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oil, only oil, and controls with only clay or sediment. 
We developed a method to produce artificial marine 
snow, which resembles the natural marine snow. 
Results showed 40% less biodegradation of alkanes 
in “marine snow with oil” compared to “only oil.” 
Most probably, this is due to preferred biodegradation 
of marine snow organics comparing to oil alkanes. 
Biodegradation of marine snow reduces the dissolved 
oxygen concentration, which might result in anaero-
bic conditions in the sediment layer. This finding can 
be projected to a potential ocean floor effect.

Keywords  Biodegradation · Marine snow · Oil 
spill · Sediment · MOSSFA · Deepwater Horizon

1  Introduction

The Deepwater Horizon (DwH) oil drilling rig in the 
Gulf of Mexico (GoM) exploded on April 2010, caus-
ing the release of roughly 500,000 m3 of Macondo 
well oil over the course of 87  days (Beyer et  al., 
2016). To prevent oil surfacing and to maintain the 
spilled oil in the water column, a response operation 
was applied. About 8000 m3 chemical dispersants 
(Corexit EC9500A and EC9527A) were applied, of 
which 60% to the water surface, and 40% to the DwH 
wellhead at a depth of 1500  m close to the ocean 
floor (Beyer et  al., 2016; Kujawinski et  al., 2011). 
The released oil from the wellhead formed droplets 
in different sizes due to pressure differences between 

Abstract  During the Deepwater Horizon (DwH) 
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the oil was transferred to the ocean floor by MOSSFA 
(Marine Oil Snow Sedimentation and Flocculent 
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the oil reservoir and the water column, and drop-
let formation was further enhanced by the chemical 
dispersant injection (Malone et  al., 2018; Peterson 
et al., 2012). Dispersants reduce the oil–water interfa-
cial tension (Soloviev et al., 2016), thereby breaking 
oil into smaller and more stable suspended droplets 
than occurs by natural dispersion (Zeinstra-Helfrich 
et  al., 2015). The resulting larger oil–water surface 
area increases oil dissolution and the bioavailability 
for oil-degrading microbes (Doyle et  al., 2018). Oil 
droplets migrate through the water column depend-
ing on droplet sizes and buoyancy. A portion of the 
spilled oil with smaller droplet sizes and lower den-
sity remains suspended while forming oil plumes, 
either in the water column or (partly) at the water 
surface. Although chemical dispersants injected at the 
wellhead aim to prevent oil from reaching the water 
surface and thereby threatening shorelines, some por-
tion of the oil surfaced anyway (MacDonald et  al., 
2015). Dispersants applied at the surface enhance fur-
ther droplet dispersion, dissolution of lighter oil com-
ponents, and subsequently trigger settling of heavier 
components into the water column (Kleindienst et al., 
2015; MacDonald et al., 2015; Zuijdgeest & Huettel, 
2012).

The excessive formation of marine snow reported 
during the DwH oil spill was a consequence of the 
formation of extracellular polymeric substances 
(EPS) (Passow et al., 2012) These are produced either 
as natural oil dispersants by free-living oil-degrading 
bacteria, or as a stress response by bacteria living in 
symbiosis with phytoplankton (Wotton, 2004) that 
are triggered by the presence of chemical dispersants 
and oil compounds. Phytoplankton is generally con-
sidered the main contributor to natural marine snow 
formation (Daly et  al., 2016; Hastings et  al., 2016; 
Passow et  al., 2012; Sohm et  al., 2011; van Eenen-
naam et  al., 2016, 2019). Marine snow occurs natu-
rally in the ocean, and gravitational setting of this 
material is responsible for carbon cycle and nutri-
ent transport from upper layers to the deeper layers 
of the ocean (Wimpenny & Poole, 2009). During oil 
spills, oil droplets interact and aggregate with marine 
snow and get transported to the ocean floor. This 
mechanism was the main pathway of transferring the 
oil to the sediment layer in the case of the DwH oil 
spill (Hastings et al., 2016; Romero et al., 2015). The 
process of settling of marine snow-associated oil is 

called Marine Oil Snow Sedimentation and Floccu-
lent Accumulation (MOSSFA).

