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A two‑stage approach 
for the spatio‑temporal analysis 
of high‑throughput phenotyping 
data
Diana M. Pérez‑Valencia1,2*, María Xosé Rodríguez‑Álvarez1,3,7, Martin P. Boer4, 
Lukas Kronenberg5,6, Andreas Hund5, Llorenç Cabrera‑Bosquet8, Emilie J. Millet4,8 & 
Fred A. van Eeuwijk4

High throughput phenotyping (HTP) platforms and devices are increasingly used for the 
characterization of growth and developmental processes for large sets of plant genotypes. Such HTP 
data require challenging statistical analyses in which longitudinal genetic signals need to be estimated 
against a background of spatio‑temporal noise processes. We propose a two‑stage approach for the 
analysis of such longitudinal HTP data. In a first stage, we correct for design features and spatial 
trends per time point. In a second stage, we focus on the longitudinal modelling of the spatially 
corrected data, thereby taking advantage of shared longitudinal features between genotypes 
and plants within genotypes. We propose a flexible hierarchical three‑level P‑spline growth curve 
model, with plants/plots nested in genotypes, and genotypes nested in populations. For selection 
of genotypes in a plant breeding context, we show how to extract new phenotypes, like growth 
rates, from the estimated genotypic growth curves and their first‑order derivatives. We illustrate 
our approach on HTP data from the PhenoArch greenhouse platform at INRAE Montpellier and the 
outdoor Field Phenotyping platform at ETH Zürich.

In recent years, the frequency of use of high-throughput phenotyping (HTP) techniques and platforms has 
strongly increased in plant genetics and physiology. HTP data provide quick, precise, non-destructive and cost-
effective information on phenotypic traits with high spatial and temporal  resolution1. Designed HTP experi-
ments, either indoors or in a field, usually consist of experimental units (e.g., single plants in pots or plots) that 
are combined with a wide range of sensing equipment for the (almost) continuous monitoring of plant/plot 
phenotypic traits for large sets of genotypes. Treatments applied in HTP research designs may comprise not 
only different genotypes but also different management practices. High dimensional HTP data as derived from 
multiple sensors (e.g., images, point clouds, hyperspectral data) are typically filtered, condensed, integrated 
and summarised into features. Combinations of one or more features are used to approximate biological traits 
that are on the one hand still close to the data, and on the other hand are relatively far from the target traits of 
commercial interest (most often yield and quality parameters). Following van Eeuwijk et al.2, here we will refer 
to these traits as low-level, in the sense of being close to the original phenotypic measurement at a single point 
in time and with little statistical modelling applied. Thus, “low-level” does not necessarily refer to the biological 
complexity or agronomic importance of the trait. Examples of such low-level traits are plant height, canopy cover, 
leaf area index, ear and tiller counts, canopy temperature or indices related to water or chlorophyll content. Thus, 
researchers and plant breeders have now access to large and detailed datasets, in the form of (long) time-series, 
enabling to track multiple low-level traits from, e.g., seed emergence to physiological maturity. The challenge in 
this setting is how to efficiently and adequately exploit the diversity and complexity of HTP data to (a) extract 
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relevant information related to plant growth and development, (b) increase the biological understanding of 
plant systems; and (c) help and support the decision-making process in plant breeding  programs2. On top of 
that, the vast amount of data typically produced by HTP platforms require not only appropriate but also rapid 
processing techniques.

Regardless of the fact that complex traits (like yield) are measured only once (as traditionally) or low-level 
phenotypic traits are measured several times (as in HTP), it is known that their expression is spatially affected 
by environmental factors such as soil heterogeneity in field experiments and temperature and light gradients 
in the greenhouse. This makes it necessary to correct for these nuisance factors when analysing agricultural 
 experiments2,3. For “traditional” agricultural experiments, modelling spatial variation through spatially correlated 
stochastic components or smoothing techniques has become  ubiquitous4–11. Yet, data from HTP experiments 
present, on top of spatial variation, a time dimension which needs to be incorporated and adequately modelled 
in the analyses. Although interest may primarily focus on estimating (and further processing and analysing) the 
evolution over time of the genetic effect on a given phenotype, it will be essential to correct for environmental 
nuisance effects not only in a spatial but now also in a temporal dimension. Thus, from the statistical point of 
view, HTP data ask for spatio-temporal modelling approaches. To the best of our knowledge, there are few pro-
posals in the HTP literature that tackle the problem from both perspectives, temporal and spatial. References 
for stage-wise analysis of HTP data include the work by van Eeuwijk et al.2, where the authors propose to first 
estimate time-series of spatially adjusted genotypic means from low-level phenotypic traits, that are then subject 
to temporal dynamic modelling. A similar approach is followed by Kar et al.12. In the above-cited references, the 
information that is carried to the temporal analysis is not at the level of the experimental unit but at the genotype 
level. A different stage-wise approach is described in Roth et al.34, where the temporal analysis is performed first, 
followed by the spatial correction. Approaches that model simultaneously the spatial and temporal genetic and 
non-genetic variation in one-stage include the works by Verbyla et al.13 and Pérez et al.14. While promising, both 
proposals report high computational complexity and scalability problems.

In this work we propose a two-stage approach that allows keeping the data resolution for the second stage 
at the experimental unit (plant/pot/plot) and is computationally efficient. The first stage focuses on correcting 
the low-level phenotypic data for experimental design factors and spatial variation, while the second stage aims 
at estimating the evolution over time of the genetic signal. In a similar fashion to van Eeuwijk et al.2, in the first 
stage we fit a spatial model to the phenotypic data separately for each measurement time. The phenotypic data 
are subsequently corrected by only considering the (estimated) sources of variation which are of interest plus 
the residual component (i.e., the measurement error). The purpose of this stage and subsequent correction is 
two-fold: (1) to remove nuisance spatial variation from the phenotypic data; and (2) to keep the data resolution 
for the second stage at the level of the experimental unit (through the incorporation in the correction of the 
residual component). This is one of the main differences to the proposals described in van Eeuwijk et al.2 and 
Kar et al.12, and it is routinely applied for data derived from the field phenotyping platform of ETH Zürich15–17. 
Since analyses are performed separately for each measurement time, our modelling strategy implicitly permits the 
spatial variation to differ among measurement times, i.e., it allows correcting for both the spatial and temporal 
evolution of environmental variables and experimental design factors. For this first stage of spatial correction, dif-
ferent proposals are available in the  literature4–11. The separable autoregressive  model5,6 has become the standard 
modelling strategy, but the recently proposed SpATS (Spatial Analysis of Field Trials with Splines)  approach11 
has proved to be a powerful alternative. Indeed, comparisons of these two models have shown that SpATS is 
a very competitive approach, with the advantage that model selection is greatly  simplified18,19. In addition, an 
R-package (also called SpATS) is freely available on CRAN (https:// CRAN.R- proje ct. org/ packa ge= SpATS), and 
the recently statgenHTP20 R-package (available on https:// CRAN.R- proje ct. org/ packa ge= statg enHTP) allows 
for an easy fitting of SpATS models for different (and possibly large) measurement times. For all these reasons, 
we choose SpATS for this first stage.

