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A B S T R A C T   

Trace elements such as zinc (Zn), copper (Cu) and boron (B) are important micronutrients for crop production. 
Their bioavailability is essential to crops yield quantity and quality in many tropical soils. Nutrient bioavail-
ability depends partly on the soil nutrient status, and in particular on the reactive and soluble fractions. 
Adsorption/desorption and precipitation/dissolution processes control the partitioning of the reactive pool over 
the solid and solution phase. However, so far the solid-solution partitioning of trace elements has mostly been 
studied in temperate and often contaminated soils. We studied, therefore, the solid-solution partitioning of Zn, 
Cu and B for 172 soils from Burundi, Rwanda and Kenya, using extensive soil characterization in combination 
with multi-surface modelling and two types of empirical Freundlich type partition relations. Our aim was to 
enhance the understanding of the soil chemical processes that control the solid-solution partitioning of the three 
micronutrients in these soils from the tropics with a multi-surface model, and to use this knowledge as bench-
mark to develop partition relations that require less input data and are more convenient tools for predicting the 
concentration in solution based on existing soil data. We show that the generic multi-surface model applied to 
these tropical soils performs similarly for Zn and Cu as in previous studies on temperate and contaminated soils. 
The Zn and Cu speciation was dominated by adsorption to soil organic matter, with an increased importance of 
metal (hydr)oxides with increasing pH. Given its generally low concentrations in these soils, dissolved organic 
matter was found to be important only for the solution speciation of Cu. The adsorption of B was mainly to metal 
(hydr)oxides at low pH, and with increasing pH soil organic matter became more important. The multi-surface 
model overestimated the dissolved B concentration for most soil samples, which we attributed to an inaccurate 
estimation of reactive B. Interestingly, the variation in observed and modeled solid-solution partitioning 
expressed as Kd of Cu and B among the soils was relatively small (~1 log L kg− 1), and the concentration in 
solution was consistently mainly controlled by the reactive concentration. Generally, the optimized partition 
relations resulted in a smaller prediction error compared to the multi-surface models. The partition relations in 
which the concentration in solution was optimized, resulted generally in an overestimation for the lowest 
observed concentrations, and an underestimation for highest concentrations of all three elements. Partition re-
lations with optimized Freundlich parameters Kf and n resulted in more robust predictions since the prediction 
error was not related to the actual measured concentration. The partition relations from this study are easy-to-use 
tools for predicting the dissolved concentrations of Zn, Cu and B in soils from the tropics with low contents of 
these micronutrients and can therefore enhance the use of current existing soil information data for Sub-Saharan 
Africa.   

1. Introduction 

There is increasing awareness that micronutrients can play an 
important role in reducing crop yields and hampering yield responses to 
regular NPK-fertilizer in Sub-Saharan Africa (SSA) (Kihara et al., 2017). 

Among the micronutrients, the bioavailability of especially zinc (Zn), 
but also copper (Cu) and boron (B) is low in SSA soils (Kihara et al., 
2020; Sillanpää, 1990). Low soil levels of micronutrients such as Zn also 
lead to inadequate intake of these nutrients by humans via the con-
sumption of crops, which can lead to severe health issues (Alloway, 
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2009; Black et al., 2013; Gregory et al., 2017). 
Soils usually contain substantial total amounts of micronutrients. A 

large part that is present in the solid phase is however inert and not 
readily available for crop uptake, because it is occluded in the matrix of 
soil constituents such as (hydr)oxides and clay minerals (de Vries et al., 
2005; Groenenberg et al., 2017). This fraction is assumed to be released 
from the soil matrix only by very slow weathering processes. More 
relevant is the labile, reactive or potentially available pool that is 
distributed over the solid and solution phase, through sorption/ 
desorption and precipitation/dissolution (Groenenberg et al., 2017). A 
fraction of this reactive pool is present in the soil solution and is 
therefore directly available for plant uptake. Several chemical processes 
affect the speciation and the partitioning of the reactive pool between 
the solid and solution phase. Ions can be in the solid phase when 
adsorbed to mineral and organic reactive surfaces (i.e. clay particles, 
organic matter, metal (hydr)oxides) and precipitated as minerals, or in 
the solution phase as free ion or in the form of inorganic and organic 
complexes. The solid-solution partitioning of Zn and Cu has been used to 
assess the risk for leaching (Bonten and Groenenberg, 2008; Dijkstra 
et al., 2004) or toxicity or deficiency towards crops (Catlett et al., 2002; 
Degryse et al., 2009). In the context of plant nutrition, the difference in 
solid-solution partitioning has been used to explain why certain soil tests 
are more successful in predicting crop response to fertilization than 
others. For example, soil tests that approximate the dissolved concen-
tration have been found to be better in predicting the crop growth 
response to phosphate fertilization in tropical soils, while soil tests that 
approximate the reactive pool work better for soils from temperate re-
gions because phosphate adsorbs more strongly in tropical than in 
temperate soils (Nawara et al., 2017). 