Interaction of oil droplets with marine snow 
increases the oil surface area (Gregson et  al., 2021; 
Lee et  al., 2002), transfer between oil compounds 
and oil degrading microbes, and oil bioavailability. In 
the presence of marine snow oil degrading bacteria 
tend to attach to the marine snow, and this increases 
oil biodegradation (Rahsepar et  al., 2017). Further-
more, mineral particles such as suspended clays can 
interact with marine snow and increase the marine 
snow gravitational settling speed. Elevated concentra-
tions of suspended solids from the Mississippi river 
discharge and mud drilling close to the oil wellhead 
increased the oil droplets aggregations and eventually 
the settling to the sediment layer (Brooks et al., 2015; 
Yan et al., 2016). By transferring the oil droplets from 
the water column to the floor, the bioavailability of 
oil may decrease due to changes in the environmental 
conditions such as changed redox conditions or mass 
transfer limitations (Bagby et al., 2017).

Marine snow accumulated on the ocean floor 
up to 120–180  km from the wellhead (Stout et  al., 
2017), and deposition of marine snow-associated oil 
was observed as 1–6-cm thick oily deposits along 
the northeast GoM slope (Brooks et  al., 2015). It is 
estimated that, after the DwH oil spill, up to 14% 
of the total spilled oil was transferred to the ocean 
floor by the sedimentation of marine snow-associ-
ated oil (Daly et al., 2016; Dissanayake et al., 2018). 
Mass accumulation rates increased from pre-spill 
to after spill during 2011 and 2012 by respectively 
0.05–0.16 g/cm2/year to 0.48–2.40 g/cm2/year (Daly 
et  al., 2016). The oxygen concentrations at a depth 
of 1000–1200  m such as in the GoM are generally 
in the range of 2.57 ± 0.5  mg/L (Campbell et  al., 
2019). Aerobic processes can thus take place in the 
sediment layer, which will deplete the dissolved oxy-
gen. Continued oxygen consumption in the sediment 
depends on diffusion of oxygen from the water col-
umn into the sediment (Camilli et al., 2010; Schwing 
et al., 2020). There are various papers that describe a 
MOSSFA event and the transfer of oil to the sediment 
layers at the ocean floor (Chanton et al., 2015; Quigg 
et  al., 2020; Romero et  al., 2017; Schwing et  al., 
2018; Stout et  al., 2016); however, the fate and bio-
degradation of hydrocarbons in the deposited marine 
snow-associated oil are not well studied.
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We hypothesize that increases in organic matter 
content at the ocean floor will increase the oxygen 
consumption, which limits the availability of dis-
solved oxygen for degradation of oil compounds. The 
aim of this study is to elucidate the degradation of oil 
and specifically degradation of n-alkanes when oil 
is associated with marine snow. The degradation of 
n-alkanes was studied in 15 mesocosm aquaria with 
natural marine sediment in combination with artificial 
marine snow with or without oil, only oil, and con-
trols with only clay or only sediment. The degrada-
tion of n-alkanes in these aquaria was studied during 
an incubation period of 42 days.

2 � Materials and Methods

2.1 � Experimental Setup

Oil biodegradation experiments were performed in 
15 mesocosm aquaria of 25 × 25 × 25  cm, represent-
ing five different exposure conditions in triplicate 
(Table  1). Climate was controlled at 14  °C, with a 
day-night light regime of 16-h light and 8-h dark.

The setup of the experiments and exposure prepa-
ration and sampling was similar to van Eenennaam 
et al. (2018). In short, the aquaria contained a 5 cm 
layer (≈ 3.2 L) of sieved (1 mm) natural uncontam-
inated sediment and a 15-cm layer (≈ 9.4 L) of fil-
tered (0.45 µm) natural seawater. At the exposure day, 
depending on the exposure conditions, a 1-cm layer 
of marine snow with or without oil, or 3.15 g of clay 
with or without oil, was applied on top of the sedi-
ment layer, as described in details in Sect. 2.2. Clay 
is a component of the artificial snow and was present 
in all experimental conditions except the “sediment 
only” control.

