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A B S T R A C T   

Subsoil compaction is an increasing problem in modern agriculture, but is not easily recognized in practice, also 
because of possible within-field spatial variations. This paper addresses the question of how within-field spatial 
variations in soil bulk density and other soil characteristics relate to within-field spatial variations in crop yield 
and potential CO2 and N2O emissions from soil. Four fields (5 to 20 ha each) were selected at the suggestion of 
crop farmers, and sampled using a random soil sampling design (100 samples per field). Undisturbed soil samples 
were taken at depth of 5–10, 30–35, and 50–55 cm and soil bulk density and potential CO2 and N2O emissions 
measured under controlled conditions. At each sampling point, also top soil (0–20 cm) samples were taken for 
determination of pH, texture, SOM, and (micro)nutrients, and soil penetration resistance measurements and 
visual assessments of soil structure were made. Wheat yields were recorded with harvesters equipped with GPS 
and yield recorders. 

Mean soil bulk density in the sub-soil (30–35 cm) ranged between fields from 1.36 ± 0.08 to 1.60 ± 0.11 g 
cm− 3. Mean wheat yields ranged between fields and years from 7.6 ± 0.6 and 11.3 ± 2.4 Mg ha− 1. Semi- 
variogram analyses showed that crop yields and soil properties were mostly spatially dependent; nugget-to-sill 
ratios were < 25% with ranges of 137 to 773 m. The ratio of CO2 emissions to N2O emissions was negatively 
related to soil bulk density, especially following N application. 

In conclusion, within-field spatial variations in subsoil bulk density were successfully related to spatial vari
ations in crop yield and potential CO2 and N2O emissions. The ratio of CO2 emissions to N2O emissions had a 
much greater response to spatial variations in soil bulk density than wheat yield. Our study suggests that N2O 
emission factors may depend on (sub)soil bulk density.   

1. Introduction 

Subsoil compaction is an increasing problem in modern agriculture, 
but is not easily recognized in practice. Reports indicate that >68 
million ha of agricultural land in the world have compacted subsoils. 
More than half of this area is in Europe (Wahlström et al., 2021; Hamza 
and Anderson, 2005). Soil compaction is commonly defined as the 
densification and distortion of soil by which total porosity and air-filled 
porosity are reduced and one or more soil functions are deteriorated 
(Schjonning et al., 2015; Huber et al., 2008; Banerjee et al., 2019). By 
reducing air permeability and limiting water infiltration, soil compac
tion may restrict root growth and nutrient uptake, which consequently 

affect soil functioning, including crop productivity, infiltration and 
storage of water and the decomposition of organic matter and trans
formation of nutrients (Keller et al., 2013). Compaction may be induced 
by natural factors, like alternate freezing-thawing and trampling of an
imals, as well as by human influences, i.e., through soil cultivation and 
heavy machinery (Keller et al., 2019). 

Indicators for soil compaction include increases over time of soil bulk 
density, Relative Normalized Density (RND, defined as the actual dry 
bulk density divided by a critical or threshold bulk density), penetration 
resistance, and decreases over time of macro-porosity and infiltration 
capacity (Shah et al., 2017; Stolte et al., 2015; Chamen et al., 2015; van 
den Akker and Hoogland, 2011). Not all these indicators can be 
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measured easily in the field and they do not equally account for changes 
in the volume distribution of voids and their connectivity. As a result, 
relationships between indicators for subsoil compaction and soil func
tioning are not always straightforward (Keller et al., 2017; Horn et al., 
1995). 

Most of our understanding of subsoil compaction and its effects has 
been obtained in controlled condition experiments, also because there is 
no routine monitoring in farmers’ fields of soil compaction and/or soil 
bulk density. Also, measurements of within field spatial variations in 
sub-soil bulk density have been carried out mostly in experimental fields 
(e.g., (Awal et al., 2019; Usowicz and Lipiec, 2017; Barik et al., 2014). 
Very few studies have examined spatial variations in subsoil bulk den
sity in farmers’ fields and have tried to relate these variations to spatial 
variations in crop yield and soil (microbiological) processes. The overall 
aim of our study was to increase the understanding of within-field 
spatial variations in (sub)soil bulk density in farmers’ fields, and its 
relationships with spatial variations in crop yield and potential CO2 and 
N2O emissions (the latter as proxies for microbial activity). We hy
pothesized that (i) subsoil compaction is partly ‘hidden’ in spatial 
within-field variations in farmers’ fields, and (ii) within-field spatial 
variations in subsoil compaction contribute to spatial variations in crop 
yield and soil microbial activity. 

2. Materials and methods 

2.1. Study area 

The study was conducted in Hoeksche Waard, one of the islands (300 
km2) in the delta of southwest Netherlands (Fig. 1). It has a temperate 
maritime climate with cool summers and moderate winters. Annual 
mean precipitation is 850 mm, rather evenly distributed over the year. 
Hoeksche Waard is mainly used for arable farming (Ecorys, 2007); crop 
rotations include potato, sugar beet, winter wheat and horticultural 
crops (Crittenden et al., 2015; Steingrover et al., 2010). Most farms are 
family farms, but contractors may do part of the field work (e.g., manure 
application and potato, wheat and sugar beet harvesting). Farm size 
ranges between 50 and 500 ha, depending in part on crop rotations. 
Fields are flat (slope < 0.1%) and are drained by surrounding ditches 
and subsurface drains at depth of 0.8 to 1.2 m with 10 to 30 m wide 
spacings. Many fields have become larger over time through closing 
ditches and re-parceling. 

Soils have developed in marine deposits and have light clay to sandy 

clay texture in the upper half meter and loamy sand below. They are 
classified as Calcaric Fluvisols (WRB 2006). Mean groundwater level in 
winter is 45 ~ 60 cm and in summer 140 ~ 170 cm below soil surface. 