Different methods exist for assessing, understanding and predicting 
the solid-solution partitioning of elements in soils. One approach is 
geochemical multi-surface models that use thermodynamic constants for 
inorganic speciation together with an assembly of specialized models 
that describe ion adsorption to reactive surfaces in soils, such as clay, 
metal (hydr)oxides and organic matter (Groenenberg and Lofts, 2014). 
Next to predicting the solid-solution partitioning of various elements, 
these models also provide insight in which soil chemical processes are 
most relevant in controlling solid-solution partitioning. These models 
have contributed to our understanding of the behavior of trace elements 
such as Zn and Cu, often in polluted soils (Dijkstra et al., 2009, 2004; 
Groenenberg et al., 2012; Gustafsson et al., 2003; Gustafsson and Tiberg, 
2015; Tiberg et al., 2018; Weng et al., 2001) but have also been suc-
cessfully applied to model the free Zn activity in a limited set of low Zn 
soils (Duffner et al., 2014). 

A generalized composite approach has been mainly used to model B 
adsorption behavior in soils, in which the soil is considered as a single 
plane for adsorption reactions (Goldberg, 2004, 1999). This modelling 
approach does not take into account the specific characteristics (i.e. 
binding capacities, affinities, heterogeneity of surface sites) of each of 
the reactive surfaces, and does not give insights into the relative 
importance of the different reactive surfaces that control B speciation in 
soils. In a recent contribution, we applied successfully a multi-surface 
model for assessing the B speciation and extractability in a limited set 
of temperate and tropical soils (Van Eynde et al., 2020b). 

The application of geochemical multi-surface models on soil systems 
requires modelling parameters such as the thermodynamic constants 
and generic adsorption parameters. In addition, there are a number of 
decisions to be made regarding the input variables, which results in a 
certain conditionality of the multi-surface model. For example, the 
reactive content of the elements of interest is required as input. Exam-
ples for measuring the reactive pool are the 0.43 M HNO3 soil extraction 
(Groenenberg et al., 2017) or the isotopically exchangeable fraction 
(Mao et al., 2017). Secondly, the multi-surface model requires the 
fraction of soil organic matter (SOM), in the form of humic substances, 
that is reactive towards ion adsorption in the solid and solution phase 
(Groenenberg et al., 2012). In previous modelling studies, this fraction 

has either been estimated (Groenenberg et al., 2012), calculated based 
on the CEC and clay content (Duffner et al., 2014), fitted during the 
modelling calculations (Tiberg et al., 2018) or measured by fraction-
ation schemes (Klinkert and Comans, 2020). In general, for soils from 
the tropics, little is known about the reactivity of SOM for ion adsorption 
in comparison with soils from temperate regions, while isotopic mea-
surements or 0.43 M HNO3 extractions are not routinely performed and 
consequently hardly available. Previous fractionation studies suggest 
the existence of a lower fraction of humic and fulvic acids of SOM in 
tropical soils compared to soils from temperate regions (Xu et al., 2018), 
while others have found opposite results (Wei et al., 2020). Since it has 
been shown that soil organic matter is an important reactive surface for 
the adsorption of Zn, Cu and B (Duffner et al., 2014; Groenenberg et al., 
2012; Van Eynde et al., 2020b), the fraction of reactive organic matter in 
the solid and solution phase will have great implications on the con-
centration in solution and speciation of these micronutrients. 

Another method for calculating the solid-solution partitioning of 
elements are partition relations in which the distribution of elements 
between the solid and solution phase is empirically related to soil 
properties. In this approach, the mechanistic soil chemical processes 
that are explicitly described in the multi-surface model, are lumped into 
empirical equations in the form of regression functions. A major 
advantage of such models is that they generally require less input data 
and less assumptions, making them suitable for large-scale applications 
and when limited data are available (de Vries et al., 2005; van der Perk 
et al., 2018). For SSA countries, partition relations have the potential to 
use micronutrient soil information based on currently available soil data 
which includes Mehlich-3 extraction data as proxy for the reactive 
concentration (Hengl et al., 2017, 2015), for the formulation of site- 
specific micronutrient fertilizer recommendations. Previously, re-
lations have been derived for the solid-solution partitioning of trace 
elements such as Zn and Cu, often for contaminated soils from temperate 
regions (De Groot et al., 1998; Degryse et al., 2003; Groenenberg et al., 
2012; Impellitteri et al., 2003; Nolan et al., 2005; Tipping et al., 2003). 
These partition relations vary in their specific mathematical form, in the 
choice of independent and dependent variables and in their methodo-
logical specifications (Degryse et al., 2009; Groenenberg et al., 2010b). 
Relations for the solid-solution partitioning of Zn and Cu do not yet exist 
for soils from the tropics, with their frequently relatively low back-
ground levels. To the best of our knowledge, no partition relations exist 
for B. For tropical soils, the reactivity of the soil surfaces may differ, 
thereby changing the solid-solution partitioning and partition relations 
in comparison with temperate soils. In addition, the micronutrient levels 
are expected to be lower in tropical soils compared to temperate soils, 
and may thus not be part of the experimental window for which previ-
ously calibrated partition relations were derived. The macronutrient 
levels may also differ, thereby affecting the partition relations for 
tropical and temperate soils. Particularly phosphate may enhance the 
adsorption of cationic metals (Van Eynde et al., submitted) while it 
competes with boron (Van Eynde et al., 2020a), which may result in 
different empirical binding parameters for temperate and tropical soils. 

Based on the above, the first aim of this study was to improve the 
understanding of soil chemical processes that control the solid-solution 
partitioning of Zn, Cu and B in soils from tropical regions and thus are 
relevant in terms of nutrient availability. Secondly, this knowledge was 
then used as benchmark to develop simplified partition relations to 
predict the dissolved concentrations of these micronutrients, approxi-
mated by a 0.01 M CaCl2 extraction, based on general soil properties in 
combination with a measurement of the reactive pool. Previously 
derived partition relations based on temperate soils, were also used to 
test their ability to predict the concentrations of Zn, Cu and B in solution. 