The aquaria were covered with acrylic plastic cov-
ers to minimize water evaporation, and air was bub-
bled in the top 5 cm of the water column through two 
glass Pasteur pipettes per aquarium via an air pump. 
This aeration resulted in a continuous supply of oxy-
gen, that did not get depleted in our experiments.

Sediment core samples for chemical analysis were 
taken from each aquarium at days 1, 16, 30, and 42. 
The volume of sediment recovered in each core was 
approximately 9 cm3. At each sampling time, 4 sam-
ples were taken from different locations in one aquar-
ium which were pooled to get a representative sample 
per aquarium. The samples were freeze-dried using a 
Christ Alpha 2–4 LDplus freeze dryer (Martin Christ 
Gefriertrocknungsanlagen GmbH, Osterode am Harz, 
Germany), followed by extraction for chemical analy-
sis (see Sect. 2.3).

We used surrogate Macondo oil in our experiment, 
kindly provided by BP, a light oil chemically similar 
to the Macondo oil of the DwH oil spill (BP Gulf Sci-
ence Data, 2017). The oil added to our experiments 
showed the typical unimodal distribution peaking 
at n-C17, that is characteristic of light oils, such as 
Macondo well oil.

The sediment did contain background levels of 
n-alkanes and isoprenoid alkanes; however, they 
showed distribution characteristic of natural biogenic 
input (i.e., odd over even preference), such as algae 
(Gelpi et al., 1970; Li et al., 2016).

Uncontaminated natural seawater was collected 
from the Eastern Scheldt, The Netherlands, filtered 
over a 0.45-µm filter and stored in a tank in the 
laboratory.

In order to kick-start the biodegradation of oil, 
two oil-degrading microorganisms were added to 
the water column at day 1. Rhodococcus qingshengii 
TUHH-12 (DSMZ No. 46766) was used as an alkane-
degrading culture, and Pseudomonas putida F1 
(DSMZ, No. 6899), an aromatic degrading culture, 
were prepared and handled according to Rahsepar 
et  al. (2016) and Schedler et  al. (2014). Cultures of 
R. TUHH-12 and P. F1 were grown in seawater-min-
eral media supplied with n-hexadecane or toluene, 
respectively, as described by Rahsepar et  al. (2016). 
One milliliter of mid-exponential phase of each cul-
ture (OD600 = 0.98, R. TUHH-12 and OD600 = 0.30, 
P. F1) was added to the water column of each aquar-
ium on day 1. All the exposures contained these two 
cultures.

Table 1   Overview of the exposure conditions for the aquar-
ium experiment

“ + ” indicates present in the aquarium, and “ − “ indicates 
absent from the aquarium

Exposures Marine snow Oil Kaolin clay

Sediment control  −   −   − 
Clay control  −   −   + 
Snow  +   −   + 
Oil  −   +   + 
Snow + oil  +   +   + 
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2.2 � Artificial Marine Snow Production

EPS, including proteins and polysaccharides, was 
produced in our laboratory by exposing phytoplank-
ton communities to chemical dispersants (van Eenen-
naam et  al., 2016). However, in this way, it was not 
feasible to produce sufficient amounts of EPS for the 
amount of marine snow needed for this study. There-
fore, a method was developed to produce artificial 
marine snow which resembles the natural marine 
snow. Based on the natural marine snow composition 
reported for the MOSSFA event during the DwH oil 
spill, the following essential ingredients for produc-
tion of the artificial marine snow were defined: algi-
nate-like exopolysaccharides, phytoplankton biomass, 
and mineral particles (Alldredge & Silver, 1988; Daly 
et  al., 2016; Thornton, 2002; van Eenennaam et  al., 
2016). This artificial marine snow was used to study 
the effect of association of oil with marine snow on 
n-alkanes (C13-C30) biodegradation in this study.