2.2. Soil sampling design 

Four fields with different shape and size (from 5.3 to 20.7 ha) and 
from four different farms were chosen (Fig. 1), following discussions 
with farmers of the foundation H-Wodka, which aims at enhancing the 
vitality of the rural agricultural community, nature and landscape in 
Hoeksche Waard through innovation. The farmers have concerns about 
the sustainability of current agricultural practices; they consider that 
spatial variations in soil compaction and soil fertility are possible bar
riers for increasing crop yield, but currently have no data and infor
mation to underpin these concerns. Farmers either had a 1:4 crop 
rotation (potatoes - winter wheat/vegetables/onions – sugar beet – 
winter wheat with cover crops) or a 1:3 crop rotation (potatoes – sugar 
beet/onions/vegetables – winter wheat). We selected fields in winter 
wheat; these fields had potatoes or sugar beet as pre-crops. Farmers 
ploughed the top 25 cm of soil with a moldboard plough, prior to 
seeding winter wheat in rows with a row distance of 12.5 cm. They aim 
at 250–300 wheat plants per m2, 550 to 600 ears per m2, and a grain 
yield of ≥ 10 Mg ha− 1 yr− 1. 

A total of 100 soil-sampling points were randomly selected within 
each field, using ArcGis software, in the spring of 2016. A total of 100 
samples per field is generally considered to be an appropriate number 
for obtaining adequate insight in the spatial pattern of soil properties in 
agricultural fields of modest areas (Kerry and Oliver, 2007; Lawrence 
et al., 2020). At each sampling point, two sampling approaches were 
implemented. First, 5 samples of the topsoil (0–20 cm depth) were taken 
by augers within a circle with a radius of 5 m and then bulked and mixed 
(total weight about 2 kg) in plastic bags and transported within 5 h to a 
temperature conditioned room (4 ◦C) until further analysis. Secondly, 
undisturbed soil samples were taken at each point by stainless steel rings 
of exactly 100 cm3, at three different depths. Soil sampling depths were 
based on observations in soil pits and discussions with farmers, and were 
uniform for all fields: 5–10 cm (plough layer), 30–35 cm (underneath 
the plough layer), and 50–55 cm, using the same auger hole. The un
disturbed soil samples in stainless steel rings with plastic caps on the top 
and bottom were transported in wooden boxes within 5 h to a temper
ature conditioned room (4◦ C) and stored until further analysis. Each 
field was sampled within two to three consecutive days; all fields were 

Fig. 1. Locations of the study area in the delta of south-west Netherlands. The inset shows the location of the four study fields.  
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sampled within a three-weeks period. 
Penetration resistance was measured with a hand-held penetrograph 

(Stiboka penetrograph, Eijkelkamp Agrisearch Equipment, Giesbeek, 
the Netherlands). Within a circle with a radius of 5 m around each 
sampling point, the penetrometer was pushed into the soil manually at a 
fixed speed of about 30 mm s− 1 (ASABE, 2006) at three randomly 
selected places. The area of the conical point was 1 cm2 and the 
measuring depth was 0 to 80 cm. Results for depth of 5–10 cm, 30–35 
cm, and 50–55 cm depth were averaged per sampling point. Pene
trometer measurements of a single field were carried out within one day. 

Soil structure assessments of the top soil (0–5 cm) were made on the 
basis of visual observations (Pulido Moncada et al., 2014; Mueller et al., 
2009). Soil aggregation (structureless, weak structure, moderate struc
ture, and strong structure), aggregate shape (granular, blocky, prismatic 
& columnar, and platy), and aggregate size (fine (<0.5 mm), medium 
(0.5–2 mm), coarse (2.0–5 mm), and very coarse (>5 mm)), were 
recorded at each sampling point. 

2.3. Soil analyses 

Samples from the topsoil (disturbed) were dried at 40 ◦C overnight. 
Near Infra-Red Spectroscopy was used for analyzing soil texture, soil 
organic matter, N-total, S-total and CaCO3 according NEN-EN-ISO 
17184 (ISO17184, 2014). The NIRS method was calibrated and vali
dated on the basis of thousands of different soil samples from different 
areas in Europe (Reijneveld et al., 2022). The CaCl2 extraction method 
(0.01 M; 1:10 (w/v) combined with Inductivity Coupled Plasma (ICP), 
Inductivity Coupled Plasma-Massa Spectrometry (ICP-MS) and 
segmented flow analyses (for NH4+ and NO3

–) were used to measure 
plant-available (micro) nutrients (N, S, P, K, Mg, Na, Si, Fe, Zn, Mn, Cu, 
Co, B, Mo, Se), following NEN 5704 (NEN5704, 1996) and Van Erp (van 
Erp et al., 1998). The pH of the CaCl2 extract was measured with a 
combination electrode and a potentiometer. These analyses were con
ducted by Eurofins Agro (https://www.eurofins.com/agro). 

Undisturbed soil samples in stainless steel rings were measured for 
soil bulk density and potential emissions of N2O and CO2 in temperature 
(16 ◦C) and humidity (60%) conditioned rooms at Wageningen Uni
versity. These emission determinations are meant to reflect the intrinsic 
characteristics of the soil samples at uniform environmental conditions 
(and not the actual or in-situ emissions in the field), and are therefore 
termed ‘potential emissions’. Following pre-incubation at 16 ◦C for 1 
day, the uncapped soil samples in stainless steel rings were put in 1 L 
PVC jars with screw lid with rubber septa for 60 min. Changes in po
tential N2O and CO2 concentrations in the headspace of the jars were 
measured via the photo-acoustic infrared gas analyser Innova 1312 
(LumaSense Technologies A/S, Ballerup, Denmark). After these flux 
measurements, 12 ml NaNO3 solution (2.4 g N L-1) was gently sprayed 
on top of each soil sample, to simulate a common N fertilization of 150 
kg per ha. One day (24 h), four and six days after fertilization, soil 
samples were put in jars again, and changes in N2O and CO2 concen
trations in the headspace were measured; these are reported as ‘induced 
N2O and CO2 emissions’. 

N2O emissions were calculated using the following equation: 

FN2O =
(C − O)

VAT
28

22.4
(1) 

Here, F is the emission rate (mg N2O-N m− 2 day− 1); C is the measured 
N2O concentration (mg N2O-N m− 3); O is the initial N2O concentration 
(mg N2O-N m− 3); V is the volume of the headspace (jar volume minus 
soil cylinder volume, L); A is the cross-sectional area of soil sample (m2); 
T is the closing time (h); 22.4 is the number of moles per volume of air (1 
L = 1/22.4 mol); 28 is the mol weight of N in N2O (1 mol N2O-N = 28 g 
N). 

