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Gut microbiota and BMI 
throughout childhood: the role 
of firmicutes, bacteroidetes, 
and short‑chain fatty acid 
producers
Timothy A. Houtman1, Henrik A. Eckermann2*, Hauke Smidt3 & Carolina de Weerth2

Childhood obesity is a risk factor for numerous health conditions. A critical factor in the etiology of 
obesity appears to be the gut microbiota, which is the microbial community that resides in the human 
gut. The ratio of the phyla Firmicutes and Bacteroidetes (F/B) and gut bacterial genera that produce 
short-chain fatty acids (SCFA) have been suggested to contribute to obesity. The current study 
investigated (1) whether differences in F/B ratio can be observed in infancy and childhood in relation to 
zBMI in healthy children, and (2) whether an innovative proxy measure adds evidence to a relationship 
between SCFA producers and the etiology of obesity. Stool samples were collected at five time points, 
and zBMI was assessed at eight time points throughout the first 12 years of life. Our confirmatory 
analyses with Bayesian multilevel models showed no relationship between the F/B ratio and zBMI. 
Also, a proxy measure constructed from known SCFA producers was unrelated to zBMI throughout the 
first 12 years of life. Exploratory analyses using multilevel and random forest models suggest that the 
relative abundances of Firmicutes and Bacteroidetes were independently negatively associated with 
zBMI from infancy through childhood, and the SCFA producing genera Subdoligranulum and Alistipes 
were negatively related to future BMI in childhood.

In the last decades, the worldwide prevalence of childhood obesity has reached epidemic proportions1. Child-
hood obesity is accompanied by numerous short- and long-term health consequences such as an increased 
risk of metabolic and cardiovascular conditions as well as a higher likelihood of psychological comorbidities 
during childhood and adulthood2–4. It has been firmly established that diet and lifestyle choices are associated 
with changes in weight and body composition1,5. However, biological, behavioral, and environmental factors, 
and their interactions, may also drive individual variation in proneness to obesity1. One such factor is the gut 
microbiota. The gut microbiota, which is the complex community of predominantly bacteria, but also including 
archaea, microeukaryotes and viruses, that resides in the gut, is believed to play an essential role in many aspects 
of physiology, such as energy homeostasis, blood circulation, and immunity6–8. Previous research has shown 
that disruptions to the gut microbiota by external factors such as diet and lifestyle, but also delivery mode and 
antibiotic use, may predispose individuals towards weight gain9–11.

Early reports comparing obese animals and humans to lean counterparts described a differential gut micro-
biota composition between them12,13. Obese mice and humans exhibited an increase in the relative abundance of 
the phylum Firmicutes and a decrease in the phylum Bacteroidetes, which was reversed after diet-induced weight 
loss13,14. It was suggested that the difference between lean and obese individuals can be attributed to functional 
characteristics of the gut microbiota. The increased Firmicutes to Bacteroidetes (F/B) ratio and change of body 
composition could reflect an increased capacity to ferment dietary polysaccharides to short-chain fatty acids 
(SCFA). SCFAs such as butyrate, propionate, and acetate, partake in various physiological processes and are 
believed to play an important role in gut-barrier functioning and appetite regulation15. Moreover, the phylum 
Firmicutes includes many known SCFA producers16,17 and SCFAs provide an estimated 10% of the total dietary 
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energy supply in humans18. Based on these early findings, it was theorized that the gut composition of obese 
individuals may include higher abundancies of species specialized in energy harvesting.

Subsequent studies have replicated the increased F/B ratio in relation to obesity in obese animals and adult 
humans19–21, whereas others have reported an inverse or no relationship between obesity and F/B ratio22–24. 
Fewer studies have investigated the F/B ratio in children. One systematic review about the F/B ratio in relation 
to obesity in children between the ages of 3 weeks and 13 years found comparable results to those in adults25. 
However, these studies’ evidence is limited because most of them did not assess the F/B ratio at phylum level but 
rather changes in lower order taxa that belong to either phylum26,27. To our knowledge, only three other studies, 
that were not included in the previously mentioned review, cross-sectionally assessed the phyla Firmicutes and 
Bacteroidetes as a whole in children in relation to BMI. Goffredo et al.28 found that F/B ratio was significantly 
and positively associated with BMI and body fat composition in 84 US children and adolescents between ages 9 
and 18. Another study by Xu et al.29 included 175 Kazakh children between age 7 and 13. They found a negative 
relationship between the Bacteroidetes to Firmicutes ratio (B/F ratio, inverse of F/B ratio) and BMI, which is in 
line with the initial results in mice and adults. In contrast, Mbakwa et al.30 found no relationship between B/F 
ratio and BMI in a larger sample of 295 Dutch children between the ages of 6 and 7. Overall, these data suggest 
that there is no clear evidence to support the notion that obese and lean gut compositions differ from each other 
or whether the F/B ratio could be a biomarker for the development of obesity in children.

Other research investigating the link between SCFAs and body composition has found that obese adults 
have a higher SCFA concentration in stool samples of compared to lean counterparts23,31,32. One study found 
that butyrate, propionate, and acetate concentrations in plasma had a stronger positive association with body fat 
composition compared to F/B ratio in children between 9 and 18 years28. Interestingly, F/B ratio was found not 
to be correlated with SCFA in stool or plasma samples28. These findings suggest that a gut microbiota directed 
towards SCFA production rather than simply an increased F/B ratio may be able to absorb more energy from 
one’s diet and, in some instances, lead to the development of a higher BMI.

