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to take into account errors in measurement and spatial positions
of sample data. They must also communicate their understanding
of these uncertainties to end users of soil maps, by whatever
means they are made.
© 2022 The Author(s). Published by Elsevier B.V. This is an open
access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Soil is crucial to our way of life. It provides us with much of our food and fibre and all of
our timber. It accepts rain and melting snow, and it stores, filters and releases the water for our
needs. It is in itself full of life. There are more than 100000 different types of organisms living
in it, and a single teaspoon of soil contains more living organisms than there are people on the
planet (Magdoff and van Es, 2021). Soil is a heterogeneous intricate mixture of mineral particles and
organic material in various forms of decay. It is not static. In the short term, such as the lifetime of a
crop, physical, chemical and biological processes change its structure and composition. In the long
term, from hundreds to millions of years, soil develops characteristics on rocks and in sediments
in response to climate, tectonics and other land-forming processes. These processes are themselves
highly complex, and the resulting complexity of the soil is hardly surprising.

Scientific study of the soil began around the middle of the 19th century, initially for under-
standing crop nutrition and as a basis for fertilizer practice. Towards the end of that century Russian
scientists were studying variation in soil on a continental scale and related that variation to variation
in climate. Agronomists were more concerned with variation within fields: why was crop growth
so variable in what was thought to be homogeneous land? Mercer and Hall (1911) led the way
with the first statistical analysis of spatial variation in field crops, which McBratney and Webster
(1981) later showed could be attributed to an earlier ploughing regime. Between the two world
wars several national governments initiated programmes of regional survey and mapping of soil.
These were boosted in the USA after the ‘dust bowl’ of the 1930s and erosion under agriculture of
fragile former forest soil in the southern states. After the second world war governments wanted
maps of their whole countries (Young, 2017) as national inventories. Soil maps are now of greater
importance as nations strive to feed their ever-growing populations on fixed areas of land, while
conserving the soil and its biodiversity, maintaining its ability to store and purify water, all in a
warming climate (Keesstra et al., 2016).

What is evident at all scales from field to continent is that soil is a continuum, broken only by
water and bare rock, and that it is spatially correlated. Soil obeys Tobler’s first law of Geography,
namely ‘Everything is related to everything else, but near things are more related than distant
things’ (Tobler, 1970). But one cannot know what the soil is like everywhere. One can at best
sample on finite supports, and to map one must interpolate between sampling points. In traditional
practice, which still has its role, one links observations of the soil in profile at sample sites to
an understanding of landscape and perhaps natural vegetation, i.e. to what one can see above
ground, whether from the ground or from above by remote sensing. Geostatistical interpolation
depends more heavily on sampling to provide quantitative data from which to estimate correlation
structure and predict at unobserved locations, though it may be augmented by other knowledge of
the landscape. Sampling the soil need not be a serious limitation. Access is usually easy, and relevant
soil properties such as its pH, salinity, concentrations of plant nutrients and pollutants are swift and
cheap to measure, although measurements of soil properties, whether in the field or laboratory,
incur error. Many soil properties are ‘well behaved’ statistically, smoothly varying spatially with
near Gaussian distributions, or ones that can be readily normalized by transformation. It turns out
that soil is an ideal medium for geostatistics (Webster, 2015, 2019).

The increasingly important role that geostatistics has played has radically changed how practi-
tioners think of soil variation and map it. It has led to greater understanding of soil and a rich field of
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application. There are thousands of publications containing maps of soil properties made by kriging,
and undoubtedly many more thousands of unpublished ones. Mapping this way has also thrown
up new problems, solutions of which have accelerated further development of spatial statistics.
In this paper we provide a brief historic account of soil mapping, with emphasis on geostatistical
approaches. We accentuate contributions on the topic published in this journal during its first ten
years of existence. In those ten years, however, there has been the new development in machine
learning. This has tended to replace geostatistics as the main soil mapping methodology. Machine
learning has its place now that sensors aboard satellites can monitor the land surface in fine detail,
but it does not account for spatial correlation explicitly. One may therefore ask whether there is still
a need for spatial statistics in soil mapping. Our assertion is that there is, and we end with a list of
outstanding challenges that pedometricians and spatial statisticians need to face and solve with the
backing of spatial statistics. While these challenges are formulated in the context of soil mapping,
we believe that they are relevant to a much wider application domain than just soil science and
help define a more general spatial statistics research agenda.