Artificial marine snow was prepared by adding 
22.5  g of commercially available alginate (alginic 
acid sodium salt, CAS 9005–38-3 Sigma-Aldrich), a 
gelling and nontoxic anionic polysaccharide, to 1.1 
L of filtered natural seawater while stirring. Then, 
9.45  g of kaolin clay (hydrated aluminum silicate, 
CAS 1332–58-7, Sigma-Aldrich) and 19  g of fresh 
weight of phytoplankton biomass (Chlorella paste, 
Ingrepro BV, Borculo, The Netherlands) were added 
to the solution. Separately, 188  g of CaCl2 (CAS 
10043–52-4, Fluka Analytical) was dissolved in 13 
L of demi-water, and this solution was added to the 
alginate solution while stirring. The calcium causes 
coagulation of the alginate and precipitation of 600-
mL marine-snow-like particles. The overlying liquid 
was poured off, and the artificial marine snow was 
divided into three equal parts for the three aquaria 
replicates.

To prepare each replicate of snow-only exposure, 
200  mL of this artificial marine snow was added to 
the aquaria resulting in an approximately 1-cm-thick 
layer on top of the sediment. For the snow + oil expo-
sure, the procedure was similar as described above 
except that the kaolin clay was first mixed with 1.9 g 
of oil and 100 mL demi-water before adding it to the 
alginate solution. For each replicate of the clay con-
trol, the kaolin clay was mixed with approximately 
500  mL of seawater from the aquarium to form a 
suspension and then added to the aquaria. The clay 

settled on top of the sediment in a homogenous layer 
of approximately 0.5  mm thick. The oil-only expo-
sure was prepared per aquarium by mixing 3.15 g of 
kaolin clay with 0.63 g of oil and 100 mL of demi-
water to form a homogenous slurry that was added to 
the aquarium. To the sediment control aquaria, noth-
ing extra was added.

2.3 � Monitored Water Parameters

Dissolved oxygen (mg/L), pH ( −), temperature (°C), 
and salinity (‰) were monitored weekly during the 
experiment in the water phase at 10 cm above the sed-
iment. The pH was measured with a Mettler Toledo 
pH probe, and the dissolved oxygen, temperature, and 
salinity with a Hach HQ40d multimeter using dis-
solved oxygen, salinity, and temperature probes.

The oxygen was intended to be measured at vari-
ous depths in aquaria, especially below the sediment 
layer, at the interface of sediment and water, and just 
above the sediment layer. Oxi-dots were adjusted 
inside the aquarium glass before adding sediment and 
water. However, we could not measure dissolved oxy-
gen via oxi-dots during the experiments due to tech-
nical problems. Therefore, the dissolved oxygen was 
analyzed only in the water column via Hach HQ40d 
multimeter.

2.4 � Chemical Analyses

The sample preparation and analysis method were 
similar to Larter et al. (2019). In short, 5 g of freeze-
dried sediment was extracted with 8  mL dichlo-
romethane. An aliquot of the whole extract was first 
analyzed using GC–MS to check if the oil finger-
print was present. The temperature program for the 
GC–MS analysis included a hold of 5 min at 40 °C, 
followed by a 4 °C/min ramp up to 325 °C, and fin-
ishing with an isothermal hold at 325 °C for 15 min. 
Separation was performed on a HP-5MS capillary 
column (30 m × 0.25 mm × 0.25 µm), and helium was 
used as carrier gas, at a flow of 1.0 mL/min. The mass 
spectrometer was acquiring data in a combined full 
scan/selected ion monitoring (SIM-SCAN) mode. 
SIM trace at m/z 85 was used to integrate the areas of 
n-alkanes (C13-C30) and isoprenoid alkanes (pristane 
and phytane). Integrated areas were then normalized 
to the area of C30-hopane (17α(H), 21ß(H)-hopane) 
at SIM trace m/z 191. C30-hopane is considered a 
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conservative biomarker due to its recalcitrance to 
weathering (Prince et  al., 1994). This normalization 
approach is typically used in oil spill studies to detect 
and compare compositional changes due to evapora-
tion, biodegradation, and other weathering processes 
(Aeppli et al., 2014; Radović et al., 2014).