Despite evidence suggesting a link between F/B ratio, SCFA producers, and weight gain, contrasting results 
have also been reported and anti-obesity effects have also been observed in relation to SCFAs33,34. Various 
studies in mice have shown that acetate is associated with reduced appetite, adipose tissue reductions, and 
improved glucose tolerance35,36. Furthermore, dietary SCFA supplementation led to reductions in body weight 
and improved insulin resistance in mice without altering dietary patterns or physical activity levels37. In humans, 
targeted delivery of propionate to the colon of obese individuals resulted in a significant reduction of appetite, 
body weight, and adiposity, as well as improved insulin sensitivity38,39. These findings suggest a more complex 
relationship between the gut microbiota and obesity than solely an increase in dietary energy supply.

Based on the evidence thus far, it is unclear whether F/B ratio and SCFAs can be considered biomarkers for 
obesity or not. The F/B ratio and SCFAs are often associated because most butyrate producers are affiliated with 
the phylum Firmicutes40. However, the Firmicutes contain many more species that do not have the capacity 
to produce SCFAs. As such, the F/B ratio may not represent the functional difference proposed in the energy 
harvesting hypothesis. Furthermore, most previous studies have focused on animal and human adult studies 
or cross-sectional relationships. The current study investigates the validity of the F/B ratio and SCFA produc-
ers in relation to BMI in a developmental context. In addition to studying the energy harvesting hypothesis in 
a developmental framework, we also developed a new proxy measure that uses an aggregated score of genera 
known to be capable of producing SCFAs as a variable of interest. Bayesian multilevel modeling and Random 
Forests were used to study the (longitudinal) relationship between the gut microbiota and BMI from birth to 
12 years of age in a healthy Dutch community sample. BMI was assessed at eight time points, and stool samples 
were collected at five of these time points. Despite conflicting evidence, we predicted, on the basis of the energy 
harvesting hypothesis, to find positive associations between BMI and both F/B ratio and SCFA producers, both 
cross-sectionally and with future time points.

Methods
Participants and procedure.  The study is part of a longitudinal study called BIBO (Basale Invloeden op 
de Baby Ontwikkeling) that has been ongoing for over 14 years41 and which was granted ethical approval by 
the Faculty Ethics Committee of Radboud University (ECG 300107, ECG 22111/130112) in accordance with 
the Declaration of Helsinki. Initially, 193 healthy mother-infant pairs were recruited towards the end of the 
pregnancy in the Nijmegen, Arnhem, and surrounding areas in the Netherlands. Mothers of the participants 
gave written informed consent before starting the study. Over the years, participants dropped out for different 
reasons, such as lack of time or personal reasons. At the data collection wave at age 12 years, 160 children (47% 
girls) were still active in the study. The weight and length of children were obtained at 1, 3, and 4 months of age 
and 2, 6, 7, 10, and 12 years of age. Fecal samples were obtained from children at 1, 3, and 4 months of age and 
6 and 10 years of age. The means and standard deviations of the exact age of collection in days can be found in 
Table 1. The fecal samples were collected by participants at home and stored in their home freezer before being 
transferred to the lab facilities and stored at a temperature of −80 degrees °C.

Measurements.  BMI.  BMI z-scores (zBMI) were calculated with the package zscorer42 using length (in 
cm), weight (in kg), age (in days), and sex. Zscorer adjusts BMI (kg/m2) for age and sex according to the WHO 
Child Growth Standards resulting in values between 3 and −3 that correspond to the 99.865th and 0.135th 
percentiles respectively. This guideline was developed to provide an international standard for children’s growth 
and development43. There were potential measurement or entry errors for the length or weight variable for six 
children, which resulted in zBMI far above 3 or below −3. These values were removed from the analyses. The 
inclusion of outliers did not change any conclusion of reported analyses unless reported otherwise.
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16S rRNA gene sequence data.  DNA was extracted from fecal samples as described before44. 16S ribosomal 
RNA (rRNA) gene amplicons spanning the V4 variable region were amplified using primers and conditions as 
reported earlier44. PCR products were purified, pooled in equimolar amounts with positive and negative control 
samples, and sent for sequencing on the Illumina platform at Eurofins Genomics, Germany. Raw sequence data 
was then processed and further analyzed using the NG-Tax pipeline for barcode-primer filtering, demultiplex-
ing, and taxonomic assignment45,46. NG-Tax is a highly accurate and well-validated pipeline for 16S rRNA gene 
amplicon sequence analysis. For each sample, an amplicon sequence variant (ASV) table was created with the 
most abundant sequences identified, and a user-defined minimum relative abundance threshold was used. In 
this study, the minimum relative abundance threshold was set to 0.1%. Taxonomy was assigned to ASVs using 
the Galaxy implementation of NG-Tax46 and the Silva 132 SSU Ref database.

Birth weight.  Because birthweight has been associated with the development of obesity in later life (see system-
atic review by Baidal et al.47, birthweight was standardized and added as a covariate in the model.

Statistical analysis.  All analyses were performed in the statistical programming language R48 version 4.0.2.

