

P
O

P
D

C
3 

)

A B

C D
POPDC3 ACE1PREP

GRS3

POLE3 C8H9orf43
ALAD

HDHD3 AMBP
COL27A1

ORM1

ATP6V1G1 TMEM268

TNFSF15 TNCTNFSF8

PRDM1

CDS disrupting SVs. (A) eQTL mapping result for ORM1. The ORM1 duplication is 
marked with purple diamond. The colour scale indicates the degree of pairwise LD (r2) between the ORM1 
duplication and other SNPs. Green translucent box marks the duplication. (B) The box plot shows altered 
ORM1 expression depending on the ORM1 duplication genotypes. (C) eQTL mapping result for ORM1. 
Legend is same as panel (A). (D) The box plot shows altered POPDC3 expression depending on the 
POPDC3 duplication genotypes.

Accordingly, these duplications are likely the underlying variants driving differences in the gene 
expression (Figure 3.6). Extrapolating the literature, we could hypothesise that the ORM1 
duplication allele, which leads to high ORM1 expression, will decrease the feed intake in post-
partum cows (McGuckin et al. 2020; Brown et al. 2021). In mice, administration of exogenous 
ORM supressed food intake, via binding leptin receptors, which induce activation of signal 
transducer and activator of transcription 3 (STAT3) signalling (Sun et al. 2016). Recent dairy 
cattle study showed that high ORM expression suppressed postpartum feed intake, yet without 
triggering STAT3 signalling, leaving the underlying appetite suppression mechanism elusive 
(McGuckin et al. 2020). It is worth noting that this variant is highly frequent (AF=0.49), de-
spite its association with the reduced postpartum feed intake, which is considered detrimental 
for cows. One possible explanation could be that this variant is under balancing selection. In 
an attempt to identify target trait(s) under selection, the animal QTL database was screened 
(Hu et al. 2016), however, there was no QTL reported in the region of interest.
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3.4. Discussion 

In this study, we used 266 deeply sequenced Dutch dairy cattle genomes to discover SVs. SV 
discovery and our understanding of SVs have been hindered by low detection sensitivity and 
inaccurate genotyping issues often arising in low sequencing depth samples (Huddleston and 
Eichler 2016). Also, SV detection tools relying solely on a single detection principle were shown 
to generate many false positive calls, compared to ensemble callers (Kosugi et al. 2019; Cam-
eron et al. 2019), resulting in a low-quality call set. To address these issues, we discovered SVs 
in Damona pedigrees, consisting of deeply sequenced healthy family cohort, consisting of many 
trios (127 trios, mean sequencing depth=26X; Harland et al. 2017), using a detection method 
exploiting multiple SV signals. Detection of SVs can benefit from high coverage sequencing 
data in two ways. First and foremost, it will inevitably improve detection sensitivity. There are 
more SR and RP evidence supporting SVs for a given locus, leading to an increased number 
of discovered variants. Secondly, the RD can be measured accurately, hence can be exploited 
to filter out spurious false positives (e.g. heterozygous deletion without RD change can be 
filtered out). Of these, we exploited RD to distinguish the clean CNV calls into stringent 
calls with high genotyping accuracy. Thus, if future studies aim to investigate SVs using allele 
frequency-based analytical tools (e.g. Fst), the stringent call set may be a good starting point 
as it contains accurately genotyped CNVs. It is worth noting that duplications had overall 
higher Mendelian errors than deletions. If a deletion is present in one’s genome, it can be in 
either of two states: a heterozygous deletion (diploid CN1) or homozygous deletion (diploid 
CN0). Contrary to this, duplications can be biallelic or multi-allelic, and CNs may not ascend 
sequentially. If the CNs do not ascend sequentially (CNs 2, 5, and 8, instead of CNs 2, 3, and 
4), heterozygous animals (e.g. CN5) are genotyped as homozygous for duplication, due to over-
whelmingly large number of discordant reads – leading to Mendelian error. Thus, exploiting 
duplications may require more effort to characterise the true underlying CN states, requiring 
high sequence coverage to identify read depth differences. 

High number of false positives and negatives in SV discovery makes it crucial to perform 
post-discovery evaluation (Huddleston and Eichler 2016). Commonly used orthogonal valida-
tions methods include long-read WGS and PCR amplicons (Bertolotti et al. 2020; Zhao et al. 
2021; Collins et al. 2020; Abel et al. 2020). However, often these validations can be costly and 
time-consuming, and above all, the availability of DNA material can be a bottleneck. Instead, 
to some extent, we bypassed these issues by incorporating CNV targeting probes into the 50K 
SNP array that is routinely used in livestock breeding programmes. With this approach, we 
obtained accurate genotypes of CNVs and SNPs simultaneously, and found that 80% of the 
targeted CNVs are segregating in the validation cohort. It is likely that this 80% validation is 
a lower-bound, given the nature of the discovery cohort (266 family animals). We deem rare 
CNVs private to some families may be confirmed with a larger validation cohort. Particularly, 
accurate genotyping of some CNVs remain challenging even with ~30X coverage WGS data 
(lenient call set). As such, unless WGS data allows accurate genotyping (e.g. stringent call set), 
custom array based direct SV genotyping will be indispensable in identifying trait-associated 
CNVs. Furthermore, accumulation of SNP and CNV genotypes from ~thousands of animals 
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will open an opportunity to evaluation the genetic contribution of CNVs, relative to 50K SNPs. 

Our and others’ work demonstrated a large repertoire of functional SVs, many of which are of 
interest for livestock breeding (Bickhart and Liu 2014; Clop et al. 2012). In livestock breeding, 
the genetic merit of animals is estimated based on the genomic prediction that exploits 50K 
SNPs. Thus, whether the 50K SNPs fully capture the variation from CNVs is a prime question. 
The CNV-SNP LD shown in our WGS data set revealed that most CNVs in the stringent call 
set have tagging SNPs (97% deletions and 92% duplications; Figure 3.4 and Supplementary 
Figure 5), higher than recent reports in human SV studies comprising >10,000 genomes of 
diverse ethnic background (Collins et al. 2020; Abel et al. 2020). Unlike human studies, we 
studied a family cohort from a single breed, likely leading to the upper bound of the LD. 
However, the CNV-SNP LD in the SNP array data set was lower, because (i) the genotyped 
animals were unrelated and (ii) the MAF of SNPs and CNVs did not match well – CNVs were 
skewed towards rare variants, whereas SNPs were uniform across the range of MAFs, unlike 
the sequence level SNPs that include variants from a full spectrum of allele frequencies (Figure 
3.3 B). Thus, large scale genomic analyses aiming at investigating CNVs may consider the two 
options: (1) exploit imputed sequence level SNPs that tags CNVs, or (2) directly genotype 
CNVs. The first approach may have some limitations, given that many CNVs are rare and so 
do the tagging SNPs, posing difficulty in imputation. Also, this approach will work only for 
the CNVs that are accurately genotyped in the sequenced reference population. The ORM1 
duplication genotyping was inaccurate in our WGS data (classified as lenient call), whereas 
the direct genotyping approach showed accurate genotyping results. Of note, the duplication 
targeting probe was not in LD with the 50K SNPs in vicinity. Thus, associating traits with 
the direct genotype of the ORM1 duplication may help unravel why this duplication segregate 
in high frequency, despite the negative association with postpartum feed intake. Lastly, hap-
lotype-based approach was shown to capture CNVs well (Derks et al. 2018; Kadri et al. 2014; 
Zhang et al. 2012), hence can be an alternative choice, if both of the suggested options (tagging 
SNPs and direct genotyping) are not feasible. 

Due to large event sizes, a single SV may have larger effect, compared to smaller variants 
(Collins et al. 2020; Abel et al. 2020). Under such circumstances, SVs with deleterious effects, 
if affecting haploinsufficient gene(s), are expected to be purged rapidly. Hence, it is assumed 
that most SVs would have a benign effect, unless they confer an adaptive advantage (Campbell 
and Eichler 2013). Our SV catalogue contains 426 genes affected by SVs, where each animal 
has on average >100 affected genes. 

Mapping deleterious variants can be done exploiting (i) a phenotype driven approach (e.g. 
GWAS), which requires high allele frequency, and (ii) a genotype driven approach (e.g. homo-
zygosity depletion mapping), which requires a very large genotyped population and high allele 
frequency. Since the study population is a healthy family cohort of modest size (n=266), dis-
covering novel it was unlikely to detect statistically robust recessive lethal variants. This does 
not preclude that recessive lethal SVs are segregating in the current population. We confirmed 
presence of two known recessive lethal deletion is segregating in the current population (Char-
lier et al. 2012; Schütz et al. 2016), which served as positive controls; however, as expected, we 
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did not see any homozygous carrier, and the recessive allele was segregating at low frequency 
(MAF for FANCI deletion=0.06, MAF for TFB1M deletion=0.005). Additionally, we detected 
a singleton pLoF 50-Kb deletion affecting CENPC, shown to result in an early embryonic loss 
in knock-out mice (Kalitsis et al. 1998). As such, mapping deleterious variants using statistical 
association may not be suitable for the current data set, however exploiting a wealth of anno-
tation data in human and mouse can help interpretation of the gene-disrupting SVs. 

We mapped two promising SV-eQTL for CG events overlapping with ORM1 and POPDC3, 
respectively (Figure 3.5 and Supplementary Figure 7). ORM1 encodes acute phase protein and 
is involved in energy metabolism: mice lacking ORM1 expression were shown to have increased 
body weight and fat mass (Sun et al. 2016), whereas upregulation in postpartum cows was 
correlated with reduced feed intake (Brown et al. 2021; McGuckin et al. 2020). Unfortunate-
ly, no feed intake QTL was reported near this duplication in the Animal QTL database and 
GWAS (Li et al. 2019; Hu et al. 2019). There are several explanations for this conundrum. One 
possibility is that the duplication itself or tagging SNPs are inaccurately genotyped, leaving 
no association signals. Another possibility may have to do with the transient expression of 
ORM1. ORM1 is strongly upregulated from parturition to postpartum day 14, hence suppress-
ing feed intake during this short period. However, in breeding programmes, feed intake traits 
are defined as an overall mean during lactation (Veerkamp et al. 2014). Thus, the suppressed 
feed intake during the first ~2 weeks may be diluted at the end. A future study might define 
a novel feed intake trait limited to feed intake during ~2 weeks postpartum. Additionally, it 
is remarkable that the variant has a high frequency despite its negative consequence, hinting 
that it might be under balancing selection. As with the feed intake QTL, we have not found 
any QTL associated with other traits, which may be logical if association studies did not have 
proper variants capturing this duplication. Interestingly, ORM1 duplication was reported in 
human populations as well. Diploid CNs of ORM1 is high in the European population (CN 
>10) compared to the African population (CNs 2-3; Handsaker et al. 2015), suggesting that 
upregulation of ORM1 might confer a generic adaptive advantage across species. 

3.5. Conclusion

This study reports a high-quality SV catalogue containing 13,925 SVs detected in deeply 
sequenced genomes obtained from a Dutch HF family cohort. Using the direct genotyping ap-
proach, we genotyped a subset of CNVs in an independent cohort and confirmed that 80% of 
the targeted CNVs are segregating in the population. In search of high impact SVs, we priori-
tised two duplications overlapping with ORM1 and POPDC3, associated with feed intake and 
hoof health traits, respectively. The eQTL mapping results corroborate that these duplications 
are likely the causal variant driving the gene expression, underpinning the functional impor-
tance of SVs. Given the functional impact of SVs, incorporating them in large scale genetic 
analyses would be crucial. Yet, our LD analyses showed that most CNVs are not captured by 
50K SNPs, stressing the importance of incorporating CNVs into routine analyses either by 
directly genotyping or exploiting CNV tagging SNPs. The current high-quality SV catalogue 
will serve as an invaluable resource for future population genetics studies.
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3.6. Materials & Methods

3.6.1. Whole genome sequencing and variant discovery
3.6.1.1. Whole genome sequence data

The genomes of 266 Dutch HF animals were sequenced. These 266 animals were closely related 
animals, where 240 were forming 127 parents-offspring trios. The biological materials were ei-
ther from sperm (males) or whole blood (females and males). Whole genome Illumina Nextera 
PCR free libraries were constructed (550bp insert size) following the protocols provided by the 
manufacturer. Illumina HiSeq 2000 instrument was used for sequencing, with a paired-end pro-
tocol (2x100bp) by the GIGA Genomics platform (University of Liège). The data was aligned 
using BWA mem (version 0.7.9a-r786) (Li 2013) to the bovine reference genome ARS-UCD1.2 
(Rosen et al. 2020), and converted into bam files using SAMtools 1.9 (Li and Durbin 2009). 
Subsequently, the bam files were sorted and PCR duplicates were marked with Sambamba 
(version 0.4.6) (Tarasov et al. 2015). All samples had a minimum mean sequencing coverage of 
15X, and the mean coverage of the bam files was 26X.

3.6.1.2. Structural variation discovery

We discovered SVs using Smoove pipeline (https://github.com/brentp/smoove). This pipeline 
collects split and discordant reads using Samblaster (Faust and Hall 2014) and then discovers 
SVs per sample. The SV discovery was done using Lumpy, which detects deletions, duplica-
tions, inversions, and breakends (non-canonical forms of SVs) (Layer et al. 2014). The per sam-
ple SV discovery showed that the number of SVs discovered per sample was in relation to the 
sequencing coverage (Supplementary Figure 1). We did not find any outlier samples in terms 
of the total number of SV per sample and the number of singleton SVs per sample. Hence, the 
entire cohort of 266 animals was kept for further analysis. After the sample level SV discovery, 
the SVs were merged, creating a population-wide non-redundant SV call set. Subsequently, the 
entire cohort was genotyped for the non-redundant SV sites using SVTyper (https://github.
com/hall-lab/svtyper). Additionally, the fold-coverage change of RD in SV was annotated by 
Duphold (Pedersen and Quinlan 2019). Duphold annotated two RD values: (i) DHFFC repre-
senting sequencing depth fold-change for the variant compared to 1-kb flanking regions, and 
(ii) DHBFC representing sequencing depth fold-change for the variant compared to genomic 
regions with similar GC-content. We used DHFFC for filtering deletions and DHBFC for fil-
tering duplications, as recommended by the developer. 

3.6.1.3. Site-level filtering

SVs smaller than 50-bp were filtered out following the definition in (Sudmant et al. 2015). 
True CNVs are expected to show altered RD than diploidregion without CNVs. On the con-
trary, low-quality false CNVs are often caused by noise (e.g. repeats), hence do not involve RD 
change. Thus, we applied preliminary filters to remove spurious sites in which the mean RD 
values for different GTs do not differ. With this filter, 13,731 CNVs were retained out of the 
22,267 CNVs . 
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Afterwards, we classified CNVs into stringent and lenient call sets. The stringent set retained 
3,827 deletions and 184 duplications, where RD values per GT correspond unambiguously to 
the cognate GT, whereas The lenient set retained 8,373 deletions and 1,347 duplications where 
RD values do not always match with the cognate GT (Figure 3.1). By manually inspecting 
QC plots of each duplication, we identified sites indicating the presence of >2 alleles. These 
sites were re-classified as mCNVs (Supplementary Figure 2). Finally, we examined low-quality 
deletions filtered out by the preliminary filters - some of these false deletions overlapped with 
the intronic region, indicating processed pseudogene insertions (Supplementary Figure 4) . 
We detected the source gene of the retrogene insertion using 95% reciprocal overlap between 
deletions and introns. Also, the insertion sites were identified by retrieving the breakends that 
are located within +/- 1Kb from the gene body.  

3.6.2. Evaluation of the SV call set
3.6.2.1. Mendelian inheritance errors 

Using the 127 trios, we coined a quality assessment metric based on Mendelian inheritance. 
We counted the number of trios showing Mendelian inheritance error and expressed it as a 
fraction. For example, for a CNV site, if 10 trios showed Mendelian error, we assigned 0.08 
(10/127=0.08). Hence, the scale ranged from 0 to 1, where 0 stands for no trios showing inher-
itance error, whereas 1 indicates all of the 127 trios showing inheritance error. We calculated 
this metric for all the CNV sites, both lenient and stringent calls.

3.6.2.2. Direct genotyping of CNVs using a 50K SNP array 

To avoid highly costly validations, we opted for directly genotyping of a subset of CNVs. We 
designed probes directly targeting the breakpoint sequences of 372 CNVs (342 deletions and 
30 duplications) appeared in non-repetitive regions. These probes were added in the custom 
part of the EuroGenomics SNP genotyping array (Boichard et al. 2018). Genotyping was done 
for 815 Dutch HF animals using their ear punch or blood samples. Of note, these samples did 
not overlap with the WGS data set samples. All of the genotyped samples passed the quality 
criteria (call rate per sample>0.99). Of the 284 CNVs that passed variant level filter (call rate 
per variant>0.99), 229 were segregating in the population, confirming the presence of the 
variant in the population.  

3.6.2.3. Comparison with an array-based CNV catalogue 

The overall WGS-based CNV call set (including both lenient and stringent calls) was com-
pared to an array-based CNV call set. The array-based CNV call set was obtained based on 
Illumina BovineHD Genotyping BeadChip (770K) in 315 HF animals, which are independent 
of the current WGS data set (no overlapping samples; Lee et al. 2020). Of the 315 animals, 34 
were overlapping with the WGS samples. The event size determined from an array-based CNV 
detection is strongly dependent on the local probe density. Thus, applying reciprocal overlap 
criteria for comparing array- and WGS- call set may underestimate the true overlapping calls. 
Accordingly, we intersected two call sets in IGV and manually inspected the underlying WGS 
data for overlapping calls. Where array- and WGS- based sites are overlapping and the un-
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derlying WGS data supports true presence of CNVs, we confirmed them as overlapping calls. 

3.6.3. Population genetics analyses
3.6.3.1. Linkage disequilibrium in WGS data sets

We investigated the CNV-SNP LD using WGS data sets. SNPs were discovered from the same 
WGS data set explained above. Variant calling was done using GATK workflow (v4.1.7) and 
subsequently recalibrated using the following algorithms: BaseRecalibrator, HaplotypeCaller, 
GenomicsDBImport, GenotypeGVCF, GatherVcfs, Variant Recalibrator (DePristo et al. 2011; 
McKenna et al. 2010; Auwera et al. 2013). We applied Variant Quality Score Recalibration 
(VQSR) at a truth sensitivity filter level of 97.5 to remove spurious variants. For calculating 
CNV-SNP pairwise LD, SNPs located inside the CNVs were removed, and SNPs located 
within 100-kb distance from the CNV breakpoints were kept. Pairwise CNV-SNP LD (r2) was 
obtained from PLINK software (v1.9) (Purcell et al. 2007).

3.6.3.2. Linkage disequilibrium in 50K SNP array data sets

The genotype data obtained from 50K SNP array, augmented with probes targeting the CNV 
breakpoints, was used to obtain 50K level CNV-SNP LD (explained above). Genotyping was 
done for 815 Dutch HF animals, and all samples passed the quality criteria (call rate per sam-
ple>0.99). Of 53,917 SNPs and 284 CNVs that passed variant level filter (call rate per vari-
ant>0.99), 50,342 SNPs and 229 CNVs were segregating in the population. As the number of 
segregating duplications was low (n=19), we only performed the LD analyses on 210 deletions. 
We compared SNP-SNP and CNV-SNP LD depending on the inter-marker distance. The num-
ber of CNVs was lower than SNPs, and hence SNP-SNP pairs outnumbered CNV-SNP pairs. 
To compare the same number of pairs, we subset an equal number of SNP-SNP pairs 1,000 
times and compared the mean LD with the CNV-SNP pairs. Pairwise SNP-SNP and CNV-
SNP LD (r2) was obtained from PLINK software (v1.9) (Purcell et al. 2007). The analyses were 
ran for common (MAF≥0.05) and rare (MAF<0.05) variants separately. 

3.6.4. Functional impact of SVs
3.6.4.1. Coding sequence disrupting SVs

We classified coding sequence (CDS) disrupting SVs into predicted loss-of-function, copy gain, 
and intergenic exon duplication following (Collins et al. 2020). The CDS disrupting SVs were 
identified using Variant Effect Predictor (Ensembl release 98) (McLaren et al. 2016). Retro-
gene insertions were screened in the case when the breakends indicated insertion sites.

3.6.4.2. Regulatory elements disrupting SVs

Bovine liver ChIP-seq data (H3K27ac and H3K4me3) was obtained from ArrayExpress 
(E-MTAB-2633; Villar et al. 2015). This ChIP-seq data was aligned to the bovine reference 
genome ARS-UCD1.2 using Bowtie2 (Langmead and Salzberg 2012), and peaks were called 
using MACS2 (Zhang et al. 2008). The SVs overlapping with enhancer or promoter signals 
were identified using BedTools software (Quinlan and Hall 2010). Based on the strength of the 
regulatory elements signal, the allele frequency of the SVs (MAF > 0.05), and literature sug-
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gesting their functional roles in phenotypes (Butty et al. 2021; Brown et al. 2021; McGuckin 
et al. 2020), we selected two SVs for subsequent SV-eQTL mapping.

3.6.5. SV-eQTL mapping
3.6.5.1. Genotype data and imputation 

Liver biopsy samples were collected from ~14 day postpartum HF cows (n=178). The proce-
dures had local ethical approval and complied with the relevant national and EU legislation 
under the European Union Regulations 2012 (S.I. No. 543 of 2012). These samples were gen-
otyped using Illumina BovineHD Genotyping BeadChip (770K). The genotype file was subset 
to have a 10-Mb region harbouring the SV of interest, and rare variants were filtered out 
(MAF<0.02). We included both SNPs and the SVs of interest in the imputation panel to see 
whether SV(s) is the underlying variant driving the gene expression. The SNPs were discov-
ered, as explained above. Two different SV genotypes were used: (i) the original SV genotypes 
obtained from SVtyper (https://github.com/hall-lab/svtyper) based on RP and SR evidence 
and (ii) manually determined RD-based genotypes. The initial imputation panel included 
SNPs in a 10-Mb region harbouring the SV of interest and two different genotypes of SVs 
(contained 266 WGS animals). This panel was phased, and variants with low phasing accuracy 
and allele frequency were filtered out (DR2<0.95 and MAF<0.02). Subsequently, the Bovine-
HD genotypes were imputed to the sequence level variants and variants with low imputation 
accuracy and low minor allele frequency were filtered out (allele R2<0.9 and MAF<0.025). 
Phasing and imputation were done using Beagle 4 (Browning et al. 2018). 

