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• Greenhouse models have been in use 
since at least the 1980's, and the number 
of new models is growing tremendously 

• We analyze recently published green-
house models in terms of their objec-
tives, structure, inheritance, and 
evaluation 

• We suggest that a main reason for the 
development of new greenhouse models 
is the lack of transparency of existing 
models 

• Transparency, data sharing, bench-
marks, and validation metrics are sug-
gested as means to facilitate future 
development 

• Developers are encouraged to reflect on 
and state their models' suitability, 
complexity, validity, and transparency  
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A B S T R A C T   

CONTEXT: Process-based greenhouse climate models are valuable tools for the analysis and design of greenhouse 
systems. A growing number of greenhouse models are published in recent years, making it difficult to identify 
which components are shared across models, which are new developments, and what are the objectives, 
strengths and weaknesses of each model. 
OBJECTIVE: We present an overview of the current state of greenhouse modelling by analyzing studies published 
between 2018 and 2020. This analysis helps identify the key processes considered in process-based greenhouse 
models, and the common approaches used to model them. Moreover, we outline how greenhouse models differ in 
terms of their objectives, complexity, accuracy, and transparency. 
METHODS: We describe a general structure of process-based greenhouse climate models, including a range of 
common approaches for describing the various model components. We analyze recently published models with 
respect to this structure, as well as their intended purposes, greenhouse systems they represent, equipment 
included, and crops considered. We present a model inheritance chart, outlining the origins of contemporary 
models, and showing which were built on previous works. We compare model validation studies and show the 
various types of datasets and metrics used for validation. 
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RESULTS AND CONCLUSIONS: The analysis highlights the range of objectives and approaches prevalent in 
greenhouse modelling, and shows that despite the large variation in model design and complexity, considerable 
overlap exists. Some possible reasons for the abundance of models include a lack of transparency and code 
availability; a belief that model development is in itself a valuable research goal; a preference for simple models 
in control-oriented studies; and a difference in the time scales considered. Approaches to model validation vary 
considerably, making it difficult to compare models or assess if they serve their intended purposes. We suggest 
that increased transparency and availability of source code will promote model reuse and extension, and that 
shared datasets and evaluation benchmarks will facilitate model evaluation and comparison. 
SIGNIFICANCE: This study highlights several issues that should be considered in greenhouse model selection and 
development. Developers of new models can use the decomposition provided in order to present their models and 
facilitate extension and reuse. Developers are encouraged to reflect on and explicitly state their model's range of 
suitability, complexity, validity, and transparency. Lastly, we highlight several steps that could be taken by the 
greenhouse modelling community in order to advance the field as a whole.   

1. Introduction 

Mathematical modelling of greenhouse climate is the study dedi-
cated to quantitatively describing horticultural greenhouses and the 
interrelationships between the outdoor weather, the indoor climate, the 
greenhouse structure, the climate control equipment, and the cultivated 
crop. This discipline sits at the intersection of several fields, including 
agricultural crop modelling, building engineering, and systems and 
control theory. 

Greenhouse modelling dates back to at least 1958, with a model 
describing how water on the greenhouse roof influences the absorbed 
solar radiation (Morris et al., 1958). The first model describing the 
complete greenhouse system may be attributed to Businger (1963), who 
used mathematical equations to analyze the energy budget of a glass-
house. Since then, greenhouse modelling has been used as a research 
tool for synthesis and advancement of knowledge, as an educational 
device in the classroom, and as an aid to decision-making and policy 
analysis (Gary et al., 1998). In their role as decision aides, greenhouse 
models have been used for help with tactical management, operational 
control, and design of greenhouse systems (Lentz, 1998). 

The greenhouse industry currently faces difficult challenges as it 
aims to increase production around the world while decreasing the use 
of resources such as energy and water (Marcelis et al., 2019). In their 
role as research tools, models can provide useful insights to help address 
these problems and to identify potential research directions in order to 
sustainably intensify production. At the same time, there is a growing 
interest by the greenhouse industry in the use of models and other data- 
based tools as an aid in management support and automation. Models 
are increasingly used in horticulture (Körner, 2019) as companies pro-
vide support tools based on modelling and prediction (B-Mex, 2020; 
Hoogendoorn Growth Management, 2020; Priva, 2019), and methods 
for greenhouse control based on artificial intelligence are being devel-
oped and tested (Hemming et al., 2019b). 

The growing interest in greenhouse modelling results in a great 
number of published models. As early as 1985, Van Bavel et al. noticed 
“a proliferation of greenhouse climate models that may well confuse 
those that wish to solve practical problems by the simplest means 
possible” (Van Bavel et al., 1985). Around 1990, several reviews (De 
Halleux, 1989; Hölscher, 1992; Lacroix and Zanghi, 1990) collectively 
found 41 greenhouse models published over a period of nearly 30 years, 
from 1958 to 1986 (Von Zabeltitz, 1999). This list has since grown 
tremendously, with several recent reviews (Choab et al., 2019; Golzar 
et al., 2018; Iddio et al., 2020; Lopez-Cruz et al., 2018; Taki et al., 2018) 
collectively listing over 150 greenhouse models, more than 70 of them 
developed in the last decade. 

It is unclear why so many greenhouse models are being developed. 

One possible explanation is that greenhouses are extremely versatile, 
differing in structure type, climate control equipment, cultivated crops, 
and purposes (Stanghellini et al., 2019). Accordingly, a vast range of 
goals and research questions may be posed regarding greenhouse 
operation. Another possible explanation is that models with similar 
purposes are being independently developed by different groups, 
creating model redundancy (Holzworth et al., 2015; Janssen et al., 
2017). 

Whatever the reason may be, the plethora of existing greenhouse 
models makes it difficult for newcomers to the field – researchers, de-
velopers, or other potential users of a model – to adequately choose the 
best model for their purposes. Soltani and Sinclair (2015) have listed 
several criteria that should be taken into account when selecting a 
model, including suitability, complexity, validity, and transparency. 
“Suitability” concerns the objectives that a model was designed to 
achieve; “complexity” concerns the number of parameters, processes or 
equations included in a model; “validity” (termed “robustness” by Sol-
tani and Sinclair) describes the extent of the scenarios under which the 
model can generate accurate predictions; and “transparency” reflects the 
accessibility and clarity of the model structure and source code. 

The purpose of this study was to provide an overview of the current 
status of greenhouse modelling. We focused on one category of green-
house models, namely process-based models of the greenhouse climate, 
that consider the greenhouse air as a “perfectly stirred tank” (Roy et al., 
2002), possibly divided into several compartments that are themselves 
perfectly stirred. We analyzed recently published models in this category 
in terms of their objectives, complexity, validity, and transparency. This 
categorization serves as an overview of greenhouse models, which 
provides a first step in the effort to explain why so many greenhouse 
models exist. We examined if and how models differ by determining 
their shared and distinct components and identifying which of those 
originate from previously published models, and which are new addi-
tions. In this way, two objectives are served: first, a framework for 
decomposing and analyzing greenhouse models is offered. An overview 
of recently developed models is laid out by this framework, allowing 
newcomers to make informed decisions about which model to use or 
build on. Second, a general overview of the current state of greenhouse 
climate modelling is provided. This overview is used to identify possible 
bottlenecks in the advancement of the field, suggest solutions on how 
these bottlenecks may be overcome, and outline further steps that can be 
taken to make improvements for the future of greenhouse modelling. 

The rest of this paper is organized as follows: Section 2 provides some 
background on process-based greenhouse climate models, describing a 
general common structure that these models share and demonstrating 
with examples the possible range of complexity within this common 
structure. Section 3 details the methodology used in the review and 
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analysis of process-based greenhouse climate models published between 
2018 and 2020. Section 4 presents the results of this analysis, and Sec-
tion 5 provides a discussion and reflection on the current state of 
greenhouse modelling in view of the results. 

2. Background 

2.1. Process-based greenhouse climate models and the “perfectly stirred 
tank” 

As in other systems, greenhouse climate models may be broadly 
categorized as either descriptive (also termed empirical or black-box) or 
process-based (also termed mechanistic, explanatory, white-box, or 

Fig. 1. Scheme of the greenhouse system. Control decisions are based on the outdoor weather, the indoor climate, and the crop status. The indoor climate is 
influenced by the outdoor weather, the controls, and the crop. The crop is influenced by the indoor climate. Some outputs are yield (which depends on the crop), costs 
and energy use (which depend on the controls). In this study we focus on the indoor climate and the processes influencing it. 
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grey-box) (Thornley and France, 2007). The distinction between the two 
categories, however, is not always clear, and they are better viewed as 
two edges on a spectrum (Keating and Thorburn, 2018). Descriptive 
models describe systems using equations based on mathematical or 
statistical grounds, regardless of underlying principles. In contrast, 
process-based models aim to provide an understanding or explanation of 
the system being investigated, typically by combining two levels of 
description, with a lower level describing observed scientific phenom-
ena, and a higher level describing emergent properties based on these 
phenomena (Thornley and France, 2007). The expectation is that 
process-based models generalize better than descriptive models to 
conditions outside the data range on which they have been developed 
and validated. Thus, they can potentially provide insights that apply 
outside the limits of the system on which they were designed, predicting 
the results of a range of “what-if” scenarios (Duncan, 1975; Keating and 
Thorburn, 2018). 

One class of process-based greenhouse models treats the greenhouse 
air as a “perfectly stirred tank” (Roy et al., 2002). In this approach the 
greenhouse air is treated as a uniform entity, where spatial variability is 
ignored and representative values of, e.g., air temperature are used. In 
some cases, the air is divided into compartments such as the air above 
and below a thermal screen (see example below), but still each 
compartment is assumed to be perfectly stirred. Furthermore, under this 
approach the greenhouse is often assumed (sometimes implicitly) to be 
infinitely large (e.g., De Zwart, 1993). One consequence of this approach 
is that the air is assumed not to be influenced by the side walls of the 
greenhouse. 

Another class of models uses computational fluid dynamics (CFD) to 
describe the movement of air within the space of the greenhouse 
(Boulard et al., 2002). This method, which is considerably more complex 
and computationally intensive than the perfectly stirred tank approach, 
allows to describe heterogenous attributes of the greenhouse air and 
their change through space and time. A review on the possibilities and 
challenges of CFD in greenhouse modelling was given by Norton et al. 
(2007), and more recent advances were listed by Choab et al. (2019). 
Nevertheless, the heavy computational requirements of CFD models still 
limit their applicability, and a middle ground may be found by 
combining them with perfectly stirred tank approaches (Piscia et al., 
2015). 

Some greenhouse models are developed using building energy 
simulation programs such as EnergyPlus or TRNSYS (Choab et al., 
2019). These programs were designed to simulate the energy demand of 
buildings, and considerable modifications are needed to correctly apply 
them for greenhouses (Ahamed et al., 2020). In these platforms, models 
are constructed using pre-existing components available within the 
simulation program. While this could facilitate model development, it 
reduces model transparency, since understanding the inner workings of 
the model requires considerable knowledge of the simulation program 
that was used for its development. 

In this study, we focus on process-based, perfectly stirred tank 
models of the greenhouse climate. This means that we focus on the in-
door climate and the processes that influence it (Fig. 1). An essential 
component of the indoor climate is the air, but other components (e.g., 
crop temperature, floor temperature) may also be included. Models that 
describe exclusively the control system (e.g., the boiler, cogenerator, 
heat storage) or exclusively the crop (yield models), are outside the 
scope of this study. Nevertheless, processes that influence the indoor 
climate (including crop processes such as photosynthesis and transpi-
ration) are reviewed here. Since crop yield is the most important 
component of the greenhouse system, and in fact, the reason for its 

existence, we also survey how this component was considered whenever 
it was included. 

2.2. Objectives of process-based greenhouse climate modelling 

As mentioned earlier, process-based models are designed with the 
intention that they provide insights that lie outside the domain of 
knowledge and data that was used in their development (Duncan, 1975; 
Keating and Thorburn, 2018). The objectives and purposes of process- 
based greenhouse climate models can be classified into four cate-
gories: systems analysis, exploratory modelling, model-based control, 
and model-assisted design. 

In systems analysis, a model is used to better understand or describe 
a particular greenhouse system. This approach often stems from a sci-
entific, curiosity-driven, exploratory approach. Once the model is 
adequately described and understood, it can be used for other purposes 
such as model-based design and control. In systems analysis, methods 
such as sensitivity analysis can be used to reveal which components have 
a strong influence on the system. Here, care should be taken to be aware 
on what is actually being analyzed: the real-world system represented by 
the model, or the model itself, as a sensitivity analysis can uncover in-
sights regarding both (e.g., Van Henten, 2003). 

In exploratory modelling (also termed scenario analysis), the model 
is used to predict the results of untested scenarios. This analysis can 
point out directions for solving a problem or be used to narrow down a 
list of possible strategies or solutions which can then be tested in prac-
tice. For example, De Zwart (1996) used a model to find the most 
promising energy saving methods out of a predefined list. 

Model-based control uses models to apply methods such as model 
predictive control or optimal control on the greenhouse climate (e.g., 
Katzin et al., 2020a; Kuijpers et al., 2021; Tap, 2000; Van Henten, 2003; 
Van Henten et al., 1997; Van Ooteghem, 2007; Van Straten et al., 2010). 
While this line of research generates meaningful insights regarding 
greenhouse climate control, it is rarely realized in commercial green-
house practice (Van Beveren et al., 2015b). 

Lastly, model-assisted design is a form of exploratory modelling used 
for the design of greenhouse systems. It may include scenario analysis or 
more sophisticated methods. For example, Vanthoor (2011) presented a 
model and an optimization method which was used to find an optimal 
design (based on model predictions) for a given location and situation. 

2.3. General structure of process-based greenhouse climate models 

In this section, we describe a general structure that is common in all 
process-based greenhouse climate models. At the same time, we outline 
the range of different approaches that are found between models. This 
section summarizes observations from several sources describing 
greenhouse models, with a wide range of complexity (De Zwart, 1996; 
Stanghellini et al., 2019; Van Henten, 1994; Van Straten et al., 2010). 