2. Spatial statistics for soil mapping

The importance of geostatistics for soil mapping has grown over the years. Although soil
surveyors recognized Tobler’s law long before Tobler enunciated it, they did not know how to
express it in their maps. The breakthrough came in the late 1970s, in particular as theory and
practice in mining found its way into soil science, leading to the first published accounts of kriging
for soil mapping in 1980 (Burgess and Webster, 1980a,b). In the next 20 years kriging in one form
or another dominated the literature on soil mapping. It was elaborated to take into account non-
Gaussian distributions, co-regionalized variables, geographic trend and external drift. In the current
century there have been further developments to combine fixed and random effects by residual
maximum likelihood estimation (Lark et al., 2006) and to deal with non-stationary variance. At the
same time machine learning has become popular, particularly for mapping large regions.

2.1. Conventional soil survey

Traditionally surveyors mapped the soil on foot or by vehicle. They observed the landscape,
vegetation and land use, and they would supplement those observations by information from air-
photographs, geological maps and other sources. They dug pits and augered at places of interest, and
they drew boundaries between what they regarded as different kinds of soil. Each kind of soil on
their maps, once derived, would be characterized by descriptions of one or more representative soil
profiles with material analysed in the laboratory. Spatial statistics was not used formally, although
the surveyors would intuitively sample more densely where spatial variation was greater than in
more homogeneous areas.

Engineers were among the first scientists to recognize that the utility of such maps depended
on their statistical characteristics: variances within the classes depicted would determine how
well one could predict from them. Morse and Thornburn (1961) sampled to a random design soil
maps made by the US Department of Agriculture to estimate means and variances of the classes
mapped; Kantey and Williams (1962) analysed their own maps similarly. Somewhat later, Beckett
and Webster (1971) collaborated with the engineers of the British Army to evaluate soil conditions
for roads and temporary airfields. Their investigations showed not only the merits of conventional
mapping techniques at the time but also their shortcomings; the techniques failed to take into
account spatial correlation within the mapped classes, and they sparked the first quantitative
demonstration of that correlation by Webster and Cuanalo de la C. (1975). Civil engineers are now
well versed in geostatistical techniques and use these methods in site investigations. Auvinet (2019)
recently reviewed the subject with a substantial appendix setting out the mathematics with which
pedometricians are now familiar.

There is no doubt that the practice of conventional soil mapping worked well at some scales,
at say 1:50000 for mapping regions of several hundred of square kilometres. But it needed a
scientific basis, and that was provided by Jenny (1941) in his classic text. Soil is not isolated from
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its environment but results from many processes acting on rocks and sediments over time. Jenny
spelled out five principal sources, or factors, namely climate, organisms, relief, parent material and
time. He expressed the dependence of these factors in the form of a mathematical function. It was
not soluble, but it was the concept that was important.

2.2. Geostatistics and digital soil mapping

Conventional soil mapping falls short where change is gradual, where the landscape is obscured
by dense forest or woodland and where the soil bears little relation to soil forming factors, such
as in agricultural fields and for pollutants. In these situations the main sources of information are
measurements made in the laboratory or directly in the field at geo-referenced sampling sites. It
was there that geostatistics entered into soil mapping with the pioneering work of Webster and
colleagues. They introduced the variogram to describe what appeared to be correlated random
variation, estimated it from sample data by the method of moments and fitted authorized models
by non-linear least-squares approximation, which at the time was novel. It was a logical step from
there to interpolate on to fine grids by ordinary kriging for mapping. Their first paper (Burgess and
Webster, 1980a) is now recognized as a landmark (Lark et al., 2019).