3.6.5.2. RNA-seq data and eQTL mapping 

We mapped eQTL for a subset of liver regulatory elements overlapping SVs. The RNA-seq 
data was obtained from the GplusE consortium (http://www.gpluse.eu; EBI ArrayExpress: 
E-MTAB-9348 and 9871) (Wathes et al. 2021). RNA-seq libraries were constructed using Illu-
mina TruSeq Stranded Total RNA Library Prep Ribo-Zero Gold kit (Illumina, San Diego, CA) 
and sequenced on Illumina NextSeq 500 sequencer with 75-nucleotide single-end reads to reach 
average 32 million reads per sample. The reads were aligned to the bovine reference genome 
UMD3.1, and its corresponding gene coordinates from UCSC as a reference using HISAT2 
(Kim et al. 2019). Transcript assembly was conducted with StringTie (Pertea et al. 2016), 
using a reference-guided option for transcript assembly. Reads were counted at gene level using 
StringTie. Subsequent quality control on the RNA-seq data set removed three samples with 
suboptimal quality (QC steps are explained in detail elsewhere; Lee et al. 2021), normalised 
gene expression was associated with the imputed WGS variants for 175 samples, using a linear 
model in R package “MatrixEQTL” (Shabalin 2012). 
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3.10.2. Supplementary Figure 2  
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C D

Distinctive RD distribution discerning mCNVs from bial-
lelic duplications. We re-classified 2 2 duplications as mCNVs based on their RD distribution. (A, B) 
Panel A and B show examples of biallelic duplication sites where RD values form the trimodal distribution. 
(C, D) In the case of multi-allelic duplications, there are more than three allelic combinations in diploid 
states and hence show distinctive multi-modal RD distribution. Also, the range of RD values is broader 
than biallelic duplications (x-axes marked with translucent red).
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3.10.3. Supplementary Figure 3  Size distribution of overall CNVs. Size distribution of overall 
CNVs are shown (deletions, duplications, and mCNVs). The deletions are marked with light blue (lenient 
calls) and dark blue (stringent calls). The duplications are marked with light pinks (lenient) and magenta 
(stringent). mCNVs are marked with green and they are discovered in >1-kb size. 
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3.10.4. Supplementary Figure 4  
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Detection of processed pseudogenes. A processed pseudogene 
event involved insertion of translated mature mRNA. Signatures of processed pseudogenes include the 
increased read depth at exonic regions, multiple deletions appear in intronic regions, and cluster(s) of dis-
cordant reads spanning over the source gene and the insertion site. Furthermore, there may be discordant 
reads spanning over the source gene and an insertion site. (A) The WGS data of a processed pseudogene 
carrier shows (i) elevated coverage for exons marked with dotted pink line, (ii) many false deletions at 
intronic regions shown as pink color bars, (iii) discordant reads at the end of the gene body. (B) A cluster 
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of discordant reads at the end of the gene body (shown in light green) indicates discordant reads mapped 
to a different chromosome. (C) Inspection of the insertion site (bridged by the light green reads shown in 
panel B) suggests true insertion event marked by poly-A signature and target site duplication. (D) Circo 
plot showing the connection between source genes and the corresponding insertion sites.

3.10.5. Supplementary Figure 5  
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3.10.6. Supplementary Figure 6  Underlying WGS data for a 16-kb mCNV inspected in 
IGV. (A) The underlying WGS data of the 16-kb mCNV was inspected. The green bar indicates the 
mCNV, and the lower bar shows two keratin genes disrupted by the mCNV. (B) The proximal breakpoint 
of the mCNV. The grey colored bars indicate reads with high mapping quality. The white bars in the 
green box indicate reads with low mapping quality. (C) The distal breakpoint of the mCNV. The legends 
are identical to panel (B).
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3.10.7. Supplementary Figure 7  Underlying WGS data for two copy gain duplication 
events. (A) A schematic overview of the ORM1 duplication (marked with green) and the overlap-
ping genes (gene structure shown in dark blue). (B) The proximal breakpoint of the ORM1 duplication 
zoomed-in in IGV. Grey color reads stand for well-aligned ones, whereas green ones stand for discordant 
ones indicating tandem duplications. (C) The bovine liver ChIP-seq data (H3K27ac and H3k4me3) and 
the gene annotation were inspected. The ChIP-seq signals shown at the start of the ORM1 supports the 
presence of a liver promoter. (D) The distal breakpoint of the ORM1 duplication is zoomed-in IGV. The 
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legends are identical to panel B. (E) A schematic overview on the POPDC3 duplication (marked with 
green) and the overlapping gene (gene structure shown in dark blue). (F) The proximal breakpoint of 
the POPDC3 duplication is zoomed-in IGV. The legends are identical to panel B. (G) The bovine liver 
ChIP-seq data (H3K27ac and H3k4me3) and the gene annotation were inspected. The ChIP-seq signals 
indicating a liver promoter appeared upstream of the POPDC3. We confirmed an unannotated exon of the 
POPDC3 gene coinciding with the ChIP-seq signal (unpublished data). (H) The distal breakpoint of the 
POPDC3 duplication is zoomed-in IGV. The legends are identical to the panel B. (I,J) QC plots for the 
ORM1 duplication and POPDC3 duplication, respectively. In both cases, the RD distribution of GT 0/1 
and GT 1/1 are overlapping, indicating inaccurate genotyping results. 
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4.1. Abstract

Clinical mastitis (CM) is an inflammatory disease occurring in the mammary glands of lactat-
ing cows. CM is under genetic control, and a prominent CM resistance QTL located on chro-
mosome 6 was reported in various dairy cattle breeds. Nevertheless, the biological mechanism 
underpinning this QTL has been lacking. Herein, we mapped, fine-mapped, and discovered 
the putative causal variant underlying this CM resistance QTL in the Dutch dairy cattle 
population. We identified a ~12 kb multi-allelic copy number variant (CNV), that is in perfect 
linkage disequilibrium with a lead SNP, as a promising candidate variant. By implementing 
a fine-mapping and through expression QTL mapping, we showed that the group-specific 
component gene (GC), a gene encoding a vitamin D binding protein, is an excellent candidate 
causal gene for the QTL. The multiplicated alleles are associated with increased GC expression 
and low CM resistance. Ample evidence from functional genomics data supports the presence 
of an enhancer within this CNV, which would exert cis-regulatory effect on GC. We observed 
that strong positive selection swept the region near the CNV, and haplotypes associated with 
the multiplicated allele were strongly selected for. Moreover, the multiplicated allele showed 
pleiotropic effects for increased milk yield and reduced fertility, hinting that a shared under-
lying biology for these effects may revolve around the vitamin D pathway. These findings 
together suggest a putative causal variant of a CM resistance QTL, where a cis-regulatory 
element located within a CNV can alter gene expression and affect multiple economically 
important traits.

4.2. Author summary

Clinical mastitis (CM) is an inflammatory disease that negatively influences dairy production 
and compromises animal welfare. Although one major genetic locus for CM resistance was 
mapped on bovine chromosome 6, a mechanistic description of this association has been lack-
ing. Herein, we report a 12-kb multiallelic copy number variant (CNV), encompassing a strong 
enhancer for group-specific component gene (GC), as a likely causal variant for this locus. This 
CNV is associated with high GC expression and low CM resistance. We speculate that upreg-
ulation of GC leads to a large amount of vitamin D binding protein, which in turn, reduces 
biologically available vitamin D, leading to low CM resistance. Despite the negative effect on 
CM resistance, the CNV contributes to increased milk production, hinting at balancing selec-
tion. Our results highlight how multiplication of a regulatory element can shape economically 
important traits in dairy cattle, both in favourable and unfavourable directions. 

4.3. Introduction

Clinical mastitis (CM) is an inflammation in the mammary glands. This condition is often 
seen in dairy cattle and the repercussions of CM include production loss, use of antibiotics, 
and compromised animal welfare (Halasa et al. 2007). CM resistance has a genetic component, 
with estimated heritabilities ranging between 0.01 and 0.10 (Zwald et al. 2004; Bloemhof et 
al. 2009; Negussie et al. 2010; Jamrozik et al. 2013; Pritchard et al. 2013). Genome-wide asso-
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ciations studies (GWAS) identified several quantitative trait loci (QTL) associated with CM 
resistance or somatic cell score (SCS), an indicator trait of CM (Zwald et al. 2004; Bloemhof et 
al. 2009; Negussie et al. 2010; Jamrozik et al. 2013; Pritchard et al. 2013; Sahana et al. 2014). 
For instance, the six most significant CM resistance QTLs together capture 8.9% of the genetic 
variance in Danish Holstein Friesian (HF) cattle, underlining the polygenic nature of CM resis-
tance (Sahana et al. 2014). Of these six QTL, the most significant QTL has been mapped near 
88 Mb on the Bos taurus autosome (BTA) 6 in various dairy cattle populations (Abdel-Shafy 
et al. 2014; Sahana et al. 2013; Sodeland et al. 2011; Freebern et al. 2020), including Dutch 
HF (Veerkamp et al. 2016). 

Several fine-mapping studies, using imputed whole genome sequence (WGS) variants, reported 
non-coding candidate causal SNPs at the group-specific component (GC) gene (Sahana et al. 
2014; Olsen et al. 2016; Cai et al. 2018; Freebern et al. 2020; Tribout et al. 2020). One of these 
studies investigated, albeit unsuccessfully, whether one of the non-coding candidate SNP ob-
tained from the GWAS was associated with GC expression, leaving the functional mechanisms 
underlying this association elusive (Olsen et al. 2016). Interestingly, the proposed candidate 
SNPs showed antagonistic allele effects for milk yield (MY) (the high CM resistance allele was 
linked to low MY, and vice versa (Sahana et al. 2014; Olsen et al. 2016; Koivula et al. 2005), 
and one study concluded that a single pleiotropic variant regulates both of the traits (Cai et 
al. 2020). Furthermore, this locus harbours QTL for many traits including body conformation, 
fertility, and longevity (Freebern et al. 2020; Jiang et al. 2019; Abo-Ismail et al. 2017; Nayeri 
et al. 2017; Pausch et al. 2016; Tribout et al. 2020; Xiang et al. 2020), implying pleiotropy, 
which remains to be investigated. 

Until now, GC, a gene that encodes the vitamin D binding protein (DBP), has been considered 
the most promising candidate gene for the CM resistance QTL on BTA 6 (Cai et al. 2018; 
Olsen et al. 2016). A growing body of literature underpins the importance of DBP, which acts 
as a macrophage activating factor, modulates immune responses (Gomme and Bertolini 2004), 
and is central to the vitamin D pathway (Horst et al. 2005). For instance, polymorphisms in 
GC have been shown to cause vitamin D deficiency and inflammatory diseases in humans 
(Jolliffe et al. 2016). Moreover, a therapeutic use of vitamin D in lactating, CM-infected cows 
reduced inflammation, implying a link between vitamin D and inflammation (Poindexter et 
al. 2020; Merriman et al. 2018; Lippolis et al. 2011). Yet, the GWAS lead SNP was not as-
sociated with GC expression or alternative transcription, leaving the functional mechanism 
elusive (Olsen et al. 2016). Some researchers hypothesized that a copy number variant (CNV) 
might be the causal variant underlying this QTL (Sahana et al. 2014). Indeed, a CNV in high 
linkage disequilibrium (LD) with the GWAS lead SNP was found in the 3’ alternative exon of 
GC, however, the functional role of this CNV was not well characterized (Olsen et al. 2016).

In this study, we aimed at fine-mapping the prominent CM resistance QTL in the Dutch HF 
population, and identifying a candidate causal gene and a variant that may explain the func-
tional mechanism(s) of the QTL. Our findings show that (1) the CM resistance QTL on BTA 
6 is confirmed in our Dutch HF population; (2) a 12-kb multi-allelic CNV, encompassing the 
3’ alternative exon of GC, harbours a putative enhancer, which exerts cis-regulation on the 
candidate causal gene, GC; (3) a haplotype associated with the CNV allele is strongly selected 
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for, and the CNV has pleiotropic effects on MY, body conformation and fertility traits. These 
findings together highlight a functional CNV that contains a cis-regulatory element, affecting 
gene expression and subsequently altering the economically important traits. 

4.4. Results

4.4.1. A major CM resistance QTL on BTA 6 segregates in the 
Dutch HF cattle population

A strong CM resistance QTL has been identified on BTA6 in several cattle populations, in-
cluding Dutch HF (Freebern et al. 2020; Olsen et al. 2016; Sahana et al. 2014; Cai et al. 2018; 
Abdel-Shafy et al. 2014; Sahana et al. 2013; Sodeland et al. 2011; Veerkamp et al. 2016). To 
fine-map this QTL in the Dutch HF population, we first performed an association analysis 
on BTA6 using 4,142 progeny tested bulls. These animals were genotyped using a custom 
16K array, and imputed sequentially, firstly to the Illumina Bovine 50K array, and then to 
higher density (770K). All analyses were performed according to the Bovine genome assembly 
UMD3.1 (Zimin et al. 2009) (See Supplementary Table 1 for SNP positions in ARS-UCD1.2 
genome). De-regressed estimated breeding values of CM resistance were used as phenotypes in 
a single SNP association analysis (materials and methods). 

As expected, we replicated the strong association signal near BTA 6:88.6 Mb found in Nor-
wegian Red (Olsen et al. 2016), Danish HF (Sahana et al. 2014; Cai et al. 2018), and Dutch 
HF populations (Veerkamp et al. 2016) (-log10P=7.35; Figure 4.1 A, Supplementary Table 2). 
This association signal was found downstream of GC, a reverse-oriented gene located at BTA 
6:88.68-88.74 Mb. We then focused on a 10-Mb window encompassing the QTL (BTA 6:84-93 
Mb), using 45,782 imputed WGS level variants present in the window, aiming at (1) con-
firming the GC as a positional candidate gene and (2) identifying a candidate causal variant. 
This 10-Mb window contained the previously reported CNV, which was in high LD with the 
GWAS lead SNP (Olsen et al. 2016), and included SNPs located within the CNV in the WGS 
imputation panel, as they could possibly tag the CNV. The association signal peaked in a 200-
Kb region (BTA 6:88.5-88.7 Mb), spanning over GC and the region downstream of GC. The 
lead SNP, rs110813063, located at BTA 6:88,683,517 (-log10P=9.59) was ~4 kb downstream 
of GC (Figure 4.1 B). The T allele of the lead SNP (allele frequency (AF) = 0.58), was asso-
ciated with low CM resistance, whereas the C allele was associated with high CM resistance 
(AF=0.42). 

Finally, a conditional analysis was performed by including the lead SNP as a covariate in the 
association model. SNPs in the association peak were no longer significant, with the exception 
of a minor signal at the left side of the association peak (Figure 4.1 C). Our results confirmed 
the presence of the CM resistance QTL in the Dutch HF population, however, as with pre-
vious studies (Cai et al. 2018; Olsen et al. 2016; Sahana et al. 2014; Tribout et al. 2020), the 
non-coding lead SNP (rs110813063) did not have any evidence of a functional role. There 
were no coding variants amongst the variant in high LD with the lead SNP (r2>0.9). Provided 
that the significant association signals do not necessarily indicate causality (Gallagher and 
Chen-plotkin 2018), we further characterized the lead SNP using WGS data. 
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Figure 4.1. 
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Association mapping and fine-mapping of the major clinical mastitis resistance 
QTL on BTA6. (A) Association mapping performed with imputed BovineHD variants on BTA6. The 
association signal near BTA 6:88.6 Mb, shown in other dairy cattle populations was replicated in the cur-
rent Dutch HF population. (B) Fine-mapping performed with imputed WGS variants in BTA 6:84-93 Mb 
region. A strong association signal was shown in a 200-Kb region (BTA 6:88.5-88.7 Mb), spanning over GC 
gene. Our lead SNP (rs110813063, marked with an arrow and vertical dotted line) has not been reported as 
a candidate SNP in other CM fine-mapping studies. CM candidate SNPs from other fine-mapping studies 
are marked as yellow. (C) Conditional analyses including GC CNV as a covariate nullify the association 
signal (lead SNP is marked with an arrow).

4.4.2. A multi-allelic CNV is in high LD with the lead associated 
SNP for CM resistance QTL on BTA 6

Our lead associated SNP (rs110813063, hereafter shorten as lead SNP) was located within a 
~12 kb CNV encompassing the 14th exon of GC (Figure 4.2 A). This CNV, present in both 
dairy and beef cattle populations (Kommadath et al. 2019), was reported to be in high LD 
with the candidate SNP for CM resistance QTL in a Norwegian Red population (Olsen et al. 
2016). Thus, we hypothesized that the CNV might be the causal variant underlying this QTL. 
Using our CNV calling pipeline, we characterized the CNV using WGS data of 266 HF ani-
mals, exploiting split-read, pair-end mapping, and read depth evidence, confirmed the presence 
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of the ~12 kb CNV at BTA 6:88,681,767-88,693,545 (hereafter referred to as GC CNV; Sup-
plementary Fig. 1). The 14th exon of GC, encompassed by the CNV, is a 3’ alternative exon, 
only accounting for minority of the total GC expression (Olsen et al. 2016). The distribution of 
normalized read-depth of the CNV region suggested a multi-allelic locus, where putative copy 
number (CN) alleles include CNs 1, 4, 5, and 6 (Figure 4.2 B-C). 

Figure 4.2. 
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Discovery of multiallelic GC CNV using deeply sequenced genomes and famil-
ial structure. (A) Schematic overview showing the lead associated SNP and ~12 kb CNV overlapping 
with GC. GC is a reverse oriented gene, consisting of 14 exons, of which two last exons are non-coding. 
Five CNV tagging SNPs were present within the GC CNV and marked with black asterisks (the middle 
asterisk covers three tagging SNPs). Among them, the first SNP, which was also the lead SNP, was in 
perfect LD with the GC CNV (r2=1), whereas the rest were in high LD (r2>0.98). The hash marks at the 
upstream and the intronic region of GC indicate CM resistance candidate SNPs reported by others (Cai et 
al. 2018; Olsen et al. 2016). (B) Sequencing depth difference between the CNV region and normal region 
was used to infer copy numbers. (C) A Histogram of read depth values shows that majority of animals 
fall into diploid copy number of 2, 5 and 8, and some minor peaks occur at diploid copy number of 6, 7, 
9 and 10. Based on this diploid CNs, we inferred haploid CNs of 1, 4, 5, and 6. We showed possible allelic 
combination(s) above each diploid CN. The diploid CN10 could be comprised of either CN5/CN5 or CN4/
CN6; however, our results showed that it was always CN4/CN6. (D) Familial information and background 
haplotypes were used to phase the copy number and thus revealed how the CNV segregates in trios. The 
upper family tree shown with animal signs stands for diploid copy numbers, and the lower tree shows 
haploid copy numbers (the phase results of the diploid CNs).

We determined corresponding CN genotypes (e.g., individuals with CN 2 and 6 would be 
respectively carriers of alleles CN1/CN1 and CN1/CN5) for all but those individuals with 
10 copies, that could be either CN4/CN6 or CN5/CN5. In all sequenced duos or trios, these 
inferred genotypes were compatible with Mendelian segregation rules (Figure 4.2 D), and no 
genotype incompatibility was observed. Genotypes from relatives of individuals with 10 cop-
ies allowed us also to deduce that all carriers of 10 copies were CN4/CN6. Carriers of alleles 
CN5 or CN6 were restricted to a limited number of families and the segregation of these two 
alleles perfectly matched haplotype transmission from parents to offspring (Supplementary 
Fig. 2). An analysis of homozygosity-by-descent (HBD) in all sequenced individuals revealed 
that alleles CN 4, 5 and 6 share a common haplotype, identical-by-descent for at least 200 kb 
(≥600 SNPs; Supplementary Table 3). The HBD segments were rare and extremely short at 
the CNV position in CN 1 individuals, indicating that this allele was associated with different 
haplotypes. 
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In summary, we identified four alleles at the GC CNV locus: CN 1 corresponds to a single 
copy and considered wildtype (Wt) given the high haplotypic diversity, whereas alleles CNs 
4-6 correspond to multiple copies (Mul), with four to six copies (Figure 4.3 A). In our popu-
lation, CN 1 and CN 4 were the most frequent alleles (0.39 and 0.54, respectively), while CN 
5 and CN 6 were rare (0.03 and 0.05, respectively; Figure 4.3 A). Furthermore, the GC CNV, 
coded as a biallelic variant, where CN 1 (Wt) was the reference allele and CNs 4-6 (Mul) were 
grouped together as the alternative allele, was in perfect linkage (r2=1) with the lead SNP 
(rs110813063). The C allele, associated with high CM resistance, tagged CN1, whereas the T 
allele, associated with low CM resistance, tagged CNs 4-6. Thus, this lead SNP was used as a 
surrogate marker for the GC CNV in subsequent analyses. 

The GC CNV contained five tagging SNPs, including the lead SNP (r2≥0.98; Figure 4.3 B). 
These five tagging SNPs showed an allelic imbalance pattern in WGS data of Wt/Mul indi-
viduals (Figure 4.3 C) due to a disproportionally high number of reads supporting alternative 
alleles on the duplication haplotypes. There was no SNP uniquely tagging CNs 4-6 separately, 
due to their similar and recent haplotypic background.

Figure 4.3. 
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4.4.3. Recent positive selection strongly favoured a haplotype har-
bouring the GC CNV

In livestock breeding, artificial selection for economically important traits (i.e. high CM resis-
tance) potentially drives desired alleles to fixation and removes alleles with negative effects (i.e. 
low CM resistance) from the population. Thus, it is intriguing that the allele associated with 
low CM resistance (CNs 4-6) is highly frequent in Dutch HF cattle (combined AF=0.58). We 
postulated two alternative hypotheses: (1) GC CNV is pleiotropic, conferring positive effects 
on different traits under selection, contrary to a negative effect on CM resistance, or (2) GC 
CNV is in high LD with a causal variant of a strongly selected trait, and therefore, genetic 
hitch-hiking increased the frequency of the low CM resistance allele. In both cases, the GC 
CNV would be associated with a selected haplotype. 

Thus, we scanned BTA 6 for selection signatures based on integrated Haplotype Score (iHS; 
Gautier et al. 2017; Voight et al. 2006), using WGS haplotypes from the 266 HF animals. 
Of the two strong signals of selection identified near the 79 and 89 Mb regions (-log10P>5; 
Supplementary Fig. 3), the latter was only ~200 kb away from the GC CNV, and thus was 
further inspected (Figure 4.4 A). The extended haplotype homozygosity (EHH), centred at the 
iHS lead SNP (BTA 6:88,861,709, AF=0.28) revealed a strongly favoured haplotype, which 
extended outwards further than the non-selected haplotypes (Figure 4.4 B). As expected, CNs 
4-6 were located in the strongly selected haplotype, whereas CN 1 was in the non-selected 
haplotypes. In addition, this finding was in line with our HBD results, where homozygous 
CNV carriers (CNs 4-6) shared long HBD haplotypes, whereas homozygous non-CNV carriers 
(CN 1) did not. 

