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ABSTRACT

The goal of the present study was to assess the predictive performance of a minimal generic rat physiologically based
kinetic (PBK) model based on in vitro and in silico input data to predict peak plasma concentrations (Cmax) upon single oral
dosing. To this purpose, a dataset was generated of 3960 Cmax predictions for 44 compounds, applying different
combinations of in vitro and in silico approaches for chemical parameterization, and comparison of the predictions to
reported in vivo data. Best performance was obtained when (1) the hepatic clearance was parameterized based on in vitro
measured intrinsic clearance values, (2) the method of Rodgers and Rowland for calculating partition coefficients, and (3) in
silico calculated fraction unbound plasma and Papp values (the latter especially for very lipophilic compounds). Based on
these input data, the median Cmax of 32 compounds could be predicted within 10-fold of the observed Cmax, with 22 out of
these 32 compounds being predicted within 5-fold, and 8 compounds within 2-fold. Overestimations of more than 10-fold
were observed for 12 compounds, whereas no underestimations of more than 10-fold occurred. Median Cmax predictions
were frequently found to be within 10-fold of the observed Cmax when the scaled unbound hepatic intrinsic clearance
(Clint,u) was either higher than 20 l/h or lower than 1 l/h. Similar findings were obtained with a test set of 5 in-house BASF
compounds. Overall, this study provides relevant insights in the predictive performance of a minimal PBK model based on
in vitro and in silico input data.

Key words: Cmax; QIVIVE; rat; PBPK; PBK.

Substantial advances have been made over the last decades
with the development of in vitro methods to capture biological
effects of compounds that may serve as alternative test meth-
ods for animal toxicity testing (Jennings, 2015; Pamies et al.,
2018; Pamies and Hartung, 2017). However, the quantitative
chemical distribution in the body is frequently ignored when
interpreting in vitro effect data. Without these considerations,
the in vitro biological effect data as stand-alone may lead to in-
correct conclusions about the in vivo potencies of compounds,

because the ultimate in vivo effects will, besides the toxicody-
namic effects (in the target tissue), also depend on the toxicoki-
netics (ie, the concentration of the chemical at the site of
action) (Bessems et al., 2014; Blaauboer, 2010; Yoon et al., 2015).
Applying physiologically based kinetic (PBK) modeling concomi-
tantly to in vitro toxicity testing provides an effective framework
for the extrapolation of in vitro biological effect concentrations
to equivalent (oral) doses (eg, DeJongh et al., 1999; Fabian et al.,
2019; Forsby and Blaauboer, 2007; Gubbels-van Hal et al., 2005;
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Louisse et al., 2010; Punt et al., 2019; Verwei et al., 2006; Wetmore
et al., 2015). By simulating the plasma (or tissue) concentrations
at different doses, one can infer the doses that are needed to
reach the in vitro effect concentrations in the plasma (or tissue)
and whether these effect doses are expected to be reached at
defined exposure estimates.

Although PBK modeling is increasingly acknowledged to
play a crucial role in the transition toward animal-free testing
strategies for chemical safety evaluations to perform the re-
quired quantitative in vitro to in vivo extrapolations (QIVIVE), the
development of PBK models solely on the basis of in vitro and/or
in silico input data remains a challenge (Paini et al., 2019; Peters
and Dolgos, 2019). Initial estimates of plasma and tissue con-
centrations of compounds can effectively be made with mini-
mal generic PBK models that are defined based on (1) a first-
order intestinal absorption rate (ka) and a fraction absorbed (fa),
(2) intrinsic hepatic clearance (Clint), (3) tissue: plasma partition
coefficients, (4) the fraction unbound plasma (fup), and (5) pas-
sive renal excretion (defined as the glomerular filtration rate
times the unbound concentration of the compound in plasma
[GFR � cPlasma � fup]). For each of these different kinetic pro-
cesses, different input approaches can be applied. For example,
ka and fa can be estimated from Caco-2 absorption studies or
calculated based on in silico tools (Hou et al., 2004). Clint data can
either be obtained with primary hepatocytes, S9, or micro-
somes, or can be predicted using in silico methods (Zhang et al.,
2018). The fup can also be calculated in silico or experimentally
derived using, for example, microdialysis experiments (Rotroff
et al., 2010). Partition coefficients are generally calculated in sil-
ico, for which different approaches exist (Berezhkovskiy, 2004;
Poulin and Theil, 2002; Rodgers and Rowland, 2006; Schmitt,
2008). It must be noted that available in silico tools are often
trained based on available in vitro data, indicating that the
in vitro and in silico methods cannot be regarded as being totally
independent.