Other papers followed: Burgess and Webster (1980b) to estimate over blocks; Webster and
Burgess (1980) to deal with local drift; Burgess et al. (1981) to optimize sampling; McBratney and
Webster (1983) to incorporate random covariates in a coregionalization; Webster and Oliver (1989)
to estimate conditional probabilities of exceeding, or not, specified thresholds; and McBratney
and Webster (1986) to choose rationally from among two or more plausible competing variogram
models. The focus was on getting the most out of the point observations by modelling anisotropy,
non-stationarity and non-normality, as well as applying change-of-support algorithms and opti-
mizing sampling designs. Kriging was not the only technique for what might be called ‘contouring’
from sample data. Several forms of inverse distance weighting were popular at the time. A major
advantage of kriging, however, is that it minimizes the prediction error variances and reports them.
In other words it provides measures of uncertainty in the predictions which few other techniques
could do. Heuvelink et al. (1989) and Goovaerts (2001) went on to show how this uncertainty in
soil maps could be propagated into subsequent analyses.

A shortcoming of kriging in soil science at that time was that it disregarded environmental
variables, known or assumed to be correlated with target soil variables, such as the soil-forming
factors embodied in Jenny’s conceptual equation. These covariates might be the height or steepness
of the land, annual rainfall or temperature, or vegetation density. They were available from remote
sensing and known at all prediction locations, which meant that they could be included as fixed
effects. Means were needed of incorporating that knowledge. Matheron (1969) had already set
out the mathematics of doing that in his generalized model which he called ‘universal kriging’.
In practice there was a major problem; one needed the variogram of the random residuals from
the drift, and one could not obtain those residuals without knowing the variogram. Nevertheless,
a rough-and-ready empirical solution seemed to be to fit by ordinary least-squares regression the
target variable on values of the covariates, analyse the residuals geostatistically, and then add back
the predictions from the regression to the kriged prediction of the residuals. This was in essence
the basic form of regression kriging. The underlying geostatistical model may be expressed as

P
Z(s) = m(s)+e(s) = Po+ D _Pifils)+e(s). (1)
i=1

Here Z is a soil property of interest, s = {sq, sp} typically in two dimensions is geographic
location, m is a drift (i.e., trend) term that is a linear combination of p environmental covariates f;,
and ¢ a correlated random residual with zero mean and variance o 2. This is what spatial statisticians
will recognize as the ‘linear mixed model’ (Lark, 2012). It has more parameters than the ordinary
kriging model, and pedometricians have contributed greatly to proper estimation of the model

parameters through residual maximum likelihood (REML) estimation (Lark et al., 2006).
Many extensions of the regression kriging model have been made, such as its application to
three-dimensional and space-time mapping (Gasch et al., 2015; Cappello et al., 2021), as well as
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extensions to Bayesian (Steinbuch et al.,, 2022) and generalized linear modelling (Kempen et al.,
2012a). The most important feature of all these is that environmental covariates are used to
help explain the soil spatial variation. In principle, the more of these external covariates one can
incorporate to improve the prediction the less important does the random component, the essence
of ordinary and simple kriging, become.

2.3. Digital soil mapping using machine learning

With the advance of remote sensing and increasing availability of environmental covariates,
attention was drawn to improving the modelling of the trend component in Eq. (1). This can be
achieved by increasing the number of covariates incorporated in the model and by using a flexible,
non-linear model structure. For example, the most recent SoilGrids model starts out with a set of
more than 400 covariates (Poggio et al.,, 2021). Dropping the restriction that the trend is a linear
combination of the covariates leads to a more flexible model and should be able to make prediction
more accurate. Indeed, several case studies have shown how the introduction of machine learning
algorithms has benefited digital soil mapping (e.g. Hengl et al. (2015), Chen et al. (2019)). The
algorithms include random forests, gradient boosting and artificial neural networks, and the current
focus in digital soil mapping research is on modelling the trend using these algorithms. While
traditional regression and kriging rely on explicit statistical models, machine learning does not;
it is based purely on algorithms. The approach undoubtedly has important merits, but it must be
used with caution because it can be sensitive to over-fitting and lacks transparency (Spiegelhalter,
2019).