These findings supported our hypothesis that a strong positive selection acted upon the region 
containing the GC CNV. Given the antagonistic effects of the CM resistance QTL on MY (Ol-
sen et al. 2016) and relevance to dairy cattle breeding (Miglior et al. 2017), we deemed MY as 
a potential target of the selection signature we identified. To confirm whether CM resistance 
and MY are modulated by the same variant (pleiotropy) or two different variants (LD), the 
10-Mb window (BTA 6:84-93 Mb) harbouring the GC CNV was fine-mapped for MY. A strong 
association signal appeared in 89.08 Mb region, ~400 kb away from the GC CNV (-log10P=7.5; 
Figure 4.4 A). The MY lead SNP was found at 89,077,838-bp and the G allele was associated 
with high MY, whereas the T allele was associated with low MY (AF=0.45). Regardless of the 
~400-Kb distance, the MY lead SNP and the GC CNV were in high LD (r2 = 0.88). Of note, 
the iHS lead SNP was located between the association signals for CM resistance and MY (Fig-
ure 4.4 A). We re-evaluated the EHH results and found that the strongly selected haplotype 
harbours CNs 4-6 alleles of the GC CNV and the G allele of the MY lead SNP, implying that 
the strong selection resulted in low CM resistance and high MY (Figure 4.4 B). We sought to 
disentangle these two QTL further to elucidate whether they are in pleiotropy or LD. However, 
due to high LD in the region and limitation in the data set (only 13 out of ~4,000 bulls carrying 
favourable recombinant haplotypes), this was not possible with the current data.
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Figure 4.4. 
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Selection signature scan and trait association (clinical mastitis resistance and 
milk yield) plot. (A) A 10-Mb region with a strong selective signature signal was zoomed in (BTA 6: 84-
93 Mb). Association mapping results from imputed WGS variants on CM resistance (dark blue) and MY 
(yellow) are shown in the upper panel; iHS results are shown in the lower panel (black). The CM resistance 
association peak occurs at the left side of the iHS peak, whereas MY association peak appears on the right 
side of the iHS peak. The red vertical line marks GC CNV. A 1-Mb region covering GC CNV, iHS lead 
SNP, and MY lead SNP are marked with translucent blue. (B) The extended haplotype homozygosity 
of the 1-Mb region marked in panel (A) is shown, together with four genes annotated in this region (top 
of the figure). The major haplotype shown in the upper part (black) branches outwards, implying recent 
positive selection acted upon this haplotype. The non-selected haplotypes, shown in the lower side (blue) 
rapidly break down from the iHS lead SNP. (C) Pairwise D’ and r2 values between GC CNV, iHS lead 
SNP, and MY lead SNP in the ~4,000 daughter proven bulls. A screenshot made from Haploview software 
(Barrett et al. 2005)

Additionally, we fine-mapped other dairy cattle traits, in an attempt to identify other potential 
selection target trait(s). Our results showed that the GC CNV was the lead variant for body 
condition score (BCS) and calving interval (CI; -log10P=21.4 and 6.6, respectively). Remark-
ably, GC CNV had a stronger association signal for BCS than it did for MY (Supplementary 
Fig. 4). The CNs 4-6 allele, which was associated with low CM resistance, was correlated with 
low BCS (meaning low body fat content) and longer CI (meaning low fertility). The SNP 
association p-values obtained from either CM resistance and BCS or CM resistance and CI, 
clearly colocalized, underscoring that these QTL are driven by the same variant, which is likely 
to exert pleiotropic effects on each of these traits (Supplementary Fig. 3 and Supplementary 
Table 4). 
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4.4.4. GC is the most functionally relevant gene underlying the 
CM resistance QTL on BTA 6

Our fine-mapping results hinted at transcriptional regulation as an underlying mechanism(s) 
of the CM resistance QTL, as our lead SNP was found in non-coding region. Thus, we mapped 
cis-expression QTL (further referred to as eQTL), to (1) identify shared variant(s) that are 
driving both local association and eQTL signals, and (2) to corroborate the causality of the 
candidate gene GC in the major CM resistance QTL. Prior to eQTL mapping, we firstly de-
termined the most biologically relevant tissue(s) for our investigation. In the human transcrip-
tome database (Ardlie et al. 2015; Brawand et al. 2011; Lizio et al. 2019; Fagerberg et al. 2014; 
Papatheodorou et al. 2018; The ENCODE Project Consortium 2012), GC is predominantly 
expressed in the liver, whereas breast tissue showed no expression (Supplementary Table 5). 
Also, previous dairy cattle transcriptome studies showed that GC is expressed in the liver, 
kidney, and cortex, but not in the mammary gland (Fang et al. 2017; Olsen et al. 2016; Free-
bern et al. 2020). 

Therefore, we performed eQTL mapping within the cis-regulatory range (+/- 1Mb region 
from the GC CNV), using liver RNA-seq data and Bovine HD genotype of lactating HF cows 
(n=175). Since GC CNV is not in the BovineHD array, the GC CNV genotypes were obtained 
by (1) imputing BovineHD genotypes to WGS level variants and (2) genotyping the GC CNV 
directly. Direct genotyping was done by targeting six polymorphic sites (CN 1 as reference 
allele and CNs 4-6 as alternative allele) in the GC CNV (Supplementary Table 6). The best 
probe (BTA6:88,683,517) among the six showed 100% compatibility with the imputed GC 
CNV genotypes, underlining that our imputation approach was robust. Hence, we used the 
imputed genotypes (BTA6:87-89 Mb) to map eQTL further. 

The RNA-seq data was mapped using a reference guided method, where both reference an-
notated transcripts and novel transcripts can be discovered. Our RNA-seq data detected two 
different GC transcript isoforms: a canonical and an alternative transcript (Figure 4.5 A). The 
former consisted of 13 exons, not encompassing the GC CNV, and accounted for a majority 
of overall GC expression (~98%). The latter shared the first 12 exons with the canonical tran-
script, however, it used an alternative 3’ exon, the 14th exon, which is located inside the GC 
CNV. Expression of the alternative transcript was relatively low (~2% of the total GC expres-
sion). The reference gene set used for transcript assembly included the canonical form, but 
not the alternative transcript. Thus, GC gene-level eQTL mapping was done on the canonical 
form, and we additionally mapped transcript-level eQTL for the alternative GC transcript. 

Of the 13 genes annotated within the cis-regulatory range of CNV (+/- 1 Mb), GC was abun-
dantly expressed (≥5,000 transcripts per million (TPM)) and other genes were either lowly 
expressed (0.1<TPM<50), or not expressed (Figure 4.5 B). Our gene-level eQTL mapping 
results discovered highly significant cis-eQTL for GC. The GC cis-eQTL was found in the BTA 
6:88.68-88.88 Mb region (-log10P>23; Figure 4.5 D). The GC CNV was one of the top vari-
ants within the eQTL peak (-log10P=24.4) and was in high LD with the GC eQTL lead SNP 
(-log10P=25.4; r2=0.88). P-values for GC expression and CM resistance were highly correlated 
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(ρ=0.68; Figure 4.5 E), where CNs 4-6 were associated with increased GC expression and low 
CM resistance (Figure 4.5 F). 

Figure 4.5. 
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eQTL mapping and colocalization of fine-mapping and eQTL mapping results 
for GC and the non-coding RNA. (A) A Schematic overview of the GC gene structure and position 
of the GC CNV. Our data detected two GC transcripts, where the canonical form account the majority 
of the expression (98%) and an alternative form only counting for minor expression (2%). (B) eQTL was 
mapped for the genes located in a 2-Mb bin (BTA6:87.68-89.68). Of the 13 genes annotated in this bin, 
GC showed predominantly high expression (>5,000 TPM), whereas the rest were lowly expressed or not 
expressed at all. The eQTL were mapped for GC and SLC4A4. (C) CM resistance fine-mapping results 
were shown for the 2-Mb bin, where eQTL was mapped. The color scale indicates the degree of pair-wise 
LD (r2) between the GC CNV and other SNPs. Annotation of genes in this region is drawn as black bars. 
Six genes on the left part are AMBN, JCHAIN, RUFY3, GRSF1, MOB1B, and DCK. (D) eQTL mapping 
results for GC (canonical transcript). (E) P-values obtained from CM resistance fine-mapping and GC 
eQTL mapping (canonical transcript) were correlated. The GC CNV is located in the right upper corner 
(ρ=0.68), showing that it is significant for both fine-mapping and eQTL mapping. (F) The box plot shows 
altered GC (canonical transcript) expression depending on GC CNV genotypes. (G) eQTL mapping result 
for GC (alternative transcript). (H) P-values obtained from CM resistance GWAS and GC eQTL map-
ping (alternative transcript) were correlated. The GC CNV is located in the right upper corner (ρ=0.74), 
showing that it is significant for both fine-mapping and eQTL mapping. (I) The box plot shows altered 
GC (alternative transcript) expression depending on GC CNV genotypes. Panels C-E, G, H were made 
with LocusCompare programme (Liu et al. 2019)
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Additionally, cis-eQTL for Solute Carrier Family 4 Member 4 gene (SLC4A4), involved in bi-
carbonate secretion and associated with renal tubular acidosis, was found in BTA 6:88.67-89.07 
Mb (-log10P>7, Supplementary Fig. 5). The lead SNP for SLC4A4 eQTL (BTA 6:88,672,979, 
-log10P=7.75) was found ~9 kb away from GC CNV, which also showed high significance 
(-log10P=7.1). The GC CNV and the SLC4A4 eQTL lead SNP were in high LD (r2=0.99). 
P-values obtained from SLC4A4 eQTL mapping and CM resistance were highly correlated 
(ρ=0.82), and CNs 4-6 were associated with increased SLC4A4 expression (Supplementary 
Fig. 5). 

Additionally, we mapped a transcript-level eQTL for the alternative GC transcript. Intrigu-
ingly, the eQTL signal was driven by GC CNV tagging SNPs, followed by the second most 
significant variant, GC CNV (-log10P=16.9 and 16.4, respectively; Figure 4.5 G). P-values for 
alternative GC transcript expression and CM resistance were correlated even stronger than 
the canonical transcript (ρ=0.74; Figure 4.5 H), where CNs 4-6 corresponded to an increased 
expression of the alternative GC transcript (Figure 4.5 I).

Our results indicate GC as a promising candidate gene, given the strong eQTL signal. On 
the contrary, high LD between GC CNV and the SLC4A4 eQTL lead SNP (r2 =0.99) implied 
that SLC4A4 could be a candidate gene. To prioritize between the two candidate genes, GC 
and SLC4A4, we used summary data-based Mendelian randomization (SMR) analysis (Zhu 
et al. 2016), which estimates associations between phenotype and gene expression, aiming at 
identifying a functionally relevant gene, underlying GWAS hits. Our result showed GC to be 
the only gene whose expression was significantly associated with CM resistance association 
(-log10P=6), whereas SLC4A4 was below the statistical threshold (-log10P=4.9; Supplementary 
Table 7). A subsequent analysis, heterogeneity in dependent instruments (HEIDI; Zhu et al. 
2016), was conducted to test whether the significant association between association hit and 
eQTL shown for GC was induced by a single underlying variant or two variants that are in 
LD (i.e. association hit variant is in LD with eQTL lead SNP). The result suggested a single 
underlying variant modulating both CM resistance association and GC eQTL (PHEIDI = 0.06). 
Thus, we confirmed GC as the most promising causal gene underlying CM resistance QTL, 
whose expression affects the CM resistance phenotype. 

4.4.5. A putative enhancer located in the GC CNV likely modu-
lates the level of GC expression 

We subsequently exploited epigenomic data sets to infer the functions of candidate variants in 
the 200-kb GC eQTL region (BTA 6:88.68-88.88 Mb; Figure 4.6 A). Bovine liver epigenomic 
data, interrogating two histone modifications (ChIP-seq for H3K27ac and H3K4me3 marks) 
(Villar et al. 2015) and open chromatin regions (ATAC-seq) were investigated to infer func-
tional contexts (i.e. active promoters and enhancers). 

The ChIP-seq data predicted one active promoter and three active enhancers, overlapping with 
ATAC-seq peaks, supporting the active status of the regulatory elements along GC (Figure 4.6 
A). Of the three putative enhancers identified, GC harbours two putative enhancers, one in 
the 1st intron and the other inside the GC CNV. The one located inside the GC CNV (further 
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referred to as GC CNV enhancer) could be considered highly active, given the strong H3K27 
acetylation mark. According to the comparative genomics catalogue of regulatory elements 
in liver (Villar et al. 2015), the GC CNV enhancer is cattle-specific, whereas the intronic en-
hancer is conserved between human, mouse, cow, and dog. These two putative enhancers were 
both supported by corresponding ATAC-seq signals, with a stronger peak shown at the GC 
CNV enhancer (Figure 4.6 A). 

Figure 4.6. 
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inspected in GC eQTL region using ChIP-seq (H3K27ac and H3K4me3) and ATAC-seq data. The GC 
CNV genotype of the ATAC-seq sample was Mul/Mul (inferred based on CNV tagging SNP genotypes and 
read-depth increase in WGS data). The GC CNV genotype of the ChIP-seq sample was unknown (Supple-
mentary Table 9). (A) The GC eQTL region was zoomed in. In this region, GC is the only annotated gene. 
The GC CNV is marked with the translucent blue, and CM resistance candidate SNPs reported by other 
studies (Olsen et al. 2016; Cai et al. 2018) are marked with translucent yellow. Other significant eQTL 
lead SNPs in this region are marked with translucent pink. We overlaid ChIP-seq data to identify putative 
enhancers and promoters (ChIP-seq tracks; red). Furthermore, liver ATAC-seq data revealed highly acces-
sible chromatin regions, supporting the regulatory elements discovered by ChIP-seq data sets (ATAC-seq 
tracks; blue). (B) We further zoomed in to the ATAC peak within the GC CNV, and discovered that the 
ATAC peak overlaps with MER 115. The predicted hepatic transcription factor binding sites are marked 
with translucent grey. (C) Transcription factor binding motifs are shown together with the ATAC signal 
located inside the GC CNV.

Additionally, this strong ATAC signal overlapped with a repetitive element, MER115, from 
the DNA transposon family, hAT-Tip100 (Figure 4.6 B). Some DNA transposons obtain en-
hancer function during evolution (Cao et al. 2019), and hAT-Tip100 was shown to function as 
enhancer in humans (Villar et al. 2015). However, although the human orthologous region har-
bours MER115, this repeat did not show enhancer activity in humans (The ENCODE Project 
Consortium 2012), underlining cattle-specific enhancer activity. Finally, we scanned the ATAC 
peak region inside the GC CNV, searching for transcription factor binding (TFB) motifs using 
Homer (Heinz et al. 2010). We found strong evidence for five motifs, including transcriptional 
enhancer factor (TEAD) and hepatocyte nuclear factor 4 alpha (HNF4A), supporting for the 
presence of the active enhancer within the GC CNV (Figure 4.6 C). 
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4.5. Discussion

In this study, we dissected a prominent CM resistance QTL in Dutch HF cattle, by integrating 
fine-mapping, eQTL mapping, and functional (epi)genomics data. Our findings revealed that 
the lead variant is the GC CNV, a 12-kb multi-allelic CNV, which harbours a putative cis-reg-
ulatory element which targets GC. This CNV drives both the CM resistance association and 
the GC eQTL signals, underscoring GC as the likely causal gene underlying this QTL.

Identifying causal variants from GWAS can be challenging, since, often non-causal SNPs in 
high LD with the causal variant appear as lead SNPs (Gallagher and Chen-plotkin 2018). 
Notably, our lead candidate SNP (rs110813063) has not been considered a strong candidate in 
other fine-mapping studies (Sahana et al. 2014; Cai et al. 2018; Olsen et al. 2016). The func-
tion of our lead SNP, located 4-kb downstream of GC, was equally elusive, compared to other 
candidate SNPs that were located in the intronic region of or upstream of GC (Sahana et al. 
2014; Cai et al. 2018; Olsen et al. 2016; Tribout et al. 2020). Nonetheless, the allelic imbalance 
pattern in our candidate SNP (Figure 4.3 C), together with a previous report about a CNV 
in high LD with the GWAS candidate SNP (Olsen et al. 2016), motivated us to hypothesize 
that the CNV might be the causal variant. As expected, we corroborated that our lead SNP, 
rs110813063, is a perfect tag SNP of the GC CNV (r2=1). 

There are several explanations why previous fine-mapping studies missed rs110813063. Possi-
bly, this SNP was absent in the GWAS variant set, as the standard SNP quality control (QC) 
criteria (i.e. removing SNPs with high depth and/or unbalanced allelic ratio) tend to eliminate 
SNPs inside CNVs. Alternatively, rs110813063 was present, but wrongly genotyped, due to 
highly disproportional allelic depth (Figure 4.3 C). Hence, one may wonder whether a SNP-
based GWAS approach, relying on a stringent QC, is sufficient in identifying causal variants, 
in a form other than point mutations. The answer might depend on the type of variant: studies 
showed that most deletions are well captured by tagging SNPs, whereas most duplications 
and multi-allelic CNVs are poorly tagged (Sudmant et al. 2015; Handsaker et al. 2015). Note 
that the EHH analysis could clearly discern the GC CNV carrying haplotype (Figure 4.4 B), 
showing the merit of a haplotype-based approach in delineating trait-associated structural 
variations, as demonstrated in earlier examples (Zhang et al. 2012; Durkin et al. 2012; Kadri 
et al. 2014; Mishra et al. 2017). Also, an exploratory check for presence of CNVs might be 
beneficial for fine-mapping studies. 

To connect the discovery from statistical associations to the molecular function, we showed 
that the association mapping signal was driven by the underlying molecular signal, expression 
of GC (Figure 4.5). Many heritable diseases are manifested in a tissue-specific manner (Heksel-
man and Yeger-Lotem 2020). Our trait of interest, CM, is manifested in the mammary glands, 
and hence it was considered a biologically relevant tissue for eQTL mapping. However, both 
large-scale human transcriptome databases (Supplementary Table 5) and cattle transcriptome 
studies indicated liver as the main organ of GC expression (Freebern et al. 2020; Olsen et al. 
2016). This discrepancy shows that prior knowledge of tissue-specific manifestation of a trait 
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is crucial for elucidating its molecular basis. In cattle, eQTL data was generated from diverse 
tissues (adrenal gland, blood, liver, mammary gland, milk, and muscle ;Littlejohn et al. 2014, 
2016; Kemper et al. 2016; Brand et al. 2016; Lopdell et al. 2017; Leal-Gutiérrez et al. 2020; 
Van Den Berg et al. 2019), and some studies utilized the data sets in confirming causality of 
candidate genes (Littlejohn et al. 2014, 2016; Kemper et al. 2016; Lopdell et al. 2017). We ex-
pect that the availability of eQTL data sets of diverse tissues and cell types will lead to rapid 
discovery and confirmation of candidate genes in farm animals in the future.

Bovine epigenomic data sets were utilized to prioritize candidate variants for the CM resis-
tance QTL and eQTL for GC expression. The ChIP-seq and ATAC-seq data supported three 
active enhancers and one active promoter in the region of interest (Figure 4.6 A). Of these 
regulatory elements, the GC CNV enhancer is considered the most likely causal variant, as 
multiple copies of enhancers can increase the target gene expression (Ngcungcu et al. 2017). 
Hence, we propose that altered GC expression, mediated via multiplicated enhancers, is likely 
the key regulatory mechanism underpinning this QTL. Interestingly, candidate causal variants 
reported by previous studies (Olsen et al. 2016; Cai et al. 2018) were found in the 1st intron 
of or upstream of GC, where an active enhancer and an active promoter were found (Figure 
4.6 A). In humans, tissue-specific enhancers outnumber protein coding genes (The ENCODE 
Project Consortium 2012; Long et al. 2016). Hence, a gene can be regulated by more than one 
enhancer, and a secondary enhancer is referred to as a shadow enhancer (Scholes et al. 2019). 
A recent study showed that redundant enhancers function in an additive manner, thus con-
ferring phenotypic robustness (e.g. activities of multiple enhancers act together, thus removal 
of an enhancer still results in discernible phenotypes; Osterwalder et al. 2018). In light of this 
finding, we speculate that the two enhancers located in GC, might have additive effects on 
GC expression.

Mammalian enhancers evolve rapidly, compared to promoters (Villar et al. 2015). Also, rapidly 
evolving enhancers were exapted from ancestral DNA sequences and associated with positively 
selected genes (Villar et al. 2015). The GC CNV enhancer is likely one of these rapidly evolving 
enhancers, given that (1) it exapted MER115, which does not function as enhancer in other 
species, (2) it is found in a selective sweep which harbors GC, and (3) it is cattle-specific. 
These findings strongly suggest that utilizing epigenomic data of species other than the one 
of interest, can be misleading, as it lacks species-specific regulatory elements. This provides 
a compelling reason to build species-specific epigenome maps, as already embarked upon by 
the international Functional Annotation of Animal Genomes (FAANG) project (Giuffra and 
Tuggle 2019; The FAANG Consortium et al. 2015). With this community effort, a wider range 
of species-specific regulatory elements underlying economically important QTL is expected to 
be unraveled in the future.

The major CM resistance QTL is known to have antagonistic effects for MY and our results 
confirmed this (Olsen et al. 2016; Cai et al. 2018). The trade-off between CM resistance and 
MY suggests that this locus might be under balancing selection (Hedrick 2015). One of the 
drivers of balancing selection is strong directional selection, which is common in livestock 
breeding (Georges et al. 2019). Of the two traits of interest, MY has been the primary goal of 
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dairy cattle breeding (Miglior et al. 2017), and hence it seems plausible to assume that this 
locus is under balancing selection. Next to this, we had a particular interest in understanding 
the genetic basis of the antagonistic effects. The genetic modes considered were (1) a single 
pleiotropic variant affecting two traits and (2) two independent causal variants for each trait, 
in high LD. In case of pleiotropy, a particular genomic region cannot enhance both traits 
simultaneously through breeding. On the contrary, in case of LD, selection for recombinant 
haplotypes, containing favourable alleles for both traits, enables simultaneous improvement on 
the two traits. Only a small number (0.3%) of the studied animals had recombinant haplotypes 
(13 out of 4,142 bulls), and hence our data set lacks sufficient power to distinguish LD from 
pleiotropy. Future studies might consider two approaches for delineating this issue. The first is 
to exploit a daughter design by obtaining sufficient daughters of the 13 recombinant haplotype 
carrier Dutch HF bulls (Georges 2007). Another possibility would be to harness data from dif-
ferent breed(s). A dairy cattle breed that has both MY and CM resistance recorded, yet with 
low LD in the QTL region, would be most useful. Otherwise, a meta-GWAS of multiple cattle 
populations can aid in distinguishing between LD and pleiotropy. 
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We attempted to integrate the findings from the current study and further speculate on how 
GC expression and CM resistance are linked, assuming that the level of GC expression and 
DBP is correlated; meaning absence of post-transcriptional/translational regulation (Figure 
4.7). DBP binds to and transports vitamin D (Daiger et al. 1975), yet it plays additional roles 
in bone development, fatty acid transport, actin scavenging, and modulating inflammatory 
responses (see Gomme and Bertolini 2004 and Bouillon et al. 2020 for review). To start with, 
DBP modulates immunity as a macrophage activating factor (DBP-MAF), when deglycosylat-
ed via glycosidases of T- and B- cells (Yamamoto and Kumashiro 1993; Swamy et al. 1997) and 
therefore enhances the immune response. Accordingly, we could hypothesize that CNV carriers 
have larger amounts of DBP, and subsequently improved immunity, leading to higher CM re-
sistance. However, this hypothesis contradicts with our findings, as CNV carriers were shown 
to have lower CM resistance. Alternatively, DBP regulates the amount of freely circulating 
vitamin D metabolites (Bikle and Schwartz 2019). According to the free hormone hypothesis, 
only free vitamin D metabolites are able to cross the cell membrane, and are thus biologically 
available (Chun et al. 2014). In humans, only 0.03 % of 25(OH)D, an indicator of vitamin D, 
is free, whereas the majority of vitamin D is bound either to DBP (85%) or to albumin (15%) 
(Bikle and Schwartz 2019). Under these circumstances, CNV carriers, having a large pool of 
DBP, can be hypothesized to have lower levels of biologically available vitamin D, as postu-
lated in human studies (Sinotte et al. 2009; Lauridsen et al. 2005). Thus, presumably, if CNV 
carriers have low amounts of free vitamin D, which may be termed as ‘vitamin D deficiency’, 
low CM resistance in these animals seems like a logical consequence (Figure 4.7). 