F/B ratio.  The 16S RNA gene sequence data was first imported using the package phyloseq49. Like previous 
studies50,51, the F/B ratio was calculated by dividing the relative abundances of Firmicutes by the relative abun-
dance of the Bacteroidetes.

SCFA producers.  The SCFA producers were chosen based on literature and those bacteria that have the genetic 
potential to produce SCFAs52–54. The known SCFA producers were chosen at the genus level (Table 2). We are 
aware of the fact that this might be an oversimplification of the actual SCFA production potential, considering 
that not all members of a given genus necessarily have the same metabolic capacity, and acknowledging that 
not all SCFA producing taxa have been characterized to date. Nevertheless, current knowledge of the microbial 
taxa involved in SCFA production is sufficiently sound for the generation of proxies such as described here. To 
calculate the final sum score of SCFA producers, we first added up the raw counts of all SCFA producers and 
replaced the separate SCFA producers with a single sum score for each sample. We then applied the centered-

Table 1.   Age of data collection in days. The exact day of collection for some stool samples (12.9%) was not 
recorded but still utilized in the analyses. All means and standard deviations of 2 years and onwards are 
reported in years rather than days.

Variable

1 month 3 months 4 months 2 years 6 years 7 years 10 years 12 years

M (SD) n M (SD) n M (SD) n M (SD) n M (SD) n M (SD) n M (SD) n M (SD) n

BMI 33.1 (7.5) 143 92.5 (9.7) 148 128.5 (11.2) 146 2.17 (0.25) 168 6.1 (0.24) 144 7.0 (0.18) 157 10.1 (0.30) 156 12.7 (0.30) 98

Stool sample 28.3 (3.3) 135 84.9 (14.8) 121 115.3 (14.6) 119 6.1 (0.15) 129 10.1 (0.25) 142

Table 2.   Names of SCFA producers and their metabolites.

Phylum Genus SCFA produced

Actinobacteria Bifidobacterium Acetate

Bacteroidetes Alistipes Propionate

Bacteroidetes Bacteroides Propionate

Bacteroidetes Prevotella Propionate

Firmicutes Anaerostipes Butyrate

Firmicutes Blautia Propionate

Firmicutes Coprococcus Propionate and butyrate

Firmicutes Dialister Propionate

Firmicutes Eubacterium hallii group Propionate and butyrate

Firmicutes Eubacterium rectale group Butyrate

Firmicutes Faecalibacterium Butyrate

Firmicutes Holdemanella Butyrate

Firmicutes Phascolarctobacterium Propionate

Firmicutes Roseburia Propionate and butyrate

Firmicutes Subdoligranulum Butyrate

Proteobacteria Desulfovibrio Acetate

Verrucomicrobia Akkermansia Propionate and acetate
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log-ratio (CLR) transformation to all samples in order to make the data compatible with conventional statistical 
methods55 using the package phyloseq.

Confirmatory analyses.  The cross-sectional relationships were investigated by constructing a Spearman cor-
relation matrix including the F/B ratio and zBMI data at all time points. The same matrix was constructed with 
SCFA producers and zBMI data at all time points. The Benjamini–Hochberg procedure56 was applied to both 
matrices to control for multiple testing.

To investigate longitudinal relationships, we fitted multiple Bayesian linear multilevel models to estimate the 
association between zBMI (T) and F/B ratio of the previous time point (T − 1) or the sum score of the SCFA 
producers (T − 1), respectively, controlling for birthweight and zBMI (T − 1). The covariate structure was the 
same across all models, and for all models, we allowed the intercept and slope of our effect of interest (SCFA 
sum/FB ratio) to vary. The models were fitted using the R package brms57, which utilizes the Hamiltonian Monte 
Carlo (HMC) Markov chain Monte Carlo (MCMC) algorithm implemented in Stan58 to estimate parameters. 
Before model fitting, we applied multiple imputations using predictive mean matching (m = 100, iter = 40) as 
implemented in the mice package59. We used the imputation algorithm with additional variables, including 
length, weight, and age, to allow the highest possible precision of imputations. The chosen number of imputa-
tions is necessary to ensure proper estimation of the tails of the posterior distributions of the β coefficients of 
the predictors according to the recommendations summarized in van Buuren60. Conclusions between imputed 
and non-imputed data did not differ unless otherwise reported.

All variables were standardized before fitting the model to ease interpretability, model convergence, and 
prior specification. Values of zBMI did not require standardization as they were already standardized. Prior 
specification was based on prior predictive simulations while we used a normal prior (M = 0, SD = 0.5) on our 
parameters of interest across all models. For specific exploratory models, where we included the separate SCFA 
producers as predictors, we used a prior with a slightly narrower shape (M = 0, SD = 0.25) instead. The priors for 
the β coefficients are only slightly regularizing and could very quickly become overwhelmed if there is a signal 
in the data. Across all models, the prior for the standard deviation of the varying intercept and slope was set to 
an exponential prior with a rate of 1. For two exploratory models, we had to use a stronger prior with a rate of 
15 to reach proper convergence without divergent transitions. The models were fitted with 10.000 iterations, 
and the control setting adapt_delta was set to 0.99 to prevent few divergent transitions from occurring in some 
of the models. After model fitting, we first ensured proper chain convergence by inspecting the chain plots. This 
was followed by posterior predictive checks to assess appropriateness of the model for the data. It was ensured 
that all models converged properly before interpretation.