To demonstrate the stability and persistence of 
C30-hopane during our experiments and to confirm 
the validity of C30-hopane normalization, additional 
batch experiments were performed. The concentra-
tion of C30-hopane was followed during 42  days 
in 4 batches (1L), similar to the aquaria exposure 
snow + oil. The whole content of two bottles was 
extracted at day 0 and the other 2 extracted at day 
42. The samples were analyzed using GC–MS as 
described above, and the C30-hopane was quantified 
against an internal standard of cholestane-d4, assum-
ing a relative response factor of 1 (Bennett & Larter, 
2000).

2.5 � Statistical Analysis

GraphPad Prism 5 was used to perform statistical 
analysis using two-way ANOVA with Bonferroni 
multiple comparisons post-test. Results of statistical 
analyses are provided as Supplementary Material S1.

3 � Results

3.1 � Physical Parameters in the Water Phase

In the absence of marine snow, the oxygen concen-
tration in the water column 10  cm above the sedi-
ment layer was stable during the incubation time of 
42  days (8  mg/L ± 0.3  mg/L). In the marine snow-
only exposure, the oxygen concentration in the water 
phase dropped to 5.3 ± 0.3  mg/L at day 6, followed 
by a rebound to the initial value at day 10 (Fig.  1). 
The highest oxygen consumption was observed in the 
snow + oil exposure. The oxygen concentration in the 
water dropped significantly from 9 ± 0.5 mg/L to val-
ues varying around 4.4 ± 0.5 mg/L in the first 6 days, 
whereafter it returned to the initial oxygen concentra-
tion within 4 days (Fig. 1).

The pH, temperature, and salinity in the water 
phase remained constant during the incubation time 
in all the exposures at an average value of 8.5 ± 0.3, 

14  °C ± 1  °C, and 34% ± 2%, respectively (Supple-
mentary Material S2).

3.2 � C30‑Hopane Normalized n‑Alkanes (C13‑C30) 
and Isoprenoid Alkanes

The batch experiments confirmed the persistence of 
C30-hopane during our experiments, with average 
duplicate concentrations of 180 and 210 µg of C30-
hopane per g of sediment extracted at t = 0 and t = 42, 
respectively. The observed variability (approx. 10% 
relative standard deviation) is within the acceptable 
limit of analytical error accumulated during experi-
mental setup, sampling, sample preparation, GC–MS 
analysis, and peak integration. Therefore, hopane nor-
malized peak areas were further used to determine the 
relative abundance changes of n-alkanes and isopre-
noid alkanes.

The C30-hopane normalized peak areas of the 
n-alkanes (C13-C30) and isoprenoid alkanes deter-
mined in samples of the exposures oil and snow + oil 
are presented in Fig. 2 (see Supplementary Material 
S3 for oil chromatograms related to conditions “only 
oil” and “snow + oil”). The results show that 2.5 
times more n-alkanes and isoprenoid alkanes were 
degraded in the absence of marine snow (65%) than 
in the presence of marine snow (25%).

Figure 3 shows depletion of n-alkanes and isopre-
noids alkanes normalized with C30-hopane at the 
start and after day 42 of incubation. After 42  days 
of incubation, the relative removal (in %) of all indi-
vidual n-alkanes and isoprenoid alkanes was higher 
in the absence of marine snow (Fig. 4). In addition, 

Fig. 1   Dissolved oxygen concentration at 10  cm above the 
sediment layer in the water phase of the aquarium. Average 
and standard deviation of three aquaria replicates
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when looking at the individual removal percentages 
of the different n-alkanes and isoprenoid alkanes, the 
depletion of the smaller compounds (< C18) is far 
more pronounced in the absence of marine snow.