Uncertainties exist with respect to the impact of these differ-
ent approaches on the model predictions, the quality of the in-
put data as well as the difficulty of determining whether
additional kinetic processes need to be added to the model (eg,
extrahepatic metabolism and/or transporter-mediated kinetics).
As a result, PBK model predictions still need to be evaluated on
a case-by-case basis against in vivo data (eg, plasma concentra-
tions) (Peters and Dolgos, 2019; Tsamandouras et al., 2015).
Moreover, when certain kinetic processes cannot be parameter-
ized based on in vitro or in silico experiments, they are usually
obtained by fitting model predictions to in vivo data (Peters and
Dolgos, 2019; Tsamandouras et al., 2015). To facilitate the transi-
tion toward nonanimal testing strategies, it is important to
move away from this case-by-case evaluation and optimization
of PBK models against in vivo data, and to identify other strate-
gies for the evaluation of the adequacy of in vitro- and in silico-
based PBK models to estimate in vivo kinetics.

The goal of the present study was to assess the general pre-
dictive performance of a minimal generic rat PBK model based
on in vitro and in silico input data to predict peak plasma concen-
trations (Cmax) upon single dosing. To this end, Cmax predictions
in rats upon single oral dosing were made for a set of 44 model
compounds based on a range of input approaches for estimat-
ing the chemical specific parameters (Clint, fup, partition coeffi-
cients, and ka) and compared with observed Cmax values
reported in the literature for these compounds in rats. We char-
acterized the contribution of different input approaches to the
wide variation in Cmax predictions for individual compounds. In
addition, we assessed whether we could find a relation between

chemical (kinetic) characteristics (such as extent of metabolic
clearance, charge, lipophilicity, or uptake rate of the com-
pounds) and the chance that the Cmax is predicted within 10-
fold or not. The results obtained were applied on 5 in-house
BASF compounds as case study.

MATERIALS AND METHODS

Chemical dataset. A dataset of 44 model compounds was formed
based on the availability of in vivo data (maximum plasma con-
centrations [Cmax]) in rats after single oral dosing, allowing to
evaluate the performance of the Cmax predictions by the PBK
model based on different in vitro and/or in silico input
approaches. The majority of compounds in the dataset (38 com-
pounds) were selected based on available plasma Cmax data for
rat in the database of the R httk package by Pearce et al. (2017).
The dataset was extended with 4 food-relevant compounds
(bisphenol A, genistein, daidzein, and ochratoxin A), for which
in vivo oral kinetic studies in rats were available in the literature.
In addition, rosuvastatin and fluvastatin were included for
which transporter-mediated processes in liver and kidney play
a main role in the kinetics (Chan et al., 2019). The final list of
model compounds and related in vivo Cmax data (and related
oral doses) is available as Supplementary Material. In addition
to the 44 model compounds, 5 in-house BASF compounds were
included as case study to test the minimal PBK modeling
approach.

Generic PBK model code and input parameters. PBK model predic-
tions in rat were performed based on a published generic (hu-
man) PBK model code by Jones and Rowland-Yeo (2013) that
was implemented in R (R Core Team, 2021, version 4.1.1) and
converted from human to rat by Punt et al. (2021) by inclusion of
rat-specific parameters as obtained from Musther et al. (2017).
The model consists of 13 compartments, corresponding to the
major organs in the body and an arterial and venous blood com-
partment. The model requires chemical-specific parameters for
intestinal uptake, distribution (ie, partition coefficients, blood:-
plasma ratio [assumed to be 1 in the present study for all com-
pounds], fup), hepatic clearance, and renal clearance (assumed
to be the glomerular filtration rate times the free plasma con-
centration). Table 1 provides an overview on how these differ-
ent input parameters were parameterized using a range of
in vitro and/or in silico methods. Further details on these input
approaches are given in the text below. The differential equa-
tions of the model are solved with the deSolve package
(Soetaert et al., 2010). The R code of the PBK model is provided in
the Github repository (https://github.com/wfsrqivive/rat_PBK.
git; last accessed December 22, 2021).

Absorption from the gastrointestinal tract was described in
the model by a first-order uptake process from the intestine to
the liver compartment and requires an absorption rate constant
(ka) and fraction absorbed (fa) as input (Jones and Rowland-Yeo,
2013). For the parameterization of these input constants an in
silico approach based on a QSAR from Hou et al. (2004) was ap-
plied that predicts the Caco-2 apparent permeability (Papp)
based on the topological polar surface area (TPSA) of the com-
pounds (equation 1). Both ADMET Predictor software (v.9.0,
Simulations Plus, Lancaster, California; www.simulations-plus.
com; last accessed December 22, 2021) and ChemAxon
(ChemAxon Ltd., Budapest, Hungary; www.chemaxon.com;
last accessed December 22, 2021) were used to generate these
TPSA values. Given that both software packages yielded
the same TPSA results, no further distinctions were made
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between these 2 sets of results for assessing the PBK model’s
predictive capacity. For 26 out of the 44 compounds, the QSAR-
based approach was compared with in vitro measured apparent
permeability (Papp) coefficients in Caco-2 transwell absorption
experiments. Details on Caco-2 experiments are provided
as Supplementary Material. Both the QSAR-derived Papp values
and the in vitro measured values were scaled to an uptake
rate constant (ka) and fraction absorbed (fa) based on equa-
tions 2–5.

log Papp ðcm=sÞ ¼ �4:36–0:01 � TPSA (1)

log Peff;human ð10�4 cm=sÞ ¼ 0:4926 � log Papp ð10�6 cm=sÞ–0:1454

(2)