Exploratory analyses.  The random forest (RF) algorithm allows a data-driven approach that can identify more 
complex interactions of predictor variables and nonlinear effects compared to linear models. Furthermore, the 
provided feature importances can be utilized for biomarker discovery61,62. We used the R package ranger63 to pre-
dict zBMI scores from genus level relative abundances. We fitted two RF models for each time point: One model 
predicting the future zBMI and one cross-sectional model. Each model was performed as follows: First, hyper-
parameter tuning of the parameters mtry and sample.fraction was performed using the tuneRanger package64, 
which uses out of bag (OOB) mean squared error (MSQ) as an evaluation metric to find the best hyperpa-
rameters. Next, ten times repeated fourfold cross-validation was used to estimate out of sample accuracy. We 
report two accuracy measures: The Pearson correlation between the predicted scores and the actual scores was 
calculated using the test set and the trained model. Furthermore, we report the OOB, an out-of-sample accuracy 
measure provided by the RF algorithm. We repeated the above procedure (incl. hyperparameter tuning) on a 
dataset where the outcome variable was permuted (1000 permutations) to obtain a distribution of the accuracy 
measures under the null hypothesis. We used the median accuracy measure of the repeated CV procedure to 
obtain the p-value. Hyperparameter tuning was also performed in the permutation models to ensure that differ-
ences in accuracy measures are not due to overfitting the data. Finally, we corrected p-values for multiple testing 
using the Benjamini–Hochberg procedure56 as implemented in the package qvalue65. To extract biological mean-
ing from the RF models, variable importances were calculated, including p-values using the method developed 
by Altmann et al.61 as implemented in ranger (1000 permutations). Note, that we compared the accuracy of 
RF models to other machine learning algorithms (LASSO and Elastic Net) using 10 times repeated fourfold 
crossvalidation (supplementary table 13) and only present the RF model in the main manuscript. Results of the 
LASSO model can be found in supplementary tables 13 and 14.

The performed analyses deviate somewhat from those that were preregistered on OSF (osf.io/wky4p). For 
example, sex and age are no longer modeled as a covariate because zBMI was used instead. Furthermore, model 
complexity was no longer reduced following the protocol by Bates et al.66. This is because the model had been 
simplified, and a maximal structure was reached without the need for model complexity reduction. Finally, 
through collaboration, we also were able to add exploratory random forest models to our analysis that comple-
ment our preregistered analyses.

Ethics approval and consent to participate
The Faculty Ethics Committee of Radboud University approved the BIBO study (ECG 300107, ECG 
22111/130112) in accordance with the Declaration of Helsinki. Mothers of the participants gave written informed 
consent before starting the study.

Consent for publication
All authors have read and approved the manuscript as submitted.
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Results
Descriptive statistics.  The descriptive statistics per variable per time point can be seen in Table  3 and 
Fig. 1. There were missing values for different time points in both BMI and the microbiota data. For the correla-
tion matrices, the data with missingness was used, and for the models, multiple imputation was applied. Because 
the phylum Bacteroidetes was not present in most of the samples in the first year of life, for many infants, the 
F/B ratio could not be calculated as the calculation resulted in an infinite value. Some of the calculated F/B ratios 
were in a higher range than what has been reported in the literature. In the current sample, the F/B ratio ranged 
between 0.06 and 482, which has not been reported before in the literature. These high values are due to the low 
relative abundance of phylum Bacteroidetes, which was at a relative abundance of less than 1% in most cases, 
especially in infants but also in older children. The overall composition of the gut microbiota at phylum level 
over time and the composition of the SCFA producer variable can be seen in Fig. 2. Birthweight (in grams) was 
available for 190 subjects (M = 3613, SD = 477).

Confirmatory analyses.  We first investigated the relationship between zBMI and F/B ratio and SCFA pro-
ducers at the same and subsequent time points by constructing two Spearman correlation matrices, including all 
time points of the relevant variables. The first correlation matrix (Fig. 3A) showed two significant associations 
between F/B ratio and zBMI. These relations were between F/B ratio and zBMI at 4 months (r = 0.79, p = 0.004, 
n = 11) and between F/B ratio at 10 years and zBMI at 6 years (r = −0.26, p = 0.003, n = 126). The same correla-
tion matrix was constructed for associations between zBMI and SCFA producers (Fig. 3B). In this matrix, only 
SCFA producers at 10 years was significantly associated with zBMI at 12 years (r = 0.22, p = 0.047, n = 89). After 
applying the Benjamini–Hochberg procedure to the hypothesized effects, none of these relationships remained 
significant (FDR < 0.05).

To investigate whether F/B ratio and SCFA producers could predict BMI over time, multiple Bayesian linear 
multilevel models were fitted. The models were constructed with the outcome variable zBMI at 3 and 4 months, 
2, 7, and 12 years while allowing the intercept to vary between individuals. The model predictors were F/B ratio 
or the sum score of SCFA producers (see “Methods”), respectively, that were modeled as fixed and random effect. 
For all models, the covariate structure was identical: We included birthweight and zBMI of the previous time 
point (T−1) at ages 1, 3, 4 months, and 6 and 10 years. The following formula shows the model structure at the 
example of F/B ratio:

Tables with all parameter estimates for all models can be found in supplementary Tables 1–10. In the follow-
ing, we describe the main parameters of interest regarding our research questions.