Machine learning is in essence non-spatial. It operates on a ‘regression matrix’ that stores
paired observations of the dependent (target) and independent variables, without regard to their
geographic coordinates. Several innovations have been proposed and implemented to make it more
spatial. These include defining ‘spatial’ covariates (Hengl et al., 2018), covariates that are derived
from the nearest observations and their distances (Sekuli¢ et al., 2020), and expansion of the set of
covariates with covariate values in local neighbourhoods of the prediction location (Wadoux et al.,
2019b). These approaches operate only on the covariates, however, while the machine-learning
algorithm itself is still non-spatial. The challenge is to account for spatial autocorrelation explicitly,
basically in a way similar to extending a multiple linear regression model to the linear mixed
model (Lark, 2012) or to incorporating spatial correlation in structural equation modelling (Angelini
and Heuvelink, 2018).

Machine learning works well with large sets of data (‘big data’), and it is in these situations that
it is finding its main role in digital soil mapping. Satellites are now providing complete cover of
environmental data on land surface conditions and topographic height at fine resolutions. If there
is strong correlation between them and a target soil property then any residuals from machine-
learning regression are likely to be unimportant for mapping; variograms of the residuals will be
almost flat, and kriging will enhance the predictions rather little (Van der Westhuizen et al., 2022).

One must therefore ask: Has kriging a future for soil mapping? Is geostatistics for digital
soil mapping dead? As it happens, not all soil properties can be easily related scientifically to
environmental covariates, and it is poor science to load large sets of environmental variables into
machines and expect them to produce sense, even if they happen to give plausible results (Wadoux
et al., 2020). Plant nutrients within fields and pollutants in larger regions from diffuse or unknown
sources are examples where covariates may not be very helpful. Mapping them is likely to depend
largely on sample data and geostatistical interpolation for years to come unless proximal sensors
are developed specifically for them and can be used ‘on the run’. The idea is not new. Haines and
Keen (1925), in a remarkable investigation, drew a plough through the soil, measured the soil’s
strength by dynamometer and recorded the drawbar pull as continuous traces on paper charts.
They then interpolated between the traces by hand to produce ‘contour’ maps of the soil’s strength,
which they related to the proportion of clay in the soil. It was way ahead of its time; it would
be another 80 years or so before proximal sensors would be developed and tested to map soil
properties ‘on-the-run’ (Adamchuk and Viscarra Rossel, 2010).
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3. The importance of soil mapping for spatial statistics

Soil science is only one of the domains in which spatial statistics plays a part, and it would
be a gross exaggeration to claim that spatial statistics needs soil science. As mentioned above,
however, the soil does provide a perfect medium for geostatistics. Pedometricians and spatial
statisticians working in soil science have greatly contributed to the development and extension of
geostatistical methods, such as regression kriging (Hengl et al., 2004), residual maximum likelihood
estimation for the mixed linear model (Lark, 2012), non-stationarity in the mean and variance (Lark,
2009; Wadoux et al., 2018), change of support (Orton et al., 2016), and optimization of sampling
designs (Van Groenigen and Stein, 1998; Brus, 2014).

From its outset, the journal Spatial Statistics has been clear about the importance of applications,
not only to steer the development of new methods but also to demonstrate the practical use and
relevance of these methods. To illustrate this we need only to quote from the journal’s aims and
scope: “Spatial Statistics publishes articles on the theory and application of spatial and spatio-
temporal statistics. It favours manuscripts that present theory generated by new applications, or
in which new theory is applied to an important practical case. A purely theoretical study will only
rarely be accepted”. The important role of soil applications is demonstrated by the fact that in the
first ten years of its existence, the journal published 25 articles on the application of spatial statistics
in soil science, most of which were related to modelling soil spatial variation and soil mapping.