The indoor climate may be described by one or more of the following 
attributes: temperature, humidity, CO2 concentration, and light. A 
general way to model the temperature, humidity, and CO2 concentration 
is by considering balances: an energy balance, a water vapor balance, 
and a CO2 balance, but not all greenhouse climate models describe all 
three balances: some focus only on energy, or only on energy and water. 
For each of these balances, incoming and outgoing flows are identified, 
and the difference between the incoming and outgoing flows is the net 
change in each attribute. A set of equations that describes these net 
changes is:  
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Fig. 2. Scheme of the Van Henten model (Eq. 1, Eq. 2) (Van Henten, 1994, 2003), based on the Forrester diagram conventions (Forrester, 1961; see also Haefner, 
2005). Mass and energy flows are indicated by solid lines, information flows are indicated by dashed lines (see legend). Valves placed over solid lines indicate rate 
equations that influence the rate of the flow passing through the valve. Information flows indicate the influence of an input or a state on a rate of flow. For example, 
photosynthesis is influenced by solar radiation, crop dry weight, indoor air temperature and indoor CO2 concentration. Photosynthesis in turn influences the rate of 
CO2 flow from the indoor air to the crop. Arrows indicate which objects act as sources, sinks, or both. For example, the outdoor air may be a source or a sink of water 
vapor, but irrigation is only a source. 
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Fig. 3. Scheme of the De Zwart model (De Zwart, 1996) with its mass and energy flows (Eq. 1, Eq. 3). Influences on ventilation rate and air flow through screen are 
depicted below; their influence on other flows are indicated by valves labelled by V and S, respectively. See Fig. 2 for legend and further explanation of the diagram 
conventions. The photosynthesis rate influences the flow of CO2 from the indoor air to the crop. CO2 absorbed by the crop is an output of the greenhouse model which 
is in turn used as an input for a crop model. To simplify the figure, exchanges of latent heat QLatent are shown together with the accompanying change of phase of 
water WTrans, WCond, or WEvap. These processes simultaneously influence both the energy balance (a temperature of an object) as well as the water vapor balance (a 
vapor concentration of an object). For example, condensation of vapor from the indoor air onto the screen influences both the indoor vapor concentration (WCond) as 
well as the screen temperature (QLatent). 
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Here, each line represents a balance. The first line represents the 
energy balance, where dE

dt is the net change of energy in the greenhouse, 
with t representing a time unit (in this case seconds), and E expressed in 
J m− 2. Expressions on the right-hand side of the equation are net flows 
which may be positive (adding energy, i.e., heating the greenhouse), 
negative (cooling the greenhouse), or zero. The sign in front of each 
expression in Eq. 1 indicates what is the typical direction of each flow: 
the typical incoming energy flows are QSun, heating from the sun; QHeat, 
heat from the heating system; and QLamps, heat emitted by lamps. The 
typical outgoing energy flows are QVent, exchange of air through venti-
lation; QLatent, conversion from sensible to latent heat; QCon, convective 
and conductive exchanges with the outside; QFIR, thermal (far infrared) 
radiation; and QCool, heat extracted by cooling mechanisms. 

The second line represents the water vapor balance, with dMW
dt the net 

change of water vapor mass in the greenhouse. The typical incoming 
flows are WTrans, crop transpiration; WEvap, water evaporation from the 
soil or other surfaces; and WHum, which includes humidity added by 
control mechanisms such as fogging or pad and fan cooling. The typical 
outgoing flows are WCond, condensation of vapor on cold surfaces; WVent, 
vapor exchange through ventilation; and WDehum, vapor extracted by 
dehumidification mechanisms. Water vapor released by crop transpi-
ration originates from irrigation, which is typically assumed to be sup-
plied in a sufficient rate such that the water availability does not reduce 
transpiration. 

The third line represents the CO2 balance, where dMC
dt is the net change 

of CO2 mass in the air. The typical incoming flow is CInj, enrichment of 
the air by CO2 injection; the typical outgoing flows are CPhot, crop net 
photosynthesis; and CVent, CO2 exchange through ventilation. 

Some of the flows above may act both as incoming and outgoing 
flows. For example, when CVent is positive it represents an outgoing flow, 
losses of CO2 from the system through ventilation. This is the common 
case when the indoor CO2 concentration is higher than the outdoor. 
However, CVent may also be negative, for instance, if the indoor CO2 
concentration is lower than the outdoor. In this case the expression 
− CVent in Eq. 1 will be positive and represent an incoming flow of CO2 to 
the system. 

While Eq. 1 describes the greenhouse balances as differential equa-
tions, not all process-based greenhouse climate models describe or 
simulate these balances in this way. For example, the use of discrete- 
time difference equations is common (Lopez-Cruz et al., 2018). 
Furthermore, as can be seen in Fig. 1, many of the greenhouse compo-
nents are interdependent: for example, crop transpiration and photo-
synthesis are influenced by the indoor climate, which is in turn 
influenced by crop transpiration and photosynthesis. Therefore, the 
model may need to be solved iteratively. Another approach is to assume 
that the entire system is in steady state, i.e., that dE

dt = 0, dMW
dt = 0, dMC

dt =

0. Using this approach allows to model all but one of the components in 
each line of Eq. 1, and calculate the last component based on the steady 
state assumption. 

Light is an important attribute of the indoor climate of the green-
house. In particular, the amount of photosynthetically active radiation 
(PAR) in the greenhouse may be used as an input to a crop model in 
order to estimate crop growth and photosynthesis, and the amount of 

short wave and/or long wave radiation may be used as an input for a 
transpiration model (Katsoulas and Stanghellini, 2019). The amount of 
available light in the greenhouse is a sum of the light originating from 
the sun and from lamps. Light from the sun inside the greenhouse is 
typically a product of the solar radiation outside the greenhouse and the 
greenhouse transmissivity, a unitless factor which describes what frac-
tion of the outdoor radiation penetrates into the greenhouse. Light from 
the lamps is typically a factor of the energy provided to the lamps and 
the lamp's photosynthetic photon efficacy (PPE), which is expressed in 
μmol of photons of PAR light per J of energy input (Nelson and Bugbee, 
2014). 

2.3.1. Example1: The Van Henten model 
A concrete example is the differential equations based model of Van 

Henten (1994, 2003), summarized here and in Fig. 2 using notation from 
Eq. 1:  

dXT

dt
=

1
ccap,q

(QSun + QHeat − QVent − QCon)
(◦C s-1) 

(2) 

dXh

dt
=

1
ccap,h

(WTrans − WVent)
(kg {water vapor} m-2 s-1) 

dXc

dt
=

1
ccap,c

(
CInj − CPhot − CVent

) (kg {CO2} m-2 s-1) 

dXd

dt
= f(XT ,XC,Xd,Vrad)

(kg {dry weight} m-2 s-1) 

CPhot = g(XT,Xc,Xd,Vrad) (kg {CO2} m-2 s-1) 
WTrans = h(XT,Xh,Xd) (kg {water vapor} m-2 s-1)  

This model is composed of 4 states described by 4 differential 
equations. Three of these states correspond to the balances of Eq. 1: the 
indoor temperature XT (◦C), the indoor vapor concentration Xh (kg 
{water vapor} m− 3), and the indoor CO2 concentration Xc (kg {CO2} 
m− 3), defined by equations corresponding to the balances E, MW, and MC 
of Eq. 1. The parameters ccap,q, ccap,h, ccap,c and the functions f(XT,XC,Xd, 
Vrad), g(XT,XC,Xd,Vrad), and h(XT,Xh,Xd) are described in Van Henten 
(1994, 2003). Several components mentioned in Eq. 1 are neglected in 
this model. At the same time, the model describes a state Xd representing 
the dry weight of the crop in the greenhouse (kg {dry weight} m− 2). This 
state, governed by the equation f whose definition is excluded here, 
provides additional information about the greenhouse system but it is 
not part of the climate balances. Nevertheless, the crop dry weight state 
Xd influences the photosynthesis and transpiration flows CPhot and WTrans 
(given here as functions g and h), which are part of the greenhouse 
climate system. 

2.3.2. Example 2: The De Zwart model (KASPRO) 
In order to illustrate the range of models that are represented by Eq. 

1, another example (De Zwart, 1996) is given in Fig. 3. The De Zwart 
model (also known as KASPRO), developed around the same time and 
place as the Van Henten model, is remarkably more elaborate. It in-
cludes nearly all components listed in Eq. 1, with several of them further 
decomposed to smaller subcomponents. For example, QSun is divided 
into diffuse and direct radiation from the sun and is composed of solar 
radiation heating the greenhouse floor, air, crop, and cover. Using the 
notation of the De Zwart model, the various components of the energy 

dE
dt

= QSun + QHeat + QLamp − QVent − QLatent − QCon − QFIR − QCool (J m− 2 s− 1 = W m− 2)

dMW

dt
= WTrans + WEvap + WHum − WCond − WVent − WDehum (kg {water vapor} m− 2 s− 1 )

dMC

dt
= CInj − CPhot − CVent (kg {CO2} m− 2 s− 1 )

(1)   
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balance are defined by:  
QSun = PSunCov + PSunAir + PVISCan + PNIRCan + PVISFlr + PNIRFlr (W m-2) 

(3) 

QHeat = HBoilUpp + HBoilLow (W m-2) 
QLamp = PAluAir (W m-2) 
QVent = HTopOut + HAirOut (W m-2) 
QLatent = LCanAir + LScrTop − LAirScr − LTopCov − LAirCov (W m-2) 
QCon = HCovOut (W m-2) 
QFIR = RCovSky (W m-2)  

Here, P is net shortwave radiation, H is net convection or conduction, 
L is net latent energy, and R is net thermal radiation. The subscripts 
indicate the origin and target of the net energy flow: for example, HCovOut 
represents net energy exchange by convection from the greenhouse 
cover to the outside air. When HCovOut is positive, the net energy transfer 
is from the cover to the outside air, cooling the greenhouse; when HCovOut 
is negative, the net energy transfer is from the outside air to the cover, 
heating the greenhouse.. Note that PVISCan and PNIRCan are denoted by a 
single line in Fig. 3, and similarly for PVISFlr and PNIRFlr. Similar equations 
as in Eq. 3 can be constructed for the water and CO2 balances. 

The De Zwart model is made up of 14 states that are defined using 
ordinary differential equations. These states are: the vapor pressure of 
the air below the screen, the CO2 concentration of the air below the 
screen, and the temperatures of the cover, air below the screen, crop, 
upper heating net, lower heating net, floor, and 6 soil layers. Four 
additional variables are calculated using algebraic equations. These 
variables are: the vapor pressure of the air above the screen, the CO2 
concentration of the air above the screen, the temperature of air above 
the screen, and the temperature of the screen (see Eq. 4, below). As in 
the case of the Van Henten model, the states serve two purposes: first, 
they add detail to the simulation, providing descriptions for the tem-
peratures of the cover, air, canopy, etc. Second, these details are used to 
calculate the inflows and outflows of the general balance equations (Eq. 
3). For example, the net flow of thermal radiation QFIR is defined as the 
thermal radiation from the cover to the sky RCovSky. This value depends 
on the cover temperature TCov, as will be illustrated in the next section. 

To give more concrete detail, some of the equations concerning the 
energy balance in the De Zwart model are:  

Here, T is the temperature of an object in the greenhouse (◦C), and ρ, 
c, V, Cap, thso(i), ρcp, soil are model parameters. Subscripts (Cov, Top, Scr, 
etc.) are as described in Fig. 3. HBoilUpp and HBoilLow are energy flows from 
the boiler to the upper and lower heating nets. The De Zwart model 
includes elaborate sub-models to calculate these energy flows, which are 
outside the scope of this review. 

2.4. Components of process-based greenhouse models 

As illustrated by the examples in Section 2.3, a broad range of 

approaches is possible for modelling the greenhouse climate. These 
approaches can be classified on a spectrum between “simple” and 
“complex”. Complex models include a larger number of processes and 
objects, and use mechanistic descriptions of processes that involve 
multiple influencing variables or inputs. Simpler models neglect some 
processes, use fewer objects, and summarize phenomena with descrip-
tive functions, while maintaining an overall process-based model 
structure. Objects in this context are entities that are described by var-
iables: objects of the energy balance are described by their temperature, 
objects of the water vapor balance are described by their vapor con-
centration, and objects of the CO2 balance are described by their CO2 
concentration. For example, the Van Henten energy balance includes 
only two objects: indoor and outdoor air, and only 4 processes: solar 
radiation, heating pipes, convection and ventilation (Fig. 2, Eq. 2). The 
De Zwart energy balance has 17 objects, including soil layers and the sky 
temperature, and processes not considered by Van Henten such as 
thermal radiation (FIR) and conversion to latent heat (Fig. 3, Eq. 3, Eq. 
4). 

Besides the objects and processes included, models also vary in how 
each process is described. Table 1 lists simple and complex approaches 
that are used to describe some of the processes in Eq. 1. The following 
subsections provide further detail. 

2.4.1. Solar radiation and energy from lamps 
The heating input from the sun can be described as QSun = aSunISun 

(W m− 2) with ISun (W m− 2) representing solar radiation from the sun and 
aSun (− ) the fraction of global radiation that contributes to heating the 
greenhouse. Solar radiation ISun is typically given as an input to the 
model. This input may be a single value representing global radiation, or 
two values differentiating between direct and diffuse radiation. Solar 
radiation can further be decomposed into photosynthetically active ra-
diation (PAR), which is used by the crop model to calculate photosyn-
thesis, and other wavebands, such as near infrared radiation (NIR) or 
ultraviolet (UV) radiation which contribute to heating but not to 
photosynthesis. The coefficient aSun may be assumed constant, or 
depend on the location of the sun in the sky and the amount of diffuse 
and direct radiation. Note that the value of aSun can be different from 

greenhouse transmissivity, a measure of what fraction of the outdoor 
sunlight penetrates the greenhouse and reaches the canopy, which is 
used when estimating photosynthesis. Both aSun and greenhouse trans-
missivity can be wavelength-dependent. 