Peff; rat ¼ Peff;human=11:04 (3)

kað=hÞ ¼ Peff � 2 ðcm=sÞ=R ðcmÞ � 3600 ðs=hÞ (4)

fa ¼ 1�
�

1þ ð2 � Peff � hTsiiÞ=ð7 � RÞ
��7

; (5)

in which equation 1 is derived from Hou et al. (2004), equation 2
scales the Caco-2 apparent permeability (QSAR predicted or
in vitro measured) to the human effective permeability based on
Sun et al. (2002), equation 3 scales the human effective perme-
ability to a rat effective permeability based on equation that is
derived from Wahajuddin et al. (2011), and equations 4 and 5 de-
scribe how the effective permeabilities are converted to ka and
fa as derived from Yu and Amidon (1999). For the calculation of
the ka and fa values with equations 4 and 5, an intestinal radius
(R) of 0.18 cm for rat was used and a small intestinal transit time
hTsii of 1.47 h (Grandoni et al., 2019).

Physicochemical data (log P, log D, and pKa values, TPSA),
which are used as input to calculate the fup and tissue: plasma
partition coefficients and intestinal uptake were derived with
ADMET Predictor software (v9.0, Simulation Plus, Lancaster,

California; www.simulations-plus.com; last accessed December
22, 2021) and with ChemAxon (ChemAxon Ltd., Budapest,
Hungary; www.chemaxon.com; last accessed December 22,
2021). Given that slight differences occur between the results of
these 2 software packages with respect to the log P and pKa

and resulting log D estimates, the influence of these differences
on the PBK model predictions was evaluated. The log P,
log D, and pKa(s) that were obtained for the 44 compounds
with each of the 2 software packages are provided in the
Github repository (https://github.com/wfsrqivive/rat_PBK.git;
last accessed December 22, 2021).

An in silico approach for calculating the fup values was
compared with measured values. For the in silico calculations
of fup, a method of Lobell and Sivarajah (2003) was used. Log P
and information on the pKa(s) are required input parameters for
this calculation. The codes can be found in the Github reposi-
tory (https://github.com/wfsrqivive/rat_PBK.git; last accessed
December 22, 2021). The in vitro-derived rat-specific fup values
for 39 compounds were taken from the httk package with the
original data measured by Wetmore et al. (2013), Wood et al.
(2017), and Honda et al. (2019).

For the calculation of partition coefficients, 3 approaches
were compared including the in silico approaches of (1) Rodgers
and Rowland (2006), (2) Berezhkovskiy (2004), which corre-
sponds to the corrected method of Poulin and Theil (2002), and
(3) the in silico approach of Schmitt (2008). Log P and information
on the pKa(s) are required input approaches for these calcula-
tions. The R codes for these different calculation methods were
obtained from Utsey et al. (2020) and were adjusted to fit the
pipeline of the PBK model calculations of the current study. The
codes can be found in the Github repository as part of the input
parameters (https://github.com/wfsrqivive/rat_PBK.git; last
accessed December 22, 2021). As input for the prediction of the
partition coefficients, the standardized tissue composition data
from Utsey et al. (2020) were used. In case of the method of

Table 1. Input Approaches Applied in the PBK Model Predictions

Applied Input Method Reference Method Name
Used in the

Figures

Number of
Compounds for

Which the
Respective Data Are

Available

Intestinal uptake (ka and fa)
QSAR based on the topological surface area (TPSA) Hou et al. (2004) QSAR 44
Caco-2 Papp This work In vitro 26

Physicochemical characteristics
log P, log D, pKa, TPSA ADMET predictor ADMET 44
log P, log D, pKa, TPSA ChemAxon ChemAxon 44

Tissue: plasma partition coefficients
Berezhkovskiy Berezhkovskiy (2004) Berezhkovskiy 44
Rodgers and Rowland Rodgers and Rowland (2006) RodgersRowland 44
Schmitt Schmitt (2008) Schmitt 44

Intrinsic hepatic clearance (Clint)
(Cryopreserved) primary hepatocytes Data derived from the httk package

(Pearce et al., 2017)
Hep 38

Liver S9 This work S9 25
In silico predicted CYP clearance ADMET predictor In silico 44

Fraction unbound plasma
In vitro with rapid equilibrium dialysis Data derived from the httk package

(Pearce et al., 2017)
In vitro 39

In silico predicted based on log P, log D, and pKa Lobell and Sivarajah (2003) In silico 44
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Schmitt, the membrane affinity (log MA) was calculated from
the log P based on a QSAR from Yun and Edginton (2013) as pro-
vided in the R code.