Although vitamin D has been considered crucial in bone health (Horst et al. 2005), a recent 
review showed an inverse correlation between vitamin D concentrations and an extensive range 
of ill-health outcomes in humans (Autier et al. 2014). Given the pervasive associations between 
vitamin D and health conditions, there may be other associated traits induced by vitamin D 
deficiency. Indeed, GC CNV showed strong associations with BCS and CI, which are known 
to be negatively correlated with MY (e.g. cows with low BCS have longer CI and higher MY 
(Berry et al. 2003; Pryce et al. 2000), indicating pleiotropy (Supplementary Fig. 4). The CNs 
4-6, which were associated with low CM resistance, were associated with longer CI, meaning 
poor fertility. CI, a measure of duration from one calving to the next, is an indicator of fertility 
issues such as perturbations in the oestrous cycle, and/or anovulation (Santos et al. 2016). Hu-
man studies reported ovarian disfunction induced by vitamin D deficiency (Irani et al. 2014). 
This finding provides convincing evidence that the GC CNV might be the underlying variant 
inducing vitamin D deficiency and suboptimal female fertility. Furthermore, pleiotropic effects 
of the GC CNV indicated that CNs 4-6 were associated with low CM resistance and low BCS. 
This finding fits with the results found in HF cattle where low BCS was genetically correlated 
with high disease incidence (Dechow et al. 2004), although the causal relationship between 
CM resistance and BCS remains unknown. Intriguingly, human studies showed contradictory 
results: obesity, a condition analogous to high BCS, predisposes patients to vitamin D deficien-
cy, leading to disease susceptibility (Chun et al. 2014). These opposing consequences of body 
composition traits possibly hint at an ‘optimum’ body fat amount, where an organism can 
function well without compromising its health. 
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4.6. Conclusions

In this study, we dissected the major CM resistance QTL on BTA 6, integrating fine-mapping, 
CNV calling, eQTL mapping, and functional prioritization of candidate variants. We revealed 
a multi-allelic CNV harbouring a strong enhancer targeting GC, as the likely causative variant. 
Our findings revealed that the candidate causal gene GC is likely regulated by an enhancer lo-
cated in the GC CNV. We speculate that GC CNV carriers which were shown to have high GC 
expression would have a larger amount of DBP, and by extension, low amount of biologically 
available vitamin D. This physiological condition probably puts animals into a state compa-
rable to vitamin D deficiency and leads to low CM resistance. Moreover, we report evidence 
of pleiotropic effects of the GC CNV for other economically important traits as BCS, CI, and 
MY, which likely revolves around the vitamin D pathway. The current study provides a novel 
example of multiplicated cis-regulatory elements playing pleiotropic roles on various polygenic 
traits in dairy cattle. 

4.7. Materials and methods

4.7.1. Ethics statement

RNA-seq data used for eQTL mapping was obtained from liver biopsy samples collected from 
~14 day post-partum HF cows (n=178). The procedures had local ethical approval and com-
plied with the relevant national and EU legislation under the European Union Regulations 
2012 (S.I. No. 543 of 2012). The institutes involved in samples collection and the respective 
local ethical approval information is as following: 1) University College Dublin, approved by 
University College Dublin Animal Research Ethics Committee (approval number: AE18982/
P046), 2) Agri-Food and Biosciences Institute, approved by Animal Welfare Ethical Review 
Body of Livestock Production Science Branch (approval number: PPL2754), 3) Aarhus Uni-
versity, approved by Danish Veterinary and Food administration Animal Experiments Inspec-
torate (approval number: 2014-15-0201-00282), 4) Walloon Agricultural Research Centre, ap-
proved by ethical commission of Liège University (approval number: 14-1617), and 5) Leibniz 
Institute for Farm Animal Biology, approved by the State Office for Agriculture, Fishery and 
Food safety of Mecklenburg-Western Pomerania (approval number: MV 7221.3-1.1-053/13).

4.7.2. Whole genome sequencing and variant discovery
4.7.2.1. Whole genome sequence data

The genomes of 266 Dutch HF animals were sequenced. These 266 animals were closely related 
animals, where 240 were forming parents-offspring trios. The biological materials were either 
from sperm (males) or whole blood (females and males). Whole genome Illumina Nextera 
PCR free libraries were constructed (550bp insert size) following the protocols provided by the 
manufacturer. Illumina HiSeq 2000 instrument was used for sequencing, with a paired end pro-
tocol (2x100bp) by the GIGA Genomics platform (University of Liège). The data was aligned 
using BWA mem (version 0.7.9a-r786) (Li 2013) to the bovine reference genome UMD3.1 and 
converted into bam files using SAMtools 1.9 (Li and Durbin 2009). Subsequently, the bam files 
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were sorted and PCR duplicates were marked with Sambamba (version 0.4.6) (Tarasov et al. 
2015). All samples had minimum mean sequencing depth of 15X and the mean coverage of the 
bam files was 26X.

4.7.2.2. SNP calling and imputation panel construction

Variant calling was done using GATK Haplotype caller in N+1 mode. We applied Variant 
Quality Score Recalibration (VQSR) at truth sensitivity filter level of 97.5 to remove spurious 
variants. Using the trusted SNP and indel data sets which are explained elsewhere (Kadri et 
al. 2016), we observed that the VQSR step filtered out GC CNV tagging SNPs, possibly due 
to the overwhelmingly high depth in this region. Yet, GC CNV tagging SNPs were considered 
crucial in our research, as we considered that they could tag the GC CNV. Therefore, the 
genotypes of the GC CNV tagging SNPs obtained from the raw variant calling format (VCF) 
file were inserted in the VQSR filtered VCF file. While inspecting the CNV tagging SNPs, we 
discovered genotyping errors (three errors among 5 tagging SNPs of 266 individuals), where 
Ref/Alt was wrongly genotyped as Alt/Alt, due to severe allelic imbalance (where the number 
of alternative allele supporting reads is predominantly high). Using parent-offspring relation-
ships available in our data set, we confirmed that these were true errors, and hence they were 
manually corrected. Finally, the VCF file of sequence level variants in BTA 6:84-94Mb, con-
taining manually corrected GC CNV tagging SNPs was obtained. This VCF file, consisting of 
45,820 variants of 266 animals was used as an imputation panel for fine-mapping analyses. For 
analyses related to haplotype segregation among the 266 sequenced animals, haplotype sharing 
among carriers and identification of selection signatures, we further applied stringent variant 
filters on the VCF file as explained in Kadri et al (2018) to conserve only highly confident 
variants and to remove spurious genotyping and map errors.

4.7.3. QTL mapping and fine-mapping analysis
4.7.3.1. Phenotype and genotype data

We obtained BTA6 genotype and phenotypic data of 4,142 progeny tested HF bulls from 
Dutch HF cattle breeding programme (CRV B.V., Arnhem, the Netherlands). The phenotype 
data was consisting of 60 traits, which are routinely collected in the breeding programme, 
including clinical mastitis resistance (Supplementary Table 8). CM resistance was recorded as 
a binary trait, depending on the disease status registration done by farmers and on somatic 
cell count level of routine milk recording samples (CRV 2020). The estimated breeding values 
(EBVs; obtained based on BLUP as published in the national evaluation by cooperation CRV 
(Arnhem, the Netherlands; CRV 2020) were de-regressed to correct for the contribution of 
family members and de-regressed EBVs were used as phenotypes in an association analysis. 
The effective daughter contributions of the 4,142 bulls for CM resistance ranged between 25 
and 971.3, with an average of 204.3 and a standard deviation of 217. The 4,142 bulls were 
genotyped with a low density genotyping array (16K). Afterwards, the 16K genotype data was 
imputed in two steps, firstly to 50K density, based on two private versions of a Bovine 50K 
genotyping array, and the panel was consisting of 1,964 HF animals. It was further imputed to 
a higher density, using a panel of 1,347 HF animals genotyped with Illumina BovineHD Bead-
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Chip (770K). Subsequently, this genotype data was imputed to sequence level for the 10-Mb 
QTL region on BTA6 using the HF WGS imputation panel described above. The imputation 
was done with Beagle 4 (Browning et al. 2018), and variants with low minor allele frequency 
(MAF<0.025) and low imputation accuracy (allele R2<0.9) were filtered out.

4.7.3.2. Association model and conditional analysis

To confirm the presence of CM resistance QTL on BTA 6 in the Dutch HF population, we 
performed association mapping on BTA6 using imputed high density genotypes (28,669 SNPs 
on BTA6). The association mapping was performed SNP-by-SNP with a linear mixed model 
in GCTA (Yang et al. 2011). The following model was fitted :

y = 1µ +Xb + g + e
where y is the vector of phenotypes (de-regressed EBVs), 1 is a vector of ones, μ is the overall 
mean, X is a vector of SNP genotypes coded as biallelic variant (0, 1, or 2), b is the additive 
effect of the SNP which is being tested for association, g is the polygenic effect captured by 
a genomic relationship matrix (GRM; random effect), and e is the residual. The GRM was 
built with GCTA, based on 50K genotypes to avoid losing statistical power by including causal 
markers (Yang et al. 2014). The model assumed equal residual variances. A SNP was regard-
ed significantly associated with CM, when -log10P value was above 6.45 (chromosome-wide 
Bonferroni multiple-testing correction for 28,669 tests), at a nominal significance of p = 0.01. 
Subsequently, we repeated the association analysis in the BTA 6:84-94 Mb region, using the 
imputed sequence level variants (n=45,820) to fine-map the QTL. The association model used 
was same as described above. Finally, to test if the lead SNP explained the QTL signal com-
pletely we ran a conditional association analysis for the imputed sequence variants in BTA 
6:84-94 Mb region with the lead SNP as a covariate in the model.

4.7.4. CNV discovery and characterization of GC CNV

The CNV was called from the WGS data of 266 animals, using the Smoove pipeline (https://
github.com/brentp/smoove). This pipeline collects split and discordant reads using Samblaster 
(Faust and Hall 2014), and then calls CNVs using Lumpy (Layer et al. 2014). Afterwards, the 
CNV sites were genotyped using SVTyper (https://github.com/hall-lab/svtyper). Addition-
ally, we used Duphold (Pedersen and Quinlan 2019) to calculate read depth of the CNs at 
the GC CNV locus. Duphold exploits read depth between copy number variable regions and 
normal regions and calculates the ratio between these two. The integer diploid CNs obtained 
based on the Duphold coverage ratio values were assigned to the 266 animals. The CN distri-
bution showed peaks at diploid CNs of 2, and 5-10, implying four haploid CNs (1, 4, 5, and 
6) segregating at the GC CNV locus. Thus, possible haplotypic combinations for the diploid 
CNs would be: 2 (1/1), 5 (1/4), 6 (1/5), 7 (1/6), 8 (4/4), 9 (4/5), 10 (4/6 or 5/5). There was 
only one haplotypic combination possible for all the diploid CNs, except 10, were either (4/6) 
or (5/5) could form diploid CN 10. We confirmed the true presence of these CN alleles by 
taking advantage of our family structure. First, we verified that observed genotyped followed 
the Mendelian segregation rules. Next, we also checked that CN alleles transmission within the 
pedigree was in agreement with haplotype transmission. Haplotypes were reconstructed using 
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familial information and linkage information using LINKPHASE3 programme (Druet and 
Georges 2015). The program estimates also, at each marker position and for each parent-off-
spring pair, the probability that a progeny inherited the paternal or the maternal haplotype 
for its parents. 

To study the relationship between different CN alleles, we estimated homozygous-by-descent 
(HBD) probabilities at the CNV locus, and measured length of identified HBD segments. To 
that end, we ran with RZooRoH (Bertrand et al. 2019) a multiple HBD-class model described 
in (Druet and Gautier 2017), with four HBD classes and one non-HBD class with rates equal 
to 10, 100, 1000, 10,000 and 10,000, respectively. As this approach compares haplotypes with-
in individuals, it does not require haplotype reconstruction and is not affected by eventual 
phasing errors.

4.7.5. Selection signature analyses

The BTA 6 was scanned for haplotype based selection signatures observed in the sequence 
variants from the 266 animals. We used the integrated haplotype homozygosity score (iHS; 
Voight et al. 2006) using ‘rehh’ R package (Gautier et al. 2017) for within-population analysis 
of recent selection signatures. In order to unravel the selection target trait(s) we identified a 
number of traits within the routinely collected catalogue of 60 traits showing QTL signals in 
the 84-94Mb region on BTA 6 based on 16K GWAS results (EuroGenomics custom SNP chip; 
Boichard et al. 2018). Hence, we performed GWAS for these traits (BCS, CI, and MY) in BTA 
6:84-94Mb region based on imputed WGS variants to fine-map those QTL. The input files and 
the association model for the GWASs were the same as described above, except that pheno-
types used de-regressed EBVs of BCS, CI, and MY, respectively. The GWAS results of these 
traits were plotted against the GWAS result of CM resistance to characterize the colocalization 
of QTL signals, using the R package “LocusComparer” (Liu et al. 2019).

4.7.6. eQTL mapping and Summary data–based Mendelian ran-
domization analysis
4.7.6.1. RNA-seq data and eQTL mapping 

We used RNA-seq data produced by the GplusE consortium (http://www.gpluse.eu/; EBI Ar-
rayExpress: E-MTAB-9348 and 9871; Wathes et al. 2021). RNA-seq libraries were constructed 
using Illumina TruSeq Stranded Total RNA Library Prep Ribo-Zero Gold kit (Illumina, San 
Diego, CA) and sequenced on Illumina NextSeq 500 sequencer with 75-nucleotide single-end 
reads to reach average 32 million reads per sample. The reads were aligned to the bovine 
reference genome UMD3.1 and its corresponding gene coordinates from UCSC as a reference 
using HISAT2 (Kim et al. 2019). Transcript assembly was conducted with StringTie (Pertea 
et al. 2016), using reference-guided option for transcript assembly, which enables discovery of 
novel transcripts that are not present in the reference gene set. Reads were counted at gene- or 
transcript-level using StringTie. After data normalization using DESeq2 (Love et al. 2014), we 
performed principal component (PC) analyses and removed outliers (PC>3.5 standard devia-
tions from the mean for the top four PCs, n=2). Subsequently, the gene expression levels were 
corrected with Probabilistic Estimation of Expression Residuals (PEER; Stegle et al. 2012). 
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All animals were genotyped using Illumina BovineHD Genotyping BeadChip (770K). The 
genotype data was imputed to WGS level, using the imputation panel explained above, using 
Beagle 4 (Browning et al. 2018) and variants with low minor allele frequency (MAF<0.025) 
and low imputation accuracy (allele R2<0.9) were filtered out. Finally, the PEER corrected 
normalized gene expression was associated with the imputed WGS variants for 175 samples, 
using a linear model in R package “MatrixEQTL” (Shabalin 2012). 

4.7.7. Prioritizing the causal gene 

We prioritized the most functionally relevant gene for the CM resistance QTL on BTA 6, us-
ing SMR (version 1.03; Zhu et al. 2016), to estimate association between phenotype and gene 
expression. Input data required were summary statistics from CM resistance fine-mapping 
and eQTL mapping results explained above. Additionally, the program requires plink format 
genotype data to analyse LD in the region of interest, for which the imputed WGS variants 
(BTA 6:84-94 Mb) of 4,142 bulls were used. A subsequent analysis, heterogeneity in dependent 
instruments (HEIDI), was conducted to test whether the significant association between lead 
hit and eQTL shown for GC was induced by a single underlying variant or two variants that 
are in LD (i.e. lead associated variant is in LD with eQTL lead SNP). The statistical thresh-
olds for SMR (-log10P>5) and HEIDI (P>0.05) were benchmarked from the original paper 
(Zhu et al. 2016).

4.7.8. Functional genomics assay data

The human transcriptome data bases were examined to find out in which tissue GC is highly 
expressed via Ensembl website (release 101;Hunt et al. 2018). We downloaded liver ChIP-seq 
data (H3K27ac and H3K4me3) generated from four bulls from ArrayExpress (E-MTAB-2633; 
Villar et al. 2015). This ChIP-seq data was aligned to the bovine reference genome UMD3.1 
using Bowtie2 (Langmead and Salzberg 2012) and peaks were called using MACS2 (Zhang 
et al. 2008). A catalogue of mammalian regulatory element conservation (https://www.ebi.
ac.uk/research/flicek/publications/FOG15) was used to infer the conservation of the regula-
tory elements predicted from the ChIP-seq data sets. Next, ATAC-seq data was explored to 
see if chromatin accessible regions coincided with the histone marks obtained from the ChIP-
seq data. We obtained a two weeks old male HF calf’s liver ATAC-seq data from the GplusE 
consortium (ArrayExpress accession number: E-MTAB-9872). Data was analysed by following 
the ENCODE Kundaje lab ATAC-seq pipeline (https://www.encodeproject.org/pipelines/EN-
CPL792NWO/). Sequences were trimmed using Trimmomatic (Bolger et al. 2014) and aligned 
on the bovine reference genome UMD3.1 using Bowtie2 (Langmead and Salzberg 2012). Af-
ter filtering out low quality, multiple mapped, mitochondrial, and duplicated reads using 
SAMtools (Li et al. 2009) and the Picard Toolkit (http://broadinstitute.github.io/picard/), 
fragments with map length 146 bp were kept as nucleosome-free fraction. Genomic loci tar-
geted by TDE1 were defined as 38-bp regions centered either 4 (plus strand reads) or 5-bp 
(negative strand reads) downstream of the read’s 5’-end. ATAC-seq peaks were called using 
MACS2 (Zhang et al. 2008) (narrowPeak with options --format BED, --nomodel, --keep-dup 
all, --qvalue 0.05, --shift -19, --extsize 38). We inspected the presence of an enhancer in the 
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human orthologous region of the GC CNV, using ENCODE data (The ENCODE Project 
Consortium 2012) in the UCSC genome browser (Kent et al. 2002). Transcription factor (TF) 
binding motifs in ATAC-seq peak regions were discovered using Homer (Heinz et al. 2010). 
The TF motifs that are expressed in bovine or human liver are kept and shown in the figure 
(de Souza et al. 2018; Liu et al. 2008).

4.7.9. EuroGenomics custom array genotyping

We attempted to directly genotype the GC CNV in a biallelic mode (CN 1 as reference allele 
and CNs 4-6 as alternative allele). Probes targeting six polymorphic sites were designed in 
Illunima DesignStudio Custom Assay Design Tool were added to custom part of the EuroG-
enomics array (Boichard et al. 2018; Supplementary Table 6). DNA was extracted from the 
same biological material used for RNA-seq used for eQTL mapping (described above), and 
genotyped for the EuroGenomics array by the GIGA Genomics platform (University of Liège). 
The SNP genotypes were assessed using Illumina GenomeStudio software. Average call rate per 
probe was calculated to assess the quality of the probes. Finally, genotypes obtained from the 
highest quality (BTA6:88,683,517) was compared to the imputed GC CNV genotypes.
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4.13. Supplementary figures 
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4.13.1. Supplementary Figure 1  IGV screen shots for the GC CNV and the breakpoints. 
(A) The GC CNV (BTA 6:88,681,767-88,693,553) is shown in the IGV screen shot. The grey reads are 

normally mapped reads, whereas green ones are discordantly mapped reads, providing evidence for a 

tandem duplication. The sequencing coverage of the CNV region is higher than non-CNV region. (B) The 

left breakpoint is flanked by MIR repeat. (C) The right breakpoint does not overlap with repeats. (D, 

E) The proximal and distal breakpoints are zoomed in and the soft-clipped reads (positions where nucle-

otide sequences are written) information revealed the 5-bp microhomology “CACAT” at the breakpoints 

(marked as yellow). (F-H) A schematic overview demonstrating a tandem configuration of the GC CNV. 
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(F) The start and end of the GC CNV (shown in yellow-to-orange gradient colour) is flanked by non-CNV 

background, forming two junctions shown as 1-2 and 3-4 (marked with solid vertical lines). Sequencing 

reads from Wt (CN1) haploid genome can uniquely aligned to the 1-2 junction (blue-yellow reads) and 

the 3-4 junction (orange-green reads). The microhomology sequence is marked with grey shade. (G) A 

haploid CN4 genome forms unique junctions spanning over 3-2 formed by tandemly aligned 12-kb seg-

ments (marked with dotted vertical lines). Thus, reads from haploid CN4 would have reads spanning over 

3-2 junction (orange-yellow reads), in addition to reads aligned to junctions 1-2 and 3-4. (H) Alignment 

of a heterozygous genome (CN1/CN4) to the reference genome (Wt) is shown. Both CN1 and CN4 have 

reads spanning over 1-2 and 3-4 junctions that are present in the reference genomes; these reads can be 

uniquely mapped. Reads spanning over 3-2 junctions cannot be uniquely mapped to the reference genome; 

these reads will be discordantly mapped either at 1-2 or 3-4 junctions (grey lines). The 3-2 junctions reads 

can be aligned to the junction 1-2, however orange reads will appear as soft-clipped. Likewise, these reads 

can be aligned to the 3-4 junction. However, the 4 junction started with the “CACAT” sequence. Hence, 

the sequences after the microhomology will appear as soft-clipped (marked with dotted line and asterisk).
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4.13.2. Supplementary Figure 2  
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Family tree of animals having CN 5 and CN6 allele on GC 
CNV locus. In the panel of 266 animals, we observed CN 5 and CN6 alleles are mostly segregating among 
a small number of related animals. To show that CN5 and CN6 alleles are truly segregating, transmission 
probabilities at each marker position were calculated with LINKPHASE3. Transmission probabilities were 
estimated for paternal haplotypes (1 and 0 indicated transmission of the paternal and maternal allele, 
respectively). (A) Largest family of CN5 carriers. Each circle indicates one individual and the number 
inside the circle indicates the GC CNV copy number genotype. The numbers above each individual stand 
for the transmission probability. Questions marks mean individuals with no copy number information. 
Male animals are shown as squares, female animals are shown as circles, and animals with unknown gender 
are marked with diamonds. (B) Largest family of CN6 carriers. The legends are identical to panel (A).

4.13.3. Supplementary Figure 3  Chromosome-wide scan of selection signatures using in-
tegrated Haplotype Score (iHS) on BTA6. Chromosome-wide scan of integrated Haplotype Score 
revealed two iHS peaks with high significance (-log10P>5), near BTA6:78 Mb and BTA6:89 Mb. 
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4.13.4. Supplementary Figure 4  Three traits that showed strong association signals in CM 
resistance QTL region on BTA 6. Colocalization of fine-mapping p-values of a pair of traits are show-
ing that body condition score (BCS), calving interval (CI), and milk yield (MY) are having association 
signal near or at the CM resistance QTL region on BTA 6. (A) Colocalization between body condition 
score and CM resistance is shown in the left panel, together with the separate Manhattan plots for body 
condition score and CM resistance on the right. (B) Colocalization between calving interval and CM 
resistance. (C) Colocalization between milk yield and CM resistance. Panel layout of (B) and (C) is the 
same as panel (A). In each panel, the colours of dots indicate degree of LD (r2) with GC CNV (colour scale 
shown in the left upper corner of panel A). The purple diamond marks GC CNV. 

4.13.5. Supplementary Figure 5  
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SLC4A4 eQTL mapping results. A colocalization plot for CM resistance fine-mapping and SLC4A4 
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results and the right lower panel is the SLC4A4 eQTL mapping results. In between these two right panels 
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MOB1B, and DCK. In each panel, the colours of dots indicate degree of LD (r2) with GC CNV (colour 
scale shown in the left upper corner of the colocalization figure. The purple diamond marks GC CNV.