Heating from the lamps can be described as QLamp = aLampILamp (W 
m− 2) where ILamp (W m− 2) is the energy input (electricity) provided to 
lamps and aLamp (− ) is the fraction of this input that contributes to 
heating the greenhouse. As with solar radiation, aLamp may be assumed 
constant or be dependent on a sub-model describing the lamp output in 
terms of photosynthetically active radiation (PAR), near infrared radi-
ation (NIR), thermal (far infrared) radiation (FIR), convective and 

dTcov

dt
=

1
ρcovcp,covVcov

(
PSunCov + HTopCov + HAirCov + RFlrCov + RScrCov + RUppCov + RLowCov + RCanCov + LTopCov + LAirCov − HCovOut − RCovSky

) (◦C s-1) 

(4) 

0 = HScrTop + HAirTop − HTopCov − HTopOut (◦C s-1) 
0 = RFlrScr + LAirScr + RUppScr + RLowScr + HAirScr + RCanScr − HScrTop − LScrTop − RScrCov (◦C s-1) 

dTair

dt
=

1
ρaircp,airVair

(
PAluAir + PSunAir + HUppAir + HLowAir + HCanAir − HAirFlr − HAirTop − HAirScr − HAirOut − HAirCov

) (◦C s-1) 

dTcan

dt
=

1
capleaf LAI

(
RUppCan + RLowCan + PVISCan + PNIRCan − HCanAir − RCanCov − RCanScr − RCanFlr − LCanAir

) (◦C s-1) 

dTflr

dt
=

1
ρflrcp,flrVflr

(
RLowFlr + RUppFlr + HAirFlr + RCanFlr + PVISFlr + PNIRFlr − HFlrSo1 − RFlrScr − RFlrCov

) (◦C s-1) 

dTupp

dt
=

1
ρuppcp,uppVupp

(
HBoilUpp − RUppScr − RUppCov − HUppAir − RUppCan − RUppFlr

) (◦C s-1) 

dTlow

dt
=

1
ρlowcp,lowVlow

(HBoilLow − RLowScr + RLowCov + HLowAir + RLowCan + RLowFlr)
(◦C s-1) 

dTso(i)

dt
=

1
thso(i)ρcp,soil

(
HSo(i− 1)So(i) − HSo(i)So(i+1)

)
i = 1,…6 (◦C s-1)   
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conductive heating. The choice on how to model the lamps may also 
depend on which lamps are considered, e.g., incandescent lamps; fluo-
rescent lamps; high-intensity discharge lamps such as high-pressure 
sodium (HPS) or metal-halide lamps; or light emitting diodes (LEDs). 

Naturally, for greenhouses without supplemental lighting this compo-
nent is not incorporated in the model. 

2.4.2. Ventilation 
Energy lost through ventilation is typically represented by air ex-

changes between two bodies: 

QVent = vc(T1 − T2)
(
W m− 2) (5)  

where T1 and T2 (◦C) are the temperatures of the two bodies, c (J 
m− 3 ◦C− 1) is the volumetric heat capacity of the air, and v (m3 m− 2 s− 1) 
is the rate of air exchange. In the simplest cases Qvent is neglected or 
assumed constant. Alternatively (as in the Van Henten model), v is given 
as an input, T1 is the indoor temperature, and T2 is the outdoor tem-
perature. In more complex models (as in the De Zwart model) several air 
exchanges are considered, modelled as in Eq. 5, and summed to 
constitute QVent. A complex approach to modelling v takes into account 
factors such as the degree of opening of the windows; outdoor wind 
speed; temperature differences between indoor and outdoor air; the 
number, geometry, and location (roof, side wall) of the windows; and 
more. Other air exchanges in the greenhouse (e.g., between the air 
below and above a screen) can be modelled similarly. 

The air exchange between indoor and outdoor air v is used similarly 
in the calculation of losses of water vapor and CO2 through ventilation: 

WVent = v(V1 − V2)
(
kg {water} m− 2 s− 1 ) (6)  

CVent = v(C1 − C2)
(
kg {CO2} m− 2 s− 1 ) (7) 

where WVent (kg {water} m− 2 s− 1) is the rate of water vapor loss to 
the outside, and V1 and V2 (kg {water} m− 3) are, respectively, the indoor 
and outdoor water vapor concentrations. Similarly, CVent (kg {CO2} m− 2 

s− 1) is the rate of CO2 loss to the outside, and C1 and C2 (kg {CO2} m− 3) 
are the indoor and outdoor CO2 concentrations. 

2.4.3. Convection and conduction 
Convection and conduction between two bodies are typically 

calculated according to Fourier's law: 

QCon = h(T1 − T2)
(
W m− 2) (8)  

where h (W ◦C− 1 m− 2) is called the heat exchange coefficient and T1 and 
T2 (◦C) are temperatures of the two bodies. Convection and conduction 
are quite different processes, but they are often lumped together in 
greenhouse models. For example, in convective exchanges the heat ex-
change coefficient h is often described by a non-linear function of the 
temperature difference T1 − T2, and may depend on other factors such as 
wind, although a simple approach assumes a constant h. 

In greenhouse modelling, convection and conduction are often 
treated in a similar fashion primarily because these processes are 
spatiotemporal in nature, describing a transport of energy through space 
and time. In the framework of “perfectly stirred” homogenous models, 
this transport is reduced to a temporally dynamic process. In this sense, 
Eq. 8 can be seen as a first-order approximation of two partial differ-
ential equations that describe heat transport in space and time (see e.g., 
Van Mourik (2008)). 

What T1 and T2 (◦C) represent depends on the context. In simple 
cases, T1 represents the greenhouse temperature, typically the green-
house air, and T2 is the temperature of the outside air. If conduction to 
the soil is included, a function as in Eq. 8 may be added where T2 is the 
soil temperature. 

A more complex approach looks explicitly at heat exchanges occur-
ring on the greenhouse outer surface. In this case, T1 represents the 
temperature of the greenhouse cover, which would require modelling 
this object. Conduction to the soil can include several soil layers, as in 
the De Zwart model (Fig. 3). Convection and conduction between other 
greenhouse objects (screens, lamps, the crop, heating pipes, and more) 

Table 1 
Model components of process-based greenhouse models and the range of ap-
proaches used to describe them, from simple to complex approaches. A dash (− ) 
indicates that no basic formula is commonly used.  

Model component Basic 
formula 

Simple approaches Complex approaches 

QSun, heating from 
the sun (W m− 2) 

aSunISun aSun is constant, ISun 

is global radiation 
given as input 

aSun depends on 
location of sun and 
geometry of the 
greenhouse, ISun 

includes diffuse and 
direct radiation 

QHeat, heating from 
the heating 
system (W m− 2) 

– Value is given or 
calculated based on 
balance equation 

Sub-model based on 
temperatures of pipes, 
water in boiler 

QLamp, heating 
from lamps (W 
m− 2) 

aLampILamp aLamp is constant, 
ILamp is given as 
input 

Lamp energy output 
divided into PAR, 
NIR, FIR, convection 

QVent, energy loss 
to ventilation (W 
m− 2) 

vc(T1 − T2) Neglected, v is 
constant, or v is 
given as an input 

v depends on window 
opening, wind speed 
and direction, indoor 
and outdoor 
temperature 

QCon, convective 
and conductive 
heat exchange 
(W m− 2) 

h(T1 − T2) Only 2 temperatures 
included 
representing indoor 
and outdoor, h 
assumed constant 

multiple objects 
included, h depends 
on objects' 
temperatures, shapes, 
air movement 

QFIR, thermal 
radiation (W 
m− 2) 

Fε1ε2σ ⋅ 
((T1,K)4 −

(T2,K)4) 

Neglected, or only 
radiation to the sky. 
Sky temperature 
depends on outdoor 
air temperature 

Multiple objects 
included, F is 
variable, sky 
temperature (when 
included) depends on 
outdoor air 
temperature, 
humidity, cloud cover 

QLatent, losses to 
latent heat (W 
m− 2) 

L ⋅ WLatent Neglected Includes crop 
transpiration, 
evaporation and 
condensation on 
multiple surfaces 
(soil, screens, cover) 

WTrans, crop 
transpiration (kg 
m− 2 s− 1) 

– Depends on 
radiation 

Depends on leaf area 
index (LAI), vapor 
pressure deficit 
(VPD), stomatal 
response to radiation, 
CO2 concentration, 
humidity, crop 
temperature 

WVent, vapor loss 
through 
ventilation (kg 
m− 2 s− 1) 

v(V1 − V2) See QVent See QVent 

WCond, 
condensation 
and evaporation 
(kg m− 2 s− 1) 

max{0,  
g(VAir −

VSurface)} 

Neglected Condensation on 
multiple surfaces 
(screen, cover) 
included 

CInj, CO2 injection 
(kg m− 2 s− 1) 

– Given as input Depends on 
availability of sources 
such as flue gas from 
boiler 

CVent, CO2 loss 
through 
ventilation (kg 
m− 2 s− 1) 

v(C1 − C2) See QVent See QVent 

CPhot, Crop 
photosynthesis 
(kg m− 2 s− 1) 

– Depends on 
radiation 

Depends on LAI, 
radiation, CO2, 
temperature, crop 
developmental 
processes  
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are modelled similarly. 

2.4.4. Thermal radiation 
Thermal radiation between two objects, also called long wave radi-

ation or far infrared (FIR) radiation, is modelled according to the Stefan- 
Boltzmann law: 

QFIR = Fε1ε2σ
((

T1,K
)4

−
(
T2,K

)4
) (

W m− 2) (9)  

where F (− ), called the view factor, expresses how visible the two objects 
are to each other; ε1 and ε2 (− ) are the emissivities of the two objects, 
which are a property of the bodies' material; σ = 5.67 ⋅ 10− 8 W m− 2 K− 4 

is the Stefan-Boltzmann constant; and T1,K and T2,K (K) are temperatures 
in kelvin of the two objects. 

Air emits very little thermal radiation, so using indoor air tempera-
ture as T1,K and the outdoor air temperature as T2,K in Eq. 9 is typically 
insufficient to calculate the thermal radiation losses of the greenhouse 
system. The effective sky temperature (or simply sky temperature), 

Table 2 
Overview of studies related to process-based greenhouse climate modelling, 2018–2020. Category indicates the category of the study. Development is the development 
status of the model used in the study. Greenhouse type: PE: polyethylene, CSG: Chinese solar greenhouse. Equipment: B: boiler, BS: blackout screen, C: cooling, CHP: 
cogenerator, CO2: CO2 injection, DAH: direct air heating, FG: fogging, FN: fans, GP: grow-pipes, H: heating, HPS: high-pressure sodium lamps, HS: heat storage, HU: 
humidification, L: lamps (no lamp type specified), LED: light-emitting diodes, MHL: metal halide lamps, PV: photovoltaic cells, P&F: pad and fan cooling, TS: thermal 
screen. All models include ventilation and all CSG models include a thermal blanket and heat storage in a wall. Crop: None: no crop was present in the greenhouse. n/a: 
information was not available. See Section 3.1 for more details.  

Reference Category Purpose Greenhouse type Equipment Crop Development 

Abbes et al. (2019) Control Develop a greenhouse model for North African context to 
help control microclimate 

PE tunnel – None Extension 

Ahamed et al. 
(2018a) 

Exploratory Develop a model for designing and estimating heating 
demands of CSGs 

CSG CO2, FN, H, L Tomato Extension 

Ahamed et al. 
(2018c) 

Design Design an energy efficient greenhouse Double-layer PE CO2, FN, L, TS Tomato Reuse 

Ahamed et al. 
(2018d) 

Analysis Estimate heating demands of CSG CSG double layer 
PE 

CO2, FN, H, L Tomato Reuse 

Ahamed et al. (2020) Analysis Develop a TRNSYS based model for CSGs CSG, glass cover CO2, FN, H, L n/a Translation 
Alinejad et al. (2020) Design Asses an adjustable PV blind system for greenhouses Multi-span flat 

arch PE 
FN, H, P&F, PV, TS Rose New 

Baglivo et al. (2020) Analysis Develop a TRNSYS based model for greenhouses Venlo C, H, HPS Chrysanthemum New 
Chen et al. (2019b) Design Design a CSG CSG – n/a New 
Chen et al. (2019a) Design Evaluate placement of PV cells on a greenhouse roof Venlo PV Vriesea Extension 
De Ridder et al. 

(2020) 
Calibration Propose a method for model calibration Venlo H, HPS, LED, TS Cucumber New 

Esmaeli and 
Roshandel (2020) 

Design Optimize the design of a CSG CSG – Various New 

Gharghory (2020) Calibration Use a deep network to predict greenhouse indoor climate n/a FG, H n/a Reuse 
Golzar et al. (2018) Design Develop a greenhouse model that includes energy 

demand and yield in order to optimize greenhouse design 
Venlo CO2, H, HU, MHL Tomato New 

Golzar et al. (2019) Analysis Investigate the most important drivers for environmental 
impacts of greenhouses 

Venlo CO2, H, HU, MHL Tomato Reuse 

Hemming et al. 
(2019b) 

Exploratory Compare greenhouse control strategies under different 
settings 

Venlo CO2, HPS, TS Cucumber Extension 

Jomaa et al. (2019) Control Use fuzzy logic to control the greenhouse temperature n/a FG, H n/a Reuse 
Katzin et al. (2020b) Exploratory Design a greenhouse model to predict the implications of 

changing the greenhouse lighting system 
Venlo BS, CO2, H, HPS, 

LED, TS 
Tomato Extension 

Lammari et al. 
(2020) 

Control Perform model calibration and setpoint tracking using 
proportional integral sliding mode controllers 

Multi-span arch, 
PE 

FG, H Tomato Reuse 

Ma et al. (2019) Control Predict the microclimate to achieve climate homogeneity 
with a conveyor belt system 

Venlo HPS, P&F n/a New 

Mohamed and 
Hameed (2018) 

Control Use an adaptive neuro fuzzy interface system to control a 
greenhouse 

n/a FG, H None Reuse 

Mohammadi et al. 
(2020) 

Analysis Develop a model for a semi-solar greenhouse CSG, glass cover – Cabbage New 

Pérez-González et al. 
(2018) 

Calibration Apply particle swarm optimization and differential 
evolution to parametrize a greenhouse model 

Single span arch FG, H None Extension 

Rasheed et al. (2019) Design Propose a reliable greenhouse model by using TRNSYS, 
with a focus on thermal screens 

Gambrel roof, 
double PE 

H, TS None New 

Righini et al. (2020) Exploratory Extend a greenhouse model by adding lamps, heat 
harvesting and test how energy can be saved 

Venlo CO2, GP, H, HPS, 
HS, LED, TS 

Tomato Extension 

Seginer et al. 
(2020b) 

Control Evaluate the advantage of expanding the indoor climate 
bounds 

Venlo B, CHP, HS Tomato Extension 

Sethi (2019) Design Develop a model for an asymmetric overlap roof shape 
(AORS) greenhouse 

PE FG, FN Tomato New 

Su et al. (2018) Control Apply optimal control based on adaptive dynamic 
programming to save energy 

Venlo DAH, F Tomato Extension 

Subin et al. (2020) Control Implement fuzzy proportional-integral-derivative 
controllers to control temperature and humidity 

n/a FG n/a Reuse 

Xu et al. (2018a) Control Apply adaptive two timestep receding horizon optimal 
control (TTRHOC) on a greenhouse 

Venlo CO2, H Lettuce Reuse 

Xu et al. (2018b) Control Realize economic optimization in CSG using TTRHOC CSG CO2, H, LED Lettuce Extension 
Xu et al. (2019) Control Quantify the benefits of TTRHOC on a greenhouse with 

LEDs 
Venlo CO2, H, LED Lettuce Extension 

Zhang et al. (2020) Analysis Develop a model with dynamic cover absorbance and 
transmittance factors 

Venlo – None New  
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Fig. 4. Classification of studies related to process-based greenhouse climate modelling. Ornam: ornamental crops. CSG: Chinese solar greenhouse. PE: polyethylene. 
HPS: high-pressure sodium lamps. LED: light-emitting diodes. MHL: metal halide lamps. n/a: information was not available. 
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which is a function of the thermal radiation emitted from the sky to-
wards the earth, is typically used for T2,K when calculating the radiative 
losses of buildings (Evangelisti et al., 2019), including greenhouses. Sky 
temperature may be given as an input, or calculated based on outdoor 
air temperature, humidity, and cloud cover. As in the case of convection, 
the cover temperature is often used for T1,K. Thermal radiation exchange 

between greenhouse objects, such as the greenhouse cover, the crop, and 
the soil, are modelled similarly. 