Similarly, CO2 emissions were calculated using the following 
equation: 

FC2O =
(C − O)

VAT
12

22.4
(2) 

The parameters are the same as in equation (1), with 12 the mol 
weight of C (1 mol CO2 = 12 g C). 

After the potential CO2 and (induced) N2O emission measurements, 
soil samples in the rings were saturated with water, weighted, dried for 
24 h at 105 ◦C and then again weighted to determine total pore volume 
and dry bulk density. The relative normalized density (RND) was esti
mated as the ratio of measured bulk density and a threshold value of 
bulk density (van den Akker and Hoogland, 2011). For sand and loamy 
soils (clay content < 16.7%), this threshold value is 1.6 g cm− 3; for soils 
with clay content > 16.7%, the threshold value is (1.75–0.009*clay 
content). 

2.4. Yield recordings and calculation 

Crop yields were recorded automatically during the harvesting of the 
wheat. The width of the harvesters was 5 m and the distance between 
yield recordings on-the-go were about 2 m. Recorded crop yields within 
circles around sampling points were averaged and then allocated to 
these soil sampling points. We used circles with a radius of 5 m and 10 
m, to assess the uncertainty in allocation (Fig. 2). This allocation 
allowed us to relate spatial variations in crop yields to spatial variations 
in soil characteristics. 

2.5. Data analysis 

Spatial distributions of crop yield and soil properties were displayed 
by ArcGis 10.2.1, using Inverse Distance Weighted (IDW) interpolation 
(Lloyd 2005). 

Spatial dependence and spatial distribution coefficients of crop yield 
and soil properties were displayed by GS + software, using the semi- 
variogram method (Gamma Design Software, GS + 9, 2008). The 
semi-variogram is the basic geostatistical tool for measuring spatial 
autocorrelation of a regionalized variable (Hohn, 1998). This method 
describes the structure and randomness of spatial variables, and quan
titatively describes the spatial distributions. 

First, all data per field were tested for normal distribution; data of 
most variables were not obedient to normal distributions (analyzed by 
the shapiro.test function of R studio (Kassambara, 2019). The data of 
these variables were then log-natural transformed. Exponential, 
gaussian, spherical, and linear models were selected for the semi- 
variograms. Three parameters were distinguished: the nugget variance 
(Co; i.e., the y-intercept of the model; the sill (Co + C; i.e., the model 
asymptote; and the range (A; i.e., the distance over which spatial 
dependence is apparent (Robertson, 2008). The nugget ratio (Co/(Co +
C)) indicates the spatial dependence, i.e., a variable is considered 
spatially dependent if the nugget ratio is <25% (Cambardella et al., 
1994). 

We established regression models on the basis of our hypotheses, 
using crop yields and potential N2O and CO2 emissions as response 
variables and a range of soil variables as explanatory variables. Statis
tical analyses were carried out by R software (RCoreTeam, 2013). We 
used multiple linear regression models (function lm() in R) (James et al., 
2013). Only explanatory indicators (regressors) that were sufficiently 
uncorrelated (r < 0.70) have been included in the selection process to 
avoid the problem of collinearity (Ott and Longnecker, 2010). In case of 
high correlations, one of the variables was selected for inclusion in the 
selection process and the other was rejected. To identify the best 
parameter combinations, the percentage of variance accounted for 
(R2

adj; i.e., adjusted for the number of parameters), the value of Mal
lows’ Cp (Ott and Longnecker, 2010), and the p value of the parameter 
estimates were evaluated. The selected models were based on the mar
ginal increase of R2

adj with increasing number of variables, a low Cp, and 
the significance of the parameters (p < 0.05). 
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3. Results and discussion 

3.1. Mean soil characteristics of the four fields 

Soil bulk density varied within and between fields and tended to 
increase with soil depth (Fig. 3). Field A had the lowest bulk density, at 
all three depths, and fields B and D the highest bulk density, notably in 
the subsoil. Field B had a mean bulk density of 1.60 ± 0.11 g cm− 3 at 
30–35 cm and field D had a mean bulk density of 1.58 ± 0.10 g cm− 3 at 
30–35 cm. The mean RND at a depth of 30–35 cm ranged from 0.86 ±
0.05 for field A to 1.03 ± 0.07 for field B, to 0.95 ± 0.06 for field C and 
to 1.00 ± 0.07 for field D (Tables S1, S2), indicating that mean subsoil 
bulk density in fields B and D is at a level where soil functioning may be 
impeded (van den Akker and Hoogland, 2011). This relates especially to 
root growth and drainage (Czyz, 2004; Alaoui et al., 2011; Matthieu 
et al., 2011; Berisso et al., 2012). 

The increasing soil bulk density with soil depth is likely the result of 
both a decreasing clay content (and increasing sand content) with depth 
and of the use of heavy machinery (for harvesting potatoes and sugar 
beet, and manure application). The manure applicators and crop har
vesters have become heavier over time and do contribute to the densi
fication of the subsoil (Keller et al., 2019; Schjonning et al., 2015; van 
den Akker et al., 2013). A modelling study suggested that 43% of the 
agricultural land in the Netherlands has a compacted subsoil (Brus and 
Van Den Akker, 2018), but confirmation by measurements is lacking. 
Especially clay soils are vulnerable to compaction when wet (Horn et al., 
1995). 

Soil penetration resistance increased with soil depth, notably below a 
depth of about 30 cm (Figs. S1, S2). Spatial variations in penetration 
resistance readings were relatively large (c.v. ranged from 23 to 76%, 
Table S1). Comparisons between fields are confounded by differences in 
soil moisture conditions between fields due to the time differences in 

Fig. 2. Soil sampling points (green dots) in one of the fields (left panel), and a sketch of the recording of grain yield (yellow dots) with the harvester in a field (right- 
hand side figure). The circles indicate how grain yield recordings were allocated to a soil sampling point, in two ways, using a radius of 5 or 10 m around the soil 
sampling point (see text). Harvested yield recordings (yellow points) were implemented by real-time measurements and GPS equipped on the harvest machine. 