One of the drivers of spatial statistics in soil science has come from what is known as precision
agriculture. With modern machines farmers can now vary the amounts of fertilizer and other
agricultural chemicals on-the-run in response to crops’ requirements. In principle, a soil map in
digital form can be held in an on-board computer, and the precise amounts of chemical to be
applied calculated as a machine travels across the land. Oliver (2010) assembled a set of articles
setting out both the theory and potential applications of geostatistics to provide the necessary
information. As it happens, however, the cost of sampling and analysing the soil to map the main
plant nutrients available nitrogen (N), phosphorus (P) and potassium (K) is prohibitive for all but
the most valuable crops such as lettuce (Panagopoulos et al., 2006). Nevertheless, recent advances
in remote sensing and visible-infrared spectroscopy promise to overcome this stumbling block for
P and K (Breure et al., 2022). Pest control is another aspect of farming on which spatial statistics
has potential benefits for both farmers and the environment. Evans et al. (2003) showed that the
cost of sampling soil to map infestation by the potato cyst nematodes could be justified by farmers’
savings on expensive toxic nematicide where there are few or no nematodes. Metcalfe et al. (2016)
analysed the spatial relations between soil and the pernicious grass weed Alopecurus myosuroides
with a view to its control by locally targeted spraying with herbicide.

Most farmers do not have the most modern machines and detailed digitized soil maps. They have
divided variable land into relatively homogeneous parcels—fields and paddocks—based on centuries
of experience. Soil scientists are now helping them to refine those divisions geostatistically; the
aim is to delineate homogeneous zones that differ substantially from neighbouring ones. Oliver and
Webster (1989) and Bourgault et al. (1992) suggested how this might be done by modifying the
multivariate k-means algorithm to take into account the spatial correlation among the sampling
points. The idea is now being put into practice, in particular by scientists at the university of
Bari. Guastaferro et al. (2010) compared several algorithms for the purpose, and Diacono et al.
(2013) and Buttafuoco et al. (2021) have put them into effect on farms. Converting optimized spatial
predictions into less-than optimal classifications might seem reverse engineering, but if that helps
farmers then so be it.

4. Future roles of spatial statistics for soil mapping

We have described above how spatial statistics and machine learning have revolutionized soil
mapping in the past four decades. Digital soil mapping has largely replaced conventional soil map-
ping; it is cheaper, more transparent and therefore reproducible, and more easily updated (Kempen
et al., 2012b; Minasny and McBratney, 2016). The number of journal articles on digital soil mapping
has grown exponentially during the past 20 years (Piikki et al., 2021), and the trajectory seems not
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yet to be flattening. We also noted that machine learning, which is in essence algorithmic and not
spatial, has tended to oust geostatistics for soil mapping in recent years.

There are nevertheless many situations in which machine learning will not work, for example,
where there are few covariates, where available environmental variables are only weakly related
to the target variable, and when there are too few data for calibration. One must also realize that
training a model on only a regression matrix of paired observations of dependent and independent
variables and ignoring their spatial interrelations is inevitably sub-optimal. We have already pointed
out that such relations were crucial to understanding and weed control in the study by Metcalfe
et al. (2016) cited above. This paper is therefore also a call on spatial statisticians to show that
spatial statistics still has an important role to play in modelling soil variation and soil mapping.

Scientific developments are notoriously difficult to plan and predict, but to provide some guid-
ance and inspiration, below we set out eight challenges that pedometricians and spatial statisticians
could tackle to strengthen the role of spatial statistics. We do so in the context of soil mapping, but
many are relevant to a much wider set of applications.

1. Machine learning. Machine learning is here to stay. Its flexibility in modelling the relation
between dependent and independent variables is a great asset. It has been found to improve
substantially the accuracy of soil maps when used appropriately (e.g. Hengl et al. (2015))
with many data and covariates at fine resolutions. It is less effective where data are sparser,
and here spatial statisticians should embrace the techniques and make them more ‘spatial’.
We want machine-learning algorithms that incorporate spatial dependence in the models
they select, and use it for calibration, prediction and simulation. This goes much further
than simply adding ‘spatial context’ to covariates as in Hengl et al. (2018), Sekuli¢ et al.
(2020) and Wadoux et al. (2019b). Perhaps there is merit in extending the Long-Short-Term
Memory neural network (Li et al., 2021; Sungmin and Orth, 2021) from time to space, or by
incorporating Moran’s I or the variogram in machine learning (Nikparvar and Thill, 2021).
Or perhaps it is as easy as using a geographically weighted machine learning approach (Ye
etal,, 2017; Li, 2019). These are recent developments that have not yet made it to this journal,
which has had only seven citations on ‘machine learning’ in the Web of Science in its first
ten years of existence, and all of these referred to use of standard machine learning to spatial
data.