4.14. Supplementary tables

Supplementary tables are available at the online version of the article.
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5.1. Abstract

Germline de novo mutations (DNMs) hold paramount importance for genetic and evolutionary 

studies. In recent years, whole genome sequencing (WGS) data of hundreds of trios unravelled 

a strong parental age effect, mainly for de novo single nucleotide variants (dnSNVs). Compared 

to dnSNVs, the de novo structural variation (dnSV) rate was shown to be far less frequent, 

based on array data. Nevertheless, the availability of WGS data opens a new avenue to detect 

different types of dnSVs at a finer scale, providing opportunities to estimate an accurate dnSV 

rate and explore the underlying mutational driver(s). We aimed at detecting dnSVs using 127 

multi-generational pedigrees obtained from a healthy dairy cattle cohort. The unique pop-

ulation structure, where each pedigree consists of a trio and a large number of half-siblings 

and grand-offspring, enabled the detection of dnSVs with high confidence. The 127 probands 

were produced from three different assisted reproduction technologies, namely (i) artificial 

insemination, (ii) flushed embryo, and (iii) in vitro fertilisation (IVF). Overall, we discovered 

20 dnSVs (15 deletions, four duplications, and one inversion), ranging from 58-bp to 1.2-Mb in 

size. We distinguished 15 late germline dnSVs and five early mosaic dnSVs, amounting to a ger-

mline dnSV rate of 0.12 per generation (equivalent to 1 dnSV per ~8.5 births). Furthermore, 

we observed a strong paternal bias of 14:1 among the 15 late germline dnSVs. Particularly, of 

the 15 late germline dnSVs, 11 were detected in IVF probands, highlighting a pronounced IVF 

effect. Of these, five late germline dnSVs were shown to harbour additional small scale DNMs 

of early developmental origin, pointing towards discrepant timing of mutations. We hypoth-

esize that the strong IVF effect may arise from extensive DNA lesions arising in sperm cells 

and/or reduced DNA repair capacity of in vitro matured oocytes. Our work is the first of its 

kind to report an extreme paternal bias and a strong IVF effect in cattle.
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5.2.  Introduction

De novo mutations (DNMs) arising in the germline generate genetic diversity and provide sub-

strates for selection. Thus, understanding of DNMs is crucial in genetic and evolutionary stud-

ies. Whole-genome sequencing (WGS) opened up the possibility to directly estimate the DNM 

rate (Conrad et al. 2011). DNMs are previously unreported genetic variants, where an animal 

(hereafter referred to as proband) is heterozygous, but neither of its parents is. Until now, 

most DNM studies focused on de novo single nucleotide variants (dnSNVs), discovering 45-65 

dnSNVs per generation in human cohorts (Kong et al. 2012; Michaelson et al. 2012; Goldmann 

et al. 2016) and ~38 dnSNVs per generation in bovine data (Harland et al. 2017). Structural 

variations (SVs) include diverse classes of genetic variants, including deletions, duplications, 

and inversions, and are defined as being larger than 50-bp in size (Sudmant et al. 2015). An 

initial screen utilizing array data showed 1 dnSV per 77 births in humans (Itsara et al. 2010), 

confirming their rarity compared to dnSNVs. However, recent WGS based studies reported 

one dnSV per 7-13 births (Collins et al. 2020; Werling et al. 2018; Brandler et al. 2018), with 

2.2:1 or stronger paternal bias (Belyeu et al. 2021; Kloosterman et al. 2015). Despite their 

importance, dnSVs studies have been limited to human cohorts, or a small Rhesus macaque 

cohort (14 trios; Thomas et al. 2020)

Below, the term ‘DNMs’ is used to describe overall de novo mutations; DNM of particular vari-

ant types (e.g. dnSNVs and dnSVs) are further distinguished to avoid confusion. So far, most 

dnSNV studies exploited two-generational trio pedigrees, focusing on elucidating mutational 

drivers. The key mutagenic factors replicated in multiple cohorts are sex and age effects. The 

male germline account for ~80% of the dnSNVs, and the number of dnSNVs increases as the 

male germline ages (~1 extra dnSNVs per year; Kong et al. 2012). Next to this, a larger cohort 

(>1,000 trios) showed a subtle yet significant maternal age effect (~1 extra dnSNVs per four 

years; Goldmann et al. 2016). Additionally, advanced maternal age was associated with a rise 

in clustered mutations (cDNMs) that harbour multiple DNMs (e.g. dnSNVs and a dnSV within 

100-Kb distance; Goldmann et al. 2018). Some human cohorts revealed a higher number of 

dnSNVs in children conceived by in vitro fertilization (IVF), hinting that assisted reproduc-

tive technologies (ART) might play a role in DNM formation (Wong et al. 2016; Wang et al. 

2021). However, the use of ART in humans is skewed towards couples with low fertility, which 

may correlate with other sub-optimal health conditions. Thus, whether ART increases DNMs 

remains to be investigated in an unbiased cohort.

The timing of DNMs can vary: DNMs can arise during gametogenesis or embryonic develop-

ment (Figure 5.1). Commonly, germline DNMs are assumed to occur during gametogenesis, 
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resulting in a single or small number of DNM carrying gamete(s). Transmission of the DNM 

carrying gamete will result in a constitutional mutation in a proband (Figure 5.1 A). Thus, 

all cells have the DNM as heterozygous in the proband, and ~50% of gametes have the DNM. 

Furthermore, the DNM, if transmitted to the offspring of the probands (3rd gen), is in perfect 

linkage with the chromosome that it originally arose on (Figure 5.1 E). On the contrary, DNMs 

can occur during early embryogenesis. A DNM arising after the 1st cell division of the zygote 

will affect a subset of the cells, resulting in mosaicism. (Figure 5.1 B-D). The DNM carrying 

cell lineages, if developed into the germline, can be transmitted to the next generation. Such 

mutation carrier (the founder of the DNM) has three different haplotypes locally, where the 

DNM carrying haplotypes accounts for less than 50% (allelic imbalance). All three haplotypes 

can be transmitted, and hence, the offspring (3rd gen) may inherit the haplotype on which the 

DNM occurred, with or without the DNM – leading to imperfect linkage (Figure 5.1 F-G). We 

distinguish the former DNM as “late germline” as it appears late in one’s developmental tra-

jectory (gametogenesis of a mature individual), whereas the latter as “early mosaic”, appearing 

as early as a zygotic phase. Elucidating the timing of DNMs (late vs early) requires extended 

pedigrees, where a two-generation pedigree is supplemented with siblings (2nd gen) or offspring 

(3rd gen) of the proband (Sasani et al. 2019; Rahbari et al. 2016). 

Our data set, Damona, contains 743 dairy cattle genomes, consisting of 127 multi-genera-

tional bovine pedigrees obtained from a healthy cattle cohort. In each pedigree, a trio (sire-

dam-proband) is complemented with the proband’s half-siblings (HS; mean=7.8, 2nd gen) and 

grand-offspring (GO; mean=5, 3rd gen). Hence, this data set offers the opportunity to study 

both late germline and early mosaic DNMs (Figure 5.1 H). Furthermore, 127 Damona pro-

bands are produced via three different ART, making Damona an ideal data set for investigat-

ing the effects of ART in DNM formation. A pilot study focusing on dnSNV in 5 of the 127 

Damona pedigrees revealed a paternal bias of 2.6:1 and 17% of mosaicism among all dnSNVs 

(Harland et al. 2017). However, the occurrence of germline and mosaic dnSVs and the effect of 

ART on dnSVs has not yet been studied in the Damona pedigrees. 

Here, we investigated dnSVs in the Damona pedigrees, aiming at (i) identifying and distin-

guishing late germline and early mosaic dnSVs and hence obtaining an accurate bovine germ-

line dnSV rate, (ii) investigating parent-of-origin effects in dnSVs, (iii) investigating effects of 

the various types of ART on dnSVs, and (iv) providing a fine-scale molecular characterisation 

of dnSVs.
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Figure 5.1. The timing and detection of de novo mutations in multi-generational pedigrees. 
(A) A late germline DNM in parents, if transmitted, will appear as a constitutional mutation in a pro-

band. Hence, bulk sequencing of germline and somatic cells will show variant allele frequency (VAF) of 

~0.5. (B) An early mosaic DNM can affect a subset of cell lineages resulting in mosaicism. The degree 

of mosaicism differs depending on the time of mutation. A DNM occurring before primordial germ cell 

specification (PGCS) can affect germline and soma. (C-D) After the PGCS, cells in the germline and soma 

do not exchange further. Thus, a post-PGCS germline DNM can be transmitted to offspring, whereas a 

post-PGCS somatic DNM cannot. (E) Detection of a late germline DNM in a three-generation pedigree. 

The haplotype of which a DNM occurred is marked with grey, and other parental haplotypes irrelevant 
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to the DNMs are shown as dotted bars. The DNM detected in the proband (2nd generation; marked with 

yellow star), if transmitted to the offspring (3rd gen), show perfect linkage with the haplotypic background 

where it originally occurred. (F-G) Detection of an early mosaic DNM. A pre-PGCS DNM can (i) be 

detectable in the proband, yet with a low fraction (allelic imbalance), (ii) be recurrently transmitted, and 

(iii) show imperfect linkage in offspring (3rd gen; shown in F). A post-PGCS DNM, if affecting a small 

fraction of the germline, may not be recurrently transmitted. Instead, imperfect linkage in offspring (3rd 

gen) can delineate the mosaic nature of the DNM (shown in G). (H) A typical Damona pedigree struc-

ture. Probands were defined as those with parent and offspring (3rd gen) available. Figure adapted from 

Jonsson et al. 2021.
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5.3. Results 

5.3.1. Detection of de novo structural variants

Our data set, Damona, consisted of 127 multi-generational bovine pedigrees, sequenced at 26X 

coverage for the trios and 8X coverage for other animals (e.g. GO and grandparents, when 

available). The 127 probands were produced via one of three assisted reproductive technolo-

gies (ART): (i) artificial insemination (AI, n=34), (ii) flushed embryo (FE, n=47), and (iii) in 

vitro fertilisation (IVF, n=46). The current study defined SVs as deletions, duplications, and 

inversions larger than 50-bp. SVs were detected using Lumpy (Layer et al. 2014).

5.3.2. Detection of late germline de novo structural variants

Our first aim was to detect late germline dnSVs. A late germline dnSV is defined as an SV 

which is (i) called heterozygous in the proband, (ii) absent in parents and HS, (iii) transmit-

ted to ≥1 GO. By applying these filters and manually inspecting the underlying sequencing 

data in the Integrative Genome Viewer (IGV; Thorvaldsdóttir et al. 2013), we identified 15 

late germline dnSVs, ranging from 58-bp to 1.2-Mb in size, consisting of 11 deletions, three 

duplications, and one large inversion (Table 1). Transmission of all dnSVs was confirmed, 

except a 1.2-Mb inversion appeared in a proband with one GO. The formation mechanisms 

were inferred based on the extent of sequence homology at the breakpoints. Fourteen out of 

15 dnSVs showed limited to no sequence homology at the breakpoints (<15-bp), hinting at 

either microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). 

NM-14 occurred in a region enriched for variable number tandem repeats (VNTR) and likely 

arose from mechanisms associated with VNTR formation such as slipped strand mispairing 

(Eslami Rasekh et al. 2021)

5.3.3. Bovine germline dnSVs are strongly biased towards male 
germlines 

The 15 late germline dnSVs, identified in 127 pedigrees, indicated a germline mutation rate of 

0.12 dnSV per generation (95% CI 0.08-0.21; 1 dnSV per 8.5 births). This rate corresponds to 

the estimates from healthy human cohorts (Belyeu et al. 2021; Werling et al. 2018; Brandler et 

al. 2018; Turner et al. 2017; Kloosterman et al. 2015; Figure 5.2). The parent-of-origin of the 

15 dnSVs was determined using the three-generation pedigree structure. The dnSVs and the 

haplotypes of origin were in perfect linkage in GO (dnSV and the haplotype are transmitted 

together), supporting that the dnSVs arose during gametogenesis. Of the 15 late germline 

dnSVs, 14 were of a paternal origin, underscoring a striking paternal bias of 14:1 (P= 9.8x10-4, 

two-tailed binomial test). Furthermore, we observed overrepresentation of dnSVs in probands 

obtained via IVF (11 out of 15 late germline dnSVs; P=6.6x10-3, Fisher’s exact test).
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Figure 5.2. 
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different SV definitions than the current study, see Supplementary Fig. 1 and Supplementary Table 1. 
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Table 5.1. List of de novo structural variations 

dnSV 
ID Coordinates Length 

(bp) SV Type Locus Mechanism Mutational 
Type

Parent
-of-origin

ART Proband 
Sex

dnSV 
Transmission cDNM

NM-1 chr1:30682619-30682677  58 Deletion intergenic MMEJ Late germline Sire AI Male 4/5 (80%) .

NM-2 chr2:40607085-40653044  45,959 Deletion intergenic MMEJ Late germline Sire IVF Female 2/5 (40%) Yes

NM-3 chr2:58157986-58161632  3,646 Duplication intergenic MMEJ Late germline Dam AI Female 2/5 (40%) .

NM-4 chr5:105850965-105853146  2,181 Duplication intergenic MMEJ Late germline Sire IVF Female 3/5 (60%) .

NM-5 chr6:42007578-42008209  631 Deletion ADGRA3 (intron 14/18) MMEJ Late germline Sire FE Female 2/5 (40%) .

NM-6 chr6:82111710-82113346  1,636 Deletion intergenic MMEJ Late germline Sire IVF Male 1/4 (25%) .

NM-7 chr6:83263187-83313423  50,236 Deletion
CENPC (5/19 exons), 
STAP1 (6/9 exons)

MMEJ Late germline Sire IVF Male 3/5 (60%) .

NM-8 chr8:104571290-104580599  9,309 Deletion intergenic MMEJ Late germline Sire IVF Male 5/6 (83%) .

NM-9 chr10:10660965-10671493  10,528 Duplication TENT2 (3/15 exons) NHEJ Late germline Sire IVF Female 2/5 (40%) Yes

NM-10 chr14:2861104-2861755  651 Deletion PTK2 (intron 1/32) MMEJ Late germline Sire IVF Female 1/5 (20%) Yes

NM-11 chr15:77797101-77798011  910 Deletion PTPRG (intron 1/22) MMEJ Late germline Sire IVF Male 3/5 (60%) Yes

NM-12 chr16:76526481-76528614  2,133 Deletion DENND1B (intron 16/22) NHEJ Late germline Sire IVF Female 2/5 (40%) .

NM-13 chr17:15502897-15503002  105 Deletion INPP4 (intron 5/23) MMEJ Late germline Sire IVF Female 1/1 (100%) Yes

NM-14 chr17:57212783-58417668  1,204,885 Inversion
RFC5, KSR2, FBXO21, FBXW8, 

HRK, RNFT2, C17H12orf49
. Late germline Sire FE Female 0/1 (0%) .

NM-15 chr18:22389280-22389678  398 Deletion FTO (intron 8/8) MMEJ Late germline Sire IVF Female 1/1 (100%) .

M-1 chr1:11667465-11668783  1,318 Deletion intergenic NHEJ Early mosaic n.a. AI Male 2/8 (25%) .

M-2 chr4:38370379-38375464  5,085 Deletion CACNA2D1 (intron 3/38) MMEJ Early mosaic Maternal IVF Female 3/5 (60%) .

M-3 chr11:24355597-24360343  4,746 Deletion intergenic NHEJ Early mosaic Paternal IVF Female 2/5 (40%) Yes

M-4 chr11:52854495-52955650  101,155 Deletion intergenic Complex Early mosaic Paternal IVF Female 1/5 (20%) .

M-5 chr11:52955642-52964474  8,832 Duplication intergenic Complex Early mosaic Paternal IVF Female 1/5 (20%) .
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Table 5.1. List of de novo structural variations 

dnSV 
ID Coordinates Length 

(bp) SV Type Locus Mechanism Mutational 
Type

Parent
-of-origin

ART Proband 
Sex

dnSV 
Transmission cDNM

NM-1 chr1:30682619-30682677  58 Deletion intergenic MMEJ Late germline Sire AI Male 4/5 (80%) .

NM-2 chr2:40607085-40653044  45,959 Deletion intergenic MMEJ Late germline Sire IVF Female 2/5 (40%) Yes

NM-3 chr2:58157986-58161632  3,646 Duplication intergenic MMEJ Late germline Dam AI Female 2/5 (40%) .

NM-4 chr5:105850965-105853146  2,181 Duplication intergenic MMEJ Late germline Sire IVF Female 3/5 (60%) .

NM-5 chr6:42007578-42008209  631 Deletion ADGRA3 (intron 14/18) MMEJ Late germline Sire FE Female 2/5 (40%) .

NM-6 chr6:82111710-82113346  1,636 Deletion intergenic MMEJ Late germline Sire IVF Male 1/4 (25%) .

NM-7 chr6:83263187-83313423  50,236 Deletion
CENPC (5/19 exons), 
STAP1 (6/9 exons)

MMEJ Late germline Sire IVF Male 3/5 (60%) .

NM-8 chr8:104571290-104580599  9,309 Deletion intergenic MMEJ Late germline Sire IVF Male 5/6 (83%) .

NM-9 chr10:10660965-10671493  10,528 Duplication TENT2 (3/15 exons) NHEJ Late germline Sire IVF Female 2/5 (40%) Yes

NM-10 chr14:2861104-2861755  651 Deletion PTK2 (intron 1/32) MMEJ Late germline Sire IVF Female 1/5 (20%) Yes

NM-11 chr15:77797101-77798011  910 Deletion PTPRG (intron 1/22) MMEJ Late germline Sire IVF Male 3/5 (60%) Yes

NM-12 chr16:76526481-76528614  2,133 Deletion DENND1B (intron 16/22) NHEJ Late germline Sire IVF Female 2/5 (40%) .

NM-13 chr17:15502897-15503002  105 Deletion INPP4 (intron 5/23) MMEJ Late germline Sire IVF Female 1/1 (100%) Yes

NM-14 chr17:57212783-58417668  1,204,885 Inversion
RFC5, KSR2, FBXO21, FBXW8, 

HRK, RNFT2, C17H12orf49
. Late germline Sire FE Female 0/1 (0%) .

NM-15 chr18:22389280-22389678  398 Deletion FTO (intron 8/8) MMEJ Late germline Sire IVF Female 1/1 (100%) .

M-1 chr1:11667465-11668783  1,318 Deletion intergenic NHEJ Early mosaic n.a. AI Male 2/8 (25%) .

M-2 chr4:38370379-38375464  5,085 Deletion CACNA2D1 (intron 3/38) MMEJ Early mosaic Maternal IVF Female 3/5 (60%) .

M-3 chr11:24355597-24360343  4,746 Deletion intergenic NHEJ Early mosaic Paternal IVF Female 2/5 (40%) Yes

M-4 chr11:52854495-52955650  101,155 Deletion intergenic Complex Early mosaic Paternal IVF Female 1/5 (20%) .

M-5 chr11:52955642-52964474  8,832 Duplication intergenic Complex Early mosaic Paternal IVF Female 1/5 (20%) .
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5.3.4. Mosaic dnSVs revealed through imperfect linkage and allelic 
imbalance

DNMs occurring after the first cell division can result in heterogeneous genomes in an indi-

vidual, leading to mosaicism (Figure 5.3 A). In such case, a mosaicism carrier will (i) show 

allelic imbalance for the DNM, and (ii) if the germline is affected, the DNM can be recurrently 

transmitted, (iii) where DNM and the haplotype-of-origin may have imperfect linkage (Figure 

5.1 F-G). We screened our pedigrees for dnSVs that manifest these early mosaicism signatures 

and identified five early mosaic dnSVs, consisting of four deletions and one duplication ranging 

from 1- to 101-Kb in size (Table 1). Notably, M-4 (deletion) and M-5 (duplication) were found 

in the same animal on the same haplotype. Furthermore, the breakpoints of M-4 and M-5 were 

adjacent to each other. 

We found one early mosaic dnSV from sperm sequencing data (M-1), and the rest were found 

in blood sequencing data (Ms 2-5). The sperm mosaicism event, M-1, suggests transmissibility 

of the dnSV, and indeed the data in the subsequent generation showed both recurrent trans-

mission and imperfect linkage (Figure 5.3 B). On the contrary, soma mosaicism (e.g. Ms 2-5) 

may affect either soma exclusively or both soma and germline. Therefore, we investigated data 

in the subsequent generation to confirm the transmissibility mosaic dnSVs discovered from 

soma sequencing. We confirmed that all soma mosaic dnSVs were transmitted, hence confirm-

ing that both germline and somatic tissue are affected (gonosomal mosaicism; Figure 5.3 C-D). 

Finally, the mosaic dnSVs were phased using informative SNPs available in the three-genera-

tional data to determine the parent-of-origin (Figure 5.3 A). The parent-of-origin of M-1 was 

not determined, although successfully phased, because the carrier of M-1 was a sire; hence 

no data from parents (i.e. grandparents from the probands’ point of view) was available. We 

found that M-2 occurred on a maternal haplotype, and the rest (Ms 3-5) appeared on paternal 

haplotypes. Early developmental DNMs are expected to affect the parental chromosomes with 

equal probability. Our observation was biased towards the paternal chromosome (3:1). Also, 

all but one (M-1) early mosaic dnSVs were observed in IVF probands, suggesting an IVF effect 

in early mosaic dnSVs. However, the paternal bias and the IVF effect were not statistically 

significant (P=0.3, one-tailed binomial test for paternal bias; P=0.12, Fisher’s exact test for 

IVF effect), due to the insufficient number of observations. Nevertheless, taking the early and 

late dnSVs together, the IVF effect was significant P= 9.2x10-4, Fisher’s exact test).
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5.3.5. Clustered de novo mutations in the male germline 

Some DNMs arise together in spatial proximity (e.g. <20-Kb apart). If these DNMs are on 

the same allele – for instance, two very closely located DNMs arisen on the paternal haplo-

type – they are assumed to occur from a single mutagenic event. Such DNMs, referred to as 

clustered DNMs (cDNMs or paired DNMs), account for 2-3% of human dnSNVs (Michaelson 

et al. 2012). The incidence of maternal cDNMs consisting of dnSNVs were strongly correlated 

with maternal age (Goldmann et al. 2018). The same study reported 11% (5 out of 45) of 

the dnSVs to be cDNMs (paired with dnSNVs), all of maternal origin, pointing towards com-

promised double-strand break (DSB) repair in ageing oocytes. Together, these findings show 

that the female germline can accrue DNA damage driven DNMs (both dnSVs and dnSNVs), 

opposing the textbook view that DNMs mostly arise in the male germline due to replication 

errors. Accordingly, enrichment of cDNMs in a particular condition or genomic locations can 

provide insights into the novel source(s) contributing to DNM formation. 