We collected for these objectives a set of Sub-Saharan African soils 
(n = 172). For the first aim, we applied a geochemical multi-surface 
model to calculate the speciation of the above mentioned micro-
nutrients and identify which soil chemical processes control the solid- 
solution partitioning. With this modelling approach, we also aimed to 
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assess whether a generic multi-surface model works equally well for 
soils from the tropics for which it has not yet been used, compared to 
soils from temperate regions. Using these results as benchmark, we 
derived empirical partition relations for predicting the directly available 
pool of these micronutrients based on their concentration in the solid 
phase and soil properties. 

2. Material and methods 

2.1. Soil samples 

We used 172 air-dried and sieved soil samples originating from 
Burundi (74), Rwanda (50) and Kenya (48). The Burundi soil samples 
included 59 samples that originated from 29 locations in the south of the 
country, where samples were taken at 0–20 cm and 20–40 cm depth. The 
other 15 samples were topsoils (0–20 cm) originating from different 
regions in the country. The Rwanda (50) and Kenya soil samples (48) 
were from the topsoil and spatially distributed all over the countries, 
resulting in a large variety of soil types (Fig. S1). 

2.2. Soil chemical analyses 

The solution concentration of B, Cu, Zn, Ca, Mn, Mg, K, Fe, P and Al, 
together with the total and inorganic carbon and pH were measured in 
soil extracts with 0.01 M CaCl2 (Houba et al., 2000). Calcium chloride 
extractions have often been used as a proxy for the soil solution, and to 
validate multi-surface models or calibrate partition relations that aim to 
model the solid-solution partitioning of elements in soils (Degryse et al., 
2003; Dijkstra et al., 2009; Groenenberg et al., 2012; Van Eynde et al., 
2020a). A 0.01 M CaCl2 solution was freshly prepared in a plastic 
volumetric flask, in order to avoid element contamination from glass-
ware. A fixed volume of the CaCl2 solution was added to the soil samples 
at a solution-to-solid ratio of 10 L kg− 1 in polypropylene centrifuge 
tubes. The suspensions were equilibrated in a horizontal shaker at 180 
oscillations minute− 1 for 2 h and were afterwards centrifuged for 10 min 
at 1800 g and filtered over a 0.45 μm membrane filter. The concentra-
tions of Zn, Cu, B, Fe, and P were measured in the acidified (0.14 M 
HNO3) subsample of the supernatant, using High Resolution Inductively 
Coupled Plasma Mass Spectrometry (HR-ICP-MS, Element 2, Thermo 
Scientific). The concentrations of Al, Ca, Mg, K and Mn were measured 
using Inductively Coupled Plasma Optical Emission Spectroscopy 
(Thermo Scientific iCAP6500). Blank samples were included throughout 
the analyses and the average concentrations with standard deviation of 
the micronutrients of interest in the sixteen blank samples were: − 0.20 
± 0.14 µg B L− 1, 0.21 ± 0.04 µg Cu L− 1 and 0.43 ± 0.36 µg Zn L− 1. In 
addition, the Zn, Cu and B concentrations of two reference samples were 
measured. The standard deviation among the eight measurements were 
0.12/0.25 µg B L− 1, 0.17/0.06 µg Cu L− 1 and 0.80/1.06 µg Zn L− 1 for the 
two reference samples respectively. Samples with measured concentra-
tions below the ICP-MS detection limit (0.3 µg Zn L− 1, 0.1 µg Cu L− 1 and 
0.8 µg B L− 1), were not included for the validation of the multi-surface 
model and for the calibration of the partition relations. 

The pH was measured in the 0.01 M CaCl2 using a glass electrode. 
The dissolved total carbon and dissolved inorganic carbon concentra-
tions were measured in the supernatant with a Segmented Flow 
Analyzer (SFA-TOC, San++, Skalar) equipped with an IR detector that 
measures the amount of CO2(g) after an internal acidification and 
destruction step, and the dissolved organic carbon (DOC) concentrations 
were calculated as the difference between total and inorganic carbon. 

The reactive pool of B, Cu and Zn were estimated by a 0.43 M HNO3 
extraction (Groenenberg et al., 2017). The samples were suspended in a 
freshly prepared extraction solution with 0.43 M HNO3 at a solution-to- 
solid ratio of 10 L kg− 1. The suspensions were shaken for 4 h, cen-
trifugated and filtered over a 0.45 µm membrane filter (ISO, 2016). 
Afterwards, the filtrates were analyzed for B, Cu and Zn using ICP-OES. 

The clay content was measured by laser diffraction analysis (Konert 

and Vandenberghe, 1997). Soils (0.5–1.5 g) were pre-treated three times 
with 10 ml H2O2 in 75 ml of H2O, and once with a few mL of HCl, while 
standing in a warm water bath for half a day. Before analysis, the pre- 
treated samples were suspended in water (~200 ml) which was 
removed and replaced with fresh ultra-pure water for multiple times to 
remove excess of salts. The measured volume percentage of the fraction 
smaller than 2 μm was re-calculated to the mass percentage of clay using 
a particle density of 2.6 g cm− 3 and a bulk density of 1.3 g cm− 3. 