Three different approaches to obtain model parameter val-
ues for hepatic intrinsic clearance were compared. These in-
clude (1) an in silico approach, (2) an in vitro approach based on
clearance studies with primary rat hepatocytes, and (3) an
in vitro approach based on clearance studies with rat liver S9. In
silico clearance calculations (rat microsomal P450 clearance)
were carried out with the ADMET Predictor (v.9.0, Simulations
Plus, Lancaster, California). The primary rat hepatocyte clear-
ance data were derived from the database of the R httk package,
containing the values that were originally measured by
Wetmore et al. (2013), Wood et al. (2017), and Honda et al. (2019).
For 25 compounds out of the 44 compounds, the intrinsic he-
patic clearance was measured in the current study in incuba-
tions with rat liver S9 in the presence of a mix of cofactors
(NADPH, UDPGA, and PAPS) as described in the Supplementary
Material. The in vitro compounds for which the S9 clearance
rates were determined, were selected based on the expected
clearance to include compounds with low (0–20 ml/min/mg S9
protein), medium (20–100 ml/min/mg S9 protein), and high
(>100 ml/min/mg S9 protein) in vitro intrinsic hepatic clearance.
All in vitro-derived hepatic clearance values were corrected for
unspecific binding to hepatocytes or S9 using a calculation
method of Kilford et al. (2008) for primary hepatocytes and a
method of Hallifax and Houston (2006) for the S9 clearance
measurements. Although the latter calculation method was de-
veloped to predict the unbound intrinsic clearance in micro-
somal incubations, it was assumed to also be applicable to S9
incubations. The codes can be found in the Github repository as
part of the input parameters (https://github.com/wfsrqivive/rat_
PBK.git; last accessed December 22, 2021). The in silico calculated
clearance rates already represent the unbound clearance rates
and no correction was required.

Rat PBK model predictions and data analysis. By combining different
input approaches, a total of 3960 Cmax predictions were made
for the different model compounds at the same exposure condi-
tions as used the in vivo studies from which the reported Cmax

values were obtained. For each chemical, the predicted Cmax

was divided by the observed Cmax as marker of the quality of the
of PBK model prediction for that compound. As a result of the
different input combinations a range in predicted:observed ra-
tios is obtained for each chemical of which the median was cal-
culated. When these median predicted Cmax outcomes were
within 5-fold of the observed Cmax, the PBK model predictions
were considered adequate for a first estimation of internal dose
metrics by a minimal generic PBK model. Cmax predictions
within 10-fold of the observed Cmax are less precise, but still
considered relevant. A 2-fold cut-off value is also included in
the different figures of the present study, as this cut-off value is
frequently used in a regulatory context, though particularly for
PBK models that are optimized to available in vivo data (Shebley
et al., 2018). Median predicted Cmax values that are more than
10-fold higher than the observed Cmax values were considered
as overestimated, and median Cmax values that are more than
10-fold lower than the observed Cmax values were considered as
underestimated, though the latter did not occur in the present
data set (see Results section). The effect of different input
approaches on the Cmax predictions was determined, by com-
paring for each input approach and compound the median Cmax

and predicted:observed ratios and determining the differences
between the input approaches in predicted median Cmax values.

A sensitivity analysis was performed for the predictions by
changing the input value of a parameter by 1% and determining
the relative change in Cmax, expressed as the normalized sensi-
tivity coefficient (NSC). The sensitivity analysis was performed
at an equal oral dose of 1 mg/kg bw for all compounds and input
combinations. Each parameter was analyzed individually, keep-
ing the other parameters to their initial values. The R codes
for the above analyses can be found in the in the Github reposi-
tory (https://github.com/wfsrqivive/rat_PBK.git; last accessed
December 22, 2021).

RESULTS

Performance of the Generic PBK Model Based on Different Input
Approaches
By combining different input approaches to parameterize the
PBK model (Table 1), a total of 3960 Cmax predictions were made
for 78 in vivo Cmax results (ie, exposure situations described in
the literature with reported Cmax values) for a total of 44 com-
pounds. In Figure 1, the ratios between PBK model-predicted
Cmax values and in vivo-observed Cmax values are shown. The
results for bisphenol A, curcumin, daidzein, fluvastatin, genis-
tein, resveratrol, rosuvastatin, and ochratoxin A represent the
comparison of the predicted Cmax with observed Cmax values
form multiple in vivo studies, whereas for the other compounds
in vivo data were obtained from single studies. Figure 1 reveals
a large variation (1–6 orders of magnitude) in the prediction:ob-
served ratios. The largest range in predicted:observed ratios are
observed for bisphenol A, curcumin, permethrin, and resmeth-
rin. For these compounds, some of the individual Cmax predic-
tions were 210-, 33436-, 553-, and 806-fold higher than the
observed Cmax, respectively, and some predictions were 76-,
1.8-, 1183-, and 208-fold lower, respectively. Within the dataset
as a whole, median Cmax predictions of 30 compounds were
within 10-fold, whereas 14 compounds were predominantly
overestimated, that is, having a median predicted Cmax that is
>10-fold higher than the observed Cmax. Twenty-three com-
pounds could be predicted within 5-fold and 12 compounds
within 2-fold of the observed Cmax.