The second stage of our proposal focuses on modelling the genetic signal as a function of time for the cor-
rected phenotype obtained in the first stage. Data for this stage consist of time-series of spatially corrected 
phenotypic trait measurements per experimental unit. In other words, we have a sample of growth curves per 
plant/pot/plot that can be grouped by, at least, one treatment factor, the  genotype21. Thus, generally speaking, 
this stage requires hierarchical or multilevel growth curve modelling approaches.

A traditional data driven approach to the analysis of growth curves is to use parametric (non-linear) models, 
the logistic function being one of the most commonly  used22. However, while growth processes theoretically 
follow a clearly defined pattern that may be modelled using a parametric function, the observed dynamics may 
deviate considerably due to, for example, temporal changes in environmental conditions (e.g. cold spells) or the 
application of treatments (e.g. irrigation events). More flexible models that overcome the limitations of parametric 
specifications have been proposed in the literature. Examples include the use of smoothing or penalised splines 
(P-splines23) as well as functional principal components analysis (FPCA)21,24,25. For the particular case of data 
from HTP platforms, their temporal analysis by means of splines or FPCA has been discussed in Xu et al.26–28, 
Wang et al.29 and Brien et al.30. In this paper, we follow the same modelling philosophy as for the first stage and 
propose the use of P-spline hierarchical curve data models along the lines of the work by Durban et al.24 and Gre-
ven and  Scheipl31. Our approach presents several advantages. The connection between P-splines and linear mixed 
model offers a rich framework for estimation and  inference32,33. Moreover, we can easily obtain the derivatives of 
the estimated curves at different levels of the hierarchy (e.g., genotype or experimental unit) which can provide 
important insights on genotype performance. Finally, from the estimated curves and their derivatives, different 
time-dependent and -independent characteristics (intermediate traits) can be easily extracted. Intermediate traits 
capture the dynamics of low-level traits and are closer to the target traits of plant breeders. Examples include the 
area under estimated growth curves, the timing of key stages (e.g., the timing at which final height is reached), 
or quantities at defined time points or periods (e.g., final height, final canopy cover or maximum speed rates)34. 

https://CRAN.R-project.org/package=SpATS
https://CRAN.R-project.org/package=statgenHTP
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They can serve as inputs to subsequent statistical analyses that aim at modelling genotype-by-environment 
interactions in biologically complex traits, like yield, in terms of underlying component traits.

Methods
We consider that, in the HTP experiment, genotypes have been allocated to the experimental units following 
an experimental design. For simplicity, in what follows we assume that only genotypes have been tested (i.e., 
we have a single factor treatment structure). However, we allow for population structure, modelled as different 
families, panels or populations of genotypes. Thus, the data present a three-level nested hierarchical structure, 
with plants/plots nested in genotypes, and genotypes nested in populations (see Supplementary Fig. S1 online). 
For clarity and simplicity, hereafter we refer to the experimental units of the experimental design as plants. The 
experimental unit is most commonly a plant for an indoor experiment and a plot containing several plants for 
a field experiment.

Data structure. Let ypgi(t) denote the (observed) low-level phenotypic trait of interest for the i-th plant 
( i = 1, . . . ,mpg ) of the g-th genotype ( g = 1, ..., ℓp ) in the p-th population ( p = 1, . . . , k ) at time t ∈ {t1, . . . , tn} . 
Let L =

∑k
p=1 ℓp denote the total number of genotypes and M =

∑k
p=1

∑ℓp
g=1 mpg the total number of plants. 

We consider that plants can be mapped to a coordinate system defined in terms of r rows and c columns, and 
denote as upgi and vpgi the row and column position respectively ( upgi ∈ {1, . . . , r} and vpgi ∈ {1, . . . , c} ). In the 
first stage, the correction is made per time point for the whole experiment. As such, note that we assume that all 
plants in the experiment are measured at the same times, ( t1, . . . , tn ). That is a simplification, as platform data 
is typically acquired within the order of minutes to hours. However, we presume that the factors that may affect 
the platform measurements within that period can be accounted for (and captured) by the experimental design 
(e.g., blocking structure). The assumption of the same measuring times, however, does not preclude the pres-
ence of incomplete data. Our approach can handle missing values at both the plant and genotypic level (i.e., with 
plants or even genotypes not measured for some times) thanks to the use of splines and mixed models (for an 
in deep discussion on missing data for longitudinal data, we refer the interested reader to Brumback and Rice 21 
and Fitzmaurice et al.35)

First stage: environmental correction using SpATS. In the first stage, a SpATS model is fitted to the 
phenotypic data separately for each measurement time t ∈ {t1, . . . , tn} . A SpATS model is a linear mixed model 
where large-scale and small-scale spatial dependence (or spatial trend) is explicitly modelled by a two-dimen-
sional smooth surface defined over the row and column positions of the plants in the experiments, ft(u, v) . This 
smooth function is constructed with tensor-product P-splines23,36, i.e., through the combination of the tensor-
product of marginal B-spline bases and an anisotropic discrete penalty on the coefficients. In its more general 
specification, and considering genotypes as random, a SpATS model has the following form (for more details, 
see Rodríguez-Álvarez et al.11)

where y(t) = (y111(t), . . . , ykℓkmkℓk
(t))T is the low-level phenotypic trait at time t, X and Z represent column-

partitioned matrices, associated respectively with fixed and random components, as for instance, row, column, 
replicate and/or (incomplete) block effects, and Zg is the design matrix assigning plants to genotypes. Further, 
we decompose the fixed effects component in two terms

The first term, Xhβht , corresponds to the factors/covariates whose effects we are interested in modelling in the 
second stage, whereas Xqβqt corresponds to the factors/covariates whose effects we are interested in removing 
(e.g., those associated with experimental design factors). As said before, for simplicity, we consider that Xhβht 
only contains information regarding the family/population to which the genotypes belong to (if any). Concern-
ing Xqβqt , we assume that it is associated with R experimental design factors (categorical covariates), and thus, 
Xq = [Xq1 | . . . | XqR] and βqt = (βT

qt1, . . . ,β
T
qtR)

T . The length of βqtr (and therefore the number of columns 
in the associated design matrix Xqr ) ( r = 1, . . . ,R ) corresponds to the number of different categories, say cr , of 
the r-th experimental design factor minus one (as the intercept is included in the model).