Fig. 3. Box plots of soil bulk density measurements in the four fields (A, B, C, D) at three different depths. Boxes indicate the upper (75%) and lower quartiles (25%) 
and the whiskers indicate the 5 and 95 percentiles. The line in the boxes indicate the median values. The unit of bulk density is g cm− 3. 
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measurements (days to weeks). 
Mean soil respiration (CO2 emissions) tended to decrease with depth 

in all fields. The c.v. of the mean potential CO2 emission was about three 
times larger in field A than in the other fields; this is probably related to 
the relatively large variation in SOM content of field A (Table S1). Mean 
potential N2O emissions tended to increase with depth. The ratio of 
potential CO2 emissions to potential N2O emissions also decreased with 
depth; this was most notable in field A (Table S1). Incidental negative 
N2O emissions (apparent N2O reduction) occurred in samples from all 
four fields. Coefficients of variations were larger for the potential N2O 
and CO2 emissions than for bulk density, clay and SOM contents. 

Average wheat yield ranged from 7.6 ± 0.6 to 11.3 ± 0.5 Mg ha− 1 in 
field A during 2015 to 2019, and from 11.0 ± 0.3 to 11.3 ± 2.4 Mg ha− 1 

in field B (Table S1). In field C, average wheat yield was 9.5 ± 0.9 and 
9.7 ± 1.3 Mg ha− 1 in 2017 and 2019, respectively. Coefficients of var
iations were relatively small for wheat yield in all three fields and years. 
There were no spatial explicit yield recordings for other crops, and no 
spatial explicit wheat yield data were available for field D. 

3.2. Spatial variations in soil characteristics and crop yields 

Within-field spatial variations were observed visually in the maps of 
subsoil bulk density (Fig. 4), the wheat yield maps (Fig. S3), and in the 
maps of potential CO2 and N2O emissions of the top soil (Fig. S4). These 
spatial patterns seemed to be related partly to the spatial patterns in soil 
structure of the top soil (Fig. S5) and in the clay content (not shown). 

Results of semi-variogram analyses of soil variables and wheat yields 
of the four fields are presented in Table 1. Exponential models gave the 
best fit for most variables (17 out of 50 soil characteristics examined for 
the four fields), followed by a spherical model (15), a gaussian model 
(14) and a linear model (4). The correlation coefficients (R2) of the 
models used were relatively high (range 0.52 to 0.97) for field A, modest 
(range 0.07–0.97) for field B, low to modest for field C (range 0.01–0.88) 
and low for field D (range 0.01–0.26). The poor fit of the models for field 
D may be related to the unusual narrow shape of this field, despite the 
fact that this field had a relatively small area (Fig. 1). We used a fixed 
number of 100 sampling points for all four fields, despite their different 
sizes and shapes, because we had no prior information about within- 
field spatial variations. However, this number should not be consid
ered as the optimum number of sampling points for all fields. 

The nugget effect was small in most cases (Table 1), indicating that 
the small-scale variance was relatively small and that the sampling 

design was adequate to measure the spatial variability of the studied 
variables (Bogunovic et al., 2017). The nugget-to-sill ratio (Co/(Co + C)) 
was low (<25%) for most variables, indicating that the variations in 
these variables were spatially dependent (Cambardella et al., 1994). 
Variations in soil bulk density were spatially strongly dependent at all 
three depths, apart from field A (at depth of 30–35 and 50–55 cm) and 
field B (at depth of 50–55 cm). Within-field variations in clay and SOM 
contents of the topsoil were also spatially strongly dependent, apart 
from the clay content in field D. Within-field variations in wheat yield in 
fields A, B and C were also spatially depended, for all years (Table 1). 
The same applies to the potential CO2 and N2O emissions during the 
incubation of soil samples; the within-field variations in the emissions of 
CO2 and N2O were spatially depended at all three depth, apart from 
three cases (two for CO2 and one for N2O emissions). 

The range (A in Table 1) of the spatially dependent variance tended 
to be smaller for soil bulk density than for clay and SOM contents. It was 
mostly < 50 m for soil bulk density in fields B, D and C. The semi- 
variograms of potential CO2 and N2O emissions also showed a rela
tively small range. No attempts were made to estimate values in points at 
which no samples have been taken through ordinary kriging (Lipiec and 
Usowicz, 2018), as small ranges make spatially explicit management 
complicated. Wheat yields had a relatively strong spatial dependency 
with a range of 137 to 773 m, suggesting that some of this variation may 
be addressed possibly by precision management. 

Within-field variations in crop yield may be caused by spatial vari
ations in soil water and soil nutrient delivery to the crop, spatial vari
ations in the incidence of weeds, pest and diseases, and to spatial 
variations in soil and crop management practices (e.g. planting density, 
fertilization, crop protection) (Basso et al., 2019; Maestrini and Basso, 
2018; Taylor et al., 2003). Extractable nutrients (N, P, K, Mg, Cu, Zn, Se) 
were spatially dependent in a number of cases, with ranges varying from 
12 to 1800 m (Table S3). Extractable P and K were relatively low in field 
B (Fig. S1), but step-wise multiple regression analyses indicated that 
there were no statistically significant correlations between the spatial 
variation of extractable P and K and spatial variations in wheat yields 
(not shown). We infer that it is unlikely that extractable (micro)nutrients 
were wheat yield limiting, although the level of some nutrients tended to 
be below recommended levels (Fig. S6, Table S4). We cannot exclude 
that spatial variations in available soil water and in the incidence of 
weeds and diseases have contributions to spatial variations in wheat 
yield. In summer, wheat roots may tap from shallow groundwater, 
which enters the root zone through capillary rise. This is one of the 

Fig. 4. Maps depicting the spatial variations of soil bulk density (g cm− 3) at a depth of 30–35 cm of the four fields. Note that the scaling differs between fields.  
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reasons for the rather stable wheat yields observed during 2015–2019, 
next to the good management by the farmers; the relatively low yield of 
Field A in 2016 was related to late sowing of summer wheat. 