Thus, flanking regions of the 20 dnSVs were scanned, searching for other DNMs (e.g. dnSNVs 

and dnINDELs). We found that five late germline dnSVs and one early mosaic dnSVs harbour 

another DNM in the flanking region (Figure 5.4 A). All of the cDNMs pairs (i) arose on the 

paternal haplotype, (ii) observed in IVF probands, and (iii) the inter-mutational distances 

between the mutation pairs were very close (<3-Kb). As elaborated earlier, paired DNMs are 

assumed to form via a single event. Accordingly, paired DNMs ought to arise during the same 

developmental phase (either late or early). An early mosaic dnSV (M-3) was paired with a 1-bp 

deletion, which showed allelic imbalance (indication of early mosaicism). Hence, both M-3 and 

the paired 1-bp deletion likely arouse during early development of a zygote. To our surprise, 

while the dnSVs in the remaining five DNM pairs were unambiguously classified as late ger-

mline dnSVs, the associated dnSNVs and dnINDELs behaved as early mosaic DNMs (allelic 

imbalance and imperfect linkage; Figure 5.4 A-B). Thus, while their proximity and occurence 

on the same allele suggest that they derive from a single event, their distinct status (late 

germline dnSV paired with early mosaic dnSNV/dnINDEL) suggests that they derive from 

distinct mutational events. Of the five late germline dnSVs, NM-2 and NM-11 manifest strong 

evidence of mosaicism (three haplotypes, allelic imbalance, and imperfect linkage; Figure 5.4 

C). This would make sense if DNA lesion in sperm cells led to two DNMs of which, the one 

was repaired upon fertilization hence indistinguishable from the late germline dnSV, whereas 

the other segregated unrepaired. 
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Figure 5.4. 
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Characterisation of de novo cluster mutations. (A) List of cDNMs. (B) A schematic 
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screen capture of cDNM consisting of NM-2 and a paired small DNM (22-bp deletion). The left most panel 
shows families of this pedigree and their genotypes for NM-2 and the paired dnDEL. The panel in the 
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tion. The right panel shows the 22-bp dnDEL, which arisen in the proband, however did not co-segregate 
with the NM-2. 
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5.3.6. Fine-scale characterisation of de novo SVs

Overall, we identified 21 dnSVs, of which three (NM-8, NM-9, NM-14) directly disrupted cod-
ing sequences (CDS), whereas the others were either intronic or intergenic (Table 1). Of the 
three CDS disrupting dnSVs, NM-8 was considered to be potentially deleterious. This 50-kb 
deletion ablates transcription starting sites and several exons of two genes, centromere pro-
tein C gene (CENPC), which is related to cell division, and signal transducing adaptor family 
member 1 gene (STAP1), which encodes a docking protein and is involved in tyrosine-protein 
kinase Tec activity (Figure 5A). CENPC is essential during mitosis, as loss of CENPC was re-
lated to increased chromosome misalignment (Gopalakrishnan et al. 2009). The importance of 
CENPC was demonstrated in a mice knock-out study: heterozygous mice with one functional 
copy of CENPC were healthy and fertile, whereas the homozygous state resulted in embryonic 
lethality (Kalitsis et al. 1998). Likewise, matings of NM-8 carriers, if leading to homozygous 
NM-8 animals, may result in abortion (Figure 5D). 
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Furthermore, NM-9, a 10-kb duplication, overlapped with the terminal nucleotidyltransferase 2 
gene (TENT2), involved in mRNA stabilisation and polyadenylation (Figure 5B). The poly(A) 
signal appeared after the duplication, suggesting that the transcript might be elongated. An 
orthologous region in humans contains a regulatory T-cell enhancer, suggesting potential regu-
latory consequences in the bovine genome if this element is conserved (The ENCODE Project 
Consortium 2012). 

Lastly, the 1.2 Mb inversion (NM-14) spanned over seven coding genes without directly dis-
rupting CDS (Figure 5C). Inversions could have harmful consequences by disrupting CDS 
or relocating regulatory elements into ‘out-of-context’ regions (Laugsch et al. 2019). In the 
current case, we did not observe transmission of NM-16, which could be due to chance (only 
one GO) or unbalanced gametes formed due to NM-16, which did not produce viable offspring 
(Wellenreuther and Bernatchez 2018) (Figure 5F).
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Figure 5.5. A schematic overview and inheritance 
of CDS disrupting dnSVs. (A) NM-8 is a 50-kb deletion 
overlapping with CENPC and STAP1. The likely formation 
mechanism is MMEJ, mediated by 1-bp insertion. The ances-
tral and derived forms are marked with A and D. (B) NM-9 
is a 10-kb duplication, encompassing the last three exons of 
TENT2. No sequence homology was observed at the break-
points, indicating NHEJ mechanism. The enhancer found in 
the orthologous region in human is marked with yellow. (C) 
The 1.2-Mb inversion encompasses seven coding genes. (D-F) 
Transmission of CDS disrupting dnSVs. Probands are marked 
with an asterisk. The haplotype legend is as explained in Fig-
ure 5.1.
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5.4. Discussion

Our study is the first to investigate dnSVs in a healthy cattle cohort, exploiting multi-genera-
tional pedigrees with complete ART information. In total, 20 dnSVs were discovered, ranging 
between 58-bp and 1.2-Mb (15 deletions, four duplications, and one inversion; Table 1). Using 
three-generation bovine pedigrees, we distinguished the 20 dnSVs into 15 late germline and 
five early mosaic dnSVs, revealing a germline dnSV rate of 0.12 per generation. Taking the 
two early mosaic dnSVs arouse in one animal as a single event (M-4 and M-5), our results 
indicate 21% of detected dnSVs are mosaic (4 out 19). This fraction is rather high compared 
to 8% mosaic dnSVs reported in two-generation pedigrees in humans (Belyeu et al. 2021). This 
discrepancy may arise from the different data sets, where the two-generation pedigrees provide 
limited power to ascertain mosaicism. Thus, re-evaluation of the dnSVs with transmission data 
may assist in obtaining more accurate germline dnSV rates in humans.

We found an unprecedented paternal bias of 14:1 in bovine germline dnSVs. This bias is far 
from the paternal bias of 2.6:1 shown in bovine dnSNVs in a subset of Damona pedigrees 
(Harland et al. 2017). Likewise, human dnSNV studies have reported a paternal bias of ap-
proximately 4:1, which was attributed to continuous replication in the male germline, resulting 
in a paternal age effect (e.g. male germline accrue about one dnSNVs each year; Kong et al. 
2012; Goldmann et al. 2016; Jónsson et al. 2017). Contrary to this, dnSVs in humans did 
not find a significant paternal age effect, despite showing a moderate paternal bias of 2.7:1 
(Belyeu et al. 2021). These findings collectively suggest that dnSVs occur more frequently in 
the paternal genome, although they are unlikely to arise due to DNA replication errors. The 
post-meiotic phase is a possible route where sperms accumulate more DNA damage than oo-
cytes. Spermiogenesis occurs after meiosis and constitutes the final phase of spermatogenesis. 
During spermiogenesis, spermatids are matured into sperm cells by removing cytoplasm, and 
protamine condenses the DNA packaging, leaving chromatin transcriptionally inactive. This 
sperm maturation phase induces DSBs, yet they are left unrepaired given its haploid nature 
(no homologous chromosome available for repair) and lack of transcription (Bergero et al. 
2021; Grégoire et al. 2018). In comparison, oocytes are transcriptionally active and accumulate 
mRNA that can repair sperm damages once fertilized (García-Rodríguez et al. 2019). Thus, 
post-meiotic DSBs preferentially occurring in mature sperm cells seem a plausible cause of the 
paternal bias in dnSVs. 

Yet, to our understanding, post-meiotic DSBs in sperm cells alone do not fully explain the ex-
treme paternal bias shown in our study because: (i) our bias is far more extreme than those of 
humans and (ii) if the post-meiotic DSBs are the sole source of paternal dnSVs, we ought to ob-
serve an even distribution of dnSVs across the three ART methods, which we did not. Instead, 
we observed a strong IVF effect (11 out of 14 paternal late germline dnSVs were found in IVF 
probands). This implies a preferential occurrence of dnSVs in IVF condition, particularly on 
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the paternal genome, possibly due to (i) further accruement of DSBs occurring in sperm cells, 
(ii) low DSB repair capability of in vitro matured oocytes, or (iii) both of them. Two human 
studies have reported decreased DSB repair efficiency of ageing oocytes as the key source of 
maternal cDNMs (Goldmann et al. 2018) and early mosaic DNMs (Gao et al. 2019). Whether 
the strong IVF effect is arising from the sperm cells, or due to compromised repair in oocytes, 
in an analogous manner as proposed in human aging oocytes, warrants further investigation. 

So far, the reported effects of ART on dnSVs have been contradictory. IVF embryos were 
shown to have more chromosomal aberrations (e.g. aneuploidy), compared to in vivo conceived 
embryos in humans (Voet et al. 2011) and cattle (Tšuiko et al. 2017), suggesting detrimental 
outcomes, including embryonic losses. On the contrary, a genotyping array-based comparison 
of children born via natural conception and IVF did not reveal any difference in the number 
of large de novo copy number variants (dnCNV; detection resolution>100-Kb; Zamani Esteki 
et al. 2019). It is worth noting that the dnSVs detected in our WGS data set are as small as 
58-bp, and only M-4 (101-Kb mosaic deletion) would have been detected with the array used 
in (Zamani Esteki et al. 2019). Thus, our study suggests that the contribution of IVF might 
be more significant for fine-scale SVs. 

The mutation rate obtained in the current study (~0.12 dnSV per generation) corresponds to 
estimates from healthy human cohorts. Given the strong IVF effect discovered in the current 
study, we speculate that limited to the cattle population, IVF has the potential to accelerate 
the emergence of dnSVs. Undoubtedly, various types of ART have been used widely for cattle 
breeding, even though, the practice of IVF varies depending on the country (Viana 2020). 
Therefore, although our results are limited to a single local cattle population, we postulate 
that population-wide dnSV rates would differ depending on how frequently IVF is practised. 
Likewise, IVF is widely accepted in human reproduction, and thus the contribution of ART in 
the formation of fine-scale dnSVs (<100-Kb) warrants further investigation. 

Finally, we identified 20 dnSVs, of which 3 directly disrupt CDS. Among these, NM-7, a 50-
Kb deletion ablating CENPC is considered a potentially recessive lethal mutation. In theory, 
extensive use of popular sires can increase allele frequency of recessive alleles, which can 
happen to NM-7. Therefore, it may be worth monitoring the frequency of this deletion in the 
population to avoid carrier-carrier matings. Furthermore, SVs analysed in the current study 
are deletions, duplications, and inversions. While such SVs are abundant in bovine genomes, 
some forms of SVs have not been investigated in the present study, such as de novo mobile el-
ement insertions and complex inter/intra-chromosomal events (Feusier et al. 2019; Brandler et 
al. 2016; Richardson et al. 2017). In addition, our catalogue of dnSVs is bound to the inherent 
technological bias of short reads sequencing (i.e., challenge in mapping repetitive regions; Ho et 
al. 2019). Thus, we stress that the mutation rate estimated here could be a lower bound of the 
true SV mutation rate, which will be better estimated with long-read sequencing technology. 
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5.5. Conclusion

This study utilized unique multi-generational bovine pedigrees to identify and characterize 
dnSVs. The discovery of 15 late germline and five early mosaic dnSV events underline the 
importance of multi-generational pedigree in obtaining an accurate germline mutation rate. 
In addition, our germline dnSVs confirmed the paternal bias shown in dnSNVs; however, it is 
likely arising from post-meiotic DSBs, instead of replication errors. Our study confirms reports 
six cDNMS consisting of dnSVs and dnSNVs/dnINDELs. Five of them indicated distinct tim-
ing of mutations: dnSVs were detected as late paternal events, whereas accompanied dnSNVs/
dnINDELs indicated early mosaicism in probands. This conundrum further supports that IVF 
may be highly mutagenic and alter the post-fertilization repair capability of oocytes, similar 
to what was reported in ageing oocytes in humans. Followingly, we expect that the adoption 
of IVF in cattle breeding have increased the dnSV rate, and this may apply to human cohort, 
which warrants future studies. 

5.6. Materials and methods

5.6.1. Multi-generational bovine pedigrees 

The Damona data set was consisted of 743 Dutch Holstein Friesian cattle genomes, forming 
127 multi-generational pedigrees (minimum of three generations). For each pedigree, a pro-
band was defined as a second generation animal where dnSVs were scanned. Thus, each ped-
igree consisted of (i) a trio (sire-dam-proband), (ii) on average 5.6 paternal and 2.2 maternal 
HS of the proband, and (iii) on average 5 GO (min=1, max=11) (Figure 5.1 H). In addition, 
some pedigrees had complete or partial grandparents (GP) data available, forming four-gen-
eration pedigrees (4 pedigrees had all GP data, five pedigrees had paternal GP data, and 32 
pedigrees had maternal GP data). The probands (88 female and 39 male) were produced via 
one of three assisted reproductive technologies (ART): (i) artificial insemination (AI, n=34), 
(ii) flushed embryo (FE, n=47), and (iii) in vitro fertilisation (IVF, n=46). 

5.6.2. Whole-genome sequencing data 

Trio animals in the 127 pedigrees were together 236 animals, and their DNA was obtained from 
blood (144 females and 22 males) or sperm samples (70 males) using standard procedures. 
Familial relationships were confirmed by genotyping all samples with the 10K Illumina SNP 
chip. We constructed 550 bp insert size whole-genome Illumina Nextera PCR free libraries 
following the protocols recommended by the manufacturer. All samples were then sequenced 
on Illumina HiSeq 2000 instruments, using the 2x100 bp paired-end protocol by the GIGA 
Genomics platform (University of Liège). The sequence data was mapped using BWA mem 
0.7.5a(Li 2013) to bovine reference genome ARS-UCD1.2. Afterwards, SAMtools 1.9 (Li and 
Durbin 2009) was used to convert sam files into bam files. Subsequently, the bam files were 
sorted with sambamba 0.6.6 (Tarasov et al. 2015), and the PCR duplicates were removed us-
ing Picard Tools 2.7.1 (https://github.com/broadinstitute/picard). The 236 trio animals were 
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sequenced at a mean coverage of ~26X, and the rest (GO and GP) were sequenced at mean 
coverage of 8X (Figure 5.1 H).

5.6.3. SV discovery 

We discovered SVs using the population calling mode in Smoove (https://github.com/brentp/
smoove). Firstly, Lumpy used split- and discordant- reads evidence to detect population-wide 
SVs in 127 trios (n=236, mean coverage=26X) (Layer et al. 2014). Lumpy was designed to 
detect deletions, duplications, inversions, and breakends which are junctions that could not 
be classified into canonical forms of SVs (Abel et al. 2020). Thus, in our study, the scope of 
dnSVs was limited to deletions, duplications, and inversions. Afterwards, the population-wide 
SVs were merged using SVtools (Larson et al. 2019), generating a non-redundant SV call set. 
Subsequently, the full cohort of 743 animals was genotyped (236 animals forming 127 trios 
and 507 animals either HS, GO, or GP of the probands) using SVtyper (https://github.com/
hall-lab/svtyper). Read depth information of CNVs was annotated using duphold (Pedersen 
and Quinlan 2019). 

5.6.4. Late germline de novo SVs detection 

Late germline dnSVs are assumed to arise in a single gamete of a parent. To detect later ger-
mline dnSVs, we scanned the SV call set for the following criteria: (i) both parents are homo-
zygous reference with evidence in sequencing data as follows: max. ALT supporting reads < 4 
and ratio of ALT supporting reads < 0.1, (ii) proband is heterozygous with evidence in WGS 
data as follows: min. ALT supporting reads > 2 and ratio of ALT supporting reads > 0.05, 
(iii) All of the HS of the probands are homozygous reference, (iv) the dnSV is transmitted to 
at least 1 GO, and the dnSV and the cognate haplotype where the dnSV arose are in perfect 
linkage. We made one exception for a detected inversion (was not transmitted to GO), given 
that an inversion can give rise to unbalanced gametes, likely leading to unviable offspring. All 
candidate sites that passed these filters were manually inspected using IGV in all members of 
an extended pedigree.

5.6.5. Determining parent-of-origin 

For unbalanced SVs (deletions and duplications), we used informative SNPs located within the 
dnSVs to determine the parental origin. SNPs located within a de novo deletion are expected 
to be homozygous due to hemizygosity. Thus, the SNP allele(s) present within the deletion 
are from the parent that transmitted a normal gamete, whereas the absent alleles are from the 
DNM-affected gamete. Contrary to this, SNPs located within duplications show allelic ratio 
deviating from 1:1. With a simple tandem duplication, the SNP allelic ratio is expected to be 
1:2, where the duplicated allele accounts for twice the amount of reads, revealing the parent of 
origin. A de novo inversion, where SNP allelic depth is not informative, we inspected discor-
dant reads which might carry informative SNPs to assign parent of origin. As no informative 
SNPs were present within the SVs and/or on the discordant reads, we phased SNPs outside of 
the dnSV, exploiting genomes of GP and GO. 

5.6.6. Computation of mutation rates 
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The SV mutation rate was computed for late germline dnSVs only (excluding early mosaic 
dnSVs). The mutation rate per generation was calculated by dividing the number of late germ-
line dnSVs (n=15) by the number of trios (n=127). The standard error was calculated assum-
ing a Poisson distribution; taking a square root over the mutation rate per generation divided 
by the number of trios. The 95% confidence interval was used in Figure 5.2. To compare the 
mutation rate, we retrieved the number of dnSV from other studies (Werling et al. 2018; Turn-
er et al. 2017; Kloosterman et al. 2015; Belyeu et al. 2021; Brandler et al. 2018) and calculated 
the mutation rate and standard error as explained above. As these dnSV studies used various 
SV calling pipelines and filtering steps, we only kept the SVs matching the SV definition used 
in our study (i.e. >50-bp, deletions, duplications, and inversions). 

5.6.7. Early mosaic de novo SVs detection 

Early mosaic dnSVs, if transmitted to the next generation, are assumed to affect part of the 
germline. Our pedigree structure enables detection of mosaicism that occurred in parents (1st 
gen; based on recurrent transmission to a proband and part of its HS) and probands (2nd gen; 
based on recurrent transmission to GO). To avoid confusion, either case was referred to as 
mosaicism carriers. Early mosaic dnSVs can have three signatures: (i) allelic imbalance shown 
in the mosaic carrier, (ii) recurrent transmission of the dnSVs to multiple offspring, (iii) the 
dnSV and the haplotype of origin are in imperfect linkage (thus, the haplotype of origin is 
transmitted to the next generation, with or without the dnSV). Accordingly, we classified 
dnSVs that met at least one of the three signatures as early mosaic dnSVs. De novo deletions 
harboring polymorphic SNPs are considered mosaic (allelic imbalance). SNP calling was done 
using FreeBayes (Garrison and Marth 2012), and low-quality SNPs (QUAL<100) were filtered 
out. Informative SNPs were phased and assigned to either paternal or maternal alleles. 

5.6.8. Detection of cluster DNMs 

To identify cDNMs, we detected dnSNVs and dnINDELs near the breakpoints in a 20-Kb win-
dow. Variant calling was done using FreeBayes(Garrison and Marth 2012), and for the entire 
dnSV call set, we manually inspected a 20-Kb window using IGV to confirm any false positive 
and negative variants. When the occurrence of dnSNVs and dnINDELs was confirmed based 
on the same criteria used for detecting late germline dnSVs, we checked the transmission to 
investigate the linkage. When a pair of DNMs belonging to the same mutation cluster does 
not segregate together (i.e. imperfect linkage), we consider it evidence of mosaicism. Further-
more, we obtained amplicon sequencing of dnSNVs and dnINDELs (unpublished data). Allelic 
imbalance in the amplicon sequencing data was viewed as evidence of early mosaic mutation. 

5.6.9. Fine-scale molecular characterisation of dnSVs 

We scanned the overlap between dnSVs and genic features using UCSC Genome Browser and 
the ARS-UCD1.2 bovine genome assembly. To obtain regulatory elements maps of the bovine 
liver, we downloaded liver ChIP-seq data (H3K27ac and H3K4me3) generated from four bulls 
from ArrayExpress (E-MTAB-2633; Villar et al. 2015). This ChIP-seq data was aligned to the 
bovine reference genome ARS-UCD1.2 using Bowtie2 (Langmead and Salzberg 2012), and 
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peaks were called using MACS2 (Zhang et al. 2008). To complement the scarcity of the pub-
licly available bovine epigenomic maps, we obtained human orthologous region using UCSC 
LiftOver function (The ENCODE Project Consortium 2012). 
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5.11. Supplementary Table
5.11.1. De novo SV rate compared to human cohorts

Study Paper WGS data spec Data structure Resolution SV type Cohort 
information

No.
DNM

No.
trios

Mutation 
rate/hap-

loid

Mutation 
rate/gen

1/N 
birth

Damona 
WGS (sperm of blood; 26X) 

Insert length: 550bp 
Read length: 100bp

multi-generation pedigrees with 
multiple HS & GO

50bp CNV, INV Healthy cattle 15 127 0.059 0.118 8.5

50bp CNV, INV Healthy cattle 5 127 0.020 0.039 25.4

Belyeu 
(2021)

De novo structural mutation rates 
and gamete-of-origin biases revealed 
through genome sequencing of 2,396 

families 
DOI: 10.1101/2020.10.06.329011

Seqeuncing data informa-
tion is not provided in the 

manuscript

2 generation pedgirees 
2,363 ASD trios 

2,372 healthy trios 
 

Healthy trios include  
434 CEPH trios  

(3 generation pedigrees)

50bp CNV, MEI, complex ASD + Healthy 865 4735 0.091 0.183 5.5

50bp CNV, INV ASD + Healthy 733 4735 0.077 0.155 6.5

50bp CNV, MEI, complex ASD 486 2363 0.103 0.206 4.9

50bp CNV, INV ASD 379 2363 0.080 0.160 6.2

50bp CNV, MEI, complex Healthy 379 2372 0.080 0.160 6.3

50bp CNV, INV Healthy 289 2372 0.061 0.122 8.2

50bp CNV, MEI, complex CEPH (Healthy) 62 434 0.071 0.143 7.0

50bp CNV, INV CEPH (Healthy) 52 434 0.060 0.120 8.3

Brandler 
(2018)

Paternally inherited cis-regulatory 
structural variants are associated 

with autism 
DOI: 10.1126/science.aan2261

WGS (blood, 42.6X) 
REACH cohort  

(Read length: 150bp; 50X) 
 

SSC1 cohort  
(Read length: 150bp  

Insert sizes: 348-420bp;  
39-50X)

REACH cohort  
112 ASD trios 

362 healthy trios 
 

SSC1 cohort 
517 Autism quads (parents, an 
autism proband, and a healthy 

sibling) 
 

2 generation pedigrees

43bp CNV, INV, MEI, complex ASD + Healthy 175 1510 0.058 0.116 8.6 

50bp CNV, INV ASD + Healthy 135 1510 0.045 0.089 11.2 

43bp CNV, INV, MEI, complex ASD 104 880 0.059 0.118 8.5 

50bp CNV, INV ASD 80 880 0.045 0.091 11.0 

43bp CNV, INV, MEI, complex Healthy 67 630 0.053 0.106 9.4 

50bp CNV, INV Healthy 48 630 0.038 0.076 13.1 

Werling 
(2018)

An analytical framework for 
whole-genome sequence association 

studies and its implications for 
autism spectrum disorder 

DOI: 10.1038/s41588-018-0107-y

WGS (blood; 37.8X) 
Insert length: 423bp 
Read length: 150bp

SFARI consortium 
519 Autism quads (parents, an 
autism proband, and a healthy 

sibling)  
 

2 generation pedigrees

50bp CNV, MEI, complex ASD + Healthy 171 1038 0.082 0.165 6.1

50bp CNV ASD + Healthy 127 1038 0.061 0.122 8.2

50bp CNV, MEI, complex ASD 87 519 0.084 0.168 6.0 

50bp CNV ASD 65 519 0.063 0.125 8.0

50bp CNV, MEI, complex Healthy 84 519 0.081 0.162 6.2

50bp CNV Healthy 63 519 0.061 0.121 8.2

Turner 
(2017)

Genomic Patterns of De Novo Muta-
tion in Simplex Autism 

DOI: 10.1016/j.cell.2017.08.047

WGS (blood; 34.8X) 
Insert length: 423bp

SFARI consortium 
476 Autism quads (parents, an 
autism proband, and a healthy 

sibling) 
2 generation pedigrees

201bp CNV ASD + Healthy 88 952 0.046 0.092 10.8

201bp CNV ASD 47 476 0.049 0.099 10.1

201bp CNV Healthy 41 476 0.043 0.086 11.6

Kloosterman 
(2015)

Characteristics of de novo structural 
changes in the human genome 
DOI: 10.1101/gr.185041.114.19

WGS (blood, 14X) 
Insert length: 500bp 
Read length: 90bp

258 healthy trios 
2 generation pedigrees from 

GoNL project

20bp CNV, MEI, complex Healthy 41 258 0.079 0.159 6.3

50bp CNV Healthy 29 258 0.056 0.112 8.9
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5.11. Supplementary Table
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5.12. Supplementary figures

5.12.1. Supplementary Figure 1  
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5.12.2. Supplementary Figure 2  IGV screenshot for a clustered mutation NM-11 and its 
pair dnSNV. Despite the 910-bp de novo deletion in the proband was transmitted to three GOs (GO 
1;3;5), the paired dnSNV was transmitted to only one GO (GO1), manifesting imperfect linkage. 
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6.1. Introduction

Genome and environment together greatly influence how an organism develops and functions. 
Efforts to decipher how the genome relates to its phenotype in cattle, a livestock species with 
high economic significance, thus far have been mostly focused on single nucleotide polymor-
phisms (SNPs). Hence, exploration of complex and less tractable genetic variants, such as 
structural variants (SVs), have been scarce. This thesis presents an in-depth investigation of 
bovine structural variants. I generated two bovine SV catalogues, using a high-density SNP 
array and WGS data (Chapters 2 and 3). Of the numerous SVs discovered in the catalogues, I 
focused on highlighting variants at two extreme ends of the frequency spectrum: the GC CNV, 
segregating at a high frequency (Chapter 4), and an extreme form of rare SVs, de novo SVs 
(dnSVs; Chapter 5). 