Once the SpATS model in Eq. (1) is fitted, the phenotype of interest at time t, y(t) , is corrected by only con-
sidering the (estimated) sources of variation that are of interest, plus the residual component, i.e., the corrected 
phenotype, denoted as ỹ(t) = (ỹ111(t), . . . , ỹkℓkmkℓk

(t))T , is obtained as follows

where Jqr are matrices of ones of appropriate dimensions (i.e., M × (cr − 1) ). The correction is performed 
following the procedure for obtaining predictions (e.g., adjusted means) in linear mixed models described in 
Welham et al.37. In that paper, the authors propose a partition of the explanatory variables (see Eq. (1)) in three 
groups: (1) those for which predictions are required (i.e., population, Xhβ̂ht , and genotypic, Zg ĉgt , effects), (2) 

(1)

y(t) = 1Mβ0t + Xβ t + Zct + Zg cgt + ft(u, v)
︸ ︷︷ ︸

spatial trend

+εt , ct ∼ N(0,Gt), cgt ∼ N
(
0,Ggt

)
, εt ∼ N

(
0, σ 2

t IM
)
,

Xβt = Xhβht + Xqβqt .

(2)
ỹ(t) = 1M β̂0t +

R∑

r=1

1

cr
Jqr β̂qtr + Xhβ̂ht + Zg ĉgt

︸ ︷︷ ︸

p̂(t)

+ε̂t ,
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those to be averaged over (i.e., experimental design factors effects, 
∑R

r=1
1
cr
Jqr β̂qtr ); and, (3) those to be ignored 

(i.e., spatial trends, f̂t(u, v) , and other random effects, Zĉt).
As will be seen in the next section, in the second stage of our proposal we model ỹ(t) ( t ∈ {t1, . . . , tn} ). Thus, 

it is worth emphasising that, in the way it is constructed, ỹ(t) (see Eq. (2)) only contains information about 
genetic populations and genotypes, as well as unexplained plant-to-plant variation (measurement error). In 
other words, for the second stage the predicted values for the genetic populations and the genotypes, p̂(t) , as well 
as the unexplained plant-to-plant variation, ε̂t , are maintained as the “new” (spatially corrected) experimental 
unit values, while the spatial trends and other blocking factors to control for spatial variability are omitted. Also, 
note that the “observations” that enter the second stage, ỹ(t) , are not observed but estimated/predicted. Thus, we 
propose to propagate the uncertainty from the first stage to the second stage through the inclusion of weights, in 
a similar way to the weighted stage-wise analysis of multi-environment  trials38.In particular, weights are obtained 
from the inverse of the variance-covariance (vcov) matrix for the predictions (plus the residual variance), i.e., 
w(t) = diag((vcov(p̂(t))+ σ̂ 2

t IM)−1).

Second stage: P‑spline hierarchical curve data model. The aim of the second stage is to 
model the spatially corrected phenotype obtained in the first stage. We can re-organise the data for this 
stage in such a way that they can be seen as a sample of plant growth curves, ỹpgi = (ỹpgi(t1), . . . , ỹpgi(tn)) 
( 1 ≤ p ≤ k, 1 ≤ g ≤ ℓp, 1 ≤ i ≤ mpg ), with a nested hierarchical structure, where plants are nested in geno-
types and genotypes are nested in populations. We propose to model this sample of curves by considering an 
additive decomposition of the phenotypic variation over time and use a three-level nested hierarchical growth 
model for this  purpose21

where fp is the growth/change over time of the (spatially corrected) phenotype for the p-th population (i.e., the 
p-th population mean function), fpg is the genotype-specific growth deviation from fp for the g-th genotype, and 
fpgi is the plant-specific growth deviation from fpg for the i-th plant. The additive modelling approach implies that 
fp + fpg can be interpreted as the growth over time of the (spatially corrected) phenotype for the g-the genotype 
in the p-th population. Thus, on top of genotype-specific deviations from their overall population mean, we also 
obtain genotype-specific growth curves. Finally, wpgi are the weights obtained in the first stage.

We use P-splines for hierarchical curve  data24,31 to estimate the model in Eq. (3). In this framework, each 
function in Eq. (3) is approximated by a linear combination of cubic B-spline basis functions, and its smooth-
ness is controlled by a penalty on the differences of the B-spline coefficients (we use differences of order 2). The 
influence of the penalty is determined by a smoothing parameter. One of the attractive features of using B-splines 
to represent the functions in Eq. (3) is that their derivatives can be easily  obtained39. Furthermore, we adopt 
the connection between P-splines and linear mixed  models32,33, where each function is treated as a sum of fixed 
(linear) and random (non-linear) components, and the smoothing parameter is replaced by a ratio of variances 
components. For clarity we omit here the more technical details, but it can be shown that, under this setting, 
each function in Eq. (3) is expressed as follows

1 ≤ p ≤ k , 1 ≤ g ≤ ℓp , 1 ≤ i ≤ mpg  , where {zpop,j(·) : 1 ≤ j ≤ bpop − 2} , {zgen,j(·) : 1 ≤ j ≤ bgen − 2} and 
{zplant,j(·) : 1 ≤ j ≤ bplant − 2} are sets of basis functions obtained from the connection between P-splines and 
linear mixed  models32. In contrast to standard P-spline mixed models, but in line with the traditional random 
intercept and slope model for longitudinal data, here the linear component (intercept and slope) associated 
with fpg (genotypic deviations) and fpgi (plant deviations) is modelled with random rather than fixed effects 
(i.e., genotypes and plants are treated as random samples from the corresponding population). Also, for nota-
tional simplicity, we assume the same genetic variation across populations. However, this assumption can be 
easily relaxed by considering different values of σ 2

gen,0 , σ
2
gen,1 and σ 2

gen per population. A similar approach can 
be followed to allow for the plant-to-plant variation ( σ 2

plant,0 , σ
2
plant,1 and σ 2

plant ) to vary across genotypes. These 
generalisations might be worth exploring if there are sufficient number of genotypes per population and plants 
per genotype, respectively.