F/B ratio.  Because the F/B ratio could not be calculated in infancy, we fitted the linear model only to the 
childhood samples and found no association between F/B ratio and zBMI ( β = 0.069, 95% CI [−0.267, 0.437]). 
We explored the relationship between Firmicutes, Bacteroidetes, and zBMI further by entering the clr-vectors 
of both Firmicutes and Bacteroidetes as independent predictors into one model. This allowed us to explore 
potential relationships between Bacteroidetes and Firmicutes also in infancy. The model showed that relative 
abundance of Firmicutes (β = −0.078, 95% CI [−0.136, -0.018]) and Bacteroidetes (β = −0.060, 95% CI [−0.096, 
−0.027]) were both negatively associated with future BMI. This relationship remained when examining only 
infant samples (Firmicutes: β = −0.039, 95% CI [−0.088, 0.007], Bacteroidetes: β = −0.047, 95% CI [−0.090, 
−0.014]) and showed even stronger associations in childhood (Firmicutes: β = −0.263, 95% CI [−0.431, −0.092], 
Bacteroidetes: β = −0.161, 95% CI [−0.239, −0.068]).

zBMI ∼ F/B ratio(T − 1)+ zBMI(T − 1)+ birthweight+
(

1+ F/B ratio(T − 1)|subject
)

Table 3.   Descriptive statistics. Mean (M), standard deviation (SD) and sample size (n) are given per variable 
at each time point. a The sample size for BMI was reduced at 12 years of age because measurement took place 
during a lab visit including an functional magnetic resonance imaging (fMRI) scan for which not all children 
met the inclusion criteria.

Variable

1 month 3 months 4 months 2 years 6 years 7 years 10 years 12 years

M (SD) n M (SD) n M (SD) n M (SD) n M (SD) n M (SD) n M (SD) n M (SD) n

zBMI −0.04 (0.92) 143 −0.36 (0.98) 148 −0.40 (0.95) 146 0.41 (0.93) 168 0.16 (0.88) 144 −0.29 (1.06) 157 0.23 (0.87) 156 −0.26 (1.13) 98a

F/B ratio 50.0 (91.1) 36 44.7 (115.5) 27 27.4 (60.9) 16 12.3 (34.9) 144 25.7 (60.5) 145

Relative 
abundance 
Firmicutes

0.27 (0.26) 162 0.21 (0.25) 146 0.19 (0.25) 142 0.63 (0.13) 145 0.72 (0.10) 147

Relative 
abundance 
Bacteroi-
detes

0.01 (0.05) 162 0.01 (0.04) 146 0.01 (0.06) 142 0.18 (0.15) 145 0.11 (0.09) 147

Relative 
abundance 
SCFA 
producers

0.61 (0.33) 162 0.69 (0.32) 146 0.75 (0.29) 142 0.63 (0.11) 145 0.57 (0.09) 147
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SCFA producers.  SCFA producers (sum score) were not associated with future zBMI ( β= 0.005, 95% CI [−0.033, 
0.044]. We then explored the same model with SCFA producers as independent predictors rather than summed 
to obtain a better insight into how single SCFA producers relate to zBMI. Figure 4A summarizes the posterior 
distributions of the slope parameters (median including 95% credible interval) for each genus: The model was 
uncertain about most slope estimates while it confidently indicated that Subdoligranulum and Alistipes were 
negatively associated with future zBMI. To investigate whether these relationships remained in either infancy 
or childhood independently, we fitted the same model using either only infant samples (Fig. 4B) or childhood 
samples (Fig. 4C) and observe similar trends. The model using infant samples was less certain about the slope 
parameters of Subdoligranulum and Alistipes. Here, most of the posterior distribution of the parameter reflect-
ing Akkermansia being positive (> 88%) might indicate a potential small positive association with future zBMI 
early in life. In general, credible intervals were wider in the infant model compared to the childhood model 
reflecting higher uncertainty of the model about the parameter estimates of these slopes. This can be explained 
by the predominance of Bifidobacterium and lower prevalence of other genera in infancy.

Exploratory analyses.  Random forests models.  We fitted two RF models for each time point after hyper-
parameter tuning (see supplementary table 11 for hyperparameters): One model predicting the future zBMI and 
one cross-sectional model. Table 4 shows the accuracy measures, including corresponding p-values and false 
discovery rates (FDR) for each RF model. If there was a relationship between microbial composition and zBMI, 
we would expect a significantly higher correlation and lower out of bag error (OOB) for the RF models that used 
the non-permuted outcome compared to the null-model that used the permuted outcome (1000 permutations). 
Three models reached a p-value < 0.05 for either OOB or Pearson. Neither of those remained significant when 
restricting to FDR < 0.1.

Figure 1.   Individual and median trajectories of microbiota variables and BMI. (A) Individual and median 
(in red) trajectories of F/B ratio on log10 scale over time. (B) Individual and median trajectories of relative 
abundance of sum SCFA producers over time. (C) Individual and median (raw) BMI trajectories over time split 
by sex. Error bars indicate interquartile range (IQR). Please note the break in the x-axis. The lines crossing the 
break do not represent the actual slope and are only plotted to show individual growth trajectories.
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Figure 2.   Gut microbiota composition over time. (A) The average relative abundance of the 6 most abundant 
phyla in the first 12 years of life are shown with Actinobacteria predominating in infancy and Firmicutes 
becoming the predominant phylum in childhood. Phyla with an abundance < 1% are plotted as “Other”. (B) 
The composition of average relative abundance of SCFA producer genera in the first 12 years of life is shown. 
In infancy, Bifidobacterium is the dominant genus of SCFA producers with the composition becoming more 
diverse in childhood. Note that y-axes are not equivalent.

