Hyperspectral imaging for compositional information of sandwiches

15-11-2021, Martin Alewijn (WFSR)

Goal

Contribute to determining food intake:

- Non-destructive determination of macronutrients in a real-life setting
- (Complex) sandwiches

\rightarrow Hyperspectral imaging

Hyperspectral imaging (HSI)

Yields a (sw)NIR spectrum for each pixel of ~0.1 mm²

Information from NIR

Adapted from:

https://doi.org/10.1016/j.jfoodeng.2020.109954

- Diverse foods no calibration for all matrices!
- Complex sandwiches: unknown number and type of foods
- Uneven surfaces (reflectance!) + shadows
- Penetration depth NIR: couple of mm
 - Underlying food might influence the spectrum
 - Underlying food might be hidden

- IMEC Snapscan SWIR C100U-0007
- Range 1116-1670 nm (108 bands)
- 640x512 pixels
- 15 seconds acquisition time

Raw data

640×512×108 (w×h×λ)
 = 135MB ENVI file

- Example: bread with butter and cheese as RGB
 - r = slice @ 1121 nm
 - g = slice @ 1374 nm
 - b = slice @ 1660 nm

wavelength (nm)

Multivariate modelling

- No suitable univariate markers
- Relatively few (independent) observations
- Need for a robust, interpretable algorithm

Fat

Sugars

- 13 selected food types from actual consumption profiles
- Covering range of interest
- Total 104 scans selected
- **PLS**-modelling

7

0

55

Multivariate modelling – fitting statistics

Nutrient	RMSEP	R ²
Fat	5.0	0.95
Protein	6.6	0.55
Moisture	8.3	0.86
Carbohydrates	10.9	0.73
Sugars	8.1	0.72

- Room for improvement...
- Is this sufficient for our goal?

Predictions

Processing times: (on Intel[®] Xeon[®] E-2176M 6Core, 2.70GHz, Win-10, R 3.6)

Step	time (s)
Raw file loading (135 MB)	35
Data preprocessing (mean-center + spectral stdev-scaling)	3
Predicting composition (327,680 spectra x 5 nutrients)	0.3
(Re)organising and saving results (8 MB)	12
Total (per file)	50.3

Yields fat-, protein-, moisture-, carbs-, sugar- concentrations... as function of x- and y- position of the image...

Clustering

- Ideally: based on colour (d)RGB image analysis
- Number of foodstuffs visible unknown
- Many tools available (kMeans, HC, metaheuristic,...)

- For now: clustering based on detecting groups in each nutrient's distribution
- Background removal

Observed protein distribution

Results (image processing for bread/butter/cheese example)

1. Raw result

3 selected wavelengths as RGB-image

Results (image processing for bread/butter/cheese example)

- Raw result
 3 selected wavelengths
 as RGB-image
- 2. False-colour image

 $R \propto fat\%$ G \propto protein%

 $B \propto moisture\%$

Results (image processing for bread/butter/cheese example)

- Raw result
 3 selected wavelengths
 as RGB-image
- 2. False-colour image $R \propto fat\%$ $G \propto protein\%$ $B \propto moisture\%$
- 3. Nutrient-density based clustering random colour per cluster

Validation set – reference vs medians from auto-segmented HSI scans

- A one-step macronutrient quantification from HSI data is feasible Suitable to discriminate foods & tentative identification
- Subsequent matrix-specific models might increase performance
 Prediction of butter fat% (<±10%) and layer thickness (<±60mg/cm²)
- Data quantity is a potential limitation for practical use
- Needs additional data for food intake estimation...

Thank you for your attention!

Special thanks to:

Yannick Weesepoel (WFSR)

Judith Mueller-Maatsch (WFSR)

Hajo Rijgersberg (WFBR)

Hannelore Heuer (WFBR)

Freek Daniels (WFBR)

Mireille Baart (WU-HNE)

NWO (grant Dutch Research Agenda, "Meten en detecteren van gezond gedrag")