Before proceeding, we comment on the selection of the number of B-spline basis functions used to approxi-
mate fp , fpg and fpgi (i.e., bpop , bgen and bplant , respectively). In P-splines, it is recommended to choose a large 
number of bases to provide enough flexibility; the role of the penalty is to avoid over  fitting23. In our setting the 
number of functions in the complete model equals k + L + M (populations + genotypes + plants), and, hence, the 
number of regression coefficients (either fixed or random) to be estimated is k × bpop + L× bgen + M × bplant . 
This value can be very large, with the number of plants, M, and associated basis dimension, bplant , playing the 
major role: the dataset may contain thousands of plants. Thus, to reduce the computational burden, one could 

(3)
ỹpgi(t) = fp(t)+ fpg (t)+ fpgi(t)+ εpgi(t), εpgi(t) ∼ N

(
0, σ 2wpgi(t)

)
, 1 ≤ p ≤ k, 1 ≤ g ≤ ℓp, 1 ≤ i ≤ mpg ,

(4)

fp(t) = βp,0 + βp,1t +

bpop−2
∑

j=1

up,jzpop,j(t), up,j
iid
∼N

(

0, σ 2
p

)

,

fpg (t) = βpg ,0 + βpg ,1t +

bgen−2
∑

j=1

upg ,jzgen,j(t), βpg ,0
iid
∼N

(

0, σ 2
gen,0

)

, βpg ,1
iid
∼N

(

0, σ 2
gen,1

)

, upg ,j
iid
∼N

(

0, σ 2
gen

)

,

fpgi(t) = βpgi,0 + βpgi,1t +

bplant−2
∑

j=1

upgi,jzplant,j(t), βpgi,0
iid
∼N

(

0, σ 2
plant,0

)

, βpgi,1
iid
∼N

(

0, σ 2
plant,1

)

, upgi,j
iid
∼N

(

0, σ 2
plant

)

,
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be tempted to use different basis dimensions for fp , fpg and fpgi , and to be less generous with fpgi . However, this 
is not a good strategy. Simulation studies, as well as preparatory data analyses, have shown that results may be 
sensitive (and in some cases unreliable) to using different bases dimensions. We therefore recommend choos-
ing the same value for bpop , bgen and bplant , while keeping the number of coefficients at a reasonable level (i.e., a 
trade-off between flexibility and dimensionality).

We now present the model in Eq. (3) based on the specification in Eq. (4) in matrix nota-
tion. Let’s first order the data by population, genotype, plant, and time (in that order), i.e., 
ỹ = (ỹ111(t1), . . . , ỹ111(tn), . . . , ỹkℓkmkℓk

(t1), . . . , ỹkℓkmkℓk
(tn))

T . Thus, in a compact way, the three-level nested 
hierarchical growth model can be expressed as

where

and

The specific form of the matrices and vectors involved in Eq. (5) is given in Section “Three-level nested hierar-
chical growth model: mixed model formulation”. Note that model in Eq. (5) is a standard linear mixed model, 
and, thus, estimation can be carried out with any mixed-model software, such as the R-packages ASReml-R40, 
nlme41 and lme442, or the PROC MIXED43 procedure in SAS� . Also, we can use the R-package mgcv44 for 
that purpose. However, high-throughput phenotypic data are usually characterised by a large number of obser-
vations, which, together with the number of regression coefficients in Eq. (5), might make estimation with the 
above-mentioned software computationally expensive. Thus, we have implemented in the R  language45 our own 
code (provided along with the paper), which resorts to the recently proposed SOP (Separation of Overlapping 
Penalties)  method46. Empirical best linear unbiased estimates (BLUE) and predictors (BLUP) are obtained by the 
solution of Henderson’s mixed model  equations47, and variance components by means of restricted maximum 
likelihood (REML)48. Construction of (approximate) confidence intervals for the estimated curves and their 
derivatives is based on the prediction error  variance37. To speed up computation, we take advantage of the array 
structure of the data through Generalised Linear Array Models (GLAM)49 and of the sparse structure of the 
matrices involved in the model. It is to note that the model in Eq. (5) presents a standard variance-covariance 
matrix for the random effects (i.e., it is linear in the variance parameters) and thus, the SOP method reduces to 
the estimating algorithm described in  Harville50.

Applications
We illustrate the potential of our approach with data from two experiments from two different HTP platforms: 
(1) the PhenoArch platform (INRAE Montpellier)51 (greenhouse, Fig. 1a) and, (2) the FIP (FIeld Phenotyping) 
platform (ETH Zürich)52 (field, Fig. 1b). The PhenoArch platform data are used to describe our approach and 
illustrate the outcomes at each step. The FIP platform data are further analysed to discuss the extraction of 
important (genotype-specific) attributes from the estimated genotype-specific growth curves and their first-order 
derivatives, as well as their possible use in the decision-making  process2,53,54.

(5)ỹ = Xβ + Zu+ ǫ, u ∼ N(0,G), ǫ ∼ N(0, σ 2W),

X = [Qpop ⊗ Xpop],

Z = [Qpop ⊗ Zpop | Qgen ⊗ Xgen | Qgen ⊗ Zgen | IM ⊗ Xplant | IM ⊗ Zplant] with u = (uTpop,β
T
gen, u

T
gen,β

T
plant, u

T
plant)

T ,

G =









blockdiag(σ 2
1 Ibpop−2, . . . , σ

2
k Ibpop−2) 0 0

0 IL ⊗

�
�gen 0

0 σ 2
genIbgen−2

�

0

0 0 IM ⊗

�
�plant 0

0 σ 2
plantIbplant−2

�









.

Figure 1.  Overview of the two high-throughput phenotyping platforms. (a) PhenoArch platform at INRAE 
Montpellier (image source: INRAE). (b) FIP platform at ETH Zürich (image source: ETH crop science)
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PhenoArch platform (INRAE Montpellier). The PhenoArch platform hosted at M3P, Montpellier 
Plant Phenotyping Platforms (https:// www6. montp ellier. inrae. fr/ lepse/ Plate formes- de- pheno typage/ Montp 
ellier- Plant- Pheno typing- Platf orms- M3P) is composed of a conveyor belt structure of 28 lanes carrying 60 carts 
with one pot each (i.e. 1680 pots on a rectangular grid of r = 60 rows and c = 28 columns (see Fig. 1a), plus a 
conveyor belt system that feeds the imaging or the watering units. Pots are daily moved to be imaged and/or 
watered. They are then moved back to the same positions and orientation, so that the plant position with respect 
to its neighbours is conserved throughout the experiment. The data analysed here correspond to an experiment 
including two different panels of commercial maize hybrids representative of breeding history in Europe and US 
during the last 60 years. This material covers a wide range of plant architecture, growth and development. A total 
of 60 genotypes were tested in Panel 1 and 30 genotypes were tested in Panel 2, and each genotype was replicated 
between 4 (Panel 2) and 14 (Panel 1) times. All genotypes were tested under two levels of soil water content: (1) 
mild water deficit (WD, soil water potential of −0.5 MPa) and (2) retention capacity (WW, soil water potential 
of −0.05 MPa). The experiment was carried out in 2017 between April 13th and May 15th, which correspond 
to 103 and 135 days since January 1st (hereafter referred as DOY, Day of the Year), respectively. Red-green-blue 
( 2056× 2454 ) images taken from 13 views (12 side views from 30◦ rotational difference and one top view) were 
captured daily for each plant. Plant pixels from each image were segmented from those of the background and 
used for estimating the whole plant leaf area (among other features) as described in Brichet et al.55. The dataset 
consists of n = 32 leaf area measurements on M = 1656 plants ( 1656× 32 = 52,992 observations, including 
missing data). For a proper analysis of this dataset, panels and treatments should be modelled as crossed effects. 
However, for the sake of simplicity, for our analyses we combined panels and water regimes, such that we consid-
ered k = 4 “populations” (Panel 1—WD, Panel 1—WW, Panel 2—WD and Panel 2—WW) and L = 180 “geno-
types” (60 genotypes in Panel 1 and WW treatment, 60 genotypes in Panel 1 and WD treatment, 30 genotypes in 
Panel 2 and WW treatment and 30 genotypes in Panel 2 and WD treatment).