Sensitivity Analysis
A sensitivity analysis was performed by changing the input
value of a parameter by 1% and determining the relative change
in Cmax, expressed as the NSC. Figure 2A shows the results
for the most influential input parameters that affect the Cmax

predictions (maximum observed NSCs> 0.5 in absolute value).
The NSCs of remaining input parameters are presented in
Supplementary Figure 1. The results of the sensitivity analysis
show that the chemical-specific input parameters related to the
extent of metabolic clearance are most influential. This includes
the intrinsic clearance parameter (Clint) itself, but also parame-
ters that relate to the free available concentration for the meta-
bolic conversion (fup, Kpli) and parameters that determine the
blood flow and the volume of the liver (FQh, QC). Other impor-
tant input parameters that affect the Cmax predictions relate the
oral absorption (ka and fa). B:P ratio also showed to be a sensitive
parameter. This parameter was set to a default value of 1 for
all compounds in the present study, because measured data
on B:P ratios are generally lacking and no in silico tools are
available to estimate the B:P ratio. The observed differences be-
tween compounds in sensitivity toward the input parameters
(see range in NSCs in Figure 2A) were found to primary relate to
the intrinsic metabolic clearance of each compound (Figure 2B).
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The sensitivity increases with increasing Clint,u until a maxi-
mum sensitivity is reached for compounds with a high Clint,u

(Figure 2B). A similar relation is observed between the Clint,u of
the compounds and the sensitivity toward the other input
parameters that are depicted in Figure 2A, with low clearance
compounds being less sensitive to changes in the input parame-
ters than high clearance compounds (Supplementary Figure 2).

Effect of the Input Approaches on the Cmax Predictions
Given the wide range in Cmax outcomes and corresponding predic-
ted:observed ratios in Figure 1 and given the sensitivity of the Cmax

predictions to chemical-specific input parameters like Clint, fup, fa,
and ka, it is important to identify how the Cmax predictions are af-
fected by the different input approaches. To this end, we defined
for each input approach the range in Cmax predictions that are
obtained and evaluated if systematic differences occurred between

the different input approaches that were used to parameterize the
generic PBK model. Figure 3 highlights those predictions for which
differences (>3-fold) in predicted:observed ratios are observed for a
specific chemical as a result of the applied input approach. These
results reveal that differences in Cmax predictions (and correspond-
ing predicted:observed ratios) most frequently occur as a result of
differences in calculation methods for the partition coefficients
(Figure 3A) and the methods used to parameterize hepatic clear-
ance (Figure 3B).

In case of the different approaches for the calculation of par-
tition coefficients, the method of Rodgers and Rowland per-
formed best. The median Cmax of 32 compounds was predicted
within 10-fold of the observed Cmax values with the Rodgers and
Rowland method. With the methods of Berezhkovskiy and
Schmitt, 30 and 27 compounds were predicted within 10-fold of
the observed Cmax, respectively. Particularly for acidic

Figure 1. Ratios between PBK model-predicted Cmax values and in vivo-observed Cmax values observed for 44 reference compounds in rat. Per chemical, different pre-

dicted Cmax values are obtained by running simulations with the different input approaches (in vitro or in silico approaches to parameterize a certain input parameter)

as presented in Table 1. Each predicted Cmax is then compared with the in vivo Cmax values for the chemical in the dataset. The median of these predicted/observed ra-

tios is depicted along the individual datapoints. Datapoints within the dotted, dot-dashed, or dashed horizontal lines are within 2-fold, 5-fold or 10-fold of the observed

Cmax, respectively. Compounds for which the median predicted Cmax is more than 10-fold overestimated are depicted in light gray.

Figure 2. A, Normalized sensitivity coefficients (NSCs) of the Cmax predictions to different input parameters for the different compounds. B, NSCs for Clint, u plotted

against Clint,u values used as input. The datapoints in the figures correspond to the NSCs for a random selection of 12 Cmax simulations based on different input

approaches per chemical. Abbreviations: BP, blood:plasma ratio; Clint,u, scaled unbound intrinsic liver; fa, fraction absorbed; fup, fraction unbound plasma; FVli, volume

fraction liver; FVmu, volume fraction muscle; ka, intestinal uptake rate; QC, cardiac output.
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compounds (pKa < 6), like ochratoxin A and pentadecafluorooc-
tanoic acid, low Cmax predictions are obtained with the method
of Berezhkovskiy compared with the other input approaches.
For the highly lipophilic compounds (log P> 5), like etoxalone,
novaluron, permethrin, and resmethrin, the method of Schmitt
appears to result in overpredictions of the Cmax.

In case of the parameterization of the intrinsic hepatic clear-
ance, the Cmax predictions based on in silico-derived hepatic in-
trinsic clearance values appear to be frequently different from
the predictions based on in vitro S9 and/or hepatocyte intrinsic
clearance data. Particularly in case of curcumin, metoprolol,
and resveratrol, the in silico-calculated clearance values lead to
an overprediction of the in vivo-observed Cmax. In case of curcu-
min, this overprediction is even up to 33436-fold. For the com-
pounds for which both in vitro S9 and hepatocyte data are
available, significant differences in intrinsic hepatic clearance
were only found for metoprolol (Figure 3B).