2. Uncertainty quantification of spatial averages and totals. Pedometricians take pride in the fact
that their maps of predictions are routinely accompanied by maps of the uncertainties of
those predictions. A soil map is considered incomplete unless its uncertainties have been
quantified explicitly (Heuvelink, 2014; Veronesi and Schillaci, 2019). This is one of the
strengths of kriging. Machine learning was and still lags behind, but with the development
of quantile regression forests (Meinshausen, 2006), an approach became available that is
now widely used in soil mapping (e.g. Vaysse and Lagacherie (2017), Szatmari and Pasztor
(2019), Poggio et al. (2021)). This method, however, cannot quantify the uncertainty of
spatial averages and totals, which block kriging can do, because it does not model the spatial
dependence. Also here spatial statistics must come to the rescue, and it should look for
more advanced ways than geostatistical modelling of the residuals from machine learning
(e.g. Szatmari et al. (2021)). There is a great need to be able to quantify uncertainty of
spatial averages and totals. For instance, in the context of mitigating the effects of climate
change, Heuvelink et al. (2021) mapped the space-time variation of stocks of organic carbon
in soil in Argentina, but they could not detect statistically significant changes over time at
point support level, because of the large uncertainty. They noted that uncertainty would
average out under spatial aggregation, but they could not quantify it. Similar problems are
faced in other application fields, such as space-time modelling of above-ground biomass. In
attempts to quantify prediction uncertainties of spatial averages, Plaza et al. (2018) assumed
that prediction errors were spatially uncorrelated; Harris et al. (2021) in contrast took the
opposite approach by assuming that errors were perfectly spatially correlated. The truth lies
somewhere in between these extremes, and we need spatial statistical approaches to find it.
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3. Change of support along the soil profile. We noted above the need for spatial statistics to
handle spatial aggregation properly. The problem was cast in the context of a lateral change
of support, but the problem occurs in the vertical dimension too. There it is even more
challenging for soil science, and for several reasons. Soil data are often collected by horizons
which vary in thickness and depth rather than at fixed vertical intervals. In the latter case
pedologists may wish to predict over smaller depth intervals than those on which the
measurements were made, i.e. on smaller vertical supports. Orton et al. (2016) have made
important steps to solve the problem, but methods need to be developed to make them
operational. These analyses are further complicated by the large anisotropies between lateral
and vertical spatial soil variation and the fact that soil vertical variation is far from stationary
(see Li et al. (2016)). Also, although properties tend to be fairly uniform within soil horizons
they can change abruptly from one horizon to another.

4. Sampling designs for soil mapping. Much research has been done to optimize sampling designs
for spatial and space-time soil mapping (e.g. Marchant et al. (2013), Brus (2014), Lie8 (2015),
Brus (2019)). Nevertheless, the methods need to keep pace with developments in modelling
and to adjust to machine learning (Wadoux et al., 2019a). In a recent paper that published
ten challenges for the future of pedometrics (Wadoux et al., 2021b), the question was raised
whether we can “develop new sampling strategies, mapping models and decision making
tools that can synergistically use and consider different sources of soil data (qualitative soil
profiles descriptions, soil maps, soil sensing data, citizen data) that have different precision,
geographical supports, resolutions and extents”.

5. Incorporating attribute and positional measurement uncertainty. There are many sources of
uncertainty in soil mapping, but one that is often ignored is that arising from errors of
measurement and observations. This is serious, because these uncertainties can be substan-
tial (Van Leeuwen et al., 2022). Measurement error can be readily incorporated in kriging
(stemming from the work of Delhomme (1978)), but incorporating it in machine learning
is much less well-developed (Van der Westhuizen et al., 2022). Note that many soil data
sets have both attribute and positional measurement uncertainty. The latter can have major
repercussions for soil modelling when high-resolution covariates are matched with erroneous
soil sampling locations. It is useful to note that positional error can be translated into
measurement error and incorporated in kriging systems. When a perfect measurement at
a location, say s + a, is taken to represent a soil property at location s, with a a possible
positional error, then short-distance spatial variation means that the soil property at s may
differ from that at s + a. Therefore, even if the measurement at location s + a is error-free,
it still represents the soil property value at s with error. The magnitude of this error can be
derived from the short-distance spatial variation.