First stage results: PhenoArch platform. A SpATS model was fitted for each individual measurement time point 
of the leaf area data. In addition to the spatial trend and the random genotypic effects (see Eq. (1)), the model 
included the population (panel by water regime combination) as fixed effect, and the row and column positions 
as random effects. A different genetic variance for each of the four populations (panel by water regime combina-
tion) was considered. Regarding the spatial trend (i.e., the tensor-product P-spline), B-spline bases of dimension 
60 and 28 were chosen for the row and column positions, respectively, and nested bases, with half the dimension, 
were  used56. The spatially corrected leaf area included the estimated population and genotypic effects, as well 
as the residual (see Eq. (2)). The comparison of the spatially corrected leaf area when modelling genotypes as 
fixed (as usually in stage-wise analyses) or random (as done here) effects shows essentially identical results (Sup-
plementary Fig. S3 online): shrinkage of the genotypic BLUPs is counteracted by the inclusion of the residual 
component into the correction in Eq. (2). Results show that, as expected, the spatial pattern observed in the raw 
data disappears in the spatially corrected phenotype, as illustrated with the leaf area at four different measure-
ment times (Fig. 2). Moreover, the correction reduced the variability among plants (i.e., replicates) of the same 
genotype and water treatment combination (Fig. 3).
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Figure 2.  Results of the first stage of analysis for the PhenoArch platform: Spatial distribution of the (a) raw 
and (b) spatially corrected leaf area at four different measurements times ( t = 108, 112, 115, 117 DOY). The 
white areas denote missing data. The colour scale is different for each time point.

https://www6.montpellier.inrae.fr/lepse/Plateformes-de-phenotypage/Montpellier-Plant-Phenotyping-Platforms-M3P
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Second stage results: PhenoArch platform. The three-level nested hierarchical growth model in Eq. (3) was fitted 
to the spatially corrected leaf area. We used cubic B-spline basis of dimension 13 to represent fp , fpg and fpgi (i.e., 
bpop = bgen = bplant = 13 ). Under this configuration, the mixed model in Eq. (5) has 52,992 observations (there 
are missing values), 23,920 regression coefficients (both fixed and random) and 11 variance components. Esti-
mation took approximately 9 min. Computations were performed in (64-bit) R 4.1.0, and a 2.40GHz × 4 Intel� 
 CoreTM i7 processor computer with 15.6 GB of RAM and Ubuntu 16.04 LTS OS.

Estimates at the three levels of the hierarchy were obtained: (1) population growth curves ( f̂p ), (2) genotype-
specific deviations ( f̂pg ) and respective growth curves ( f̂p + f̂pg ), and (3) plant-specific deviations ( f̂pgi ) and 
respective growth curves ( f̂p + f̂pg + f̂pgi ). Note that the four populations (panel by water regime combination) 
show a different growth pattern. Plants in water deficit show a lower growth compared to well watered plants 
for both panels (Fig. 4a). Genotype-specific deviations from their estimated population mean are shown in 
Fig. 4b where positive and negative deviations refer, respectively, to better and worse genotypic performance 
compared to the mean population. As expected, the magnitude of the deviations (and, thus, the differences 
among genotypes performance) increases with time. Also, genotypes from Panel 1 show the largest genetic vari-
ation under both water regimes. This is in concordance with the spatially corrected data (grey lines in Fig. 4a). 
The genotype-by-water regime interaction is illustrated for two genotypes per Panel in Fig. 4c. When compared 
to the average performance of the genotypes in the Panel, genotype 44 in Panel 1 and genotype 20 in Panel 2 
behave similarly under both water regimes (they depict similar deviations under both treatments). In contrast, 
genotype 43 in Panel 1 presents a better performance under WD regime, while genotype 03 in Panel 2 displays 
a better performance under WW regime. Finally, the model is able to successfully recover the evolution over 
time of the spatially corrected leaf area (Fig. 4d, grey lines), while appropriately handling the missing data, as 
illustrated with the plant-specific growth curves (Fig. 4d, dotted blue lines) of two genotypes (see also results for 
the populations means in Fig. 4a). Additionally, genotype-specific growth curves (Fig. 4d, orange lines) seem to 
properly summarise/describe the behaviour of the plant curves. To asses the relative accuracy of our model in 
predicting the plant-specific growth curves, i.e. f̂p + f̂pg + f̂pgi , we computed the mean absolute percentage error 
(MAPE). For this data, the MAPE value was 2.9% , indicating a good performance.

FIP platform (ETH Zürich). The FIP platform, located at the ETH research station in Lindau-Eschikon 
(Switzerland), is a cable-suspended multi-sensor platform designed for automated, accurate and supervised high 
throughput data acquisition on an area of 1  hectare57. From 2015 to 2017, the FIP platform was used to measure 
the development of canopy height on a diverse panel of European wheat genotypes (GABI  wheat58), including 
a panel of Swiss  varieties15,16,52. Here we focus on the 2017 data where height measurements started well before 
jointing. Figure 1b shows the FIP platform with its crop rotation allocated to six different lots; in 2017 the wheat 
experiment was planted in lots 2 and 6. Details on the experiment and experimental design can be found in 
Kronenberg et al.16,52. In short, the experimental unit was a plot to which the genotypes were allocated as only 
treatment factor in an augmented 2D design. Three checks were placed in nine complete replications per lot, and 
test genotypes were allocated in a row-column design assuming that each row within a replicate (lot) received 
different environmental conditions (due to variability of crop husbandry measures, such as crop protection and 
fertilisation) while the upper, central and lower range of each lot received similar conditions (due to the similar 
slope direction within both lots). Canopy height measurements were carried out in irregular intervals of 2 to 
13 days between February 27th and June 30th 2017 (which correspond to 58 and 181 DOY, respectively), using 
a terrestrial laser scanner mounted on the FIP sensor  head52. To analyse the experiment, we arranged the two 
replicates (lots) diagonally in a virtual grid of r = 42 rows by c = 36 columns. Additionally, the country in which 
a genotype was first inscribed into the European variety catalogue was also considered in the analyses. We used 
this information to allocate the genotypes to different wheat populations targeted for specific regions within 
Europe. We will refer to these wheat populations (groups of genotypes) as regions. Accordingly, plots are nested 
in genotypes, and genotypes are nested in regions (wheat populations). The number of genotypes per region 
was as follows: Austria/Czechia (AT/CZ): 17; Switzerland (CH): 39; Germany (DE): 114; Sweden/Denmark (SE/
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Figure 3.  Results of the first stage of analysis for the PhenoArch platform: Evolution over time of the raw (grey 
lines) and spatially corrected (blue lines) leaf area for the plants (replicates) of two genotypes, one per panel, 
under the two water regimes (as illustration). WD stands for water deficit and WW for well watered.
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Figure 4.  Results of the second stage of analysis for the PhenoArch platform: (a) Estimated population growth 
curves (continuous blue lines) with 95% pointwise confidence intervals (blue shaded areas), (b) estimated 
genotype-specific deviations for all genotypes, (c) estimated genotype-specific deviations for two genotypes per 
population (as illustration) with 95% pointwise confidence intervals (shaded areas); and (d) estimated plant- 
(dotted blue lines) and genotype- (red continuous lines) specific growth curves with 95% pointwise confidence 
intervals (red shaded areas) for two genotypes, one per panel, under the two water regimes (as illustration). WD 
stands for water deficit and WW for well watered. In (a) and (d) the grey lines represent the spatially corrected 
leaf area at the plant level (first stage).