2.4.5. Energy losses to latent heat 
An important component of the energy balance is conversion of 

sensible to latent heat. This is described as: 

Table 3 
Decomposition of greenhouse models, including model objective, number of objects considered in convective and radiative exchanges, variables influencing selected 
processes, and origins of model components. Color code: Blue: model extension, components that were changed during model extension based on previous sources. 
Green: new model or new model component. Red: model reuse. Yellow: component not included in the model. Model objective: Ctrl: climate control, Expl: 
exploratory modelling, Calib: calibration, Analys: system analysis. Greenhouse type: PE: polyethylene, CSG: Chinese solar greenhouse, Ven: Venlo. Development: 
Ex: extension, RE: reuse. Model decomposition: C: calculated based on other components, F: only fogging included, G: given as input, O: constant, N: no heating 
contribution, New: new model or component, ∝: proportional to input, ⨯: component excluded, ✓: component included. Lamp type: n/a: not specified, H: high- 
pressure sodium, L: LED, M: metal halide. Influence of climate variables: Ci: indoor CO2 concentration, DW: crop dry weight, Hi: indoor humidity, Ho: outdoor 
humidity, LAI: leaf area index, n/a: information not available, R: radiation, Tc: crop temperature, Ti: indoor temperature, To: outdoor temperature, V: ventilation 
control, W: wind. [− ] model simplification. [+] model extension. References: [1] Abbes et al. (2010). [2] Ahamed et al. (2018b). [3] Jolliet et al. (1991). [4] J. Chen 
et al. (2016). [5] J. Chen et al. (2015). [6] Pasgianos et al. (2003). [7] De Zwart (1996). [8] Jones et al. (1999). [9] Bontsema et al. (2007). [10] Stanghellini et al. 
(2012). [11] Marcelis et al. (2009). [12] Blasco et al. (2007) [13] Vanthoor et al. (2011b). [14] Vanthoor et al. (2011a). [15] Lammari et al. (2012). [16] Albright et al. 
(2001). [17] Van Ooteghem (2007). [18] Stanghellini (1987). [19] Hasni et al. (2011) [20] Seginer et al. (2018). [21] Seginer et al. (2020a). [22] Tiwari and Goyal 
(1998). [23] Tap (2000). [24] Roy et al. (2002). [25] Goudriaan and Van Laar (1993). [26] Van Henten (2003). 
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Fig. 5. Inheritance chart of recently published greenhouse modelling studies and the models on which they are based. Studies are sorted vertically by year of 
publication, with the most recent studies in the bottom and the oldest ones on top. Colored boxes indicate studies included in this review. Out of space considerations, 
only first author names are given, except in cases of possible ambiguity. CSG: Chinese solar greenhouse; HPS: high-pressure sodium lamps; LED: light-emitting diodes; 
PV: photovoltaic cells. 
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QLatent = L⋅WLatent
(
W m− 2) (10)  

where L (J kg− 1) is the latent heat of evaporation of water, and: 

WLatent = WTrans + WEvap − WCond
(
kg m− 2 s− 1) (11)  

is the net amount of water transformed to vapor in the system: WTrans is 
water transpired by the crop, WEvap is water evaporated from the soil, 
and WCond is vapor condensed to water on cold surfaces such as the cover 
or screens. For each of these components W, the associated energy flow 
is L ⋅ W. Not every change in the water vapor balance is associated with 
latent heat exchanges: for example, loss of water vapor through 

ventilation WVent (Eq. 6) is not in itself associated with a change in the 
energy balance. 

2.4.6. Transpiration 
A wide range of approaches can be used for modelling crop tran-

spiration, as outlined in detail by Katsoulas and Stanghellini (2019). 
These approaches range from an empirically fitted function where 
transpiration depends only on solar radiation, through aerodynamic 
models that include the influence of wind, to detailed models that 
include the energy balance of the crop and the response of stomata to 
environmental attributes including total radiation intercepted by the 

Table 4 
Validation of greenhouse models. See Section 3.4 for the definitions used here for the seasons, validated variables, and validation metrics. Variables: Ci: indoor CO2 
concentration, DW: harvested dry weight, E: electricity produced, FW: harvested fresh weight, H: heating energy, Hi: indoor humidity, R: radiation, RHi: indoor 
relative humidity, Tc: cover temperature, Ti: indoor temperature, Tp: plant temperature, Ts: soil temperature, Tw: wall temperature, V: ventilation rate, Wi: indoor 
wind speed. Validation metrics: d: Wilmott's index of agreement, EF: model efficiency, MAPE: mean absolute percentage error, maxE: maximum error, maxRE: 
maximum relative error, ME: mean error, MRE: mean relative error, MSE: mean squared error, NSE: Nash-Sutcliffe's coefficient of efficiency, RE: relative error, RMSE: 
root mean squared error, rRMSE: relative RMSE, SPC: square of the Pearson correlation coefficient, TSSE: total sum of squared error. n/a: information was not 
available. All studies included plotted graphs of validation results. See Section 3.4 for definitions of commonly used metrics, and the respective publications for 
definitions of metrics used in only one study, marked with (*).  

Reference Location and season of 
evaluation 

Facility of evaluation 
(size) 

Validated 
variables 

Dataset duration 
(sampling rate) 

Validation metrics Main validation results 

Abbes et al. 
(2019) 

Borj Cedria, Tunisia. 
Spring 

Research (100 m2) R, RHi, Ti 19 days (n/a) MSE, NSE R: NSE = 0.98, MSE = 39 W m− 2. RHi: 
MSE = 0.45, NSE = 0.98. Ti: MSE =
3.63 ◦C, NSE = 1 

Ahamed et al. 
(2018a) 

Elie, Manitoba, 
Canada. Spring 

Commercial (210 m2) H, R, Ts, Tw 3 days (10 min – 1 
h) 

maxE, ME, MRE, 
NSE, RMSE, 
rRMSE, 

H: rRMSE = 11.5%. R: NSE = 0.71, 
RMSE = 68.34 W m− 2 Ts: NSE = 0.68, 
RMSE = 1.8 ◦C 

Ahamed et al. 
(2018b, 2018c) 

Saskatoon, Canada. 
Spring-autumn 

n/a (1125 m2) H, R 8 months (month) maxRE, MRE, NSE, 
RMSE 

H: MaxRE = 9%, MRE = 4.6%. R: NSE =
0.78, RMSE = 112.61 W m− 2 

Alinejad et al. 
(2020) 

Shiraz, Iran. Full year Commercial (4081 
m2) 

E, H, R, RHi, 
Ti, V 

1 year (monthly) maxRE R: maxRE <8%, Ti: maxRE <3%, 

C. Chen et al. 
(2019) 

Beijing, China. Winter n/a Ti 2 months (hourly) d (*) Ti: d = 0.987 

J. Chen et al. 
(2019) 

Hangzhou, China. 
Autumn 

n/a (230 m2) R 8 h (hourly) MRE, RMSE R: RMSE = 12.61–21.97 W m− 2 

De Ridder et al. 
(2020) 

Belgium. Autumn Research (160 m2) Ti 2 × 7 days (20 min) NSE Ti: NSE > 90% 

Esmaeli and 
Roshandel 
(2020) 

Shenyang, China. 
Winter 

n/a (756 m2) Ti 1 day (hourly) maxE, NSE, RMSE Ti: maxE = 2.8 ◦C, NSE = 0.95, RMSE =
0.32 ◦C 

Golzar et al. 
(2018) 

Conthey, Switzerland. 
Winter-autumn 

Research (360 m2) H, DW 10 months (week- 
month) 

NSE, PBIAS (*), 
rRMSE 

DW: NSE = 0.96, PBIAS = 0.18, rRMSE 
= 23%. H: NSE = 0.91, PBIAS = 0.18, 
rRMSE = 27% 

Hemming et al. 
(2019b) 

Bleiswijk, The 
Netherlands. Summer- 
autumn 

Research (96 m2) FW 3 months (weekly) – – 

Jomaa et al. 
(2019) 

Borj Cedria, Tunisia. 
Spring 

Research (100 m2) Hi, Ti 3.5 days (n/a) – – 

Katzin et al. 
(2020b) 

Bleiswijk, The 
Netherlands. Autumn- 
winter 

Research (144 m2) Ci, H, RHi, Ti 112 days (5 min) ME, RE, RMSE, 
rRMSE 

H: RE = − 0.92-11.6%. RHi: RMSE =
5.52–8.5%. Ti: ME = − 0.09-0.05 ◦C, 
RMSE = 1.74–2.04 ◦C 

Lammari et al. 
(2012, 2020) 

Avignon, France. 
Spring-summer 

Research (n/a) Hi, Ti 2 × 7 days (n/a) – – 

Ma et al. (2019) Indiana, USA. Autumn Research (n/a) R, Ti 7 days (minute) NSE R: NSE = 0.9, Ti: NSE = 0.88 
Mohammadi et al. 

(2020) 
Tabriz, Iran. Autumn Research (15 m2) Tc, Ti, Tp, Ts 8 h (minute) EF (*), MAPE (*), 

RMSE, SPC, TSSE 
(*) 

Tc: SPC = 0.96, RMSE = 2.21 ◦C. Ti: 
SPC = 0.98, RMSE = 1.64 ◦C. Ts: SPC =
0.98, RMSE = 1.84 ◦C 

Pérez-González 
et al. (2018) 

Guadalajara, Mexico. 
Autumn, spring 

Research (30 m2) RHi, Ti 1–3 days (second) J (*) J = 5.64–9.4327 

Rasheed et al. 
(2019) 

Daegu, South Korea. 
Winter, autumn. 

Research (168 m2) Ti 20 days (n/a) NSE Ti: NSE = 0.79–0.84 

Righini et al. 
(2020) 

Klepp, Orre, Norway. 
Winter, spring, 
summer 

Commercial (5760 
m2), experimental (n/ 
a) 

FW, Ti FW: 3–7 months; 
Ti: 3×(6–8) days 
(n/a) 

rRMSE, MRE FW: MRE = 0.7–4.3%. Ti: rRMSE =
7.1–9.6% 

Sethi (2019) Ludhiana, India. 
Summer, winter. 

Research (100 m2) R, Tc, Ti, Tp 7–12 h (hourly) RMSE R: RMSE = 4.01 W m− 2. Tc: RMSE =
3.91 ◦C. Ti: RMSE = 4.69 ◦C. Tp: RMSE 
= 3.7 ◦C 

Su et al. (2018) Chongming, Shanghai, 
China. Autumn-spring. 

n/a (875 m2) Ci, Hi, Ti 5 months (5 min) RMSE Ci: RMSE = 50 mg m− 3 Hi: RMSE =
1.68 g m− 3. Ti: RMSE = 2.1 ◦C 

Zhang et al. 
(2020) 

Taian, Shandong, 
China. Winter, spring. 

Prototype (15 m2) Tc, Ti, Ts 3 × 15 days (5 min) ME, RMSE, SPC Ti: SPC = 0.98, RMSE = 1.36–2.01 ◦C. 
Ts: SPC = 0.66–0.99, RMSE =
0.1–1.93 ◦C  
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crop, vapor pressure deficit (VPD), air temperature, and CO2 
concentration. 

One of the simplest ways to model transpiration is to treat it as a 
linear function of radiation: 

WTrans = A0ISun + B0
(
kg m− 2 s− 1) (12) 

Where ISun (W m− 2) is radiation from the sun, and A0 (kg J− 1) and B0 
(kg m− 2 s− 1) are fitted parameters that may depend on the crop, the crop 
stage, or the growing season. 

Another common way to model transpiration is the Penman- 
Monteith formula (Monteith, 1965), which describes the latent heat of 
evaporation from a leaf (shown here using the notation of Katsoulas and 
Stanghellini (2019)): 

QTrans,leaf =
ΔRn + ρCpDiga

Δ + γ(1 + ga/gc)

(
W m− 2 {leaf}

)
(13)  

where Δ (kPa K− 1) is the slope of relationship between saturation vapor 
pressure and temperature, Rn (W m− 2 {leaf}) is the net radiation inter-
cepted by the crop, ρ (kg m− 3) is the density of air, Cp (J kg− 1 K− 1) is the 
specific heat of air, Di (kPa) is the vapor pressure deficit of the air, ga (m 
s− 1) is aerodynamic conductance, γ (kPa K− 1) is the psychrometric 
constant, and gc (m s− 1) is stomatal conductance. Transpiration 
WTrans,leaf in kg m− 2 s− 1 is then calculated by dividing QTrans,leaf by the 
specific heat of water evaporation, see Eq. 10. 