An ammonium oxalate (AO) extraction with a solution-to-solid ratio 
of 20 L kg− 1 and an equilibration time of 4 h (ISO, 2012a) was used to 
measure micro-crystalline Fe and Al (Fe-AO, Al-AO). Iron (Fe-D) and Al 
(Al-D) were also measured in a sodium-dithionite extraction with a 
solution-to-solid ratio of 20 L kg− 1 and an equilibration time of 3.5 h 
(ISO, 2012b), and crystalline Fe and Al were calculated as the difference 
between the Fe and Al measured in the dithionite and AO extraction. The 
Fe and Al in the ammonium oxalate and in the dithionite extractions 
were analyzed using ICP-OES. 

Total SOC content in the soils was analyzed using a wet potassium 
dichromate oxidation method with concentrated sulphuric acid and 
subsequent colorimetric measurement of trivalent chromium formed 
from the oxidation of organic carbon with a spectrophotometer, ac-
cording to the Kurmies procedure (Walinga et al., 2008). For a selection 
of soil samples, the humic and fulvic acid fractions of the organic matter 
in the solid phase (n = 19) and solution phase (n = 12) were measured 
following the procedure as described by Van Zomeren and Comans 
(2007). For the analysis of the solid organic carbon, the soils were first 
suspended with 0.1 M HCl (pH 1) and centrifuged, after which the pellet 
was re-extracted with 0.1 M NaOH (pH 12). This base solution was af-
terwards acidified to pH 1, followed by centrifugation. Subsequently, 
the supernatant of the acid extraction and the supernatant of the acid-
ified base extract were combined and equilibrated with pre-cleaned 
DAX-8 resin. The fulvic acids were afterwards desorbed from the resin 
with 0.1 M KOH. The HA were measured by re-dissolving the pellet from 
the acidified base extract with 0.1 M KOH. A similar procedure (but 
without the initial 0.1 M HCl step) was followed for the fractionation of 
the dissolved organic carbon in the 0.01 M CaCl2 extraction. 

2.3. Multi-surface model 

The multi-surface model included ion adsorption to organic matter, 
electrostatic adsorption to the planar surfaces of clay minerals and ion 
adsorption to Fe and Al (hydr)oxides. The aqueous speciation and cor-
responding thermodynamic constants can be found in Table S1. 
Modeling calculations were performed in ECOSAT, version 4.9 (Keizer 
and Van Riemsdijk, 1995). In order to calculate the solid-solution par-
titioning, the B, Cu and Zn concentrations measured in 0.43 M HNO3 
were used as input for the geochemically reactive concentration. To 
include competitive and synergistic adsorption effects from Fe3+, Al3+, 
Ca2+, Cl− , K+, Mn2+, Mg2+ and PO4

3− , the measured concentrations of 
these elements in the 0.01 M CaCl2 extractions were used as input of 
total dissolved concentrations (see specific calculation steps below). 
Preliminary calculations showed that the inclusion of Mg, Mn and K did 
not affect the calculated Zn, Cu and B speciation. 

In the ECOSAT speciation software, total dissolved concentrations 
cannot be given as input, only the free ion concentration or activity in 
solution, or the total amount. Therefore, the calculation was carried out 
in two steps. Firstly, free ion concentrations of Fe3+, Al3+, Ca2+, Cl− , K+, 
Mn2+, Mg2+ and PO4

3− were calculated based on the measured total 
element concentrations in the CaCl2 extractions, considering pH, the Ca 
and Cl concentrations, and the adsorption to DOC. Secondly, the 
calculated free ion concentrations were used as fixed input together with 
pH, reactive B, Zn and Cu, and the reactive surfaces (including DOC), to 
model the solid and solution distribution of B, Zn and Cu. We corrected 
the total P measurements in the CaCl2 for organic species by taking 20 % 
of total P as inorganic PO4 (Mendez et al., 2020). This was found to be 
the average % of inorganic PO4, measured by a segmented flow analyzer 
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applying a colorimetric molybdenum blue method (Murphy and Riley, 
1962), relative to the total P measured in the 0.01 M CaCl2 by ICP-MS 
(results not shown). 

To test if mineral solubility controls the micronutrient concentration 
in the CaCl2 extraction, the Zn, Cu and B activity in solution was 
calculated using ECOSAT based on the measured concentrations in the 
CaCl2 extractions and compared with the activities that are expected 
based on the solubility of various Zn minerals (Duffner et al., 2014), Cu 
hydroxide (Lindsay, 1979) and various B minerals (Parks and Edwards, 
2005). These calculations showed that the solubility of these minerals 
does not control the measured concentrations for the majority of soil 
samples, except for the Zn concentration measured in the soils with pH 
above 7 (Fig. S2). 

2.3.1. Adsorption to organic matter 
The adsorption to solid and dissolved organic matter was modelled 

with the Non Ideal Competitive Adsorption (NICA) model in combina-
tion with a Donnan model for electrostatic interactions (Kinniburgh 
et al., 1996). Based on the measurements of humic substances in selected 
soil samples, the average percentage of HA and FA relative to the total 
SOC and DOC was calculated, and these percentages were used to esti-
mate the HA and FA concentrations for all soil samples in the dissolved 
and particulate phase. The adsorption to SOM was modelled assuming 
the reactive SOM being HA and FA based on their estimated concen-
tration, and the adsorption to DOM was modelled assuming the reactive 
DOM being FA. 