Spatial variations in soil bulk density may also contribute to spatial 
variations in crop yield, notably through its effect on root growth and 
the delivery of soil water and nutrients. Precision agriculture aims at 
addressing spatial variations in soil and crop performances, and thereby 
may contribute to increasing yield and resource use efficiency. Precision 
management relies on accurate measurements and spatially distinct 
areas that are sufficiently large to be managed (Field et al., 2017; 
Diacono et al., 2013). Spatial dependencies with a (very) short range 
and/or low stability over years are difficult to address. Application of 
precision management may be limited also by the often diffuse re
lationships between soil characteristics and crop yields, which makes 
inferences about spatial variations unreliable, and by the lack of 
appropriate tools to communicate between precision management 
techniques (Kempenaar et al., 2020). 

3.3. Relationships between crop yield and soil properties 

Multiple linear regression analyses indicated that spatial variations 
in wheat yield of field A were related to spatial variations in soil clay 
content, bulk density, and penetration resistance at 30–35 cm in 2015 
and 2016 (P < 0.05), but not in 2018 and 2019 (Table 2). These re
lationships may reflect a relationship between yield and soil water de
livery to the crop (Libohova et al., 2018). Spatial variations in CaCl2- 
extractable Mg content were related to spatial variations in wheat yield 
(P < 0.001) in Field A in 2018, but we doubt whether this is a causal 
relationship (Table 2). No statistically significant relationships between 
within-field spatial variations in wheat yield and within-field spatial 
variations in soil characteristics were found for field A in 2019 (P > 0.05, 
Table 2). Spatial variations in wheat yield were also significantly related 
to spatial variations in soil clay content in field B in 2015, but no sig
nificant relationships were found in 2016. However, spatial variations in 
wheat yield were not significantly related to spatial variations in soil 
bulk density or penetration resistance in field B, while it had a relatively 

Table 1 
Semi-variogram coefficients of soil properties and cereal yields of four fields. Note that emissions of CO2 and N2O are potential CO2 and N2O emissions (see text).  

Fields Variables†) Model Nugget, C0 Sill, (C0 + C) Range, Nugget ratio, R2    

(Unit)2 (Unit)2 A (m) C0/(C0 + C)  

A SOM content Gaussian 0.01 0.13 572 0.11  0.97  
Clay content Gaussian 0.02 0.20 662 0.11  0.96  
Soil BD (0–5 cm) Exponential <0.01 0.01 60 <0.01  0.52  
Soil BD (30–35 cm) Gaussian <0.01 0.01 356 0.45  0.78  
Soil BD (50–55 cm) Spherical <0.01 0.01 558 0.25  0.85  
N2O emission (5–10 cm) Gaussian 0.13 0.64 85 0.20  0.81  
N2O emission (30–35 cm) Exponential 0.02 0.41 108 0.05  0.73  
N2O emission (50–55 cm) Spherical 0.12 0.41 187 0.28  0.83  
CO2 emission (5–10 cm) Exponential <0.01 0.72 224 <0.01  0.92  
CO2 emission (30–35 cm) Exponential <0.01 0.77 229 <0.01  0.93  
CO2 emission (50–55 cm) Spherical 0.12 0.75 175 0.15  0.86  
Wheat yield (2015) Spherical <0.01 0.01 418 0.21  0.85  
Wheat yield (2018) Exponential <0.01 0.01 576 0.19  0.91 

B SOM content Exponential 0.01 0.05 1089 0.23  0.69  
Clay content Gaussian 3.17 13.23 415 0.24  0.94  
Soil BD (0–5 cm) Exponential <0.01 0.02 13 0.07  0.07  
Soil BD (30–35 cm) Gaussian <0.01 0.01 22 0.03  0.50  
Soil BD (50–55 cm) Exponential <0.01 0.01 192 0.50  0.43  
N2O emission (5–10 cm) Spherical 0.01 0.13 56 0.08  0.42  
N2O emission (30–35 cm) Linear 0.07 0.07 241 1.00  0.08  
N2O emission (50–55 cm) Spherical <0.01 0.07 22 0.05  0.32  
CO2 emission (5–10 cm) Exponential 0.01 0.11 37 0.11  0.43  
CO2 emission (30–35 cm) Spherical 0.01 0.27 36 0.02  0.42  
CO2 emission (50–55 cm) Exponential 0.05 0.18 177 0.30  0.90  
Wheat yield (2015) Gaussian <0.01 0.03 165 0.01  0.97  
Wheat yield (2019) Exponential <0.01 0.00 137 0.13  0.55 

C SOM content Gaussian <0.01 0.01 5 0.20  <0.01  
Clay content Spherical <0.01 0.05 24 0.08  0.05  
Soil BD (0–5 cm) Gaussian <0.01 0.01 24 0.18  0.43  
Soil BD (30–35 cm) Gaussian <0.01 0.01 19 0.17  0.05  
Soil BD (50–55 cm) Gaussian <0.01 <0.01 16 0.15  0.01  
N2O emission (5–10 cm) Exponential 0.01 0.10 29 0.15  0.07  
N2O emission (30–35 cm) Spherical 0.01 0.15 17 0.04  <0.01  
N2O emission (50–55 cm) Spherical 0.03 0.02 31 0.12  0.18  
CO2 emission (5–10 cm) Linear 0.06 0.06 342 1.00  0.09  
CO2 emission (30–35 cm) Exponential 0.01 0.09 1 0.08  <0.01  
CO2 emission (50–55 cm) Spherical <0.01 0.02 21 0.04  0.03  
Wheat yield (2017) Exponential <0.01 0.01 268 0.12  0.88  
Wheat yield (2019) Exponential 0.01 0.03 773 0.19  0.82 

D SOM content Exponential <0.01 0.02 35 0.15  0.11  
Clay content linear 0.01 0.01 449 1.00  0.10  
Soil BD (0–5 cm) Spherical 0.02 0.05 691 0.34  0.26  
Soil BD (30–35 cm) Spherical <0.01 0.01 32 0.06  0.14  
Soil BD (50–55 cm) Gaussian <0.01 <0.01 6 0.22  <0.01  
N2O emission (5–10 cm) Exponential 0.40 2.82 31 0.14  0.07  
N2O emission (30–35 cm) Gaussian 0.04 0.23 6 0.19  <0.01  
N2O emission (50–55 cm) Gaussian 0.03 0.15 20 0.19  0.01  
CO2 emission (5–10 cm) Spherical 0.02 0.10 72 0.20  0.18  
CO2 emission (30–35 cm) linear 0.07 0.07 449 1.00  0.02  
CO2 emission (50–55 cm) Spherical <0.01 0.02 25 0.11  0.03 