6. Cross-validation for spatially clustered data. In addition to spatially explicit quantification of
uncertainty (see point 2 above), many digital soil mappers also routinely assess the overall
quality of their maps using independent validation data. This is best done by probability
sampling (Brus et al, 2011), but that incurs an additional cost to survey, and in many
cases one has to make do with cross-validation. Here, concerns have been raised about
cross-validation locations being geographically close to calibration locations, and ‘spatial
cross-validation’ has been proposed (e.g. Brenning (2005), Ploton et al. (2020)). But this
approach starts from the wrong premise that spatial autocorrelation should be avoided, and
it tends to produce validation metrics of accuracy that are too pessimistic (Wadoux et al.,
2021a). In contrast, if data are spatially clustered then standard cross-validation produces
results that are too optimistic. Spatial statisticians need to develop workable and less-biased
assessments of map accuracy where probability sampling is impracticable or unaffordable.
Note that these validation exercises must not only evaluate the accuracy of the predictions
but also the uncertainties of those predictions. This can be done with the prediction interval
coverage probability (PICP, Shrestha and Solomatine (2006)) and accuracy plots (Goovaerts,
2001). It is intriguing that different mapping methods can yield quite different uncertainty
maps, while validation by PICP and accuracy plots cannot reveal that one approach is better
than another (Vaysse and Lagacherie, 2017; Szatmari and Pasztor, 2019).

8



G.B.M. Heuvelink and R. Webster Spatial Statistics xxx (XXxX) Xxx

7. Generalized linear geostatistical model. The generalized linear geostatistical model and its
Bayesian extension (Diggle and Ribeiro Jr., 2007) have been used for mapping soil classes
and binary soil properties, but there have been only a few cases (e.g. Kempen et al. (2012a),
Steinbuch et al. (2022)). Two reasons for there being so few examples are (a) the statistical
and computational complexity; and (b) the difficulty of modelling strong spatial dependence,
because the model assumes that the response is spatially independent conditional on the
signal (Diggle and Ribeiro Jr. (2007), Section 1.4). It might be useful to explore other models
of spatial distribution of categorical soil variables, such as discrete Markov random fields and
autologistic models (Caragea and Berg, 2014; Hristopulos, 2020).

8. Uncertainty communication and spatial decision making under uncertainty. While much atten-
tion is paid to quantifying uncertainty in digital soil maps, and its importance is recognized by
research scientists, it turns out to be more difficult to visualize and communicate uncertainty
to end users and to advise them how uncertainty maps can be used for analysing risk and
making decisions. Milne et al. (2015), Yoo et al. (2018) and Zheng et al. (2021) discuss the
matter, but the topic needs much more attention, by pedometricians (Wadoux et al., 2021b)
and spatial statisticians alike.

5. Conclusion

During the past four decades soil mapping has benefited tremendously from spatial statistics.
Countless soil maps have been produced by kriging in its various forms in that time. Spatial statistics
has also benefited from soil mapping, because practical applications have been powerful catalysts
for development of new methods. It is gratifying that many spatial statisticians have been inspired
and motivated to tackle real-world problems for which pedologists have sought solutions.

The fruitful partnership between pedologists and spatial statisticians is under pressure because
software for machine learning is readily available to analyse huge sets of dense environmental data
from satellites and other sources, and map makers see little need to incorporate spatial statistical
techniques into their procedures. This last is unfortunate; those who abjure spatial statistics fail to
understand its functions and potential benefits both for prediction and understanding. There is an
educational role for spatial statisticians; they need to explain to pedologists what those functions
and benefits are; they need to show that there is added value in incorporating spatial dependence
in the choice of models, in calibration, prediction and simulation. We have listed several challenges
that require spatial statistics. Addressing these will not only advance soil mapping but will also
have positive rewards in understanding the Earth and environmental sciences much more broadly.
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