Stanghellini (1987) modified the Penman-Monteith formula for the 
case of greenhouse crops. First, a factor for crop leaf area index (LAI, m2 

{leaf} m− 2 {floor}), which expresses the leaf area of the crop per area of 
greenhouse floor, was used in this case to convert leaf transpiration to 
crop transpiration: 

QTrans =
ΔRn + 2⋅LAI⋅ρCpDiga

Δ + γ(1 + ga/gc)

(
W m− 2 {floor}

)
(14) 

Furthermore, calculation of the aerodynamic conductance ga was 
modified to describe a greenhosue environment. Lastly, stomatal 
conductance gc was calculated following the approach of Jarvis (1976), 
where stomatal conductance depends on environmental factors such as 
radiation, vapor pressure deficit, temperature, and CO2 concentration: 

gc = gMf1(Rn)f2(Di)f3(Ti)f4(CO2)
(
m s− 1) (15) 

The notation here follows, again, Katsoulas and Stanghellini (2019) 
(see Eq. 13). Here, gM (m s− 1) is the maximal stomatal conductance, and 
f1, f2, f3, f4 are unitless functions with values between 0 and 1 that 
represent the influence of, respectively, radiation, vapor pressure 
deficit, temperature, and CO2 concentration on stomatal conductance. 
Villarreal-Guerrero et al. (2012) discussed the differences between the 
Penman-Monteith and the Stanghellini transpiration models, and 
compared their performances against measured data. 

In the equations above, Ti may refer to either the air or the crop 
temperature, and Di may refer to either the vapor pressure difference of 
the air or the vapor pressure difference between the saturated vapor 
pressure at the temperature of the crop and the saturated vapor pressure 
of the air. If crop temperature is used in the calculation of transpiration, 
then naturally this attribute must also be included in the greenhouse 
model. Similarly, if LAI is included in the calculation of transpiration, 
some estimate, assumption, or model describing LAI must also be 
included. 

Another approach for modelling transpiration is based on the as-
sumptions that the indoor water vapor concentration is in steady state, 
and that all vapor flows besides ventilation are negligible. Considering 
Eq. 1, this leads to WTrans = WVent, which allows to estimate transpiration 
based on ventilation rate and indoor and outdoor vapor concentrations 
(Eq. 6). 

2.4.7. Condensation 
Condensation occurs when humid air is in contact with a surface that 

is colder than the dew point of the air. Equivalently, this means that the 
saturation vapor pressure at the temperature of the surface is higher 
than the vapor pressure of the air. Condensation typically occurs on the 
indoor side of the greenhouse cover or on screens, but may also happen 
on the crop itself, the floor or soil. An equation to describe condensation 
is: 

WCond = max
{

0, g
(
VAir − VSurface

) } (
kg m− 2 s− 1) (16)  

where VAir (kg m− 3) is the vapor concentration of the air, VSurface (kg 
m− 3) is the saturation vapor concentration at the temperature of the 
surface, and g (m3 m− 2 s− 1) is an exchange coefficient. This coefficient g 
may be related to the heat exchange coefficient h in Eq. 8, for instance it 
may be proportional to it. 

2.4.8. Crop photosynthesis 
Leaf and canopy photosynthesis modelling is a broad and long- 

standing discipline with an extensive range of approaches (Hikosaka 
et al., 2016). Earlier reviews described some of the crop modelling ap-
proaches used in horticulture (Gary et al., 1998) and in greenhouses in 
particular (Marcelis et al., 1998). 

As with transpiration, photosynthesis models range from very simple 
models where only light is taken into account, to complex models 
including the influence of temperature, CO2 concentration, and crop 
processes such as assimilate demands of the various organs. A yield 
model may also be included, predicting how much produce can be sold 
by the greenhouse, and when. Again, the level of detail varies consid-
erably between such models (Kuijpers et al., 2019). The type of crop may 
influence the level of detail: leafy crops such as lettuce typically require 
less detail than fruiting crops such as tomato or cucumber. 

As with transpiration, a description of the leaf area index (LAI) and 
its development through time may also be included in the crop model. In 
any case, LAI is typically an important component of the photosynthesis 
model. This means that even if a simple photosynthesis model is used, 
some assumption or estimate regarding LAI is needed. 

2.5. Time scales in greenhouse climate models 

The dynamics of the greenhouse climate are influenced by processes 
which may be classified as “fast” and “slow” (e.g., Tap et al., 1993; Van 
Henten, 1994; Van Straten et al., 2010). The slow variables are typically 
related to crop processes, which evolve in the order of days, weeks, and 
months. The fast variables are related to climate variables, which can 
evolve in the order of seconds, minutes, and hours. These widely 
different time scales often cause inaccurate or inefficient results during 
numerical integration (i.e., during greenhouse simulation), especially in 
studies related to optimal control (Tap et al., 1993; Van Straten et al., 
2010). 

Thus, a common approach is to separate the state variables of a 
greenhouse into fast and slow time scales, and compute these two time 
scales separately. The fast variables may be assumed to “achieve a 
steady-state infinitely fast” (Van Henten and Bontsema, 2009). In effect, 
this results in setting the differential equations governing the fast states 
to be constantly zero. This decomposition into fast and slow dynamics 
helps circumvent many of the numerical issues during integration, and 
results in more efficient computation. Furthermore, this decomposition 
helps analyze and understand the behavior of the greenhouse system 
along the different time scales (Van Henten and Bontsema, 2009). 

Nevertheless, a distinction should be made between how a model 
describes the dynamics of a greenhouse system, and how this description 
is used when the system is solved or integrated in practice. For example, 
the Van Henten model (Eq. 2) may be used in some cases without any 
time scale decomposition (Van Henten, 2003), while in other cases such 
a decomposition proves useful (Van Henten and Bontsema, 2009). 
Similarly, during the development of the De Zwart model (Eq. 4), a 
choice was made to compute some variables using “a static equation”, 
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since “the dynamics [...] [are] of a small time base” (De Zwart, 1996). In 
other words, it is assumed that some of the climate dynamics are faster 
than others, namely, those related to the air above the screen and to 
other objects with a small heat capacity. Again, the assumption is that 
these faster states achieve a steady state infinitely fast, which results in 
an equation with a left-hand side equal zero. This includes for example 
the temperature of the screen and the temperature of the air above the 
screen, represented by the second and third lines of Eq. 4. However, 
since the dynamics of these variables are still described, one could 
choose to use the De Zwart model and reject this “static” assumption, if 
the need arises. 

Alternatively, some models choose to completely avoid describing 
the slow states. For example, Van Beveren et al. (2015a, 2015b) assumed 
that the crop, and specifically the LAI, remained constant throughout the 
simulated season. Conversely, Vanthoor et al. (2011c) combined a crop 
and greenhouse model, where despite these two models operating in 
different time scales and both containing numerous state variables, all 
states were directly and simultaneously calculated using differential 
equations. 

3. Review of recent greenhouse modelling studies: Methodology 

In order to examine the current state of greenhouse modelling, a 
literature search was performed on Clarivate's Web of Science (www. 
webofscience.com). Since the term “greenhouse” is widely used in 
non-horticultural contexts, a search for simply “greenhouse model” or 
“greenhouse AND model” was unfeasible, yielding over 8000 results, 
most of them irrelevant. Instead, the search term chosen was: (“green-
house model*” OR “greenhouse simulation*” OR (greenhouse* AND 
(“yield model*” OR “thermal model*” OR “heating model*” OR “yield 
simulation*” OR “thermal simulation*” OR “heating simulation*” OR 
“optimal control”)) NOT (“greenhouse gas*” OR “greenhouse emis-
sion*” OR “greenhouse effect*”)). The search was performed on October 
6, 2020, for articles in the Web of Science Core Collection, published in 
2018–2020, whose topic (title, abstract, keywords, and Keywords Plus) 
matched the search term. This three-year period was chosen as repre-
sentative of the current state of the art in greenhouse modelling. The 
search yielded 80 results. Of these, 48 articles were excluded: 15 that 
described models of components of the greenhouse system; 12 that 
discussed unrelated topics; 7 that discussed greenhouse dryers; 5 that 
described real world, scaled down models of greenhouses; 5 review 
studies; 3 descriptive models; and 1 CFD model. Thus, 32 articles pub-
lished in 2018–2020 were considered in this study. 

3.1. Overview of greenhouse modelling studies 

The studies in the 32 articles were analyzed as follows: first, the 
study objectives were divided into 5 categories (see Section 2.2), 
including exploratory modelling, model-based control, model-assisted 
design, and systems analysis. Another category was included for 
studies focusing on model calibration methods. Next, a more specific 
purpose of each study was summarized according to the authors' de-
scriptions. The greenhouse type, crop, and equipment modelled were 
described based on the authors' descriptions or, when those weren't 
provided, on the conditions used during model validation. For green-
house type, we defined a Venlo greenhouse as an even-span greenhouse 
with glass cover and walls. A Chinese solar greenhouse (CSG) was 
defined as a low greenhouse with a northern wall which provides 
diurnal heat storage. A southern cover arching from the northern wall to 
the southern edge of the CSG is equipped with a thermal blanket or 
screen that maintains heat in the greenhouse overnight. 

Lastly, studies were categorized according to the development status 
of the models used: new: newly presented models (possibly combining 
several previous works, but not explicitly derived from a single previous 
model); reuse: exact copies of a previous model; parametrization: 
models combining a single previous model with a new set of parameters; 

extension: models explicitly using a single previous model and adding 
components to it; and translation: previously published models pre-
sented using new code or a new software platform. 

3.2. Composition of process-based greenhouse climate models 

In order to get a better understanding of the differences between 
models that are currently used, the models were analyzed and compared 
with regards to how they handle the various greenhouse model com-
ponents. These components included:  

• Energy balance: heating from the sun, the heating system, and 
supplemental lighting; number of objects considered in thermal ra-
diation exchanges; number of objects considered in convective and 
conductive exchanges; ventilation; latent heat.  

• Water vapor balance: transpiration (variables influencing it and 
model used), evaporation and condensation (number of objects 
considered).  

• CO2 balance: photosynthesis and yield (factors influencing them, 
and model used).  

• Leaf area index (LAI). 

For each component, we noted whether the model introduced a new 
method for calculating the component, or if a previous study was used. 
We noted which previous work was used for a specific component, if this 
was noted. If a component based on previous works was modified 
(simplified or extended), this was also noted. 

3.3. Inheritance of process-based greenhouse climate models 

In order to explain the differences between current models, the 
models were further investigated by examining which previous models 
they were based on, and how they had modified or combined them. This 
was done based on the authors' descriptions, together with our own 
comparison of the published model with previously published models. 
The models included in this study were compared against their reported 
“parent” to see whether components were added or modified, and how. 
The parent models were also checked to see whether they themselves 
were based on common earlier works. We also noted whether some of 
the same authors were involved in the publications describing the parent 
and the daughter models. For this purpose, promotors and supervisors 
were considered as coauthors of PhD dissertations. 

3.4. Validation of greenhouse models 

For all models that presented a validation simulation, the following 
attributes were collected:  

• Location and season where measured data was collected. Here, 
meteorological seasons of northern latitudes were used: Winter: 
December–February; Spring: March–May; Summer: June–August; 
Autumn: September–November (all studies considered were per-
formed in the northern hemisphere).  

• Type and size of the facility where data was collected, if it was 
provided: research greenhouse, commercial greenhouse, or scaled- 
down prototype.  

• Validated variables, i.e., variables that were predicted by the model 
and compared against measured data.  

• Duration of time in which data was collected, and sampling rate of 
data points.  

• Metrics used for validation.  
• Main validation results, rounded to 2 decimal points. 

Metrics used for validation varied considerably between studies, as 
well as the terms used to describe these metrics. The definitions below, 
following Legates and McCabe (1999), were used when noting the 
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validation metrics. Here, we denote by yi the measured values, fi the 
predicted values, y the mean of the measured values, f the mean of the 
predicted values, 

∑
summation over i, and max the maximum over i, 

where i = 1, …, n is an index ranging over measurements and corre-
sponding predictions.  

• Mean error: ME = 1
n
∑(

fi − yi
)

• Maximum error: maxE = max {fi − yi}  
• Mean relative error: MRE = 1

y⋅n
∑(

fi − yi
)

• Maximum relative error: maxRE = max
{

fi − yi
y

}

• Mean squared error: MSE = 1
n
∑(

fi − yi
)2  

• Root mean squared error: RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑(

fi − yi
)2

√

• Relative root mean squared error: rRMSE = 1
y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑(

fi − yi
)2

√

• Square of the Pearson correlation coefficient: SPC =

(
∑

(yi − y)(fi − f))
2

∑
(yi − y)

2 ∑
(fi − f)

2  

• Nash-Sutcliffe's coefficient of efficiency: NSE = 1 −

∑
(yi − fi)

2

∑
(yi − y)

2 

Some ambiguity was found with respect to the terms “coefficient of 
determination”, “correlation coefficient”, “explained variation”, 
“explained variability”, “r2”, and “R2”. These terms were often used to 
mean either the SPC or the NSE as defined above. In some cases, no 
reference or equation was given, which made it difficult to determine 
which of the metrics was actually used. In these cases, we assumed that 
the NSE was used. Whenever equations were given for the metrics used, 
they were reported according to the definitions above. For other metrics, 
if no definition was given, the term given by the authors was used. 

Some words are in order regarding terminology. It has been noted 
that the term “validation” may be interpreted as aiming to provide a 
clear yes or no answer regarding the adequacy of a model: the model is 
either valid or it is not. For this reason, some have suggested to avoid the 
term “validation” and use “evaluation” instead (Wallach et al., 2019a). 
Nevertheless, the two terms are often used interchangeably. In this 
study, we use the term “validation” in a narrow sense, as the comparison 
of model predictions against measured data. The term “evaluation” is 
understood in a broader sense, which includes validation but may also 
include other components, such as the process of data collection. 