4 � Discussion

In this research, we studied n-alkane biodegradation, 
and the effect of oil association with organic and clay 
particles, during and after settling at a sediment layer 
in mesocosm aquaria. We observed 40% less n-alkane 
depletion when oil was in association with artificial 
marine snow compared to oil that was only associated 
with clay. This suggests that the organic component 
of the artificial marine snow influenced hydrocarbon 
depletion. Our results are in line with findings from 
a field study with sediment samples collected in the 
Gulf of Mexico after the DwH oil spill. This report 
describes the depletion of oxygen in the sediment lay-
ers after the DwH event (Hastings et al., 2016), which 
results in less biodegradation for many alkanes after 
deposition to the seafloor (Bagby et al., 2017).

In the presence of marine snow, the oxygen 
concentration in the water 10  cm above the sedi-
ment dropped from 9 ± 0.5  mg/L to values of 

Fig. 2   Relative peak area of C30-hopane normalized 
n-alkanes (C13-C30) and isoprenoid alkanes (pristane and 
phytane). Average and standard deviation of three aquaria rep-
licates

Fig. 3   C30-hopane normalized peak areas of n-alkanes (C13-C30) and isoprenoid alkanes (pristane and phytane) in sediment sam-
ples on day 1 (left) and day 42 (right). Average and standard deviation of three aquaria replicates

Fig. 4   Profile of removal 
percentage of n-alkanes 
(C13-C30) and isoprenoid 
alkanes (pristane and phy-
tane) in sediment samples 
at day 42 compared to day 
0. Average and standard 
deviation of three aquaria 
replicates
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4.4 ± 0.5  mg/L after 6  days of incubation (Fig.  1), 
despite continuous gentle aeration at the water sur-
face, suggesting enhanced oxygen consumption due 
to marine snow degradation.

Hydrocarbon degrading bacteria are not neces-
sarily limited to the consumption of hydrocarbons 
as a carbon source. In general, these bacteria utilize 
hydrocarbons and other oil compounds as carbon and 
energy sources, when easily degradable carbon is 
not available. Physiological activity of bacteria and 
their metabolic enzymes determine the function and 
carbon source consumption by bacteria (Mukherjee 
et al., 2017; Xu et al., 2018).

However, mid-chain-length n-alkanes are suit-
able carbon and energy sources for some microbes, 
but most likely not for all microbes available in our 
system. When comparing the two conditions, “only 
oil” and “snow + oil,” we saw 40% less depletion of 
hydrocarbons in the “snow + oil condition.” There-
fore, we assume that artificial marine snow was con-
sumed as a carbon and energy source in our aquaria 
system rather than the n-alkanes. Both our artificial 
marine snow as well as natural marine snow contain 
carbon compounds that are easily degradable with 
concomitant oxygen use. Especially the carbohy-
drates of marine snow have oxidized groups in their 
molecular structures, which are readily available for 
further enzymatic conversions and mineralization 
(Alldredge & Silver, 1988; Bochdansky et al., 2010; 
Gutierrez et al., 2018; Shanks & Trent, 1980).

Relative to marine snow, oil is more recalcitrant to 
biodegradation because of its stable reduced aliphatic 
or aromatic molecular structures that need to be acti-
vated for further mineralization, i.e., through oxygen 
inclusion by oxygenases (Chikere et al., 2011; Nzila, 
2018; Shrivastava & Phale, 2012). As a result, bio-
degradation of oil components with half-lives up to 
60 days, depending on the oxygen availability will be 
slower compared to, e.g., marine snow (Bagby et al., 
2017; Prince et al., 2017; Reddy et al., 2012). There-
fore, when both marine snow and oil are present, 
marine snow will be a preferred substrate over oil for 
the aerobic microbial community. Oil degradation 
is then further hampered by oxygen depletion as our 
results suggest.

In our experiment, reduced oxygen concentrations 
were detected in aquaria with marine snow (snow 
and snow + oil conditions) even though the dissolved 
oxygen measurement point was relatively far from 

the sediment surface (5 cm below the water surface). 
However, these reduced oxygen concentrations were 
not observed in the “only oil” condition, despite the 
higher alkane depletion at day 16. This is an indica-
tion that marine snow does have an O2 demand early 
in the experiment. Follow-up aquarium experiments 
including eco-toxicological effects on invertebrate 
organisms also demonstrated oxygen depletion in the 
sediment layer in the presence of marine snow (van 
Eenennaam et  al., 2018). At the deep ocean floor, 
oxygen availability in the water phase nearby the 
sediment layer could be limited, depending on the 
depth and hydrological conditions. In addition, the 
water temperature in the Gulf of Mexico at ~ 1500-m 
depth is ~ 4–6 °C, which is lower than our experimen-
tal setup (14 °C), as the solubility of oxygen is higher 
at these cold temperatures; our experiments represent 
a “worst-case scenario” of the processes at the ocean 
floor in the Gulf of Mexico.