Figure 3.   Spearman correlation matrices of main predictor and outcome varables. (A) Correlation Matrix 
between zBMI and F/B ratio over the ages. (B) Correlation matrix between zBMI and SCFA producers over the 
ages. Colored squares indicate significant values (p < 0.05).
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Nevertheless, we computed permutation variable importances including their p-values for the three models 
with p < 0.05 that had an FDR <  = 0.21 for exploratory purposes according to the method of Altmann et al.61. 
The variable importance values reflect the mean decrease in accuracy when the corresponding predictor is 
permuted. Above mentioned three models are listed as model 1, model 2 and model 3 and can be seen in sup-
plementary table 12 where we show the top 10 important features (genera) per significant model. In light of 
our research question, we indicated whether any of the top 10 genera is included in our list of SCFA producers. 
For the cross-sectional model at 4 months of age (model 1), Akkermansia as a SCFA producer is of the highest 
importance, followed by genera belonging to the Firmicutes and Actinobacteria. The cross-sectional model at 
10 years (model 2) includes mostly Bacteroidetes and Firmicutes as features of high importance, among which the 
SCFA producing genera Bacteroides, Roseburia, and Prevotella_9. Finally, the 10 year model predicting 12 years 
zBMI (model 3) only indicated Ruminococcus_2 and Parabacteroides, which belong to the phylum Firmicutes 
and Bacteroidetes, respectively, among the significantly important genera.

Figure 4.   Posterior distribution (median and 95% credible interval) of β coefficients (slopes) per SCFA 
producer. (A) All samples. (B) Only infant samples. (C) Only childhood samples.

Table 4.   Accuracy of the Random Forest models. OOB = Out of Bag error of the Random Forest models. 
Median = Median accuracy score (either OOB or Pearson) from the 10 times repeated fourfold crossvalidation 
procedure. Models that reached p < .05 for either Pearson or OOB are printed in bold.

Time microbiota Time zBMI Accuracy measure Median P-value Q-value

1 m 1 m OOB 0.850 0.363 0.667

1 m 1 m Pearson 0.000 0.544 0.667

1 m 3 m OOB 0.937 0.477 0.667

1 m 3 m Pearson 0.018 0.540 0.667

3 m 3 m OOB 0.967 0.780 0.821

3 m 3 m Pearson −0.100 0.775 0.821

3 m 4 m OOB 0.897 0.889 0.889

3 m 4 m Pearson 0.135 0.228 0.570

4 m 4 m OOB 0.857 0.019 0.190

4 m 4 m Pearson 0.249 0.053 0.212

4 m 2y OOB 0.950 0.315 0.667

4 m 2y Pearson 0.160 0.183 0.523

6y 6y OOB 0.790 0.554 0.667

6y 6y Pearson 0.047 0.432 0.667

6y 7y OOB 1.140 0.567 0.667

6y 7y Pearson 0.011 0.533 0.667

10y 10y OOB 0.783 0.044 0.212

10y 10y Pearson 0.258 0.088 0.293

10y 12y OOB 1.131 0.019 0.190

10y 12y Pearson 0.322 0.032 0.212



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3140  | https://doi.org/10.1038/s41598-022-07176-6

www.nature.com/scientificreports/

Discussion
Our results indicate that there is no decisive evidence to support the energy harvesting hypothesis for the rela-
tion between gut microbiota and obesity in infancy and childhood. Contrary to expectation, we only found 
few statistically significant associations between zBMI and F/B ratio or SCFA producers, which were no longer 
significant after the application of the Benjamini–Hochberg procedure. Bayesian multilevel models also did not 
show associations between future zBMI and F/B ratio or SCFA producers. However, exploratory analyses revealed 
that the relative abundances of Firmicutes and Bacteroidetes were independently negatively associated with 
zBMI between infancy and 12 years of age after adjusting for previous time point zBMI and birthweight. Further 
exploration of SCFA producers showed that genera Subdoligranulum and Alistipes were negatively related to 
future zBMI in childhood but not in infancy. Our RF models also suggest that multiple SCFA producers could 
be associated with zBMI at different time points.

The lack of association between F/B ratio and BMI is in line with previous research which suggest no dif-
ferences in F/B ratio between lean and obese individuals22–24,67. Our findings are in agreement with one study 
in children that did not find evidence to support the F/B ratio as a biomarker of obesity30 but contrary to two 
other studies in children28,68. Our observations can possibly be explained by our study’s low number of obese 
children. Only 28 out of 1160 BMI observations reached a zBMI > 2, which corresponds with obesity according 
to the WHO guidelines43. Most of the previous research on gut microbiota and BMI has compared obese and 
lean individuals in groups, whereas we modeled BMI as a continuous variable. It is possible that the relationship 
between F/B ratio and BMI only exists when BMI is more than two standard deviations away from the mean. 
For example, in one study with Kazakh children29, the F/B ratio association was only found in children that are 
considered obese. Related to our results, this could suggest that for a normal BMI in a healthy population, F/B 
ratio is not associated with increased BMI and that the F/B ratio is only related to more extreme values of BMI. 
However, early evidence supporting the energy harvesting hypothesis would suggest that gut microbiota changes 
should gradually occur as BMI increases13,14. One study in adults also suggested that F/B ratio may be more 
strongly associated with metabolic markers correlated with obesity like insulin resistance, non-alcoholic fatty 
liver disease and metabolic syndrome rather than obesity69, all of which would be rare in our pediatric sample. 
Overall, our results suggest that the F/B ratio may not be a valid universal biomarker of obesity in children, 
especially during infancy.