In this discussion, I compare two functional SVs discovered in this thesis (Chapters 3 and 4) 
and reflect on the evolutionary forces governing the fate of these SVs. Subsequently, I discuss 
the extreme form of rare SVs: dnSVs arising in bovine germlines. I discuss how our views on the 
source of de novo mutations (DNMs) have evolved over time and propose a model that fits best 
with extreme paternal bias and the IVF effect (Chapter 5). Furthermore, I discuss trends and 
developments in SV research that will advance our knowledge of SVs, and end the discussion 
with suggestions for discovery and utilization of functional SVs.

6.2. Evolutionary forces governing the fate of dupli-
cations and mCNVs

In this thesis, I exploited a wealth of genomic and phenotypic data obtained from dairy cattle 
populations, to gain insights into high impact SVs. Here, I compare the GC CNV and the 
ORM1 duplication in terms of the structural alleles segregating at each locus, and discuss the 
differences between these two SVs. From here onwards, I use the term “functional SVs” to refer 
to SVs that alter gene functioning, for instance, via eQTL mapping or GWAS association. 

6.2.1. The structural alleles at the GC CNV and the ORM1 dupli-
cation

The two functional SVs in this context, the GC CNV and ORM1 duplication, are similar in 
that they are associated or implied to have association with economically important traits in 
dairy cattle (Lee et al. 2021; Brown et al. 2021; McGuckin et al. 2020). On the other hand, the 
type of SV (mCNV vs. duplication) and thereby the structural alleles segregating at these loci 
differ, which may reflect different evolutionary forces operating on the respective locus. Below, 
I elaborate on these loci; their differences are illustrated in Figure 6.1. 

The GC CNV is a multiallelic CNV, where the diploid CNs ranged from 2 and 11. This locus 
harbours two main structural alleles: CN1 (wild type) and CN4 are the main alleles and two 
rare alleles: CN5 and CN6. The rare alleles were only present in a small number of related 
animals within our deep WGS cohort (Figure 6.1). The long stretch of IBD haplotypes shared 
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across CNs 4-6 animals implied that CNs 5-6 alleles are recurrent mutations that arose from 
the CN4 allele. The SV catalogue generated by Kommadath et al (2019) confirmed that the 
GC CNV is segregating in both dairy and beef cattle breeds. However, due to heterogenous 
sequencing coverage used for constructing the SV catalogues, it remains unknown whether the 
GC CNV carriers are the carriers of the rare, CNs 5-6 allele carriers. 

The ORM1 duplication is a highly frequent biallelic duplication (Wild type allele (Wt)=0.51, 
duplicated allele (DUP)=0.49), harbouring two structural alleles, CN1 and CN2 (Figure 6.1). 
Presence of the ORM1 duplication was reported in multiple beef cattle breeds (Kommadath 
et al. 2019), but with at most diploid CN4 (CN2/CN2), and thus is likely biallelic in these 
other breeds as well. To further consolidate our findings on the biallelic state of the ORM1 
duplication, we genotyped an additional 815 HF animals for the ORM1 duplication, using the 
direct genotyping approach. The genotyping results showed three canonical clusters, further 
supporting a biallelic status (results not shown).

Figure 6.1. 
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Overall, presence of these SVs in other populations, including beef breeds, suggests that both 
SVs likely arose before the formation of modern dairy cattle breeds. When compared to the 
population-wide biallelic duplications which are predominantly rare (Chapter 3), it is evident 
that common duplications, like that of ORM1, are exceptions rather than the norm. On the 
other hand, the 24 mCNV loci discovered in the WGS-based SV catalogue (Chapter 3) were 
shown to harbour frequent multi-copy alleles, similar to GC CNVs. To sum up, our popula-
tion-wide SV duplications and mCNVs point towards a seemingly contradictory phenomenon 
where duplications loci are enriched for rare variants (but depleted for common variants), 
whereas mCNVs harbours common alleles.

6.2.2. Expansion and contraction of duplications

Our bovine SV catalogue points towards depletion of common biallelic duplication. This phe-
nomenon has been consistently found in multiple human SV catalogues, including large-scale 
catalogues based on >10,000 deep WGS genomes (Scott et al. 2021; Abel et al. 2020; Collins 
et al. 2020; Sudmant et al. 2015). On the other hand, human genomes harbour ~1,300 mCN-
Vs, many of which harbour multicopy structural alleles (analogous to the GC CNV) and are 
strongly associated with gene dosage variation (Handsaker et al. 2015; Scott et al. 2021). This 
observations, in short, suggest that biallelic duplications remain as rare biallelic variants or 
expand to mCNV, harbouring multiple highly polymorphic alleles. One possible explanation 
for this phenomenon is that a de novo duplication event (haploid CN1 -> CN2) rarely occurs; 
however, once several multi-copy alleles segregate, contraction or expansion of copies can occur 
easily, for instance, via non-allelic homologous recombination (NAHR; Broad Institute and 
Handsaker 2019). This explanation indicates that CN2/CN2 animals can form gametes with 
CN1 and CN3, respectively, underlining that the duplication is unstable.

6.2.2.1. An example of unstable duplication in the Bar locus in Drosophila

The mutational instability in duplications is not entirely novel. Among multiple examples 
showing the contraction and expansion of duplications, here I elaborate on two sex-linked du-
plication loci reported in Drosophila and chicken. Firstly, unstable duplications giving rise to 
the revertant wild type allele were reported as early as 1917. In Drosophila, normal flies have 
round eye shapes with high facet numbers. However, X-linked Bar allele carrying males and 
homozygous females have low facet numbers with slit-like eyes. In contrast, heterozygous Bar 
carrying females have an intermediate number of facets, with kidney bean-shaped eyes (Tice 
1914). While selecting Drosophila for low facet numbers (thus selection towards slit-like eyes), 
May (1917) discovered that some progenies are born with round eyes, an indication of rever-
sion. This locus showed a reversion rate of ~0.001 (Zeleny 1919), and later an experimental 
validation underlined that non-equal crossovers give rise to two unbalanced gametes, where one 
receives a wild type allele, and the other receives a triplicated allele (Sturtevant and Morgan 
1923).

6.2.2.2. An example of unstable duplication in the late feathering trait in 
chicken

A similar revertant phenomenon was reported in chickens. The late feathering trait is associ-
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ated with a 176-kb duplication located on the Z chromosome. The duplicated allele harbours 
an avian endogenous virus gene (EV21) (Elferink et al. 2008). Purebred offspring from the late 
feathering strain are expected to show a late feathering phenotype; however, often revertant fe-
male offspring (in this context, visually distinguishable due to the early feathering phenotype) 
are born at a frequency of 0.001 (Ron Okimoto, pers. comm.). In this example, a triplicated 
allele was not reported, and hence a looping-out mechanism which would delete one of two 
copies within a single allele, was suggested (Levin and Smith 1990).

These two examples allude to repeat sequences (Roo transposon for the Bar locus in Dro-
sophila, and EV21 for the late feathering locus in chicken) that may cause unequal crossovers, 
leading to genome instability. NAHR has been widely adopted as one of the key mechanisms 
inducing CNVs, also resulting in unequal crossovers (Hastings et al. 2009). However, the re-
ports in humans mostly consider low copy repeats (LCR), in other words segmental duplica-
tions (>1-kb) as the cause of NAHR. To what degree LCR can induce multiplicated alleles has 
not been systematically investigated. 

Figure 6.2. 
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Bar alleles and their phenotypes in Drosophila. (A) Wild type Drosophila have 
round eyes. Flies homozygous (or hemizygous) for the Bar mutation have thin, slit-like eyes. Flies homo-
zygous (or hemizygous) for the double-Bar mutation have even smaller eyes. (B) Schematic of the Bar 
region of polytene chromosomes. The Bar mutation is a tandem duplication and double-Bar a tandem 
triplication of the region. (C) The Bar mutation arose by unequal crossing over between two Roo trans-
posable elements (yellow), resulting in a tandem duplication. Reversion and triplication alleles arose from 
the Bar mutant by unequal cross- over between duplicates that had aligned out of register. Figure courtesy 
by Wolfer and Miller (2016).
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6.2.3. Possible explanations of the biallelic state of the ORM1 du-
plication

To summarize, duplicated alleles can contract (reversion) or expand (becoming mCNV loci), 
likely using repeat sequences as substrates. This view posits a question regarding the muta-
tional mechanisms of the ORM1 duplication: Why and how the ORM1 duplication persists as 
a common biallelic duplication? As duplications segregating at high allele frequency are not 
common, it is tempting to speculate that the high frequency of the duplicated allele may be 
associated with adaptive advantages. If that is the case, it may be logical to expect a triplicate 
allele that may confer even stronger adaptive advantages. However, the ORM1 duplication 
remains biallelic, not attaining triplicate allele(s) and becoming an mCNV locus (confirmed in 
the current study population and beef cattle breeds). 

There may be two explanations for this phenomenon: (i) the local genomic context lacks 
substrates to give rise to NAHR (e.g. repeat sequences), hence a triplicated allele does not 
arise, or (ii) a triplicated allele may be formed via NAHR, as demonstrated in the Bar allele 
in Drosophila, but does not persist, possibly due to selective disadvantage. For instance, the 
triplicated allele may become deleterious due to a disrupted gene dosage, and may thus be 
selected against.

Without excluding that absence of NAHR as a potential explanation for the observed lack of 
triplicated alleles, a study by Lan and Pritchard (2016) lends further support for the negative 
selection on a newly emerged triplicate allele. Lan and Pritchard (2016) conducted an empir-
ical study utilizing human and mouse multi-tissue transcriptome data and showed that most 
young, tandemly duplicated genes are expressed at a lower level than a canonical single gene 
copy (Lan and Pritchard 2016). This is because these copies are likely governed by the same 
regulatory elements, prohibiting them from obtaining novel expression profiles. Consequently, 
the sum of gene expression of the original and the tandemly duplicated copy together would 
be equivalent to that of single-copy genes. In short, an abrupt increase of gene dosage through 
copy gain events can disrupt the dosage balance, and in turn reduce chances of survival of the 
young gene duplicate, making dosage sharing essential for survival (Lan and Pritchard 2016).

Based on the findings by Lan and Pritchard (2016), I speculate that the ORM1 duplication 
may not obtain more than two copies, possibly because its expression cannot be downregulated 
sufficiently for a triplicate allele to survive (insufficient negative feedback).
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6.3.  De novo structural variants

In chapter 5, I utilized 127 deeply sequenced bovine pedigrees, and discovered 20 de novo SVs 
(dnSVs). Compared to de novo single nucleotide variants (dnSNVs), for which multiple large 
scale cohorts were investigated regarding the underlying mutagenesis, the investigation on dnS-
Vs has been sparse. Hence, our findings on dnSVs are invaluable in understanding distinctive 
mutagenesis of SVs. We observed an extreme paternal bias among the germline dnSVs (14:1). 
Also, our findings point towards a strong bias toward IVF probands, underlining that certain 
assisted reproduction technologies (ART) can be mutagenic (Table 5.1). Additionally, I discov-
ered five early mosaic dnSVs that account for 21% of all detectable dnSVs. Here, I discuss two 
different models on the mutagenesis of DNMs, and elaborate on the model that fits best with 
our findings. Furthermore, I explain why multi-generational extended pedigrees are important 
in accurate estimations of germline dnSVs. Additionally, I elaborate on the value of bovine 
pedigrees as a model for future studies. Below, I use the term de novo mutations (DNMs) to 
referred to any type of de novo variants, whereas I use dnSVs or dnSNVs to refer to particular 
type of DNMs.

6.3.1. Source of DNMs

Even before the direct estimation of mutation rate was possible (e.g. using sequencing), classi-
cal geneticists considered the male germline as the main contributor of DNMs. Haldane (1947, 
1935) estimated the mutation rate for hemophilia, an x-linked recessive disease, and concluded 
that the mutation rate is much higher in males than in females. With the development of 
molecular biology, it has become possible to assign the parent-of-origin for autosomal de novo 
diseases, for which the paternal bias was confirmed again. One fairly obvious explanation for 
the paternal bias is the greater number of cell divisions in the male germline, compared to 
the female counterpart (Crow 1997). Here, I explain (i) how this view, the so called “replica-
tion-driven model”, has been both confirmed and rejected by studies in the sequencing era and 
(ii) why I consider our dnSV findings to not fit well with the replication-driven model, and 
propose to consider DNA damage as additional source of DNMs.

6.3.1.1. The replication-driven model

An empirical estimate of human germline dnSNV rate from 78 sequenced Icelandic pedigrees 
showed that ~80% of dnSNVs arose in the male germline. Also, the paternal age was strongly 
correlated with the number of dnSNVs, indicating that an aging paternal germline accumulat-
ed dnSNVs at a rate of one dnSNV per year (Kong et al. 2012). These two factors, sex and age, 
were subsequently confirmed in multiple human cohorts (Michaelson et al. 2012; Goldmann et 
al. 2016). These disproportionally high paternal dnSNVs were explained by the difference in 
male and female gametogenesis. Unlike the female germline that does not undergo postnatal 
replication, the male germline undergoes continuous replication from puberty onwards. Hence, 
erroneous replication leading to dnSNVs in spermatogonia stem cells can accrue dnSNVs, as 
the male germline ages.
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6.3.1.2. DNA damage induced dnSNVs

Accumulation of WGS data in humans and other species confirmed the sex and age effect in 
dnSNVs, supporting the replication driven model described above (Venn et al. 2014; Harland 
et al. 2017; Thomas et al. 2018). However, a cross-species germline dnSNV comparison cast 
doubt on the replication-driven model (Wu et al. 2020b). For instance, if dnSNVs accrued in 
direct relation to the age of the male germline, human paternal bias would be twice as strong 
as that in baboons. This is because a human male will have undergone many more replications 
at the age of conception (e.g. from puberty to the moment of conception of offspring) than 
baboons, which mate at a younger age (Wu et al. 2020a). However, the paternal bias in hu-
mans and baboons was similar (4:1). This finding underlines that the number of male germline 
replications cannot fully explain paternal bias, requiring an additional model.

Other, large-scale human dnSNV studies discovered the maternal age effect (Wong et al. 2016; 
Goldmann et al. 2016). At a maternal age of > 40, an exponential increase of a maternal age 
effect explained the data much better than a linear model (Gao et al. 2019). Notably, the 
emergence of clustered DNMs (cDNMs) was correlated with maternal age, and the mater-
nal cDNMs had a distinctive mutational signature (C>G), suggesting a DNA damage origin 
instead of a replicative origin (Goldmann et al. 2018). Gao et al. (2019) concluded that the 
suboptimal DNA repair capacity of ageing oocytes could result in increased dnSNVs in both 
maternal and paternal genomes. Furthermore, the incidence of dnSV accompanied by small 
DNMs in physical proximity was also higher in ageing oocytes, likely due to compromised 
double-strand break (DSB) repair in oocytes (Goldmann et al. 2018). Together, these studies 
unravelled female germline driven DNMs, which were not caused by replication errors, but by 
a suboptimal DNA repair function. This novel finding is in contrast to the textbook view that 
dnSNVs arise from replication errors in the male germline.

6.3.1.3. Weak evidence for replication model in dnSVs

It took long until investigating whether the replication driven model is also applicable to 
dnSVs, as studying dnSVs requires a much larger cohort than dnSNVs studies, since dnSVs 
are much rarer than dnSNVs. A dnSV screen in a healthy human cohort (~250 trios) showed 
a paternal bias of 2.2:1, but without significant age effect (Kloosterman et al. 2015). A more 
recent and larger study on human dnSVs (~4,000 trios) confirmed these earlier findings: there 
was no significant paternal age effect, although a paternal bias was shown (2.6:1, Belyeu et al. 
2021). Together, these human dnSV studies suggest that (i) the paternal bias indicates that 
the male germline is more prone to give rise to dnSVs; however, (ii) dnSVs are independent 
from paternal age, meaning that dnSVs may arise after DNA replication process. Mutations 
(both dnSVs and dnSNVs) arising after the replication would not bear age effect, as they do 
not accumulate in the spermatogonial stem cells. Take these together, the replication model 
lenders weak support for the emergence of dnSVs. 

6.3.1.4. Post-meiotic sperm DNA damage leading to paternal bias

The non-age dependent paternal bias shown in human studies points towards post-meiotic 
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emergence of dnSVs. Thus, I consider post-meiotic sperm DNA damage and its subsequent 
repair by oocytes as the major source of dnSVs. Male and female gametes undergo distinctive 
trajectories of differentiation. As for male gametogenesis, spermatogonial stem cells undergo 
meiosis, resulting in spermatids, which further undergo spermiogenesis (post-meiotic matura-
tion steps, including removal of cytoplasm, compaction of nuclei, stripping of histones and re-
placement by protamines), resulting in mature sperm cells (Champroux et al. 2016). Although 
these maturation steps induce DNA lesions, particularly DSBs (Grégoire et al. 2018), these 
cannot be repaired by sperm cells themselves due to suppressed transcription; hence, these 
lesions are left unrepaired until fertilization. On the other hand, oocytes can transcribe and 
accumulate mRNA, which can later repair sperm lesions upon fertilization. Thus, DNA repair 
in a freshly fertilized zygote is considered a maternal trait (García-Rodríguez et al. 2019). 
Taken together, post-meiotic DNA damage in sperm cells seems to hold the key to the non-
age dependent paternal bias, hinting that the DNA damage model may be more adequate to 
explain the observation.

6.3.1.5. What explains the IVF effect?

Finally, our dnSVs unraveled a strong IVF effect (Chapter 5). Such elevated dnSVs in IVF 
probands may be due to (i) increased DSBs in sperm cells, (ii) decreased DNA repair capacity 
of in vitro matured (IVM) oocytes compared to in vivo oocytes, or (iii) both. Given that all 
probands (AI-, FE-, and IVF- produced ones) are fertilized from frozen semen, the amount 
of spermiogenesis induced DSBs is assumed constant regardless of the ART applied. The fer-
tilization condition in IVF differs from AI and FE, in both of the latter the thawed semen is 
injected into the vaginal tract. In IVF, sperm cells might accrue more DSBs until fertilization 
in a petri dish, thus leading to high dnSVs in a proband. Alternatively, IVM oocytes might 
have a suboptimal capacity to repair DNA damage compared to in vivo oocytes (analogous to 
the ageing oocytes reported in humans (Gao et al. 2019; Goldmann et al. 2018)). IVM oocytes 
have altered transcriptional activities, suggesting that the accumulation of mRNA for DNA 
repair is not comparable to in vivo oocytes (Erhardt et al. 2003; Katz-Jaffe et al. 2009). To 
disentangle the true origin of the IVF effect in dnSVs and attribute the source of dnSVs either 
to sperm cells or IVM oocytes requires follow-up research.

6.3.2. Bovine pedigrees as a model 

Thus far, I have discussed the underlying mechanisms of bovine germline dnSVs based on 
the findings in this thesis (Chapter 5). Here, I bring the discussion to a broader context, by 
reflecting on the data set used in this thesis, and by discussing why this data set is suitable 
for studying DNMs. Finally, I end the discussion by proposing bovine pedigrees as a model for 
DNM studies. 

Studies on DNMs can shed light on fundamental evolutionary questions: how, when and where 
do DNMs arise? Many studies aimed at answering these questions by detecting germline DNMs 
in two-generational WGS pedigree data (Kong et al. 2012; Michaelson et al. 2012). A large 
number of two-generational pedigrees have sufficient statistical power to distill mutagenic 
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factors, such as sex and age effects (Goldmann et al. 2016). However, pedigree structures oth-
er than the two-generational trio structure have demonstrated their value in elucidating the 
timing of DNMs, both of germline and early mosaic DNMs (Harland et al. 2017; Rahbari et 
al. 2016; Sasani et al. 2019).

We utilized three-generational extended pedigrees, where a trio pedigree, consisting of a pro-
band, sire, and dam, complemented with multiple half-siblings (2nd generation) and offspring 
(3rd generation) of a proband. This pedigree structure is crucial for confident detection of (i) 
germline dnSVs, based on transmission to the 3rd generation, and (ii) early mosaic dnSVs, 
based on imperfect linkage signature. Our dnSV discovery results, consisting of 15 germline 
dnSVs and 5 early mosaic dnSVs, point towards two distinctive timings of dnSVs: the former 
arose during gametogenesis of mature animals, whereas the latter arose during early zygotic 
development. Lack of an intricate pedigree structure (e.g. probands are not complemented 
with half-siblings) may misclassify early mosaic DNMs in parents into late germline DNMs of 
the proband, resulting in an inaccurate estimation of the germline mutation rate (Harland et 
al. 2017).

Furthermore, the 127 probands investigated were obtained from three different assisted repro-
duction technologies (ARTs): AI, MOET, and IVF. ARTs have been widely adopted both in 
human and bovine reproduction: globally, ~400K babies are born annually via ART (Duran-
thon and Chavatte-Palmer 2018), and ~800K bovine embryos were produced in vitro in 2019 
(Viana 2020)). Despite this wide adoption of ARTs, their impact on DNMs has been difficult to 
measure in humans. This is because (i) IVF probands were a small fraction of the total cohort, 
and hence were removed to avoid the introduction of IVF-related bias in a DNM study (Wong 
et al. 2016), or (ii) DNM study samples were recruited from a disease cohort, which can be 
confounded with possible IVF effects (e.g. IVF might be used due to illness in parents, hence 
increased DNMs cannot be confidently attributed to either IVF or disease; Wang et al. 2021).

To summarize, many DNM studies have focused on knowledge gaps regarding endogenous mu-
tagenic factors, such as sex and age effects, exploiting two-generational pedigrees. Multi-gen-
erational extended pedigrees have the potential to elucidate DNMs arising in different devel-
opmental stages. However, the use of multi-generational pedigrees has been limited in humans, 
likely due to the long generational interval (Sasani et al. 2019; Jónsson et al. 2018; Rahbari 
et al. 2016) On the contrary, generating WGS data on such intricate pedigrees is feasible in 
livestock species: breeding programmes not only have multiple generations of bovine pedigree 
records, but also generate extensive amounts of phenotype data, potentiating the study on im-
pact of DNMs. Furthermore, ART is routinely practiced in cattle production, particularly on 
young and healthy animals. Taken together, I propose bovine populations as a powerful model 
for future studies on DNMs and ART effects on DNMs. 
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6.4. Trends and perspectives of SV research

In this thesis, I generated population-wide SV catalogues, using the SNP genotyping array and 
WGS data sets (Chapters 2 and 3). A comprehensive survey of SVs of diverse types and sizes, 
possibly accurately genotyped, is crucial, as it can potentiate the discovery of high-impact SVs 
(Chapter 4) and the detection of dnSVs (Chapter 5). Below, I discuss how recent advances in 
SV detection software packages will expand both array-based and short read WGS-based SV 
catalogues. Next, I discuss the developments in long-read sequencing (LRS) data.