3.5. Studies used in each analysis 

In the investigations of model composition and inheritance, models 
based on software platforms such as TRNSYS, EnergyPlus or COMSOL 
(see Section 2.1) were excluded from the analysis, since their de-
scriptions were typically insufficient for users unfamiliar with these 
programs to understand the inner workings of the model. In the analysis 
of model inheritance, only complete greenhouse models were consid-
ered as eligible parent models. For the sake of clarity, the inclusion or 
combination of model components, such as a separate transpiration or 
convection model was not described in the inheritance chart. Naturally, 
for the analysis of model validation, only studies presenting any kind of 
validation were considered. 

For some studies included in this review, the details of the model 
described were given in a previous publication. In these cases, we used 
information from the previous publication to analyze the model 
composition, inheritance and validation. This was done for Ahamed 
et al. (2018c) by also considering Ahamed et al. (2018b); for Lammari 
et al. (2020) by including Lammari et al. (2012); and for Esmaeli and 
Roshandel (2020) with Esmaeli and Roshandel (2017). 

4. Results: Current state of the art in greenhouse modelling 

4.1. Overview of greenhouse climate modelling studies 

The studies considered in this review vary in their purposes, types of 
greenhouse considered, and equipment included in the greenhouse. The 
majority of the studies considered (11 of 32) focus on greenhouse 
climate control (Fig. 4). Studies focused on design are also common (8 of 
32), followed by systems analysis (6), exploratory modelling (4), and 
model calibration (3), although the distinctions between these cate-
gories was not always clear (Table 2). 

In studies focused on control, various methods for climate control 
were described and evaluated, such as adaptive control, fuzzy logic, and 
more (Table 2). Model-based design was used for designing a complete 
greenhouse system or specific components such as placement of PV cells. 
Systems analysis was used to analyze the greenhouse energy use, envi-
ronmental impact, or the model itself. Exploratory modelling was used 
to test scenarios with different designs, control strategies, and equip-
ment. Model calibration studies proposed new methods for calibration 
or identification, such as particle swarm optimization and deep 
networks. 

More than a third of the studies (11 out of 32) presented new models, 
and the same number of studies was devoted to extensions of previous 
models (Fig. 4). Reuse of existing models was less common (9 out of 32 
cases). One study presented a translation of an existing model to a new 
software platform. New models were created to describe new types of 
greenhouses (e.g. CSGs, asymmetric overlap roof), to implement models 
on specific platforms (e.g. TRNSYS), to include new technologies (lamps, 
heat harvesting), or to incorporate detailed model components (cover 
absorbance, thermal screens) (Table 2). Notably, 6 studies defined the 
development of the model itself as a study purpose, and 8 studies defined 
the use of a certain methodology as a purpose. 

In the majority of cases (11 of 32), the crop in the modelled green-
house was tomato (Fig. 4). This could be expected, as tomato is by far the 
most widely produced and exported vegetable in the world, excluding 
potato and melons (Rabobank, 2018). The low representation (3) of 
ornamental crops is surprising, as they make up at least half of the 
world's greenhouse production (Stanghellini et al., 2019). Remarkably, 
several models (5) were designed or evaluated under the assumption 
that the greenhouse does not house any crop. 

The types of modelled greenhouses could broadly be classified into 
three: Venlo glasshouses, Chinese solar greenhouses, and polyethylene 
greenhouses (Fig. 4). CSGs varied in the type of covering material used, 
and polyethylene greenhouses varied in shape (Table 2). The modelled 
greenhouses also varied considerably in the equipment they included, 
with heating the most common equipment included (19 of 32 studies), 
followed by lighting (15 studies in total), CO2 injection (12), fogging (7), 
and thermal screens (7) (Fig. 4). 

4.2. Composition of process-based greenhouse climate models 

As described in Section 2.4, greenhouse climate models describe a 
large number of processes, and a vast range of approaches is available 
for each process. Among the models analyzed in the current studies, 
these differed considerably in how they incorporated the various 
greenhouse system components (Table 3). At the same time, there is 
considerable overlap between the models analyzed, which could 
possibly result in redundancy. A considerable amount of model devel-
opment (14 of 24 models analyzed) consisted of putting together pre-
viously published components; less than half of the studies (10 of 24) 
described newly developed model components. The solar heat load was 
typically given as a model input or set as a fixed proportion of an input. 
Heating was typically given as an input or calculated based on other 
energy fluxes. When lighting was included, the resulting heating load 
was often assumed to be proportional to the lamp power input, no 
matter the lamp type (6 out of 9 cases). In 2 cases describing LEDs, it was 
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assumed that light does not contribute any heat to the greenhouse. The 
number of objects included in thermal radiation (FIR) exchanges varied 
from 0 to 11, and the number of objects included in convective ex-
changes varied from 2 to 18. Ventilation was neglected (2 out of 24 
cases), assumed constant (5 cases), given as an input (8 cases), or 
calculated based on various variables (9 cases). Latent heat was not 
included in 5 out of 24 models, and in 3 only the influence of fogging was 
included. LAI was excluded (9 of 24 cases) or assumed constant (8 cases) 
by a majority of the models. Approaches to modelling transpiration 
varied considerably, as previously noted by Katsoulas and Stanghellini 
(2019). Relatively few models considered photosynthesis (9 of 24) and 
yield (8 of 24), and approaches varied between those that did. 

Regarding the time scales included in the models, all models that did 
not include a yield component (16 of 24) considered only the fast dy-
namics of the greenhouse climate and neglected the slow dynamics of 
the crop. In 6 out of the remaining 8 models, both the fast dynamics of 
the greenhouse climate as well as the slow dynamics of crop develop-
ment were included. In the model of Seginer et al. (2020b), the crop was 
assumed to be mature, and therefore “steady”, with yield directly pro-
portional to net photosynthesis. Similarly, Katzin et al. (2020b) assumed 
that the crop was mature, and therefore LAI and crop development 
status were constant. 

4.3. Inheritance of process-based greenhouse climate models 

Some of the differences and similarities between models can be 
explained by the model inheritance chart (Fig. 5). For example, it can be 
seen that the models of Katzin et al. (2020b) and of Righini et al. (2020) 
were both extensions of Vanthoor et al. (2011b) and that the models 
described in Pérez-González et al. (2018) and in Lammari et al. (2020) 
both originated with Boulard et al. (1996). The models used by 
Mohamed and Hameed (2018), Gharghory (2020), and Subin et al. 
(2020) all originated with the model of Albright et al. (2001). It can also 
be seen that several early models (Albright et al., 2001; Boulard et al., 
1996; De Zwart, 1996; Vadiee and Martin, 2013; Van Henten, 1994; Van 
Ooteghem, 2007) are still used as a basis for many recent studies. These 
models are based on even earlier models (Bot, 1983; Boulard and Baille, 
1987; Garzoli, 1985). Some models combine several earlier models (e.g., 
Lammari et al., 2012 combines Albright et al., 1985; Boulard et al., 
1996; Draoui, 1994), while others are reportedly based only on a single 
previous model (e.g., Tchamitchian, 1992 is based on Udink ten Cate, 
1983, and Taki et al., 2016 is based on Van Ooteghem, 2007). The model 
of Tiwari, 2003 was used to convert the model of Ahamed et al., 2018b 
to a CSG (Ahamed et al., 2018a). At the same time, for several recent 
studies (Ahamed et al., 2018a; C. Chen et al., 2019; De Ridder et al., 
2020; Sethi, 2019) we were not able to identify whether they were based 
on previous greenhouse models, and if so, on which. 

In many cases where a model was reused or extended, authors of the 
parent model were also involved in the new study. In 7 out of 11 cases of 
model extension, the original and extended model shared coauthors. The 
same was true for 4 out of 9 cases of model reuse. Cases of model reuse or 
extension by authors unrelated to the original publication are limited to 
quite simple models, as can be seen by their decomposition in Table 3: 
Xu et al. (2018a) reused the model of Van Henten (2003); Mohamed and 
Hameed (2018) reused the model of Albright et al. (2001); Gharghory 
(2020) and Subin et al. (2020) reused the model of Pasgianos et al. 
(2003); and Jomaa et al. (2019) reused the model of Blasco et al. (2007), 
while using parameters from a previous study. Model extension without 
shared coauthors is also reserved for relatively simple models, e.g. the 
extensions by Xu et al. (2018b, 2019) to Van Henten (2003), the 
extension by Su et al. (2018) to Tap (2000), and the extension of Pérez- 
González et al. (2018) to Hasni et al. (2011). 

4.4. Validation of greenhouse climate models 

Models differed in the techniques used for validation in all aspects 

considered: the facilities used for data collection, the validated vari-
ables, the dataset length and sampling rate, and in validation metrics 
(Table 4). The size of the facility used varied from a 15 m2 prototype to a 
5760 m2 commercial greenhouse. The validated variables typically 
included the indoor temperature, but other variables were also consid-
ered, such as indoor humidity, radiation inside the greenhouse, and 
heating energy used. Dataset length varied from less than a day to a full 
year, and the sampling rate of measurements varied from one second to 
one month. Overall, the sizes of datasets used for model validation were 
rather small, with datasets representing the major part of a year (8–12 
months) only consisting of weekly or monthly measurements. In terms of 
validation metrics, no common standard was found. All studies included 
graphs comparing measured and simulated values. Some studies added 
no information beyond the presented graphs, while others used multiple 
metrics to analyze the model predictions. RMSE was the most common 
metric for validation (used in 9 of the 22 studies), followed by NSE (8 
studies). Other metrics were also used, with some used only by a single 
study. Because of this wide range of evaluation methods, differing in 
timespan, sampling rate, validated variables and validation metrics, it is 
practically impossible to compare model performance based solely on 
validation results. 

5. Discussion 

5.1. What is the source of variation between greenhouse climate models? 

The vast range of crops, structures, equipment and climates that 
characterizes greenhouse horticulture does not seem sufficient to 
explain the variation between greenhouse models. The majority of 
studies reviewed considered a tomato crop, while many others assumed 
an undefined generic crop or no crop at all (Fig. 4). Adding new 
equipment to an existing greenhouse model is sometimes a motivation 
for model extension (Fig. 5), but that in itself does not seem to justify the 
development of entirely new models. Regarding structure type, most 
studies were concerned with Venlo type greenhouses (Fig. 4), although a 
considerable number of studies focused on CSGs, and several were 
devoted to transforming an existing model to a CSG (Fig. 5). This seems 
to indicate a growing interest in the modelling of CSGs. It remains to be 
seen whether this trend will continue. Arguably, this will depend on 
developments in the global greenhouse sector, and the prevalence of 
CSGs compared to other types of greenhouses. 

Modelling objective provides a better, although partial, explanation 
to model variation: the most complex models found in this study, with 
16 or more objects included in convective exchanges, were all devoted 
to exploratory modelling (Table 3). At the other end of the complexity 
scale, studies focused on calibration and control tended to use simple 
models, with few objects included in the convective and FIR exchanges. 
Out of 11 models that were found to have 3 or less convective objects, 7 
dealt with control and 2 with calibration (Table 3). Studies on calibra-
tion and control tended to focus less on accurate predictions, and often 
lacked validation (Table 4). The approach in these studies was also more 
generic compared to exploratory studies, often providing little detail on 
the type of structure or crop, and even neglecting the crop completely 
(Table 2). 

Thus it may be argued that models devoted to exploratory modelling 
require a high level of complexity while models devoted to control and 
calibration require a low level of complexity. If this were the case, it 
would explain some of the variation in greenhouse modelling. However, 
exceptions do exist, with the relatively simple model of Ahamed et al. 
(2018a), with only 5 convective objects, devoted to exploratory 
modelling, while the relatively complex model of Abbes et al. (2019), 
with 8 convective objects, dedicated to control. Of course, one may also 
argue that the number of convective objects is not the only way to 
quantify model complexity, a concept which remains open for 
interpretation. 

In any case, the distinction between detailed and complex 
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“prediction-focused” models and simpler “control-focused” models goes 
back at least to the 1980's, when Bot (1983) and Udink ten Cate (1983) 
developed in parallel models that represented these two objectives. Tap 
(2000) reported that in 1986, Vennegoor op Nijhuis compared these two 
models as part of an MSc thesis and found them to be similar in terms of 
predictions, with the model of Udink ten Cate being considerably faster 
in terms of computation time. Indeed, a preference for simpler models in 
control applications due to computational issues remains relevant to this 
day: see for example the discussion in Van Henten and Bontsema (2009), 
or the several technical steps required in Xu et al. (2018a) to obtain an 
accurate and fast solution to an optimal control problem. 

At the same time, it seems reasonable that models designed for 
predicting scenarios would include many processes. First of all, because 
new insights regarding particular system components and processes can 
only be uncovered if those components and processes are included in the 
model. Second, there seems to be an agreement between model de-
velopers and users that model structure, i.e., the assumptions and re-
lationships underlying the model, are important factors when assessing 
the reliability of a model for exploratory simulations (Eker et al., 2018). 
This view could explain why models developed for prediction tend to 
incorporate many process-based relations based on physical and bio-
logical principles, rather than summarize phenomena with simpler 
functions: the inclusion of phenomena which are understandable and 
trusted by a potential user (or the model developer) promotes trust in 
the model and its predictions. 

Another factor that could contribute to model variation, and may be 
related to the modelling objective, is the issue of time scales. As 
mentioned in Section 2.5, including different time scales in a model can 
result in computational difficulties, especially in studies devoted to 
optimal control. Thus, control-focused studies may prefer to neglect the 
slow processes of crop development and focus only on the fast climate 
dynamics of the greenhouse. Alternatively, design-focused studies may 
neglect some of the fast climate responses which do not have a strong 
influence on the performance of a greenhouse over a full year. 

Nevertheless, the majority of models found in this survey, including 
models from all categories of objectives, did not include the slow crop 
dynamics (Table 3). Models that did include the slow time scales were 
used in studies focused on exploratory modelling, greenhouse design, 
and climate control. The four design studies analyzed all included 
relatively few objects in the heat exchange balances, which indicates 
that indeed, these studies tend to simplify the fast climate dynamics. At 
the same time, one design study included the slow crop dynamics, 
showing that opinions vary regarding which time scales are the most 
appropriate for each type of study. We see then that the issue of time 
scales, and the way those are treated in order to serve the modelling 
objective, seems to contribute to some of the variation we see among 
models. 