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3177  | https://doi.org/10.1038/s41598-022-06935-9

www.nature.com/scientificreports/

DK): 11; France (FR): 90; Great Britain (GB): 38; Poland (PL): 25. The final dataset consists of n = 23 dates at 
which canopy height was measured on M = 720 plots ( 720× 23 = 16,560 observations, including missing data), 
L = 334 genotypes, and k = 7 populations (regions).

First stage results: FIP platform. In this case, the SpATS model included, besides the spatial trend and the 
random genotypic effects, fixed effects for the two lots (experimental design factor) and the seven wheat popula-
tions (region of origin), as well as random effects for the row and column positions. We also considered different 
genetic variances for each of the seven populations (regions). For the spatial trend, basis dimensions of 42 and 
36 were assumed for the row and column positions of the virtual grid, respectively. The correction included 
the estimated population and genotypic effects and the residuals, and we averaged over the lot fixed effect to 
eliminate its impact. The spatially corrected canopy heights obtained when modelling genotypes either as fixed 
or random were, also here, very similar (see Supplementary Fig. S5 online). As for the PhenoArch experiment, 
the correction performed in the first stage reduced the variability among replicates of the same genotype (see 
Supplementary Figs. S4 and S6 online). This reduction is due to the lot effect and the spatial variation. The spa-
tial distribution of the raw and spatially corrected canopy height, at four different measurement days (DOY), is 
shown in Fig. 5.

Second stage results: FIP platform. For this analysis, and to allow the genetic variation to vary across regions (as 
suggested by the spatially corrected data; see Supplementary Fig. S4b online), we assumed, in Eq. (4), different 
values of σ 2

gen,0 , σ
2
gen,1 and σ 2

gen per region. The growth curves for the spatially corrected phenotype show here a 
more complex pattern than for the PhenoArch platform (see Supplementary Figs. S2b and S4b online), so we 
considered cubic B-spline bases of dimension 20 for the three levels of the hierarchy ( fp , fpg and fpgi ). Under this 
configuration, mixed model in Eq. (5) has a total of 21,220 coefficients, 16,560 observations (including missing 
data) and 32 variance components. The fitting processes needed approximately 10 min. The MAPE was 1.94%.

In addition to the estimated growth curves and deviations at the three levels of the hierarchy, for this dataset 
we also obtained the first-order derivatives of the region and genotype-specific growth curves (Fig. 6); they 
have shown to be good descriptors of genotype specific growth  habit53 (recall that the first-order derivative is 
an indicator of the growth rate, i.e. the speed of canopy height development). Results show differences between 
regions (and between genotypes within a region) in, e.g., growth patterns (Fig. 6a), growth rates (Fig. 6b), and 
genotypes performance (Fig. 6c). To better illustrate differences among regions, Fig. 7a shows the estimated 
region growth curves together with the daily average temperature along the experiment. In Fig. 7b important 
maxima (i.e. largest growth rates) are indicated in the first-order derivatives of the respective region growth 
curves. Results for the replicate-specific growth curves are included in Supplementary Fig. S7 online (for one 
genotype per region, as illustration).

Extracting time‑independent attributes to characterise genotypes. To characterise the genotypes, we extracted 
the maximum corrected canopy height (maxTrait) from the estimated genotype-specific growth curves (Fig. 6a) 
as well as three maximum speed rates (maxSpeed1, maxSpeed2 and maxSpeed3) from their first-order deriva-
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Figure 5.  Results of the first stage of analysis for the ETH field phenotyping platform: Spatial distribution of 
the (a) raw and (b) spatially corrected canopy height at four different measurement days ( t = 103, 114, 129, 138 
DOY). The white areas denote missing data. The colour scale is different for each day.
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tives (Figs. 6b and 7b). These speed rates correspond to maxima around DOYs 97, 133 and 147, respectively. 
Maximum speed rates around DOY 133 (maxSpeed2) and 189 (maxSpeed3) can be interpreted, respectively, 
as recoveries after a severe cold period in April (DOY 110-120) and a milder one in May (DOY 140) (Fig. 7a, 
grey line). However, it appears that already for maxSpeed3 the growth rates declined as plants approached their 
final height. We also estimated the area under the genotype-specific deviations (Fig. 6c) as a global measure of a 
genotype performance over time when compared to the genotypes of the same region. A positive (negative) area 
indicates a genotype performance better (worse) than the regional average. Here, the area (AUC) was estimated 

Figure 6.  Results of the second stage of analysis for the ETH field phenotyping platform: (a) estimated region 
(orange) and genotype-specific (blue) growth curves, (b) estimated region (orange) and genotype-specific (blue) 
first-order derivatives, and (c) estimated genotype-specific deviations. In (a) and (b) the orange shaded areas 
denote 95% pointwise confidence intervals at the region level. AT/CZ: Austria/Czechia; CH: Switzerland; DE: 
Germany; FR: France; GB: Great Britain; PL: Poland; SE/DK: Sweden/Denmark.
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Figure 7.  Results of the second stage for the ETH field phenotyping platform: (a) region-specific growth 
curves (coloured lines) vs. mean temperature (grey line), and (b) region-specific first-order derivatives; blue and 
red points indicate (local) minima and maxima, respectively. AT/CZ: Austria/Czechia; CH: Switzerland; DE: 
Germany; FR: France; GB: Great Britain; PL: Poland; SE/DK: Sweden/Denmark.
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for the complete time interval where the genotypes were measured. Nothing, however, precludes to focus atten-
tion on a restricted time interval of interest.