†) SOM content, g/kg; clay content, %; soil (BD) bulk density, g/cm3; potential N2O and CO2 emissions, mg/m2/d; wheat yield, Mg/ha. 
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high subsoil bulk density and a Relative Normalized Density above 1 
(Tables 2 and S2). Further, spatial variations in crop yield in field C were 
not significantly related to spatial variations in soil properties (Table 2). 
Evidently, the relationships between spatial variations in crop yield and 
soil characteristics were not stable over years, likely because of in
teractions as a result of differences between years in weather conditions. 
As a consequence, it will be difficult to address the spatial variations 
adequately through precision agriculture technology. 

Few studies have related spatial variations in subsoil bulk density to 
spatial variations in crop yield, mainly because subsoil bulk density and 
spatial variations in subsoil bulk density cannot be measured easily 
(Keller et al., 2017; Horn et al., 1995). Bölenius et al., (2018) found 
significant relationships between spatial variations in penetration 
resistance and spatial variations in crop yields, but these were strongly 
dependent on season and weather conditions. They concluded that 
single measurements of penetration resistance were insufficient to 
identify yield variations, apart from dry years. Usowicz and Lipiec 
(2017) found statistically significant negative relationships between 
spatial variations in cereal yields and spatial variations in top soil (0–10 
cm) bulk density of a 1 ha large experimental field. The spatial depen
dence was strong and the range varied from 12 to 99 m between years 
(repeated measurements in the same field). However, subsoil 

compaction (or bulk density) was not measured. Lipiec and Usowicz 
(2018) found no statistically significant relationships between spatial 
variations in cereal yields and spatial variations in top soil (0–10 cm) 
bulk density of a 2.4 ha large farmers’ field. Again, subsoil bulk density 
was not measured. Further, spatial variations in topsoil (0–20 cm) bulk 
density were negatively related to spatial variations in saturated hy
draulic conductivity of soils at regional scale (140 km2), while variations 
in bulk density were relatively small and only weakly spatial dependent 
(Usowicz and Lipiec, 2021). These studies clearly indicate that soil bulk 
density may be an important crop-yield influencing factor, but that data 
and information about the relationships between variations in subsoil 
bulk density and crop yield are often confounded by soil water contents. 

3.4. Relationships between soil bulk density and potential CO2 and N2O 
emissions 

Soil CO2 respiration reflects soil biological activity (Avidano et al., 
2005); it is primarily related to the amounts of metabolizable organic 
matter, temperature and soil aeration. Soil N2O emission reflects the 
balance between N2O production and consumption by micro-organisms 
in soil, and is related to the concentrations of ammonium (NH4

+), nitrate 
(NO3

–) and metabolizable organic matter, as well as to temperature and 
soil aeration (Wrage-Monnig et al., 2018; Kool et al., 2010; Bange, 
2000). We hypothesized that spatial variations in potential CO2 and N2O 
emissions were related to spatial variations in soil bulk density, as soil 
bulk density affects soil aeration. Indeed, within-field variations in po
tential CO2 emissions were often significantly related to within-field 
variations in soil bulk density in the subsoil at 30–35 cm in all four 
fields, and in two fields also at depth of 50–55 cm (Table 3). Also, var
iations in potential N2O emissions were significantly related to varia
tions in soil bulk density of the top soil in fields A and B and to variations 
in bulk density in the subsoil at depth of 30–35 cm in field A, and 50–55 
cm of fields A and D (Table 3). Spatial variations in potential CO2 and 
N2O emissions were not related to spatial variations in the SOM content 
of the topsoil in any of the four fields. 

Commonly, an increase in soil bulk density decreases CO2 emissions 
and increases N2O emissions (Bessou et al., 2010; Ruser et al., 2006; van 
Groenigen et al., 2005; Sitaula et al., 2000). Increases in soil bulk density 
decrease soil porosity and aeration, and thereby decrease soil respiration 
but increase N2O production (or reduce N2O diffusion and N2O con
sumption rates). Changes in the ratio of soil CO2 and N2O emissions in 
response to changes in soil bulk density may thus provide insight into 
differential perturbations of soil C and N transformations. Frequency 
distributions of potential CO2 and N2O emissions were highly skewed in 
all fields, and therefore logarithmic values were used. The ratio of log 
CO2 emissions to log N2O emissions tended to decrease with an increase 
in soil bulk density, especially in field B (Fig. 5), the field with the 
highest mean bulk density and also with the highest coefficient of 
variation of the mean bulk density (Table S1). This indicates that po
tential N2O emissions increased relative to potential CO2 emissions with 
increasing bulk density. Further, the ratio of log CO2 emissions to log 
N2O emissions strongly decreased with bulk density following N appli
cation (Fig. 5). Emissions of N2O in the top soil (5–10 cm) and sub soil 
(30–35 cm) increased by a factor of 2 to 5 following addition of NaNO3, 
suggesting that the N2O emissions were in part nitrate limited. 
Evidently, increases in N2O emissions following N fertilization were 
much greater in soil with high bulk density than in soil with low bulk 
density. Note that the increased N2O emissions in the top soil (0–5 cm) 
vanished after 6 days and that the peak in the subsoil at 30–35 cm 
occurred much later than in the top soil. No increases in N2O emissions 
occurred following N application to the subsoil at 50–55 cm during the 
six-days measuring period (Fig. 5). 

Our results provide further evidence that the current trend of 
increasing wheel loads in modern agriculture, which increase (sub)soil 
bulk density, may increase N2O emissions from soil and especially also 
from the subsoil (Shcherbak and Robertson, 2019). Agriculture is a main 

Table 2 
Coefficients (means ± standard deviations) of the multiple regression relation
ships between wheat yield and soil characteristics of fields A, B and C. Corre
lations coefficients (R2) and degree of freedom (DF) are presented at the bottom 
of each block.   