In any case, although modelling objective seems to give the best 
explanation for the wide range in model complexity, it should be 
stressed that it is often difficult to accurately extract a given model's 
objective based on the authors' descriptions. In particular, the distinc-
tions between exploratory modelling, design, and system analysis are 
not always clear-cut (Table 2). Furthermore, in some cases, the 
impression could arise that models were developed solely for the pur-
pose of developing them. In other cases, the main objective seems to be 
the demonstration of a certain methodology, and the accurate repre-
sentation or application for greenhouses seems secondary. The objec-
tives assigned to the models throughout this study (Fig. 4, Table 2, 
Table 3) should be viewed with this observation in mind. 

5.2. How complex should process-based greenhouse climate models be? 

Seeing the vast range in model complexity, a question that arises is 
how complex greenhouse models should really be. This question is 
extensively debated in the context of crop modelling (Antle et al., 2014; 
Hammer et al., 2019; Keating, 2020; Monteith, 1996; Passioura, 1973, 

1996; Sinclair and Seligman, 2000). Monteith (1996) advocated finding 
a “balance” between simplicity and complexity. He stressed that com-
plex models are more difficult to understand and that it is often easier to 
derive insights from simpler models, even if those may provide less ac-
curate outputs. 

Unfortunately, besides this general advice and the view that simple 
models are often preferable, it is hard to find very practical advice 
regarding model complexity. Passioura (1996) maintained that crop 
models should be “as simple as possible” and should have “a small 
appetite for data”. Keating (2020) reiterated a statement attributed to 
Albert Einstein that “the model should be as simple as possible in the 
context of intended application, but no simpler”. In the context of 
greenhouse modelling, Vanthoor (2011) proposed that developing 
simple models is often easier said than done: “According to Johan Cruijff 
simple soccer is the most difficult to play, and unfortunately, this also 
applies to simple modelling”. Efforts to methodologically address the 
question of model selection, as has been done for example by Crout et al. 
(2009) in the context of environmental modelling, are rare in crop 
modelling, and even more so in greenhouse modelling. 

At the same time, there is quite some evidence to attest to the power 
of simple models: Stockle (1992) showed that a photosynthesis model 
can be considerably simplified, and thus be made easier to use and un-
derstand, without meaningfully increasing its prediction error. Soltani 
and Sinclair (2015) demonstrated that simple crop models sometimes 
provide more accurate predictions than complex ones. In the context of 
greenhouse crops, the case of the TOMGRO tomato crop model is 
remarkable, where the number of state variables was reduced from 574 
to 5, while still achieving good predictions (Jones et al., 1999). At the 
same time, the success of such model reduction endeavors strongly de-
pends on the purpose of the modelling study and the sensitivity of the 
model and its sub-processes towards this particular purpose. 

Considering the large number of processes and objects that may be 
present in a model (Table 1, Table 3), and the general preference for 
simpler models, a natural question to ask is which of them should be 
included for any particular modelling purpose. Naturally, a modelling 
study that examines the influence of a particular process or object (e.g., 
reduced crop transpiration, or the use of a thermal screen), must include 
the process or object in question in the model. Besides that, one way to 
test which other processes should be included could be by starting out 
with a complex model, and testing each process individually for its in-
fluence on the intended objective. Processes that are found to have little 
influence on the objective could then be consecutively omitted. How-
ever, it should be noted that the influence of each process depends not 
only on the modelling objective, but also on the specific settings such as 
location of the greenhouse, type of structure, type of crop and crop stage, 
and more. These factors will also influence which processes are domi-
nant and which are negligible for a given modelling objective. 

Another, and hopefully less cumbersome approach, would be to 
compare existing simple and complex models and test how they serve a 
given modelling objective. Unfortunately, it is very difficult to compare 
the performance of greenhouse models (Section 4.4). Constructing a 
framework where greenhouse climate models could be compared and 
evaluated using a common dataset of measurements would help eluci-
date how model complexity influences model performance. A common 
framework for decomposing and comparing tomato crop models has 
been presented by Kuijpers et al. (2019). It could be valuable, although 
considerably more complex, to construct such a framework for green-
house climate models. 

5.3. Why are so many different models being used and developed? 

As mentioned in Section 1, the abundance of greenhouse models is 
not new. More than 30 years ago, Van Bavel et al. (1985) called to focus 
efforts on the improvement of existing greenhouse models, rather than 
“the writing of entirely new programs and the construction of new 
models”. Not much later, Lacroix and Zanghi (1990) urged that “rather 
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than build new models, it should usually be sufficient to take up existing 
models, adapt them to specific needs and improve them further” 
(translated). These calls seem to have remained unheeded, with many 
models still being developed, several of which serving similar purposes 
(Table 2). 

A possible explanation for the abundance of greenhouse climate 
models is the large variety in types of greenhouses. Indeed, greenhouses 
are used in widely different climatic environments, with various types of 
flooring and soil, numerous shapes and designs, diverse covering ma-
terials, and various cropping techniques. Nevertheless, this wide varia-
tion in itself does not seem to justify the proliferation in models. For 
example, the abundance of models representing Dutch greenhouses and 
climate conditions seems incongruent with the relative homogeneity of 
this country's climate and greenhouse sector. Furthermore, some of the 
varying attributes listed above could be treated by a single model by 
modifying its parameters. This was done for instance by Vanthoor et al. 
(2011b), who used a single model with different parametrization to 
represent an arch shaped multi-tunnel polyethylene greenhouse in Italy, 
a Venlo type greenhouse in the Netherlands, a Venlo type greenhouse in 
Texas, and an arch shaped single-tunnel polycarbonate greenhouse in 
Arizona, all with satisfying results. 

A more plausible reason for the current model abundance is that 
some models seem to be developed simply for the sake of developing a 
model (Table 2). Granted, a study may have several purposes, some 
stated more explicitly than others, and the definition of a study's purpose 
as described in Table 2 is based on subjective interpretation. Never-
theless, clear motivation behind a particular model's development is 
often missing, and it seems that model development is in itself consid-
ered a worthwhile research objective. This issue has been previously 
identified in the field of crop modelling (Sinclair and Seligman, 2000). 
Moreover, the lack of an explicit statement of modelling objectives 
makes it difficult to judge whether a given model serves its intended 
purposes, or if it is suitable for use by others to serve their own goals. 

Another possible reason for the creation of new models rather than 
building on existing ones is an issue raised by Holzworth et al. (2015) in 
the context of agricultural modelling: “maintenance of documentation 
and software/code has not been considered a core research outcome [...] 
This results in software that is maintained in an ad-hoc fashion to the 
point where often the best way forward in improving the software base 
is to start from scratch”. In this case, Holzworth et al. (2015) seem to 
assume that model code is available but poorly maintained. In green-
house modelling, matters are arguably worse, since it is rarely the case 
that code is made available at all, so that indeed the only way forward is 
to start from scratch. 

Reuse of existing models is also limited due to poor reporting. When 
code is not available, potential users are driven to reproduce models 
based on equations printed in published papers. This method is 
vulnerable to mistakes such as misprints and omission of details, made 
worse when old models are reprinted using new notation (e.g., new 
variable and parameter names). Another issue is imprecise referencing, 
for example when whole books (containing multiple models) are pro-
vided as a reference to a model being used, or when several references 
are given without an explanation on how they were used or combined. 

The suspicion that new models are being developed simply because 
older models are not available is strengthened by the model inheritance 
chart (Fig. 5): when reusing or extending existing models, researchers 
predominantly choose their own models as a basis for further work. 
Cases where the work of others has been reused or extended are typically 
restricted to simple models, where reproduction is arguably easier. This 
observation is in line with that of Holzworth et al. (2015) who remarked: 
“[the] model fit-for-purpose question is usually overlooked in favor of 
adopting an off-the-shelf model, likely one with which the researchers 
have some experience, regardless of its possible complexity misfit”. A 
similar tendency has also been found in the field of hydrological 
modelling (Addor and Melsen, 2019). 

5.4. Model validation 

5.4.1. To what extent are greenhouse models valid? 
An essential component of model development is the validation of 

model predictions against measured data. In greenhouse modelling, 
evaluations vary considerably in their approaches. Details on if and how 
data was used for model development (e.g., for parameters calibration) 
are often missing. In this review, the size of the measured dataset varied 
considerably in the duration and sampling rate of the measured time-
span, and in the majority of cases (13 of 22) data was collected in 
relatively small research facilities (Table 4). Regarding sampling rate, it 
may be expected that processes such as crop yield or energy use may be 
aggregated over a longer timespan than fast processes such as the indoor 
climate. However, in general there was no agreement between the 
relevant time scale of a variable and the sampling rate used for its 
validation (Table 4). Naturally, model developers can only work with 
the data they have. However, reflections are scarce on whether the data 
used for evaluation is truly representative of the system being modelled 
(Wallach et al., 2019a). 

Considerable differences also exist in the metrics used in model 
validation (Table 4). This abundance of metrics may be seen as a positive 
development, since validation studies of greenhouse models in the 
1980's and 1990's often provided only graphs of measured vs simulated 
values and some qualitative remarks about the model predictions such 
as “good”, “fair”, or “reasonable”. As noted earlier (Section 3.4), the 
terms currently used for validation metrics are inconsistent, with several 
different names given to the same evaluation metric, and worse – the 
same names used for two different metrics, namely, terms such as “co-
efficient of determination”, “correlation coefficient”, and “R2” used for 
both the SPC and the NSE. This confusion seems to stem from the fact 
that when a model is derived using a linear least squares regression, the 
SPC and NSE are equivalent. However, process-based greenhouse 
models are rarely based on linear regression. In fact, it is unclear why 
SPC is used at all in this context: authors who use it state (sometimes 
implicitly) that an SPC value close to 1 automatically represents good 
model predictions. However, this is a misconception, as a high SPC will 
only indicate that there is a linear relationship between measured and 
predicted values. For instance, measured values of y = 1,2,3 and pre-
dicted values of f = 500,0,-500 will yield SPC = 1, despite the model 
being completely off in both the trend and the order of magnitude. These 
attributes led Bellocchi et al. (2010) to conclude that the use of the SPC 
to evaluate model performance is “flawed”. Kobayashi and Salam (2000) 
give an example of how the SPC can be misleading, as it obscures 
important information for assessing model performance. 

Various scientific disciplines hold long ongoing debates regarding 
the most effective methods for model evaluation and validation (Bennett 
et al., 2013; Eker et al., 2018; Legates and McCabe, 1999; Oreskes et al., 
1994), including the crop modelling community (Bellocchi et al., 2010; 
Cao et al., 2012; Kobayashi and Salam, 2000; Wallach et al., 2019a; 
Yang et al., 2014). It seems that in greenhouse modelling this debate has 
so far been absent, resulting in model developers each coming up with 
their own methods for evaluation, and some simply not validating or 
evaluating their model at all. The diversity in model validation metrics 
makes it difficult to compare validation results, which hinders 
straightforward model selection based on prediction accuracy. It is hard 
to explain why so many metrics are being used, including some that 
were devised exclusively by the authors for a specific study. One possible 
explanation is that authors choose metrics which they believe make 
their model look successful. Some evidence supporting this hypothesis is 
the fact that some validation results are presented in vague terms, e.g. 
“less than” or “greater than” some value (Table 4). Moreover, no 
greenhouse model validation study ever seems to conclude that the 
model under investigation is poor, although positive results bias (Cata-
logue of Bias Collaboration, 2017) may also play a role here. 

The use of research facilities for evaluating energy use predictions 
carries special difficulties, as research typically takes place in small 
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compartments within a bigger greenhouse. Edge effects due to a rela-
tively large wall surface area, heat transport between compartments, 
and a central heating system distributing heat to all compartments 
simultaneously, contribute error to the energy use measurements of 
individual compartments. These are all issues that are typically ignored 
in “perfectly stirred tank” type models, which often assume that the 
greenhouse is infinitely large (Section 2.1). Ideally, authors should 
report on the procedures taken to measure or estimate energy use in 
compartments, including what steps were taken to avoid edge effects. 

Yield prediction was not part of the main focus of this study (Section 
2.1), but several greenhouse climate models reported on it during model 
validation (Table 4). When evaluating yield predictions, one crucial 
component is the dry matter content (DMC) of the harvested product. 
This parameter converts dry weight predictions – as they typically 
appear in crop models – to fresh weight yield. In tomatoes, DMC ranges 
between 4 and 7.5% (Heuvelink et al., 2018), which results in a sub-
stantial range of yield predictions given a particular dry weight 
outcome: for 1 kg of dry weight, the range of 4–7.5% corresponds to a 
fresh weight prediction range of 13–25 kg. Thus, modifications within a 
generally accepted range of DMC can nearly double a given model's yield 
prediction. Ideally, authors would report on how they estimate DMC 
when comparing dry weight model outputs to fresh weight yield 
measurements. 

At the same time, there is room to consider how accurate we can 
expect yield predictions for continuously yielding crops to really be. In 
practice, growers have some flexibility regarding the moment of harvest 
(Saltveit, 2018), and harvesting strategy, influenced by concerns such as 
labor availability or produce price, may have a major influence on 
harvest (Marcelis and Gijzen, 1998). As long as such concerns are not 
included in greenhouse models, it may be wiser to settle for longer term 
yield predictions (aggregated on a monthly or yearly basis) than to 
expect accurate daily or weekly yield predictions. 

5.4.2. How accurate should process-based greenhouse climate models be? 
The lack of standards in greenhouse model validation raises the 

question how accurate greenhouse climate models really need to be. One 
standard that began to establish regarding indoor greenhouse climate is 
that a rRMSE of up to 10% is acceptable (e.g., Ahamed et al., 2018a; 
Sethi et al., 2013; Vanthoor et al., 2011b), although this choice lacks 
justification. In particular, while rRMSE provides a convenient com-
parison between predictions in different units, it can also be misleading 
when comparing the same units under different settings. For example, 
an rRMSE of 10% corresponds to an RMSE of 1.5 ◦C when the mean 
temperature is 15 ◦C but to an RMSE of 3 ◦C when the mean temperature 
is 30 ◦C. The rRMSE is in fact unsuitable for non-absolute units such as 
◦C: note that when the average temperature is 0 ◦C, the rRMSE is un-
defined (or infinite). 