Our exploratory analyses show that the overall relative abundances of Firmicutes and Bacteroidetes were 
negatively associated with future BMI, which is in line with the meta-analysis by Kim et al.32. They found that 
Firmicutes and Bacteroidetes were independently and negatively associated with BMI between 11 and 47, albeit 
not statistically significantly. Our findings could also be related to previous research that found that the gut 
microbiota’s overall richness is negatively associated with obesity17,70. Indeed, post hoc analyses of our sample 
showed that observed richness (number of taxa per sample) was significantly negatively associated with BMI. 
These findings suggest an overall negative relationship between Firmicutes, Bacteroidetes, microbial richness, 
and BMI in the first 13 years of life. In part, this relationship may be explained by differences in dietary patterns, 
which are a significant factor in both weight gain and the diversity of the microbiota6. For example, probiotics, 
prebiotics, and dietary fiber have been associated with improvements in body composition and increases of 
several specific bacterial species6,71.

There are several differences between our study and previous research that should be mentioned. Most 
importantly, the sample sizes of F/B ratios in the infancy samples were small due to the high number of zero 
counts of Bacteroidetes in infants, and the range was extremely large compared to previous research. This large 
range can be attributed to the low abundance of Bacteroidetes (< 1%) in some of the samples, especially during 
infancy, which resulted in a high F/B ratio. To our knowledge, the only other study reporting the F/B ratio in 
infancy is that by Mariat and colleagues51, who calculated the F/B ratio for 21 infants between the ages of 3 weeks 
and 10 months of age. They found F/B ratios between 0 and 23, whereas we found F/B ratios between 0 and 482 
at 1, 3, and 4 months of age. Our high values need not be outside the realm of possibilities because the infant 
gut microbiota is mostly dominated by Bifidobacterium and is increasingly colonized with Bacteroidetes over 
time32,51. This pattern is also observed in the current sample as the relative abundance of Bacteroidetes at ages 6 
and 10 increased compared to the first year of life.

A reason for the low abundance of Bacteroidetes could be the geographical location. One study with 606 
infants of 6 weeks of age across Europe found that the genus Bacteroides, which belongs to the Bacteroidetes 
phylum, was reduced in Northern European infants compared to more Southern European infants72. Similarly, 
the gut microbiota of 1 to 6 year old children in Burkina Faso was significantly enriched in Bacteroidetes com-
pared to that of Italian children73,74. This finding suggests that the current sample, which consisted of Dutch 
children, may have fewer Bacteroidetes than other samples, such as the study by Mariat et al.51, conducted in 
France. Differences in gut composition between geographical locations can, in turn, be due to cultural differences 
in lifestyle and dietary patterns75.

Similar to the F/B ratio, no significant associations were found between the aggregated SCFA producers vari-
able and BMI. This is contrary to a large body of literature, which suggests a positive relationship between obesity 
and SCFAs, but in line with literature showing no or an inverse association between obesity and SCFAs33–39. For 
example, a recent meta-analysis found that elevated levels of SCFA in stool and plasma were associated with 
obesity in individuals aged 6 to 7432. Because the current study did not assess SCFA concentrations in stool or 
plasma, we could not directly replicate those findings. However, in theory, our novel SCFA producer variable 
representing the sum of relative abundances of carefully selected SCFA producer genera should be correlated 
to SCFA concentrations in stool and plasma. This assumption awaits further experimental validation in future 
studies. Furthermore, in exploratory analyses consisting of multilevel and RF models, we found evidence that 
specific SCFA producer genera are associated with BMI. Out of the six genera (Subdoligranulum, Alistipes, 
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Akkermansia, Bacteroides, Prevotella, and Roseburia) that were detected, all but Subdoligranulum have been 
identified as propionate producers (Table 2).

Although we cannot gauge the direction of the associations of the genera that were detected with the RF 
algorithm, the two genera detected in the multilevel models, Alistipes and Subdoligranulum, were negatively 
associated with BMI during childhood. One previous study found Alistipes to be negatively associated with 
obesity in German adults76. Another study found that in cases where Alistipes was more abundant at baseline in 
participants of a weight loss invervention, those participants were more succesful in lowering and maintaining 
weight compared to individuals lower in Alistipes abundance at baseline69. The genus Subdoligranulum has also 
been positively associated with overall metabolic health, including lower BMI and fat mass in human adults77. 
However, further investigation of this relationship, through the cultivation of Subdoligranulum in obese mice, 
did not result in differences in body weight and fat mass77. Our results are thus in line with previous studies that 
found a negative association between Alistipes, Subdoligranulum and obesity, but further studies are needed to 
investigate potential causal mechanisms.