6.4.1. SV discovery in array data

The BovineHD array-based SV catalogue generated in this thesis contained 1,755 CNV re-
gions. Based on this catalogue, I identified ~32 CNVs on average per bovine genome. The mean 
length of deletions and duplications was 44.2-kb and 74.6-kb, respectively (Chapter 2). The 
limitations of the array-based SV catalogue were evident: (i) detectable variants are limited to 
CNVs, (ii) breakpoints are unresolved, and (iii) detection resolution is low. 

Despite these constraints, the BovineHD array-based catalogue contained multiple high-impact 
SVs, such as a 138-kb deletion located on the HH5 recessive lethal haplotype, ablating the en-
tire TBF1M gene (Schütz et al. 2016), as well as a 85-kb ORM1 duplication. It is worth noting 
that breeding programmes have genotyped many animals with BovineHD and other arrays. 
Thus, array-based SV detection will remain a cheap method for high-throughput screening for 
well-characterized large CNVs, despite the limitations explained above. 

Notably, the current array-based catalogue was generated using the PennCNV software pack-
age, which exploits B allele frequency and probe hybridization intensity (Wang et al. 2007). A 
novel computational approach, which takes into account haplotype sharing, additionally to the 
B allele frequency and the probe hybridization intensity, resulted in a six-fold increased CNV 
detection sensitivity (Hujoel et al. 2021). Applying the methodology developed by Hujoel et 
al. (2021) to the already generated large-scale genotyping data available in the bovine breeding 
programmes will contribute to further expanding the array-based catalogue at no extra cost. 

6.4.2. SV discovery in short-read sequencing data

Detection and genotyping of SVs are challenging, particularly in low pass WGS data (Hud-
dleston and Eichler 2016). Nearly ~50% of SVs discovered in the human ‘1000 Genomes Proj-
ect’ are left with no-to-limited breakpoint resolution (mean coverage=7.4X; Sudmant et al. 
2015). Our WGS data, obtained from 266 deeply sequenced genomes from a healthy HF family 
cohort (127 trios, mean coverage=26X) resulted in a superior SV catalogue, containing ~14,000 
SVs with (i) improved detection of smaller variants, (ii) ~70% SVs with single base-pair reso-
lution, and (iii) diverse types of SV (deletions, duplications, mCNVs, processed pseudogenes). 
Using this catalogue, we identified ~5,000 SVs per bovine genome (Chapter 3).

SV detection in Chapter 3 was performed based on a single hybrid caller, Lumpy (Layer et al. 
2014), which takes into account two aberrant mapping signals (discordant read pairs and split 
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reads). I emphasize that despite the high quality of the SV catalogue generated in the current 
thesis, more SV can be discovered in the current deeply sequenced bovine genomes using ad-
vanced SV detection software packages. For instance, a preprint on SV detection in the deeply 
sequenced 1000 Genomes Project data discovered ~9,000 SVs per genome (Byrska-Bischop 
et al. 2021) by (i) combining two ensemble SV calling pipelines (combination of multiple SV 
callers) used in Abel et al. 2020 and Collins et al. 2020, (ii) a de novo assembly based inser-
tion pipeline (github.com/nygenome/absinthe), and (iii) a post-hoc insertion genotyping tool 
(Chen et al. 2019). Byrska-Bischop et al. (2021)’s catalogue shows that detecting insertions, 
which are known to be highly challenging to detect in SRS, is possible by combining de novo 
assembly and post-hoc genotyping approaches. As noted earlier, a comprehensive survey of 
SVs provides a basis of discovery of high impact variants. Hence, applying novel SV detection 
methods (e.g. ensemble SV calling pipeline and de novo assembly based approach) to the al-
ready existing WGS data will make the SV catalogue even more comprehensive. 

6.4.3. SV discovery in Long-read sequencing data 

Long-read sequencing (LRS) technology utilized significantly longer DNA molecules than the 
conventional short-read sequencing (SRS) technology. Thus, SVs can be discovered even in the 
SRS-intractable regions (e.g. highly repetitive sequences), resulting in discovery of ~20,000 SVs 
per genome (Zhao et al. 2021). Also, SV detection from the SRS data mapped to a reference 
genome inherently has a reference genome bias, which can be resolved using de novo assembled 
LRS data (Ebert et al. 2021; Audano et al. 2019). Despite its comparably high costs (LRS costs 
~7x more than SRS data (Zhao et al. 2021), a population-scale LRS genetic analysis was re-
cently conducted on 3,622 Icelanders (Beyter et al. 2021). This LRS study revealed multiallelic 
SVs located in SRS-intractable regions. One such case was an exonic VNTR in ACAN gene, 
harbouring 11 alleles with a different copy number of a 57-bp motif. The number of motifs was 
in a linear relationship with the human height in the Icelandic population, pointing out that 
LRS-based SVs can contribute in expanding our knowledge of functional SVs. 

On the other hand, a handful of LRS data can be used to construct a graph-based genome 
representation. Using previously generated SRS data, Ebert and colleagues discovered ~50% 
of ~100K SVs in haplotype-resolved LRS assemblies (Ebert et al. 2021). Notably, a SV graph 
constructed from 15 LRS assemblies to discover SVs in ~30X SRS data revealed SVs under 
adaptive evolution in humans (Yan et al. 2021). Likewise, multiple reference quality genomes 
have been published in cattle (Low et al. 2020; Heaton et al. 2021; Oppenheimer et al. 2021). A 
preprint on a bovine pangenome SV graph suggests that 50 de novo LRS assemblies per breed 
would suffice to capture within-breed SVs (Leonard et al. 2021). 

Together, these technological advancements in LRS promise curation of a larger number of 
SVs, many of which (e.g. mobile genetic variants and VNTRs) are currently under-represented 
in SRS based SV detection. Future efforts to characterize such variants will better elucidate 
the roles of SVs in the genome-to-phenome connections.
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6.5. Suggestions for the discovery and utilization of 
functional SVs

Here, I illustrate the workflow and underlying data used in my thesis for identifying functional 
SVs which can be used as a benchmark for future studies. Furthermore, I elaborate on how to 
genotype and utilize functional SVs (Figure 6.3).

6.5.1. Workflow and data for discovering functional SVs

Upon completion of the SV catalogues (chapters 2 and 3), I intersected them with an in-house 
SNP-based GWAS catalogue (Figure 6.3). The GWAS catalogue was generated based on 
~4,000 daughter proven bulls, and on >50 traits routinely collected by the Dutch HF dairy 
cattle breeding programme. These bulls were genotyped with a 16K density array, which was 
sequentially imputed to 50K, to BovineHD and finally to WGS level. All animals used for con-
struction of imputation panels were from the same HF population. In the absence of a GWAS 
catalogue generated for the breed of interest, I recommend to use a public GWAS catalogue 
(Jiang et al. 2019), and the animal QTL database (Hu et al. 2019) 

As shown in chapters 2 and 3, the genotyping accuracy of SVs differs, depending on the type of 
variant. The implication of using accurately genotyped SVs in association analyses is that the 
association signal may not be as strong or evident as the underlying data ought to show. Thus, 
I foresee that SNP-based GWAS will remain the key tool in QTL- and fine-mapping, instead of 
direct association using SV genotypes, given suboptimal genotyping accuracy in SVs compared 
to SNPs. It is worth noting that the GC CNV and previously reported trait-associated SVs in 
livestock species were captured well by haplotypes (Derks et al. 2018; Kadri et al. 2014), as 
was shown in a large-scale haplotype-assisted CNV detection study (Hujoel et al. 2021). A hap-
lotype-based fine-mapping approach (Zhang et al. 2012) can be an additional consideration. 

The eQTL data was generated with the liver RNA-seq data of 178 HF cows. These animals 
were genotyped with a BovineHD array (770K) and then imputed to SVs and SNPs discovered 
in the WGS data. Imputing rare variants, as for many SVs, is challenging. Often, they are im-
puted with low accuracy and thus filtered out. Hence, to test for the effects of rare SVs, future 
eQTL mapping studies might consider generating WGS data to avoid imputation.

In our study, integration of eQTL and an epigenome map generated from a matching tissue 
type (liver) provided a mechanistic explanation of trait- and expression- association with SVs. 
Due to the scarcity of publicly available epigenome data, we relied on liver ChIP-seq data 
generated from bulls of an unknown breed (Villar et al. 2015). However, epigenetic marks and 
gene expression can differ depending on multiple factors, such as tissue-type, sex, and age (Ar-
dlie et al. 2015; The ENCODE Project Consortium 2012). Future studies should investigate a 
biologically relevant tissue that underpins the trait of interest.

Additionally, the trait of interest in this thesis, clinical mastitis, can be observed in mammary 
glands, and thus seemed relevant to investigate. However, GC is not expressed in mammary 
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glands (Chapter 4). After establishing the causality of the GC gene, high GC expression in liv-
er and a subsequent increase in clinical mastitis seems logical in retrospect. Thus, I recommend 
that future studies aiming at establishing molecular causality to investigate gene expression 
and epigenomic marks, are not only limited to the tissues where traits of interest are observed. 
Also, future studies should utilize human and bovine expression atlases (Ardlie et al. 2015; 
Fang et al. 2020) to determine biologically relevant tissues in establishing causality.

Figure 6.3.  

SV
Catalogue

Discovery of 
functional SVs

Utilization of 
SVs

GWAS 
Catalogue

Statistical associations unravelled by Single-SNP GWAS

Samples:    ~4,142 daughter proven bulls
Phenotype: DRP of ~50 routinely collected traits
Genotype:   genotyped at 16K density array
          imputed from 16K > 50K > BovineHD > WGS SNPs#

Functional associations unravelled by eQTL mapping

Samples:    178 HF cows
Phenotype: postpartum (d14) liver RNA-seq 
Genotype:   genotyped with BovineHD array
          imputed from BovineHD > WGS-level SNPs#

Functional prioritization using epigenome map

1) Liver ChIP-seq (H3K27Ac and H3K4me3)
Sample: liver obtained from 4 bulls (unknown breed)

2) Liver ATAC-seq
Sample: liver obtained from 1 HF male calf

Designing SV targeting probe
1) Breakpoint trageting probes* [1]
2) SV tagging SNP targeting probes* [3-6]
3) Monomorphic probes* [2,7]

Genome-wide curation of SVs

1) Array-based catalogue: 
Sample: 446 BovineHD (331 HF and 115 JER)

2) WGS-based catalogue: 
Samples: 266 deep WGS HF animals (mean cov: 26X)#

eQTL 
Mapping

Epigenome 
Map

Direct
Genotyping

Genotyping results of the seven probes targeting GC CNV.We used seven probes 
(targeting proximal breakpoint, CNV tagging SNPs, and monomorphic probes) to genotype and gain 
better insights about the GC CNV. The genotyping results obtained based on genotyping an independent 
cohort are shown in the figure. Our genotyping results indicated that probe 3 and 6 worked equally well, 
whereas 4 and 5 did not work successfully. Probe 1, which targeted the breakpoint, worked partially, 
distinguishing CNV carriers from the rest, however it did not clearly cluster the CNV carriers. Two mono-
morphic probes confirmed two clusters that separated CNV carriers from the rest. However the probe 7 
was suboptimal, showing heterozygous animals.
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6.5.2. Utilizing functional SVs via direct genotyping

Direct genotyping can be beneficial in two aspects: Firstly, once a functional SV is identified 
and characterized, a large cohort can be genotyped for the SV to screen and monitor the 
presence of the SV (black solid downwards arrow in Figure 6.3). For example, I added mul-
tiple probes targeting the GC CNV, which can then be used for genomic prediction. Also, in 
chapter 5, we identified a putative deleterious de novo SV, a 50-Kb deletion ablating CENPC 
gene (Chapter 5). I added probes targeting this dnSV, such that the breeding programme can 
monitor the segregation of the putative risk variant. Of note, based on the genotyping results 
obtained in Chapter 3, this dnSV was not found in any of the 815 genotyped animals.

Secondly, direct genotyping results can be used to perform a direct association between the SV 
genotype and phenotype (grey dotted upwards arrow in Figure 6.3). It is worth noting that I 
relied on a SNP-based GWAS catalogue to discover SVs. The underlying assumption of this 
approach is that the SNPs are in high LD with the SVs of interest, thus the association signals 
from SNPs are sufficiently high to guide discovery of functional SVs. However, as elaborated 
earlier, unstable duplications can revert to wild type alleles. Such reversion involves switching 
of the background haplotype (e.g. from the haplotype shared among duplicated alleles (CN2), 
to one shared among wild type alleles (CN1)), resulting in low LD between the duplication 
and the surrounding SNPs. Thus, this ‘bottom-up’ approach (first genotype SVs in a large 
cohort and then associate the phenotypes) may pick up SV-driven association signals which 
are neglected by the approach used in the current thesis. 

6.5.2.1. Challenges in direct genotyping of SVs 

In chapter 3, I added 372 probes directly targeting CNVs, and ~ 80% were confirmed in an 
independent HF cohort. Most probes targeted breakpoints of biallelic CNVs. Here, I briefly 
discuss the CNV genotyping results, taking the results obtained from the GC CNV as an ex-
ample. I further highlight some caveats of the direct genotyping approach. 

To thoroughly genotype the GC CNV, we added seven probes, of which (i) one probe targeted 
the distal breakpoint (1), (ii) four probes targeted polymorphic SNPs tagging the GC CNV 
(3-6), and (iii) two probes targeted monomorphic positions that aimed to distinguish (CN1) 
individuals from CNV carriers (CNs4-6), and which could have enabled us to distinguish CN4 
from CNs5-6 (2,7; marked with green arrows; Figure 6.4). 

Genotyping results in this thesis confirmed that two polymorphic probes (3 and 6) and one 
monomorphic probe (2) worked successfully among the seven probes. This result demonstrates 
that genotyping CNVs requires multiple probes to determine which probe works best.

Lastly, it is worth noting that CNV genotyping results should be processed with caution. The 
SNP genotyping probes are designed to hybridize diploid DNA without structural complexity 
(e.g. gain or loss of DNA). However, most CNV probes used in this thesis targeted the break-
points sequences where the gain or loss of DNA started (Chapter 3). Hence, default genotype 
clustering performed by the Illumina Genome Studio software may lead to suboptimal cluster-
ing for CNV targeting probes, leading to low genotyping accuracy. Likewise, I retrospectively 
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learned that some CNV probes were filtered out due to a stringent call rate threshold (0.99), 
despite a moderate-to-high call rate obtained (~0.98). Thus, blindly applying stringent filter-
ing criteria set for SNP targeting probes may inadequately penalize the CNV probes. Conse-
quently, it remains essential to conduct manual curation and inspection for clustering of CNV 
targeting probes.

Figure 6.4. 

GC gene
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Genotyping results of the seven probes targeting GC CNV. We used seven probes 
(targeting proximal breakpoint, CNV tagging SNPs, and monomorphic probes) to genotype and gain 
better insights into the GC CNV. The genotyping results obtained from an independent cohort are shown 
in the figure. 



6

CHAPTER 6. GENERAL DISCUSSION

146

6.5.3. Utilizing of SVs through though phasing and imputation

An ultimate aim of SV catalogue construction is the future inclusion of SVs into routine genet-
ic analyses. One approach to include SVs in to routine genetic analyses is to exploit phasing 
and imputation, as done for SNPs (Hayes and Daetwyler 2019). Phasing and imputation of 
SVs has been shown feasible, as long as this is limited to simple variants (e.g. biallelic CNVs). 
Most simple SVs can be imputed with high accuracy, however, some achieved low imputation 
accuracy compared to SNPs and indels, likely reflecting the low genotyping accuracy of SVs 
(Hehir-Kwa et al. 2016; Chen et al. 2021). Likewise, phasing and imputation of complex mul-
tiallelic SVs are possible, but require extensive characterization of the underlying structural 
alleles (Boettger et al. 2012). Also, mCNVs are often formed via recurrent mutations, thus ac-
curately imputing exact copy numbers is not trivial (Handsaker et al. 2015). As such, attempts 
to impute variable number tandem repeats (VNTRs), hypermutable SVs, have been lacking. 
Yet, phasing and imputing VNTRs is possible, by exploiting extensive amounts of sibling IBD 
haplotypes (~500K genotyped samples were imputed, using the reference panel constructed 
from ~50K UK Biobank whole exome sequenced samples; Mukamel et al. 2021). 

To summarize, phasing of imputation of SVs are dependent on (i) the complexity of SVs and 
(ii) the power of the reference panel. In my experience, imputing the copy number of the 
GC CNV, particularly to impute rare alleles (CNs 5-6), was not feasible using the 266 WGS 
samples as the reference panel (results not shown). Handsaker et al (2015) similarly noted 
challenges in accurately imputing recurrently mutated structural alleles, based on the reference 
panel of ~2,000 samples. On the other hand, simple biallelic duplications could be phased and 
imputed well, and hence used for eQTL mapping (Chapter 3). 

Based on this experience, I propose that the two SV call sets from this thesis can be phased 
and imputed and further utilized in future bovine genetics studies. The first set of SVs consists 
of ~4,000 accurately genotyped SVs (the stringent call set in Chapter 3). These SVs are simple 
biallelic variants, and can be merged with small genetic variants and phased simultaneous, as 
done in the 1000 Genomes Project (Sudmant et al. 2015). The second set of SVs consists of 
~300 CNVs that are added in the EuroGenomics genotyping array (Chapter 3). Given that this 
array will be used to genotype a large number of animals managed by breeding programmes, 
massive SNP and CNV genotyping results can be simultaneously phased and imputed, and 
further utilized in downstream analyses.

6.6. Concluding remarks

This thesis highlighted bovine SVs of a broad spectrum: from the emergence of dnSV to dissec-
tion of a likely causative SV of economically important traits. This work clearly demonstrated 
that SVs have an impact at molecular and phenotypic levels, with high relevance to livestock 
breeding. Suggestions for discovering and utilizing functional SVs presented in this discussion 
may serve as a benchmark for future studies. Further efforts to characterize population-wide 
SVs curated in the current thesis, and novel SVs that will be discovered using advanced tech-
nologies, will contribute to a complete understanding of bovine genetic variation.
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Summary

The DNA is hereditary material that harbours numerous genetic variants inherited from an 
individual’s ancestors. Of these variants, a small fraction are spontaneously occurring de novo 
mutations that can persist in the population variants pool, if not lost by drift. Cattle is a live-
stock species with high economic significance; thus, deciphering how its genome and genomic 
information relates to its phenotype is crucial. However, investigation on the mutational pro-
cesses and population variants with high impact in cattle, thus far, has been limited to SNPs. 
As a results, less tractable and complex variants, such as structural variants, despite affecting 
more bases than small varaints, have not been deeply investigated. To close this gap, I analysed 
bovine structural variants, using data from genotyping arrays and multi-generational deeply 
sequenced genomes. This thesis generated catalogues of SVs segregating in dairy cattle popu-
lations, and demonstrates that SVs can have molecular and phenotypic impacts. In particular, 
I disected one largest QTL for clinical mastitis and unravelling a 12-Kb multiallelic CNV as 
the casative variant. Furthermore, my work showed that the mutational mechanisms of SVs are 
likely inherently different compared to SNPs, highlighting the importance of a comprehensive 
survey of mutational processes.

In Chapter 2, I made a catalogue of CNVs, based on high-density SNP-array data generated 
from two dairy cattle breeds. I showed that CNV discovery results could vary, depending on 
the quality of reference genomes. Exploiting the allele frequencies of the CNVs, I highlighted 
that some CNVs likely differentiated between the two breeds, which might undergo recent 
selection. Furthermore, linkage disequilibrium between SNP-CNV pairs was generally low com-
pared to SNP-SNP pairs.

Chapter 3 describes an improved SV catalogue exploiting deeply sequenced bovine genomes. 
This catalogue contains many small SVs undiscovered in the previous catalogue (chapter 2), 
many of which have sequenced resolved breakpoints. Using a direct genotyping approach, 
I confirmed that nearly 80% of the SVs were present in an independent cohort of animals. 
Using sequenced level variants (SNPs and SVs), I showed that most SVs have tagging SNPs; 
however, findings were discrepant when using SNP-array data (50K SNPs and directly geno-
typed CNVs). This finding indicated that the variation arising from CNVs might not be fully 
captured based on SNP array data alone. Finally, I investigated high-impact SVs and mapped 
two SV-eQTL which alter gene expression.

In Chapter 4, I dissected a major QTL for clinical mastitis located on chromosome 6. By 
fine-mapping this region, I discovered the lead variants downstream of the GC gene within a 
12-kb CNV. This CNV encompasses the 3’ alternative exon of the GC gene. By exploiting the 
pedigree structure in the data set, I delineated the multi-allelic nature of the CNV, of which 
the multiplicated allele underwent recent positive selection. The liver eQTL mapping results 
showed that the CNV is a lead variant for GC expression at both gene and transcript levels. 



A

APPENDICES

168

Furthermore, the epigenome data confirm the presence of an enhancer signal within the CNV. 
Thus, the GC CNV likely alters the enhancer activity and subsequently upregulates GC.

In Chapter 5, I investigated the de novo structural variants (dnSVs) arising in the bovine 
germline by exploiting the multi-generational pedigrees. Of the 20 dnSVs detected, 15 occurred 
during gametogenesis, whereas the rest arose during embryonic development. The 15 germline 
dnSVs, detected in 127 pedigrees, correspond to 1 dnSV per 8.5 births, similar to the rates es-
timated in human cohorts. Of these 15 germline dnSVs, 14 were of paternal origin, unravelling 
an extreme paternal bias of 14:1. Furthermore, the majority of dnSVs were found in IVF pro-
duced probands, suggesting that the application of reproductive technology can be mutagenic.

Finally, in Chapter 6, I brought the findings from Chapters 2-4 together and discussed them 
in a broader perspective. I discussed two functional SVs from Chapter 3 (ORM1 duplication) 
and Chapter 4 (GC CNV) from an evolutionary point of view. Subsequently, I discussed mod-
els accounting for de novo mutations and explained why the DNA damage model fits better 
with our observations for the bovine germline dnSVs. Next, I elaborated on future research 
trends in SVs that will advance our knowledge. Lastly, I ended the discussion with a practical 
guideline for detecting and utilising functional SVs.
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Glossary

Abbreviation Explanation

ART Assisted reproductive technology

ATAC-seq Assay for Transposase-Accessible Chromatin using sequencing

CDS Coding sequences

ChIP-seq Chromatin immunoprecipitation sequencing

CM Clinical mastitis

CN Copy number

CNV Copy number variants

CNVR Copy number variant regions

dnCNV de novo copy number variants

DNM de novo mutations

dnSNV de novo single nucleotide polymorphisms

dnSV de novo structural variants

DSB Double strand breaks

EBV Estimated breeding value

GS Genomic selection

GWAS Genome-wide association study

LD Linkage disequilibrium

MAF Minor allele frequency

NGS / WGS Next generation sequencing / Whole genome sequencing

QTL Quantitative trait loci

RD Read depth

SD Segmental duplications

SV Structural variants
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