Field A 
(2015) 

Field A 
(2016) 

Field A 
(2018) 

Field A 
(2019) 

α (Intercept) 13.86 ±
2.16*** 

9.17 ±
1.47*** 

6.42 ±
1.75*** 

7.96 ±
2.4*** 

β1 (Total N) − 0.54 ±
1.06 

− 0.8 ± 0.66 − 0.43 ±
0.86 

1.1 ± 1.59 

β2 (SOM) − 0.35 ±
0.51 

0.35 ± 0.32 0.01 ± 0.41 0.22 ±
0.66 

β3 (Clay content) 0.1 ±
0.04** 

0.06 ±
0.02* 

0.002 ±
0.032 

− 0.01 ±
0.06 

β4 (CaCl2-extractable 
Mg) 

0.02 ±
0.01 

− 0.01 ±
0.01 

0.03 ±
0.01*** 

− 0.02 ±
0.02 

β5 (Bulk density in 
30–35 cm) 

− 2.73 ±
1.36* 

− 0.84 ±
0.88 

1.19 ± 1.1 2.19 ±
1.79 

β6 (Penetration 
resistance in 30–35 
cm) 

− 0.002 ±
0.001 

− 0.003 ±
0.001*** 

− 0.001 ±
0.001 

0.001 ±
0.001 

R2 0.23 0.48 0.23 0.16 
DF 93 65 93 26  

Field B 
(2015) 

Field B 
(2019) 

Field C 
(2017) 

Field C 
(2019) 

α (Intercept) 16.94 ±
4.87*** 

11.28 ±
0.7*** 

10.3 ±
1.96*** 

11.87 ±
2.77*** 

β1 (Total N) − 1.83 ±
4.94 

− 0.34 ±
0.71 

− 0.78 ±
1.67 

− 2.47 ±
2.36 

β2 (SOM) − 1.28 ±
1.71 

0.21 ± 0.24 0.48 ± 0.72 0.83 ±
1.02 

β3 (Clay content) 0.31 ±
0.15* 

0.01 ± 0.02 − 0.02 ±
0.04 

0.01 ±
0.06 

β4 (CaCl2-extractable 
Mg) 

− 0.01 ±
0.03 

− 0.002 ±
0.004 

0.01 ± 0.01 0.01 ±
0.02 

β5 (Bulk density in 
30–35 cm) 

− 0.71 ±
2.36 

− 0.25 ±
0.34 

− 0.95 ±
0.98 

− 1.14 ±
1.39 

β6 (Penetration 
resistance in 30–35 
cm) 

− 0.001 ±
0.003 

− 0.0005 ±
0.0004 

− 0.0002 ±
0.0014 

0.001 ±
0.002 

R2 0.18 0.06 0.03 0.02 
DF 92 92 93 93 

†) Multiple linear regression models (function lm() in R, James et al., 2013). The 
same as below. 
††) Total N and SOM contents, g/kg; clay content, %; available Mg, mg/kg; soil 
(BD) bulk density, g/cm3; penetration resistance, kPa. The same as below. 
†††) “*” means 0.01 < P < 0.05, “**” means 0.001 < P < 0.01, “***” means P <
0.001. The same as below. 
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source of greenhouse emissions and N2O emissions form a significant 
fraction of the total GHG emissions from agriculture. Spatial variations 
in soil bulk density are likely also an important explanatory factor for 
the large spatial variations in N2O emissions observed in the current 
study (Table S1) and in other studies (Robertson and Groffman, 2015). 

4. Conclusions 

Our initial hypotheses were only partly proven. We found significant 
variations in subsoil bulk density, which were spatially dependent, but 
the level of soil compaction appeared to be nowhere severe in the four 
fields. Further, within-field spatial variations in subsoil bulk density 
were related to within-field spatial variations in the potential emissions 
of CO2 and N2O, but not to variations in wheat yield. 

Our random sampling approach yielded unbiased estimates of the 
spatial variations in subsoil bulk density and other soil properties within 
four fields, which were greatly different in shape and size. Most of these 
variations were strongly spatially dependent but the ranges were often 
relatively small, indicating that the scope for identifying distinctly 
different and manageable units was relatively small. Yet, semi- 
variograms proved to be an effective method to characterize spatial 
variations in both soil properties, soil processes and crop yields. 

The mean bulk density of the subsoil in two fields was close to the 
suggested threshold of where bulk density affects soil functioning. 
Indeed, potential emissions of CO2 and N2O were significantly related to 
soil bulk density. The ratio of CO2 emissions to N2O emissions was 
negatively related to bulk density in both topsoil and subsoil, especially 
following N application, indicating that emissions of N2O increased with 
an increase in soil bulk density. More studies are needed to find out how 
stable these relationships are over years, and how precision agriculture 
may address these relationships. 

Spatial variations in wheat yield were only marginally related to soil 
properties. No statistically significant relationships were found between 
within-field spatial variations in (sub)soil bulk density and within-field 
spatial variations in wheat yield in any of the 8 field × year combina
tions analyzed. Variations in wheat yield were spatially dependent, and 
the ranges were on average larger than the ranges of soil properties, 
suggesting that spatial variations in wheat yield were mainly caused by 
other (management) factors. The near absence of a relationship between 
within-field variations in soil properties and within-field variations in 
wheat yield is likely also related to the fact that the within-field varia
tions in soil properties were relatively small, that wheat is not a very 
sensitive crop to subsoil compaction, and that crop growth conditions 
are relatively good in the study area. 

The farmers were not surprised by the findings of relatively high soil 
bulk density values in some fields, which they ascribed to effects of 
heavy harvesters and manure applicators. Increasingly, they use GPS- 
controlled trafficking to minimize the area and extent of soil compac
tion, as they are aware that there are as yet no easy-to-implement 
remediation measures for spatial variations in subsoil compaction. 