For the neutral B(OH)3
0 ion, which is the dominant B species in the 

pH range of these soil samples (Table S1), there is no electrostatic 
attraction. Therefore, we did not include the B(OH)3

0 present in the 
Donnan layer for calculating the total adsorbed B to SOM and DOM (Goli 
et al., 2019; Van Eynde et al., 2020b). Since there are only NICA pa-
rameters for B adsorption to HA and since there is generally a strong 
correlation between adsorption constants for HA and FA (Milne et al., 
2003; Tipping, 1998), we considered the B adsorption to FA similar as 
the adsorption to HA and used the same adsorption parameters for both 
OM fractions (Goli et al., 2019). 

The structural NICA-Donnan parameters for HA and FA were taken 
from Milne et al. (2003, 2001). Next to Zn, Cu and B, we included the 
specific adsorption of Fe, Al and Ca in the NICA-Donnan model to ac-
count for possible competitive effects. We used for these ions the pa-
rameters from Milne et al. (2003), except for Fe complexation to FA 
(Hiemstra and van Riemsdijk, 2006) and for B complexation to HA and 
FA (Goli et al., 2019). The adsorption parameters for the NICA-Donnan 
model are given in Tables S2 and S3. 

2.3.2. Adsorption to clay 
Cation adsorption to the planar surfaces of clay minerals due to the 

presence of a permanent negative charge was modelled with a Donnan 
ion exchange model. Illite was taken as a reference clay, with a constant 
Donnan volume of 1L kg− 1, and a surface charge of 0.25 eq kg− 1 

(Duffner et al., 2014; Weng et al., 2001). Using this approach, there will 
be no adsorption of B to the clay surfaces because of the neutral charge 
of the boric acid. However, we have shown previously by modeling that 
adsorption to clay does not play an important role for B speciation in 
soils (Van Eynde et al., 2020b). Although illite may not be representative 
for the dominant clay minerals in the soils of this study, preliminary 
calculations showed that the choice of clay surface charge did not affect 
the modeling calculations because of the minor contribution of clay to 
the Zn and Cu adsorption in the solid phase. 

2.3.3. Adsorption to metal (hydr)oxides 
The Charge Distribution (CD) model (Hiemstra and Van Riemsdijk, 

1996) was used, in combination with a multi-site ion adsorption 
complexation (MUSIC) model (Hiemstra and Zhao, 2016) for calculating 
ion adsorption to the Fe and Al oxides. 

The content of poorly crystalline oxides was calculated based on the 

Al and Fe measured in the AO extraction. To transform the moles of Al 
and Fe in the AO extraction to the oxide mass, a molar mass of 95 g 
mol− 1 Fe and 84 g mol− 1 Al was used, which corresponds to particles 
with a specific surface of 600 m2 g− 1 (Hiemstra and Van Riemsdijk, 
2009; Mendez et al., 2020). The amount of crystalline oxides were 
calculated as the difference between the Fe and Al in the sodium- 
dithionite extraction and the Fe and Al measured in the AO extraction, 
using a molar mass of 89 and 78 g mol− 1 for Fe (goethite) and Al 
(gibbsite) respectively (Hiemstra et al., 2010). In case no Al was 
measured in the dithionite extraction, we did not include crystalline Al 
(hydr)oxides in the modelling. For the crystalline oxides, a specific 
surface area of 100 m2 g− 1 was assumed (Groenenberg et al., 2012). 

Ferrihydrite (Fh) was used as model oxide for the natural oxide 
fraction of the soils (Mendez, 2020), using the structural parameters 
from Hiemstra and Zhao (Hiemstra and Zhao, 2016). The total Fh con-
tent was calculated by summing the mass of poorly crystalline and 1/6 of 
the mass of crystalline oxides (assuming a specific surface area of 100 m2 

g− 1), and in the modelling calculations a specific surface area of 600 m2 

g− 1 was used for Fh. The CD-MUSIC parameters for modelling ion 
adsorption to Fh are given in Table S4. 

Manganese (Mn) oxides have been suggested to be important for the 
adsorption of metal cations in soils (Cancès et al., 2003; Mossa et al., 
2021; Ren et al., 2017). For the subset of Kenyan soils, the Mn con-
centration was also measured in the AO extraction to test its importance 
for the calculation of Zn and Cu speciation. The total Mn oxide content 
was calculated based on this Mn concentration in the AO extraction, 
using a molar mass of 86.9 g oxide mol− 1 Mn (Tonkin et al., 2004). The 
adsorption of Zn and Cu to the Mn oxides was modeled with the General 
Two Layer Model (GTLM) using a specific surface area of 764 m2 g− 1 and 
the parameters from Tonkin et al. (2004) (Table S5). 

2.4. Partition relations 

Different forms of empirical models exist to describe the solid- 
solution partitioning of elements in soils. The most basic (linear 
adsorption) model uses a constant distribution coefficient: 

Kd =
Q
C

(1) 

in which Kd = the distribution constant (L kg− 1), Q = the concen-
tration in the solid phase (mol kg− 1) and C the concentration in the soil 
solution (mol L− 1). Since values of Kd can vary by different orders of 
magnitude among soil samples (Degryse et al., 2003), equation (1) is 
often extended with soil properties (Xi) to account for this variation 
(Sauvé et al., 2000): 

logKd = α0 +
∑

ailogXi (2) 

with α0-i being regression coefficients. In order to account for non- 
linear adsorption, Freundlich-type equations have been used as parti-
tion relations according to: 

Q = Kf Cn (3) 

in which the exponential term n shows the deviation from linear 
adsorption (<1), and expresses the extent of decrease in bonding 
strength with increasing concentrations in solution. 