Depleted oxygen in the deep sea top sediment 
layer with more than 1  cm of marine snow-associ-
ated oil most likely contributed to the persistence of 
oil-sediment layers as reported for the DwH oil spill 
(Bagby et al., 2017) and the Ixtoc-I spill in 1979 (Lin-
coln et  al., 2020), where MOSSFA had occurred as 
well (Lincoln et  al., 2020; Vonk et  al., 2015). Also, 
anaerobic conditions were detected in sediment layer 
after the DwH oil spill (Bacosa et al., 2018), suggest-
ing that the presence of marine snow contributes to 
the expansion of anaerobic conditions, eventually 
limiting the oil biodegradation in these sediments. A 
study showed that the intensity of anaerobic condi-
tions in the sediment layer of GoM lasted for up to 
3 years after the DwH spill, likely as a result of excess 
organic matter and hydrocarbon burial and decompo-
sition in the sediments (Daly et  al., 2016; Foekema 
et al., 2020; Hastings et al., 2016).

Our results are consistent with our hypothesis that 
the n-alkanes biodegradation rate in the sediment 
layer is influenced by two related factors: carbon 
source competition and oxygen availability. When 
high concentrations of marine snow or other easily 
degradable carbon sources are present, aerobic bio-
degradation of marine snow is preferred, followed 
by the biodegradation of n-alkanes. The association 
of oil with marine snow by itself does not mean that 
the n-alkane biodegradation will decrease. In condi-
tions without oxygen limitation, the inclusion of oil 
in marine snow could even increase the n-alkanes 
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biodegradation as has been shown for the water phase 
(Rahsepar et al., 2017). In our experimental setup, we 
have not tested whether adding bacterial cultures to 
kick-start the biodegradation is necessary. However, 
the concept behind the “kick start” was related to the 
results of Rahsepar et  al. (2016), which elucidated 
that the presence of aromatic compounds could inter-
fere with the degradation of n-alkanes.

This experimental setup was initiated to develop a 
surrogate study system, because the real-world sys-
tem is difficult to reach and to study. The laboratory 
setup of this experiment allowed us to specifically 
study the biodegradation of marine snow-associated 
oil on the sediment layer. We have expanded the 
experimental setup in other research (van Eenennaam 
et al., 2018) and included oxygen sensors to precisely 
monitor the dissolved oxygen levels. In this research, 
we observed enhanced n-alkane biodegradation in the 
presence of benthic invertebrates due to bioturbation 
and enhanced oxygen penetration into the sediment 
(van Eenennaam et  al., 2018). This might further 
affect the biodegradation rate of oil which was inves-
tigated in an aquarium experiment with representative 
benthic invertebrates.

This fundamental knowledge is highly relevant 
to understand more complex systems. The limited 
availability of oxygen in the sediment layer can be 
enhanced by bioturbation activities of benthic organ-
isms (Foekema et  al., 2020; Pelegrí & Blackburn, 
1994).

5 � Conclusion

This study shows that biodegradation of n-alkanes 
in top sediments was slowed down up to 40% when 
oil was associated with marine snow. We believe two 
correlated factors play a role in this slow biodegra-
dation: carbon source competition and oxygen avail-
ability. Marine snow can enhance oil biodegradation 
in the abundance of oxygen. However, when the dis-
solved oxygen is a limiting factor, preferential oxy-
gen consumption for the degradation of marine snow 
competes with oil degradation, thus slowing down the 
n-alkane biodegradation. This needs to be taken into 
account, when dealing with future oil spills.
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