Occasional outliers were found to occur in the Cmax predic-
tions as a result of the uptake parameters (ka and fa) (Figure 3B),
and the fup (Figure 3C). The most important outlier was found
for bisphenol A, for which the Cmax was significantly (up to 806-
fold) underestimated when the in vitro-measured fup is used in
the simulations compared with the in silico-calculated fup. Given
that the relatively high in vitro-measured fup of 0.71 does not
match with another reported in vitro fup by Csan�ady et al. (2002)
of 0.05 and the in silico-predicted fup of 0.04, the simulations
based on the fup of 0.71 were considered to be incorrect. In case
of permethrin and resmethrin, the in silico-predicted uptake
rates (Figure 3B) were found to provide Cmax results that are
closest to the in vivo-observed Cmax values. A key challenge with
these compounds, that might have caused the high variation in
Cmax predictions, is the relatively high lipophilicity of these
compounds (log P values larger than 5), which may hamper

reliable performance of the in vitro studies with Caco-2 cells,
providing unreliable Papp values to derive the uptake rate.

Performance of the Optimized PBK Model
Figure 4 depicts the results of the dataset in which the most sig-
nificant outliers as described above are removed. This includes
a removal of the simulations based on (1) the methods of
Berezhkovskiy and Schmitt for the partition coefficients, (2) the
in silico-derived intrinsic hepatic clearance data, and (3) in vitro-
measured fup values. In addition, the in vitro-derived uptake
rates for permethrin and resmethrin were removed as identified
significant outliers. The results of the reduced dataset that was
obtained shows a significant reduction in the variation in Cmax

predictions and the related predicted:observed Cmax ratios. The
remaining relatively high variation in predicted:observed Cmax

ratios as observed for bisphenol A, daidzein, genistein, and res-
veratrol in Figure 4 can be attributed to the variation in the re-
lated in vivo studies.

The median Cmax prediction for curcumin, boscalid, and
chlorpyrifos improved and could be predicted within 10-fold in
the optimized dataset. In contrast, the median Cmax of fluvasta-
tin becomes more than 10-fold overestimated in the reduced
dataset. Overall, the removal of the most significant outliers
mainly resulted in an increased number of predictions within
10-fold. Median Cmax predictions of 32 compounds were within
10-fold within the reduced dataset, whereas 12 compounds
were predominantly overestimated, that is, having a median
predicted Cmax that is >10-fold higher than the observed Cmax.
Twenty-two compounds could be predicted within 5-fold and
8 compounds within 2-fold of the observed Cmax.

We assessed whether we could find a relation between
chemical (kinetic) characteristics (such as extent of metabolic
clearance, charge, lipophilicity, or uptake rate of the com-
pounds) and the chance of being predicted within 10-fold as

Figure 3. Differences in predicted:observed Cmax ratios related to the applied input approaches for A) partition coefficients, B) intrinsic hepatic clearance, C) fraction un-

bound in plasma, and D) intestinal uptake. Highlighted are those results for which more than a 3-fold difference in mean Cmax predictions was observed between the

applied input approaches. In case of (B), S9-derived intrinsic clearance data are included in the comparison of input approaches for the compounds that are marked

with an asterisk. The different input approaches are provided in the legends, including, between brackets, the number of compounds for which the Cmax was predicted

within 10-fold of the observed Cmax.
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cut-off value within which most of the compounds could be
predicted. Comparison of the clearance rates with the predicte-
d:observed ratios of the compounds revealed that the Cmax of 9
out of the 10 compounds with the highest clearance values
(Clint,u > 20 l/h) are predicted within 10-fold. In addition, the
Cmax of 15 out of the 19 compounds with a Clint,u <1 l/h are pre-
dicted within 10-fold. Together, these low and high clearance
groups represent 63% of the compounds that were predicted
within 10-fold (Supplementary Material). For the compounds
that had a clearance between 1 and 20 l/h, no relations were
identified between chemical characteristics (clearance, charge
lipophilicity, etc.) and the chance of being predicted within 10-
fold (Supplementary Material).

Application of the Minimal PBK Model Approach on In-House BASF
Compounds as Case Study
The minimal PBK model approach was applied on 5 in-house
BASF compounds as case study to test whether similar results
are obtained with respect to the range in predicted:observed ra-
tios and the type of compounds that are likely to be predicted
within 10-fold (ie, low or high clearance compounds). Table 2
provides an overview of the in vitro and in silico input data that
are available for the 5 compounds as well as the Cmax predic-
tions that are obtained with the generic PBK model. The physi-
cochemical characteristics were estimated with ChemAxon, the
intrinsic hepatic metabolic clearance data were derived from
experiments with rat liver S9, and Caco-2 apparent permeability
coefficients were derived from in vitro experiments (BASF1-3
and 5) or estimated in silico (BASF4). The partition coefficients
were calculated with the calculation method of Rodgers and
Rowland. Based on the analysis with the 44 reference com-
pounds, these applied input approaches can be considered to
provide the best predictions when applied in this minimal PBK
model.