In any case, it is counterproductive to set a fixed metric where 
models achieving values above or below some golden standard are 
deemed useful or useless. This lesson was painfully learned for the case 
of statistical significance and p-values (Wasserstein and Lazar, 2016). 
Nevertheless, some guidelines may be useful here: a model cannot be 
expected to be more accurate than the variance that is already present in 
the system, including measurement error. For instance, we cannot 
expect indoor climate predictions to be more accurate than the sensors 
used for measurements. Greenhouse climate sensors often demonstrate 
considerable measurement errors, which exceed the desired standards 
set for the industry, even after sensor maintenance and calibration 
(Bontsema et al., 2011). For example, the measurement error for indoor 
air temperature was found in one case to be in the range of 0.04–0.45 ◦C 
(Bontsema et al., 2011). 

It would also be helpful if validation studies would provide infor-
mation that helps distinguish between systematic and random errors in 
their predictions. For example, a model that provides accurate indoor 
climate predictions, but with a time delay compared to the measured 
data, may be an extremely useful model but it would still produce a poor 

RMSE. Reporting on autocorrelation, bias, and other metrics of the error 
is more nuanced than a simple yes or no answer to the question of 
whether a model is valid, but it provides considerable insight to po-
tential users of the model. Naturally, publicly sharing the validation 
data, including measurements, predictions, and record of control ac-
tions, would allow potential users to test the validation results using 
whatever metrics they like. However, sharing such data is extremely 
rare. 

Similarly, it would be useful to evaluate model errors with respect to 
the spatial variance that naturally exists in the greenhouse climate. As 
shown by Van Beveren et al. (2015a), indoor air temperatures can differ 
by nearly 2 ◦C, within the same horizontal plane. 

At the same time, it should be stressed that models are a means to an 
end, and the goal of achieving perfect model predictions is not very 
useful in and of itself. Model accuracy should be evaluated with respect 
to the particular goal the model is meant to serve. It would be worth-
while to reflect whether the model validation process properly serves 
this evaluation. Moreover, assuming modelling studies are meant to 
eventually guide and shape horticultural practice, some reflection on the 
consequences of model uncertainty on actual practice would be useful. 
For example, what is the practical meaning of inaccurate predictions of 
indoor climate, yield, or energy use? A discussion on these consequences 
would typically require some estimates on market prices, as well as 
other practical considerations such as resource availability. Neverthe-
less, such discussions would help carry modelling studies away from a 
purely theoretic realm, and place them within the context of the sector 
that they ideally should serve. 

For instance, the acceptable error in models used for climate control 
might be very different from that of models used for system analysis. 
Accurate, high frequency predictions of the indoor climate may not be 
needed for models used in greenhouse structure design; for this goal, 
aggregation on bigger timescales is probably more suitable. 

5.4.3. Model parametrization 
An important component of model development is setting the values 

for the model parameters. Parameter values may be based on previous 
literature, direct measurements, or calibration. Simple models typically 
have relatively fewer parameters, but those tend to lump together 
several processes in a way that is difficult to define or measure them 
directly. 

Taking as an example two possible approaches for modelling tran-
spiration (Section 2.4.6), Eq. 12 uses only 2 parameters, but those must 
be calibrated for any specific setting by dedicated measurements that 
correlate radiation with crop transpiration. Conversely, Eq. 13 includes 
6 parameters, some of which are relatively easy to measure or to assume 
that they are within relatively narrow bands (e.g., the psychrometric 
constant), while others are much more difficult to estimate or measure 
directly (e.g., stomatal or aerodynamic conductance of a full crop). 

Complex models tend to have more parameters, which increases the 
risk of correlation between parameters, making calibration difficult. At 
the same time, parameters in complex models often express directly 
measurable or known values. Simple models often include fewer pa-
rameters, but those must be obtained through calibration. Considering 
the fact that data used for calibration should typically be separate from 
the data used for validation (Wallach et al., 2019a), and the general 
scarcity of available data (Section 4.4), calibration of models, both 
simple and complex, is often a challenging task. 

Nevertheless, there is room to consider the influence of any partic-
ular parameter on total model performance. A sensitivity analysis can 
help determine how a particular parameter influences model output, 
and which parameters should be calibrated or measured (Wallach et al., 
2019b). In any case, the objective of any given modelling study should 
stand at the center of how parameters are chosen. A certain parameter 
may be extremely influential for a particular objective but almost 
inconsequential for another. It is also important to clarify which 
parametrization choices were made, and the motivations behind them. 
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Unfortunately, model developers often give very little information about 
this process. For examples, if direct measurements are performed to 
estimate parameters, it would be helpful to report not only on the mean 
values obtained, but also on the parameter likelihood distribution. This 
uncertainty in the parameter values could then be taken into account 
when evaluating the complete model. 

5.5. What advances in greenhouse modelling can we expect in the future? 

5.5.1. Model development and extension 
Ideally, and as already stated decades ago (Lacroix and Zanghi, 1990; 

Van Bavel et al., 1985), more efforts would be placed on improving the 
knowledge of individual processes in the greenhouse rather than 
reproduce existing models. For example, considerable efforts are 
currently being made in the modelling of CSGs. It would be worthwhile 
to test whether assumptions that were used when designing models for 
Venlo-type greenhouses (e.g., an “infinite greenhouse”) still apply for 
CSG models. Similarly, there is a growing interest in modelling supple-
mental lighting in greenhouses, as new technologies such as LEDs are 
rapidly advancing. Unfortunately, very few studies provide systemic 
measurements of lamp output and its influence on the greenhouse en-
ergy and other balances (Nelson and Bugbee (2015) is one rare 
example). This issue is becoming increasingly important as plant phys-
iologists learn about the responses of crops to narrow-band LED spec-
trums with the hopes of implementing these insights in greenhouses 
(Lazzarin et al., 2021; Ouzounis et al., 2015). 

Other components of the greenhouse system which could use more 
development are mechanical cooling and dehumidification, where some 
advances have been made (De Zwart and Kempkes, 2008; Van Beveren 
et al., 2015a; Vanthoor et al., 2011b) but complete model descriptions 
and validation studies are still rare. The crop is an important component 
of the greenhouse climate, both for estimating photosynthesis and the 
system performance in terms of yield. In this respect, there remains a 
need for reliable quantitative information. For example, quantitative 
knowledge on the influence of adverse climate on crop behavior is 
limited (Vanthoor et al., 2011a). There is also very little quantitative 
knowledge on the influence of the indoor climate on the occurrence and 
spread of disease, although some work has been done, particularly 
regarding the prevention of botrytis (Baptista, 2007; Baptista et al., 
2012; Cañadas et al., 2017; Körner et al., 2014). Furthermore, models 
describing the influence of irrigation water on the crop (e.g., Jiang et al., 
2019) are rarely included in greenhouse models. In particular, dry 
matter content (DMC) remains an elusive but extremely important 
variable with very few studies attempting to accurately predict it. Other 
underdeveloped components in greenhouse crop models were noted by 
Marcelis et al. (1998) and include product quality, leaf area develop-
ment, maintenance respiration and organ abortion. 

An interesting feature of practically all detailed process-based 
greenhouse models is the fact that stomatal conductance is modelled 
separately for transpiration and photosynthesis. Stomata simultaneously 
regulate the exchange of water vapor and CO2 between the air and the 
crop, and this principle lies at the basis of stomatal modelling (Buckley, 
2017). This principle is often overlooked in greenhouse modelling. On 
the one hand this may be expected, as many models do not include a CO2 
balance (Table 3). But even when the CO2 balance is absent, many 
process-based transpiration models are based on a prediction of stomatal 
behavior (Katsoulas and Stanghellini, 2019). For these models, it would 
be informative to test how the modelled stomatal behavior influences 
photosynthesis and crop growth, especially in models that have detailed 
descriptions of both transpiration and photosynthesis (e.g., Golzar et al., 
2018; Vanthoor et al., 2011a; Vanthoor et al., 2011b). 

5.5.2. Model transparency and comparison 
Forty years ago, in the context of geographical models, Willmott 

(1981) lamented that “far too few computer programs have been pub-
lished, resulting in the development of numerous overlapping and/or 

redundant algorithms”. Unfortunately, this statement is still true for 
greenhouse climate models. Source code for greenhouse models is rarely 
made available by its authors, with a few exceptions emerging in the last 
years (Altes-Buch et al., 2019; Katzin et al., 2020b; Körner and Holst, 
2017). The models for Ahamed et al. (2018a, 2018b, 2018c, 2019) are 
available in PDF form in Ahamed, 2018, providing transparency to the 
studies but limiting reuse due to copyright. This state of affairs is a far 
cry from that of agricultural models, where several long-standing 
models have made their code available, albeit with differing levels of 
accessibility (Soltani and Sinclair, 2015). 

Accessible model code would not only facilitate model reuse and 
extension, it could also help to compare different models, evaluate their 
validity in different scenarios, learn about the strengths and weaknesses 
of each approach, and combine successful parts for further improve-
ment. In arable farming, such efforts have been ongoing in projects such 
as the Agricultural Model Intercomparison and Improvement Project 
(AgMIP) (Rosenzweig et al., 2013) and the Agricultural Model Exchange 
Initiative (AMEI) (Midingoyi et al., 2020). 

An important component of model development and intercompar-
ison is the development of benchmark datasets. Such datasets have been 
made available for crop model validation and comparison (Asseng et al., 
2015). Indeed, publicly available shared datasets would help evaluate 
models by comparing their prediction accuracy in equivalent scenarios. 
Using such data, benchmark problems could be devised, setting quan-
titative and qualitative standards that are expected of greenhouse 
climate models. Unfortunately, publicly available data from green-
houses is extremely scarce. Some exceptions are the Autonomous 
Greenhouse Challenge (Hemming et al., 2019a, 2020) and the recently 
established Controlled Environment Agriculture Open Data initiative 
(CEAOD, 2020). Nevertheless, publicly available long-term data from 
large-scale commercial greenhouses is currently missing. 

5.5.3. Model selection 
The models explored in this study are in their core essentially the 

same. All models describe similar key variables, and include processes 
derived from basic laws of physics concerning the conservation of mass 
and energy. Nevertheless, the models differ in the details of the indi-
vidual parameters and transport phenomena described. Ideally, the 
choice of these details should depend on a specific study's objectives and 
goals. Unfortunately, the reasoning behind the choices made during 
model development, or a thorough analysis of the pros and cons of these 
choices, is largely left undocumented. 

The overview given in this study could help greenhouse modelers 
reflect on the issues faced in model selection and development, and 
consider the range of suitability, complexity, validity, and transparency 
of their model. While the models included in this review are only a small 
part of the vast range of greenhouse climate models that have been 
developed, this study provides an initial point of reference and directs 
researchers to consider several aspects, both when choosing an existing 
model to build on and when presenting their own work. 

An alternative approach to model selection is the use of multimodel 
ensembles. In this approach, multiple models are used in parallel to 
predict a certain outcome. The range, variability, and average of the 
model predictions can provide valuable insights on the system being 
modelled and on the models used to predict its performance. This 
approach has been tried in the context of crop modelling, producing 
some promising results (Martre et al., 2015; Wallach et al., 2018). 

When developing new models, developers should explore which 
models already exist that describe the system they are interested in, such 
as the type of greenhouse, crop, and equipment included in their system. 
Developers should consider the objectives of previous models and reflect 
critically whether using a given model is suitable to satisfy their own 
objectives. Model validation studies are useful for demonstrating 
whether a given model accurately represents a particular system. At the 
same time, the structure and assumptions underlying the model are 
equally important for judging the suitability of a model for a particular 
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goal. 
The points above are also crucial in the reporting on model de-

velopments. Ideally, developers would clearly indicate the type of sys-
tem (greenhouse structure, crop, equipment, climate) they have in mind 
when designing a model. The reasons for developing and using a model 
should be clearly stated, as well as the assumptions used and results from 
previous works included in the model. Lastly, model transparency, in-
clusion of model code and sharing of data would greatly facilitate model 
reuse and advancement and will help push forward the entire field of 
greenhouse modelling, and greenhouse horticulture in general. 

6. Conclusion 

This review surveyed process-based greenhouse climate models 
published in the years 2018–2020, in an effort to explain the prolifer-
ation of greenhouse models and the variation between them. This out-
lining of the current state of greenhouse modelling can serve as a 
starting point for reflection, both for researchers reporting on their own 
models, and for the greenhouse modelling community as a whole. 
Regarding the current state of greenhouse modelling, the following key 
results were found:  

• There is a tendency in greenhouse modelling to develop new models 
rather than extend or reuse existing models. Model reuse or exten-
sion of existing models is typically reserved to cases where re-
searchers are building upon their own models, or when very simple 
models are reused. Models differ in the type of greenhouse and crop 
they describe, the equipment included, and in their research objec-
tives, but there is also considerable overlap and redundancy between 
the various published models.  

• Process-based greenhouse climate models share a general common 
structure, but they vary considerably in the choice of components 
that are included in the model, and in the treatment of each 
component. Depending on the modelling approach and objectives, 
each component can be completely neglected, represented with a 
single empirical function, or described with a process-based sub-
model which includes the influence of multiple factors. However, 
due to a lack of common evaluation standards, it is difficult to assess 
the benefits and drawbacks of each modelling approach.  

• Extension and reuse of models is largely limited to developers 
extending their own models, except in the case of relatively simple 
models. A possible reason for this circumstance is the lack of trans-
parency and availability of existing models, which makes it difficult 
to build on them.  

• There is a lack of consensus in greenhouse modelling regarding how 
models should be evaluated, the type and size of datasets that should 
be used, the appropriate metrics for validation, or the required ac-
curacy for a particular application. 

In view of this current state affairs, we encourage model developers 
to reflect on, and explicitly state, their models' range of suitability (what 
questions can it help answer?), complexity (how many processes and 
time scales do they include, and why?), validity (under which circum-
stances has the model been evaluated?), and transparency (how can 
others reuse or extend the knowledge embodied in the model?). 
Regarding the greenhouse modelling community as a whole, we hope 
that the slowly emerging trends of publicly shared datasets and source 
code will continue, and that these will help facilitate model integration, 
extension, reuse and comparison. Together with the establishment of 
common benchmark tests and validation standards, the modelling 
community can play an invaluable role in the advancement of the 
greenhouse sector towards efficient and safe production in an age of 
climate change and uncertainty. 
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