Our study provides evidence that potential N2O emissions (and the 
ratio of potential CO2 emissions to potential N2O emissions) is a more 
sensitive indicator for the effect of soil bulk density on soil functioning 
than wheat yield. The linear relationship between bulk density and the 

Table 3 
Coefficients (means ± standard deviations) of the multiple regression relation
ships between potential N2O emissions, potential CO2 emissions and soil char
acteristics at depth of 5–10, 30–35, and 50–55 cm of the four fields. Correlations 
coefficients (R2) and degree of freedom (DF) are presented at the bottom of each 
block.   

Field A Field B Field C Field D 

N2O emission (5–10 
cm)     

α (Intercept) − 3.21 ±
1.29* 

− 0.28 ±
0.26 

1.36 ±
0.49** 

1.63 ± 2.29 

β1 (Clay content) 0.02 ±
0.03 

0.01 ± 0.01 0.03 ±
0.01*** 

0.03 ± 0.08 

β2 (SOM) − 0.61 ±
0.4 

0.1 ± 0.11 0.2 ± 0.2 − 2.34 ±
1.3 

β3 (Bulk density at 
5–10 cm) 

3.38 ±
0.82*** 

0.42 ±
0.13** 

− 0.23 ±
0.26 

0.22 ± 0.9 

β4 (Penetration 
resistance 5–10 
cm) 

− 0.001 ±
0.002 

− 0.0003 ±
0.0007 

0.0004 ±
0.0006 

− 0.001 ±
0.005 

β5 (Total N) 1.05 ±
0.85 

0.1 ± 0.33 − 0.83 ±
0.45 

3.87 ± 2.78 

R2 0.25 0.21 0.15 0.08 
DF 86 88 87 71 
CO2 emission (5–10 

cm)     
α (Intercept) − 17.41 ±

10.34 
− 0.18 ±
1.42 

7.09 ±
1.45*** 

7.17 ±
2.16** 

β1 (Clay content) − 0.39 ±
0.25 

− 0.02 ±
0.05 

− 0.03 ±
0.02 

− 0.02 ±
0.06 

β2 (SOM) − 5.01 ±
3.26 

− 0.6 ± 0.69 0.28 ± 0.56 − 1.42 ±
0.75 

β3 (Bulk density at 
5–10 cm) 

19.5 ±
6.58** 

1.07 ± 0.72 − 1.36 ±
0.79 

− 2.42 ±
1.11* 

β4 (Penetration 
resistance 5–10 
cm) 

0.01 ±
0.01 

0.002 ±
0.004 

0.0001 ±
0.0016 

0.001 ±
0.004 

β5 (Total N) 12.44 ±
6.95 

2.74 ± 1.92 − 0.08 ±
1.32 

3.65 ±
1.78* 

R2 0.23 0.07 0.07 0.09 
DF 87 90 87 91 
N2O emission 

(30–35 cm)     
α (Intercept) − 3.46 ±

1.32* 
1.15 ±
0.37** 

0.88 ± 0.62 1.99 ±
0.82* 

β1 (Bulk density at 
30–35 cm) 

3.48 ±
0.98*** 

− 0.04 ±
0.23 

0.34 ± 0.42 − 0.35 ±
0.52 

β2 (Penetration 
resistance 30–35 
cm) 

0.002 ±
0.001 

− 0.0005 ±
0.0003 

− 0.0003 ±
0.0006 

− 0.002 ±
0.001 

R2 0.17 0.04 0.01 0.04 
DF 89 93 94 93 
CO2 emission 

(30–35 cm)     
α (Intercept) − 25.13 ±

8.39** 
5.43 ±
1.08*** 

19.34 ±
1.84*** 

9.07 ±
1.2*** 

β1 (Bulk density at 
30–35 cm) 

22.31 ±
6.15*** 

− 2.23 ±
0.67** 

− 9.5 ±
1.25*** 

− 2.95 ±
0.76*** 

β2 (Penetration 
resistance 30–35 
cm) 

0.008 ±
0.007 

0.0007 ±
0.0007 

− 0.0018 ±
0.0016 

− 0.002 ±
0.001 

R2 0.14 0.12 0.39 0.16 
DF 95 94 93 91 
N2O emission 

(50–55 cm)     
α (Intercept) − 5.11 ±

2.28* 
2.08 ±
0.58*** 

3.26 ±
1.28* 

4.62 ±
1.23*** 

β1 (Bulk density at 
50–55 cm) 

6.02 ±
1.81** 

− 0.47 ±
0.39 

− 0.84 ± 0.8 − 2.08 ±
0.79** 

β2 (Penetration 
resistance 50–55 
cm) 

− 0.001 ±
0.001 

0.00005 ±
0.00032 

− 0.0014 ±
0.001 

0.0002 ±
0.0006 

R2 0.11 0.01 0.03 0.07 
DF 95 95 92 96 
CO2 emission 

(50–55 cm)     
α (Intercept)  

Table 3 (continued )  

Field A Field B Field C Field D 

− 9.39 ±
7.23 

5.18 ±
0.95*** 

5.2 ±
1.41*** 

5.2 ±
1.41*** 

β1 (Bulk density at 
50–55 cm) 

12.73 ±
5.72* 

− 2.18 ±
0.64*** 

− 0.49 ±
0.88 

− 0.49 ±
0.88 

β2 (Penetration 
resistance 50–55 
cm) 

− 0.003 ±
0.004 

0.0001 ±
0.0005 

0.00004 ±
0.00106 

0.00004 ±
0.00106 

R2 0.05 0.12 0.01 0.01 
DF 94 91 94 94  
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ratio of CO2 emissions to N2O emissions was apparent in both top soil 
(5–10 cm) and subsoil (30–35 cm). This linear relationship also suggests 
that there was no specific threshold for soil bulk density beyond which 
emissions change dramatically; instead emissions change gradually with 
an increase in bulk density. 

Our results provide also evidence that an increasing soil compaction 
in modern agriculture contributes to increases in N2O emissions from 
agricultural land and that these increases in emissions may emerge from 
the top soil as well as the subsoil. Future studies should consider N2O 

emission factors as function of N fertilizers and (sub)soil bulk density. 
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Fig. 5. Relationships between soil bulk density (g cm− 3) and the ratio of potential CO2 emissions and potential N2O emissions (mg m− 2 d-1; log scale) for field B at 
three different depth intervals and at four different moments in time. 
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