Based on the scaled unbound hepatic clearance values
(Table 2), it was expected that the Cmax predicted for BASF1, 3,
and 4 had a high chance to be predicted within 10-fold com-
pared with the in vivo data as these are all low clearance com-
pounds (Clint,u <1 l/h) (see Performance of the Optimized PBK

Model section). Running the PBK models indicated that the Cmax

of these 3 compounds are indeed within 10-fold of the observed
Cmax. The scaled Clint,u values of BASF2 and BASF5 of 2.7 and
14.1 l/h were in the range of scaled Clint,u values of compounds
for which it was more difficult to discriminate whether overpre-
diction is likely to occur or not (see Performance of the
Optimized PBK Model). BASF2 was overpredicted (18- to 65-fold,
depending on the dose), whereas the Cmax of BASF5 was pre-
dicted within 5-fold of the observed Cmax. Additional informa-
tion (eg, on the solubility, transporter involvement, or
extrahepatic metabolism) is expected to be essential to further
discriminate whether certain compounds are likely to be pre-
dicted by the generic PBK model within 10-fold of the observed
Cmax or not.

DISCUSSION

Predictions of internal dosimetry, such as Cmax, are crucial in
the transition toward next generation (animal-free) testing
strategies for chemical safety evaluations to convert in vitro tox-
icity data into in vivo dose-response or at least potency informa-
tion (eg, DeJongh et al., 1999; Fabian et al., 2019; Forsby and
Blaauboer, 2007; Gubbels-van Hal et al., 2005; Louisse et al., 2010;
Punt et al., 2019; Verwei et al., 2006; Wetmore et al., 2015). At pre-
sent, PBK model predictions still need to be evaluated on a case-
by-case basis against in vivo kinetic data (Peters and Dolgos,
2019; Tsamandouras et al., 2015). For a transition to next genera-
tion (animal-free) regulatory risk evaluations to happen, other
means to gain confidence in PBK model predictions are needed.
The goal of the present study was to assess the predictive per-
formance of a minimal generic rat PBK model based on in vitro
and in silico input data to predict peak plasma concentrations
(Cmax) upon single oral dosing.

Different cut-off values (2-, 5-, and 10-fold) were used as per-
formance indicators in the current study. Discussions are pres-
ently still ongoing on what level of deviation between predicted
and observed kinetics is acceptable within a regulatory context
(Shebley et al., 2018). The required precision of PBK model pre-
dictions may depend on the use application. The 10-fold cut-off

Figure 4. Ratios between PBK model-predicted Cmax values and in vivo-observed Cmax values observed for 44 reference compounds in rat after removal of the simula-

tions based on input methods that led to significant worst predictions as described in the main text.
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value used in the present study provides a relevant indication
of whether compounds can be captured with the minimal ge-
neric PBK model. For the compounds falling outside this value,
deviations between the predicted and observed Cmax values
ranged between 16-fold (daidzein) and 783-fold (alachlor), which
cannot be resolved by optimization of the different input
parameters. A 2-fold cut-off value is frequently requested
within a regulatory context to demonstrate that the proposed
model is fit for purpose (Peters and Dolgos, 2019). A key chal-
lenge with this 2-fold is that the differences between in vivo
studies, to which the model predictions are compared, tend to
be higher than 2-fold themselves, possibly related to differences
in biology or technical aspects (Shebley et al., 2018). For example,
in the present study, the ranges in predicted:observed ratios for
bisphenol A (between 0.15- and 12-fold) were primarily caused
by the 60-fold difference in the respective in vivo results, to
which the predictions were compared with (Domoradzki, 2004;
Pottenger, 2000; Sun Dong Yoo et al., 2001; Tominaga et al., 2006;
Upmeier et al., 2000). Taking the different cut-off values into ac-
count, the results reveal that most of the compounds fall within
the 10-fold range, whereas predictions within the 5- or 2-fold
are more difficult to obtain. Although some level of uncertainty
in PBK model predictions can be considered acceptable for sit-
uations where the margin of exposure between exposure and
biological effects is large (Wetmore et al. 2015), further work will
be needed to determine how the generic PBK model can be fur-
ther improved to increase the number of predictions that can be
made within 5- or 2-fold to increase the overall precision of the
model. Furthermore, based on the chosen cut-off value(s) of re-
quired model precision, related uncertainty factors may need to
be applied when using in vitro- and in silico-based PBK model
results in a regulatory context.

A key challenge with respect to PBK model development is
to determine the design of the model structure for a specific
compound. The results of the present study revealed that the
minimal generic PBK model, based on partition coefficients,
Clint, Fup, and Papp as main chemical-specific input, worked best
for compounds that are either extensively metabolized (Clint,u >

20 l/h) or compounds that are metabolized to a limited extent
(Clint,u <1 l/h), as these compounds were frequently found to be
predicted within a 10-fold range. Three out of the 5 in-house
BASF compounds fell into this category of low-clearance com-
pounds and were also predicted within 10-fold of the observed

Cmax (BASF1, BASF3, and BASF4). In case of the chemicals that
are 10-fold overpredicted it is expected that, for example, a lack
of inclusion of extrahepatic metabolism and/or transporter-
mediated processes in the PBK model are underlying causes of
the deviations between predicted and observed Cmax values. In
addition, transporter-mediated processes might also be rele-
vant to be included for some of the low-clearance compounds,
which have been reported to be substrates of transporter pro-
teins (like pentadecafluorooctanoic acid, ochratoxin A, and tol-
butamide) (Anzai et al., 2010; Bi et al., 2018; Worley and Fisher,
2015). Although the Cmax of many of these compounds could be
predicted within 10-fold, refinement of the kinetic predictions is
expected to be achieved by also including these transporter-me-
diated processes, particularly to better simulate repeated expo-
sures. Further work will be needed to explore whether
recommendations can be made based on these characteristics
on the design of a PBK model for a specific compound, particu-
larly to determine when a minimal PBK model will be sufficient
and when additional kinetic processes need to be considered.