Groenenberg et al. (2010) differentiated between three types of 
Freundlich-type partition relations (equation (3)), depending on which 
variable is optimized during the derivation of the partition relation. 
Most commonly, the concentration in solution is optimized as follows, 
with β0-i regression coefficients (Nolan et al., 2003): 

logC = β0 + β1logQ+
∑

βilogXi (4) 

or the other way around, if Q is optimized instead of C (Elzinga et al., 
1999). Less common is the optimization of the Freundlich constants Kf 
and n from equation (3), with γ0-i being regression coefficients 
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(Groenenberg et al., 2010; Tye et al., 2003): 

logKf = logQ − nlogC = γ0 +
∑

γilogXi (5) 

from which the concentration in solution can be calculated after 
optimization. 

To assess the experimental variation in solid-solution partitioning of 
Zn, Cu and B, the Kd values were calculated according to equation (1), 
based on the concentrations measured in the 0.43 M HNO3 and the CaCl2 
extracts. Next, the partition relations shown in equations (4) and (5) 
were derived. Input variables for the soil properties were SOM (%) based 
on the total carbon measurements and assuming that SOM consists of 50 
% carbon, the clay content (%), FeAlAO as the sum of Fe and Al measured 
in the AO extraction (mmol kg− 1), the DOC measured in the 0.01 M 
CaCl2 extraction (mg L− 1) and the pH measured in the 0.01 M CaCl2 
extract. All variables except for the soil pH were log10 transformed as 
input variable in the partition relations. We did not correct the reactive 
content for the concentration in solution to obtain Q (i.e. the nutrient 
concentration in the solid phase), since this is not practical for appli-
cations when only the reactive content is known. Preliminary calcula-
tions showed that such a correction did not improve the partition 
relations. The same soil properties were used as the ones that were used 
by Groenenberg et al. (2012) for the calibration of partition relations for 
Cu and Zn based on contaminated and non-contaminated soils from the 
Netherlands. 

The coefficients in equation (4) were derived by multiple linear 
regression analysis, and the final model was selected based on the 
Akaike’s Information Criterion (AIC) value (Webster and McBratney, 
1989) using the dredge function from the MuMIn package (Barton, 
2020). 

For equation (5), the value of n and the coefficients of the regression 
model were optimized simultaneously. In R, the value of n was varied 
from 0.01 to 1, in steps of 0.01. For each n and corresponding Kf values, a 
linear regression model was calculated based on the soil properties. The 
final n was selected for the minimal sum of squared differences in Kf. 
Afterwards, the regression model for the particular n value was opti-
mized in R with the dredge function from the MuMIn package (Barton, 
2020) to select only the most important input variables for the final the 
equation. 

The final regression equations were checked for multicollinearity 
between the independent variables, using the vif function from the car 
package in R (Fox and Weisberg, 2019). For the final models, the vari-
ance inflation factor (vif) for a specific independent variable was found 
never to be larger than 5. Interaction terms in the form of log Xi*pH, 
with Xi being one of the reactive surfaces for pH-dependent adsorption 
(i.e. DOC, SOM, metal (hydr)oxides), led to high vif values and did not 
result in better predictions, so these terms were not included in the final 

models. The contribution of the variables to the total variance explained 
by the model was calculated using the calc.relimp function from the 
relaimpo package in R (Gromping, 2006). 

The R software (version 4.0.2) was used for derivation of the parti-
tion relations, the visualization of the results and the calculation of the 
correlation table (R Core Team and R Development Core Team, 2020). 
The evaluation of the multi-surface model and the two different parti-
tion relations were done based on the mean error (ME: 
mean(predicted − measured)) and the root-mean-squared error (RMSE: 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

mean(predicted − measured)2
√

). The residuals of both model predictions 
were checked visually in relation with the independent and dependent 
variables. 

3. Results and discussion 

3.1. Soil characteristics 

The concentrations of the micronutrients in the CaCl2 and the HNO3 
extractions of the studied soils (Table 1) were relatively low, compared 
to previous measurements in temperate soils with natural background 
levels (Groenenberg et al., 2012). To illustrate, in the case for Zn, around 
40 % of all samples had Zn concentrations in the CaCl2 extraction below 
1 µmol kg− 1, which is around the highest concentration for which 
Duffner et al. (2013) found a positive response of wheat biomass to Zn 
application in a pot experiment. For B, 52 % of all samples had measured 
B concentrations in the CaCl2 extraction below 7 µmol kg− 1. The latter 
corresponds to 28 µmol kg− 1B measured by hot water extraction based 
on a previously derived relationship (Novozamsky et al., 1990) and is 
assumed to be a critical value associated with B deficiency for plant 
production (Kabata-Pendias and Pendias, 2001). 

The Kenyan soil samples have the largest variation in soil properties 
and micronutrient concentrations (Table 1), which coincides with the 
largest variation in soil types compared to Burundi and Rwanda 
(Fig. S1). 