The bivariate scatterplots of the extracted genotype-specific attributes show that the genotypes cluster accord-
ing to their region of origin (Fig. 8, lower off diagonal, one color per region). Some atypical genotypes can also 
be identified, for example an old, tall (> 1.2 m) Swiss variety. In the upper off diagonal, we report the Pearson’s 
correlation coefficient (marginal and by region). The strongest marginal correlations are between maxSpeed3 
and maxTrait, and maxSpeed2 and maxTrait; maxSpeed3 and maxSpeed2 also present a high correlation. It is 
noteworthy that the marginal correlation between maxTrait and AUC is lower than the conditional correlation 
by region. Univariate analysis of each attribute using boxplots also shows regional clustering, and that clusters 
might change along time (e.g., compare clusters in maxSpeed1, maxSpeed2 and maxSpeed3).

Figure 8.  Scatterplots matrix with the extracted attributes at the genotype level for the ETH field phenotyping 
platform. The lower off diagonal depicts bivariate scatterplots, the diagonal shows the conditional densities of 
each attribute per region, the upper off diagonal indicates the bivariate Pearson correlation (marginal and by 
region; “***” p-value < 0.001, “**” p-value < 0.01, “*” p-value < 0.05, “.” p-value < 0.10 and “” otherwise), the last 
column displays the boxplots of each attribute per region, the last row depicts the conditional histograms of each 
attribute per region, and the bottom right barplot shows the number of genotypes per region. AT/CZ: Austria/
Czechia; CH: Switzerland; DE: Germany; FR: France; GB: Great Britain; PL: Poland; SE/DK: Sweden/Denmark.
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Use of time‑independent attributes to characterise regional adaptation. While a deeper physiological analysis is 
beyond the scope of this publication, we will use the extracted attributes to highlight the potential benefit of an 
in-depth analysis of spline-based growth patterns. Here, we use the regional groups but a similar analysis could 
be done using individual genotypes. The observed height development follows a principally logistic growth 
curve: stem elongation started after the plants were vernalised over winter (by means of cold exposure) and 
ended around flowering. However, the height development plateaued between day 103 and 118 in all genotypes, 
most likely due to a cold period in April. When looking at the region specific growth curves, this short and 
extreme phase caused even rank changes in growth (first-order derivative in Fig. 7): the regional groups showing 
most vigorous growth before the stress (maxSpeed1) stopped growth completely while those which grew slowest 
could maintain some growth during the cold (first local minima following maxSpeed1). Such pattern may point 
to physiological adaptations to the different climatic regions of Europe as the slow-growing northern types from 
Great Britain (GB) and Denmark and Sweden (SE/DK) showed least response to cold while the fast-growing 
continual types from Poland (PL) and Austria and Czechia (AT/CZ) stopped growing. Moreover, the genotypes 
from the south-west—France (FR) and Switzerland (CH)—did not recover growth up to the same level as the 
more northern and eastern varieties did (compare maxSpeed1 with maxSpeed2). We acknowledge that a solid 
interpretation of this pattern and its significance will require a multi-year analysis to sample the typical genotype 
or region-specific average development.

Discussion
In agricultural and breeding research, non-destructive data acquisition of phenotypic traits by HTP platforms 
has emerged in recent years as a rich source of new information on plant growth and development as well as on 
genotypic performance. This has been accompanied by the need for novel and appropriate statistical methods 
of analysis. In this paper, we focus on the analysis of a common type of HTP data in the form of time-series 
observed on phenotypic traits that are still close to the platform measurements (low-level traits), with these 
time-series occurring within a hierarchical structure, of plants or plots nested in genotypes, and genotypes 
nested in populations (of genotypes). We propose a statistically flexible and computationally feasible method 
that decomposes the required spatio-temporal analysis into two stages. In the first stage, we correct the “raw” 
HTP data for (nuisance) spatial variation and obtain spatially corrected time-series at the resolution of plants 
or plots with reduced between replicates/plots variability. The second stage consists of a temporal analysis with 
a hierarchical curve data model to jointly estimate growth curves at each level of the hierarchy (plant or plot, 
genotype, and population) as well as their first-order derivatives. From the estimated curves and their derivatives, 
we illustrate how to calculate new phenotypic traits, attributes, that we call intermediate traits. We note that the 
decision about what summary statistics (intermediate traits) to derive from the model will ultimately depend 
on the species, the low-level trait, the applied treatments and/or the range of phenological stages at which the 
measurements were taken. Although we have not explicitly covered it in the paper, these new phenotypic traits, 
as well as the estimated curves, can be used for selection purposes in plant breeding, i.e., to differentiate between 
genotypes. For instance, estimates for intermediate-level traits can be used as genotypic covariates in models 
for higher-order phenotypic traits as described by van Eeuwijk et al.2. Higher order phenotypic traits can be 
understood as functions of low and intermediate traits, for either or both of biological and statistical reasons. 
For example, yield can be interpreted as a high-order phenotypic trait that can be modelled as a function of 
yield components, where the yield components may represent low and intermediate level phenotypic traits. In 
Roth et al.34, intermediate traits obtained from modelling HTP data are included into genotype-by-environment 
interaction analyses, and Moreira et al.59 discuss the use of information obtained from HTP time-series traits for 
genomic selection and the detection of QTL and causal variants. Finally, while we have focused in the paper on 
data with a nested structure, the proposed modelling framework can easily be extended to accommodate more 
complex structures, such as data with crossed levels of  grouping21 (e.g., when modelling genotype-by-treatment 
or genotype-by-environment interactions are of interest).

Regarding the statistical methods used at each stage of our modelling approach, the first stage relies on the 
SpATS model, and (hierarchical) P-splines are used for the second stage. However, our approach is flexible with 
respect to the choice for both the first and second stages. For instance, the separable autoregressive  model6 repre-
sents a clear alternative for the first stage, while, for the second stage, hierarchical functional principal component 
analysis can be  used28. We believe that our double P-spline approach is attractive both computationally and for 
interpretation, and the HTP data that we analysed in this paper and in other projects show that it works well (see 
Millet et al.20 and https:// eppn2 020. plant- pheno typing. eu/ for more examples). Nevertheless, fairness requires 
us to mention some limitations as well. The P-spline hierarchical data model used in the second stage relies on 
specifying each function in the model using B-spline basis expansions. The model contains, consequently, a 
large number of parameters. Typically, computational times are within an acceptable range (for the experiments 
analysed in this paper, around 10 min). Yet, the approach may not scale well to experiments where the number 
of plants (and associated basis dimension) is very large (due to the size of the system of equations to be solved). 
Regarding the number of B-spline basis functions, we recommend using the same value for the three levels of 
the hierarchy, even if this increases computation. The final number does not seem to impact results (estimated 
curves) significantly, provided it is large enough to capture the underlying patterns. However, the estimated 
first-order derivatives have shown to be more sensitive to the number of basis functions.