Comparison of the different input approaches revealed a
high influence of the selected input parameters on the PBK
model predictions. For example, the results of the present study
show that the method of Berezhkovskiy should not be used for
acids (pKa <6) as this might lead to underprediction of the Cmax.
This is probably caused by the fact that the impact of drug ioni-
zation on partitioning is not explicitly taken into account in the
method of Berezhkovskiy (Utsey et al., 2020). The calculation
method of Schmitt was found to frequently lead to relative
overpredictions of the Cmax of highly lipophilic compounds (log
P >5) and may therefore not be appropriate for this group of
compounds. The results of the calculation method of Schmitt
largely depend on the membrane affinity as input. As this value
was not available for all compounds, it was calculated in the
present study based on log P based on a QSAR from Yun and
Edginton (2013). Highly lipophilic compounds might not fall into
the applicability domain of this QSAR. In case of the hepatic
clearance, the in vitro-observed data are preferred above in silico-
generated clearance data. The Cmax values of various com-
pounds were overpredicted as a result of the use of in silico clear-
ance values, and more importantly a direct comparison of the in
silico-estimated clearance values with the in vitro values
revealed a relatively poor correlation (R2 ¼ 0.3, Supplementary
Figure 3), indicating that challenges still exist with the

Table 2. Chemical-Specific Data of 5 In-House BASF Compounds and Information on PBK Model-Predicted Cmax Values and Comparison With
In Vivo Cmax Values

PBK Model Input Parameters Test Compounds

Parameter BASF1 BASF2 BASF3 BASF4 BASF5

Log P ChemAxon 1.19 2.96 3.45 �2.82 3.99
pKa(s) ChemAxon 3.38 (A) 10.7 (A); �0.11 (B) Neutral Contains Nþ 0.44 (B)
In vitro Caco-2 Papp (10�6 cm/s) 46.8 37.9 25 43a 13.8
ka (/h) and fa scaled based on the Caco-2 Papp 1.72 and 0.91 1.55 and 0.88 1.27 and 0.84 1.65 and 0.90 0.94 and 0.75
fup (in silico predicted) 0.124 0.124 0.079 0.982 0.047
Liver S9 clearance (ml/min/S9 mg protein) 1.9 17.3 0 0 53.9
Scaled unbound hepatic clearance (Clint,u, l/h) 0.2 2.3 0 0 14.1
Doses (mg/kg bw) 4; 40; 200 50; 500 3; 30; 300 1.2; 12 5; 50
Cmax Predicted (mg/l) 12; 119; 594 7; 72 0.4; 3.7; 37 0.9; 9.4 0.2; 1.6
Cmax Observed (mg/l) 7; 14; 260 0.4; 1.1 0.2; 3.6; 26.0 0.23; 2.3 0.09; 0.4
Predicted:observed ratio 1.7; 8.5; 2.3 18; 65 2; 1; 1.4 4; 4 2; 4

A, acid; B, base.
a

In silico estimated based on a topological surface area of 0 (zero) Å2, using the calculation method of Hou et al. (2004).
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predictive value of in silico tools for Clint. In case of the Fup and
Papp values, a significant influence of in vitro experimental varia-
tion on the model predictions was observed. Particularly, for
highly lipophilic compounds, like permethrin and resmethrin,
the in vitro input data led to underpredictions by the PBK model.
These results indicate the importance of standardizing and har-
monizing the in vitro approaches to obtain robust results, in-
cluding in vitro protocol adjustments to work with very
lipophilic compounds (Ferguson et al., 2019; Wambaugh et al.,
2019).

Overall, the current study provided relevant insights into the
predictive performance of a minimal PBK model and the influ-
ence of different input approaches on the model predictions.
Best performance was obtained when the hepatic clearance was
parameterized based on (1) in vitro (hepatocytes or liver S9)-
measured intrinsic clearance values, (2) the method of Rodgers
and Rowland for calculating partition coefficients, and (3) in sil-
ico-calculated fraction unbound plasma and Papp values (the lat-
ter especially for very lipophilic compounds). Further work will
particularly be needed to find ways to determine, in the absence
of prior knowledge on the chemical’s in vivo toxicokinetics,
when and which additional kinetic processes (like extrahepatic
metabolism or transporter-mediated processes) need to be
added to obtain adequate predictions of the in vivo kinetics.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.
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