As shown in Figs. S3-S4, the fractions of reactive SOC and DOC, as 
defined by the content of humic and fulvic acids, were on average 32 and 
21 % of total SOC measured by the Kurmies method and DOC, respec-
tively. These percentages were lower than the general assumptions that 
have been used before in multi-surface modelling studies (Groenenberg 
and Lofts, 2014) or that have been measured previously in temperate 
soils (Fest et al., 2008; Groenenberg et al., 2010a; Supriatin et al., 2015), 
especially for the DOC. These relatively low values will have implica-
tions for the micronutrient speciation calculated by the multi-surface 
modeling. As shown by Fig. S5, the data show a tendency that the 
fraction of reactive SOC decreases with increasing pH, and increases 
with metal (hydr)oxide content and total SOC. The latter is the opposite 

Table 1 
The median values and the range of soil properties, reactive concentrations (Q) measured in the 0.43 M HNO3 extraction, and concentrations measured in the 0.01 M 
CaCl2 extractions (solution-to-solid ratio of 10 L kg− 1) (C) for the soil samples from Burundi (n = 74), Rwanda (n = 50) and Kenya (n = 48).   

Burundi Rwanda Kenya  

Median Range Median Range Median Range 

pH 4.4 3.9–5.3 4.9 3.9–6.2 6.9 4.0–8.8 
DOC (mg L− 1) 9.4 4.7–16.6 13.9 7.2–33.9 4.5 1.6–22.4 
SOC (g kg¡1) 18 7–50 16 9–50 10 2–67 
Clay (g kg¡1) 94 23–708 86 11–776 290 1–813 
AO-Fe (mmol kg¡1) 43 11–156 49 13–273 20 2–183 
AO-Al (mmol kg¡1) 76 34–314 50 14–459 31 6–832 
DC-Fe (mmol kg¡1) 536 261–995 459 124–919 245 16–1273 
DC-Al (mmol kg¡1) 88 34–328 50 14–459 58 7–832 
Q-Zn (µmol kg¡1) 15 3–171 28 5–273 37 8–1361 
Q-Cu (µmol kg¡1) 68 17–198 51 10–346 46 6–807 
Q-B (µmol kg¡1) 29 9–11 22 2–159 74 5–1748 
C-Zn (µmol kg¡1) 1.99 <0.2–14.19 1.53 0.26–13.65 0.08 <0.2–25.05 
C-Cu (µmol kg¡1) 0.17 0.05–1.62 0.13 0.08–0.43 0.13 < 0.04–1.08 
C-B (µmol kg¡1) 5.78 1.48–43.78 5.45 <0.2–22.05 13.26 <0.2–477.37  
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from what has been observed by Tipping et al. (2003) based on model 
fitting. However, these results were for specific upland soils with higher 
SOM levels. As shown by Fig. S6, the fraction of reactive DOC also in-
creases with total DOC, but increases with increasing pH, and decreases 
with metal (hydr)oxide content. With increasing pH, the hydrophobic 
fractions of the soil organic carbon may become more soluble, thereby 
contributing a larger share of the DOC fraction. This may explain a 
higher fraction of dissolved FA and HA in soils with higher pH. The 
relations between the reactive organic carbon fractions and pH and 
metal (hydr)oxides, may also suggest the importance of adsorption to 
metal (hydr)oxides for SOC stabilization (Weng et al., 2007), resulting in 
a higher fraction of humic substances. Future studies with additional 
data are needed to confirm these trends and the underlying processes 
that explain the reactive organic matter fractions for ion adsorption in 
the particulate and solution phase. 

3.2. Measured solid-solution partitioning 

The experimental solid-solution partitioning of Zn, expressed as Kd 
(equation (1)) varied by a factor ~ 1000, and was mostly controlled by 
the soil pH (Fig. 1). For Cu, the Kd values varied less among the soils and 
were mostly related to the relative soil organic carbon fractions, 
expressed as the ratio of SOC over DOC (Fig. 1), showing that the 
interplay between these two organic matter pools controls the final Cu 
concentration in solution. The variance in Kd of Cu was generally less 
explained by soil properties than for Zn. For B, most Kd values were in 
the relatively narrow range between 10 and 100 (Fig. S7). These Kd 
values were low compared to Zn and Cu, pointing towards a relatively 
high mobility of B in soils (Kabata-Pendias and Pendias, 2001). In 
addition, there was no clear relation between the solid-solution parti-
tioning of B and any of the soil properties (Fig. S7). 

The correlation table in Fig. S8 confirmed the observed relations 
between Kd and soil properties. The strongest correlation for the Zn 
concentration in the CaCl2 extract was found with soil pH (-0.83, p <
0.001), while the concentrations of B and Cu were mostly correlated 
with the reactive content (0.75 and 0.49 respectively, p < 0.001). 

3.3. Multi-surface model calculations 

The accuracy of the geochemical multi-surface model predictions for 
the concentrations in a 0.01 M CaCl2 extract varied among Zn, Cu and B 
(Fig. 2). Based on the RMSElogM, the model performed best for predicting 
the concentration in solution of Cu (0.30), followed by B (0.41) and Zn 

(0.54). The RMSElogM values of Cu and Zn for these tropical soils were in 
line with previous multi-surface modelling studies for temperate soils 
(Groenenberg and Lofts, 2014), contaminated sites (Dijkstra et al., 2009; 
Mao et al., 2017), compost samples (Klinkert and Comans, 2020) and 
waste materials (Meima and Comans, 1998). This allows for the 
conclusion that these generic geochemical multi-surface models are 
performing equally well for soils from the tropics with lower levels of 
trace elements. 