In the first stage of our two-stage approach, analyses are done separately per time point. As such, informa-
tion on spatial heterogeneity is not shared across different measurement times, and there is the need that all 
plants or plots are measured at (approximately) the same times. From a modelling perspective, the simultaneous 
modelling of spatial and temporal genetic and non-genetic variation in a one-stage model will serve to share 
information on common spatial variability across measurement times and it may solve the problem of variable 

https://eppn2020.plant-phenotyping.eu/
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measurement times. Yet, one-stage approaches have the limitation of being very computationally demanding, 
especially when the number of observations and/or the parameters to be estimated is very large. Preliminary 
and proof-of-concept results can be found in Pérez et al.14 and in Verbyla et al.13. In a similar vein to the work 
presented here, Pérez et al.’s14 approach is based on using three-dimensional P-splines for modelling the non-
genetic spatio-temporal (noise) process and hierarchical P-splines for the longitudinal genetic signal. In Verbyla 
et al.13, multi-dimensional splines are also used for the spatio-temporal noise, whereas a factor analytic structure 
is considered for the genetic effects. Although promising, both approaches suffer from severe computational 
limitations (e.g., Verbyla et al.13, report convergence requiring several days). More work is thus required to render 
them feasible for routine use, and to date, stage-wise approaches represent not only computationally feasible but 
also statistically valid alternatives.

Apart from this work, van Eeuwijk et al.2 also proposed a two-stage approach for the analysis of HTP data, 
where they first correct for spatial variation, and then focus on estimating, and further processing, the temporal 
dynamic of the genetic effects. In that paper, spatially adjusted genotypic means are carried to the temporal 
analysis. In contrast, our proposal allows keeping the data resolution for the second stage at the experimental 
unit. Also, in the second stage, we jointly model the whole sample of spatially corrected growth curves, while in 
van Eeuwijk et al.2 analyses are done separately per genotype. Our hierarchical approach thus allows borrowing 
strength across plant/plot curves for more efficient estimation of genotype and population growth trajectories. 
This is particularly important in the presence of incomplete data. We are aware that when choosing a two-stage 
approach, one might also choose, as done in Roth et al.34, to first model the longitudinal variation at a plant or 
plot level and subsequently apply a spatial correction to extracted features. In that paper, a P-spline model is 
first fitted separately for each plot time-series, from which the timing of key stages (among other features) are 
extracted. These intermediate traits are then processed to obtain spatially adjusted genotypic means for further 
analyses. We feel that both options—with the spatial or the temporal analysis first—represent valid alternatives. 
The choice for one or another method will depend on the relative magnitudes of the various spatial, temporal 
and spatio-temporal genetic and non-genetic processes and may be difficult to assess beforehand. A study of 
the proposal that best suits particular situations represents an interesting area of study. It should be realised that 
stage-wise analyses make it necessary to propagate uncertainty from stage to stage. Here, we did it by weighting 
the second stage with the (inverse) of the estimated variance associated with the spatially corrected trait. In the 
HTP context, weighting has shown to improve  results34.

All in all, the two-stage approach described in this paper represents a good compromise between accuracy, 
adequacy, computational efficiency and interpretability. The results show that our proposal is feasible on standard 
computers and delivers good descriptions of the genetic and non-genetic variation in the temporal dimension 
together with useful summary statistics for breeding purposes. We believe that it represents a powerful tool 
for routine application in phenotyping experiments with dense time series. To allow practitioners to use our 
proposal, the R-functions implementing it are publicly available at https:// gitlab. bcama th. org/ dperez/ htp_ two_ 
stage_ appro ach, where we also provide the code to reproduce the analyses and results shown in the paper.

Three‑level nested hierarchical growth model: mixed model formulation
On the basis of model in Eq. (3) and specification in Eq. (4), we use the notation βp = (βp,0,βp,1)

T  , 
βpg = (βpg ,0,βpg ,1)

T  ,  βpgi = (βpgi,0,βpgi,1)
T  ,  up = (up,1, . . . , up,bpop−2)

T  ,  upg = (upg ,1, . . . , upg ,bgen−2)
T  , 

upgi = (upgi,1, . . . , upgi,bplant−2)
T  , zpop,j = (zpop,j(t1), . . . , zpop,j(tn))

T  , zgen,j = (zgen,j(t1), . . . , zgen,j(tn))
T  and 

zplant,j = (zplant,j(t1), . . . , zplant,j(tn))
T . Then, in matrix notation, the three-level nested hierarchical growth 

model can be expressed as

where ⊗ is the Kronecker product, Qpop and Qgen are matrices assigning, respectively, plants to populations and 
plants to genotypes, and

Finally, W is diagonal matrix whose diagonal entries are the weights from the first stage. We finish by noting that, 
under the previous model specification, there is the assumption that observations arising from the same plant, 

ỹ = [Qpop ⊗ Xpop]β + [Qpop ⊗ Zpop]upop
︸ ︷︷ ︸

fp

+ [Qgen ⊗ Xgen]βgen + [Qgen ⊗ Zgen]ugen
︸ ︷︷ ︸

fpg

+ [IM ⊗ Xplant]βplant + [IM ⊗ Zplant]uplant
︸ ︷︷ ︸

fpgi

+ǫ, ǫ ∼ N(0, σ 2W),

Xpop = [1 | t] and β = (βT
1 , . . . ,β

T
k )

T ,

Zpop = [zpop,1 | . . . | zpop,bpop−2] and upop = (uT1 , . . . , u
T
k )

T ∼ N(0, blockdiag(σ 2
1 Ibpop−2, . . . , σ

2
k Ibpop−2)),

Xgen = [1 | t] and βgen = (βT
11, . . . ,β

T
kℓk

)T ∼ N(0, IL ⊗�gen) with �gen = diag (σ 2
gen,0, σ

2
gen,1),

Zgen = [zgen,1 | . . . | zgen,bgen−2] and ugen = (uT11, . . . , u
T
kℓk

)T ∼ N(0, σ 2
genIL ⊗ Ibgen−2),

Xplant = [1 | t] and βplant = (βT
111, . . . ,β

T
kℓkmkℓk

)T ∼ N(0, IM ⊗�plant) with �plant = diag (σ 2
plant,0, σ

2
plant,1),

Zplant = [zplant,1 | . . . | zplant,bplant−2] and uplant = (uT111, . . . , u
T
kℓkmkℓk

)T ∼ N(0, σ 2
plantIM ⊗ Ibplant−2).
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genotype or population are serially correlated, and the correlation increases as a function of the shared grouping 
 levels21. In particular, curves ỹpgi and ỹp′g ′j′ have covariance

Data availability
Both the PhenoArch and FIP datasets analysed during the current study are available within the article and its 
“Supplementary information”.

Code availability
The R-functions implementing the two-stage approach, as well as the R-codes needed to reproduce the analyses 
for the PhenoArch and FIP platforms are available within the article and its “Supplementary information”.
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