The SCFAs produced by Alistipes and Subdoligranulum, butyrate and propionate, are both reported to be 
associated with reduced obesity in previous research through different mehcanisms36,38,39,78. For example, supple-
mentation of butyrate seemed to prevent diet-induced obesity in mice through reduced appetite33,79,80. Propionate 
has also received increased attention due to its involvement in appetite regulation of glucose metabolism81,82. 
Rodent and adult human studies have shown that the supplementation of propionate led to reductions in food 
intake, subjective appetite, body weight, and insulin sensitivity improvement38,39. Chambers et al.39 found that 
the supplementation of an inulin-propionate ester (IPE) or inulin both led to reductions of individual propionate 
producers (Blautia and Roseburia) but also to increases of others (Bacteroidetes). In addition to inulin, sup-
plementation of other dietary fibers like arabinoxylan in obese and overweight individuals led to an increased 
fecal propionate concentration and increases of Blautia obeum and Prevotella copri, both known propionate 
producers83. Our exploratory study results are thus in line with findings in rodents and human adults, which 
suggest a potential anti-obesity effect of propionate and butyrate, that may already be present in the first 12 years 
of life. It is still curious that Chambers et al.39 also found that certain propionate-producing species were reduced. 
This observation could be explained by dosage effects39, but possibly also by cross-feeding and bacterial interac-
tion effects, which are known to play a role in SCFA production84. Overall, our findings indicate that not the 
overall sum of SCFA producers is related to BMI, but rather specific SCFA producer genera.

Strengths of our study are the use of an innovative theory-based biomarker, sophisticated statistics, and pre-
registration for scientific transparency purposes. Additional strengths are its prospective longitudinal nature, 
healthy population and length of the assessment period, covering a relevant period in the development of obesity, 
namely from infancy to puberty. A limitation of our study and possible explanation for why we did not find 
evidence supporting the energy harvesting hypothesis is that many bacterial species may still be unidentified, 
or their functional role still unknown21,85. The bacterial genera used in creating the SCFA producers variable is 
not necessarily an exhaustive list, and more could still be identified. Until future research informs a more com-
prehensive overview of bacterial species and their activity, it may be hard to capture the ’true’ SCFA producers. 
Furthermore, the production of SCFAs also depends on the nutritional intake, as SCFA production requires the 
fermentation of non-digestible carbohydrates86. Thus, the availability of resources and the interaction between 
different bacteria make it more challenging to determine the production of SCFAs.

Future studies that investigate (the development of) obesity and BMI should focus on analyzing SCFA excre-
tion and individual SCFA producers in relation to other associated lifestyle factors. For example, one could 
measure SCFAs in both serum and stool and compare those values with the known SCFA producers as listed 
in the methods. Studies could also focus on dietary intake and interaction effects as they play an essential role 
in the gut composition and SCFA production. By gaining more insight into the complexity of the gut bacteria, 
their metabolism, and their interactions with the host, it may be possible in the future to construct a sensitive 
biomarker for the early detection of obesity. Furthermore, the microbiome research field is still in development 
and innovating in its methods. Many studies used in the theoretical framework for this study differ in their 
approaches. For example, studies often report on different taxonomic levels (e.g., phylum vs. genus). There also 
exist differences between studies due to the wide variety of methodology and pipelines used to detect and analyze 
microorganisms17 and data transformation methods55. Differential analytical approaches do lead to diverging 
conclusions, making it harder to compare studies with each other. Hypothesis testing of previous findings and 
theories in a replicable way will be essential to make progress in the microbiome field.

Conclusion
Based on the current findings, there is little evidence to support a link between the F/B ratio and BMI, and the 
sum of known SCFA producers and BMI, in the first 12 years of life. Especially during infancy, the F/B ratio may 
be inadequate because Bacteroidetes are not present in large enough proportions. The lack of Bacteroidetes in 
the sample during infancy could be explained by geographic location. However, we also found no association 
between F/B and zBMI at ages 6 and 10, showing that our results are not entirely due to the lack of Bacteroidetes 
in infancy. We also did not find the hypothesized relationship between the sum of SCFA producers and zBMI. 
Exploratory analyses showed that Firmicutes and Bacteroidetes were individually negatively related to zBMI 
changes throughout the first 12 years of life, and that the SCFA producing genera Subdoligranulum (butyrate) 
and Alistipes (propionate) were negatively related to future zBMI in childhood. This last finding is in line with the 
literature on propionate supplementation, which suggests an anti-obesity effect of propionate. Given our results 
and the literature’s heterogeneity, it is not recommended to use the F/B ratio or SCFA producers as a universal 
predictor biomarker for BMI in childhood, especially in infants. Future studies should investigate individual 
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SCFA producing genera specifically and consider other factors such as cross-feeding and microbial interactions 
in addition to diet and lifestyle in studying the gut microbiota in BMI development.

Data availability
The data that support the findings of this study are available upon reasonable request. The data are not freely 
available, as we did not ask participants to consent to store de-identified data in an online depository. Deidentified 
individual participant data that underlie the results reported in this article will be made available upon publica-
tion (no end date) to researchers with a methodologically sound proposal for re-use of the data. The proposal 
should be directed to carolina.deweerth@radboudumc.nl. Upon approval, data requestors will need to sign a 
data transfer agreement. Researchers are asked to analyze the data and/or publish the results within two years. 
The scripts used for the analyses can be found here: https://​doi.​org/​10.​5281/​zenodo.​52689​95.
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