For B we first assumed its concentration in the 0.43 M HNO3 extract 
represented the reactive B fraction. This resulted in an overprediction of 
soluble B for nearly all soils (Fig. S9). We have previously evaluated the 
use of three different extraction methods to estimate reactive B with a 
multi-surface model, for a limited set of tropical and temperate topsoils 
(Van Eynde et al., 2020b). The results suggested that the 0.43 M HNO3 
extraction may overestimate the reactive B content, due to (partial) 
dissolution of B containing minerals. The B measured in 0.05 M KH2PO4 
was found to be a better estimation for the reactive B, based on modeling 
calculations. Based on the measurements of 10 soil samples, we found 
that the KH2PO4-extractable B was on average half of the concentration 
measured by the 0.43 M HNO3 extraction (Fig. S10). So, in a next 
attempt to predict B concentration in solution (i.e., the scenario shown in 
Fig. 2), we used half of the B concentration measured in the 0.43 M 
HNO3 soil extracts as input for the multi-surface model. This approach 
still overestimated soluble B for most samples, resulting in a positive 
mean error of 0.26 log M (Fig. 2). Fig. S11 shows that the modeling error 
was not related to any of the soil variables. A possible explanation may 
be that the ratio between B measured in 0.43 M HNO3 and actual 
reactive B varies among soil samples and may be larger in general, 
explaining the modeling deviation. For five soils, the B concentration in 
the CaCl2 extract exceeded the HNO3-extractable B (see Table 1), 
demonstrating that the HNO3 extraction is not always adequate to es-
timate reactive B in soils . 

For Zn, the multi-surface model tended to overestimate Zn concen-
tration in solution with increasing pH, with increasing reactive content 
and with increasing Zn loading, expressed as the reactive Zn concen-
tration per mass of reactive SOM or metal (hydr)oxides (Fig. S12). This 
resulted in an overall positive mean error of 0.26 log M (Fig. 2), sug-
gesting an average overestimation of dissolved Zn by the model. These 
relations between modelling deviations for Zn and soil variables, have 
been observed in previous multi-surface modeling studies that focused 
on contaminated and non-contaminated soils from temperate regions 
and composts (Bonten and Groenenberg, 2008; Groenenberg et al., 
2017; Klinkert and Comans, 2020; Mao et al., 2017), so these deviations 

Fig. 1. Relation between the log Kd for Zn and pH (left) and for Cu and the ratio of soil organic carbon (SOC) over the dissolved organic carbon (DOC). The Kd value 
was calculated for soils from Burundi (grey makers), Kenya (yellow markers) and Rwanda (blue markers), based on the concentration measured in 0.43 M HNO3 
minus the concentration measured in 0.01 M CaCl2 (mol kg− 1) divided by the concentration measured in the 0.01 M CaCl2 (mol L− 1). 
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are not specific for soils from the tropics with low Zn concentration. 
The aforementioned studies have given various explanations for this 

systematic deviation in multi-surface modeling calculations for Zn. For 
example, it has been shown that HNO3-extractable Zn overestimates the 
exchangeable pool in neutral to alkaline soils due to dissolution of 
minerals from which the Zn is not isotopically exchangeable (Degryse 
et al., 2011; Groenenberg et al., 2017; Marzouk et al., 2013). Such an 
overestimation of reactive Zn as input may explain the over-prediction 
of Zn in solution in high pH soils by the multi-surface model as 
observed in this study, and in previous work (Bonten et al., 2008; 
Groenenberg et al., 2017). Mao et al. (2017) attributed the increased 
overprediction of soluble Zn with increasing pH to the simplification of 
the wide variety in metal (hydr)oxides to one single model oxide in the 
multi-surface model, resulting in a weak description of the ion adsorp-
tion processes to the different metal (hydr)oxides. The use of the CD 
model in this study is expected to better represent ion adsorption pro-
cesses to metal (hydr)oxides compared to the models used in previous 
studies (Dijkstra et al., 2009; Groenenberg et al., 2017; Mao et al., 2017). 
Moreover, it has been shown recently that ferrihydrite nanoparticles are 
a good proxy for describing the metal (hydr)oxide surface reactivity, at 
least for phosphate, in temperate (Mendez et al., 2020) and tropical 
(Mendez et al., 2022) soils. In addition, by using the modeling param-
eters from Tonkin et al. (2004), our results for the subset of Kenyan soil 
samples do not suggest that the inclusion of other metal (hydr)oxides 
such as Mn oxides reduces this systematic modeling error (Fig. S14 and 
S15). Related to the adsorption processes to the metal (hydr)oxides and 
other reactive surfaces, one may question the validity of the concept of 
linear additivity that is assumed in this study and in previous studies that 
modeled trace element speciation in soils (Dijkstra et al., 2009; Groe-
nenberg et al., 2017; Mao et al., 2017; Tiberg et al., 2018). The concept 
of linear additivity assumes that the different reactive surfaces in the 
multi-surface model do not interact in such a way that it affects ion 
adsorption processes (Groenenberg and Lofts, 2014). For cations, such as 
Cu and Ca, batch adsorption experiments have shown that the presence 
of organic matter compounds enhances the cation adsorption to metal 
(hydr)oxides such as goethite with increasing pH, due to electrostatic 
effects and the formation of ternary complexes (Weng et al., 2008). The 
interaction between SOM and metal (hydr)oxides, which was not 
included in the multi-surface model, may lead to more Zn adsorption. 
Finally, others have questioned the validity of the NICA-donnan pa-
rameters, especially the electrostatic model for fulvic acids (Benedetti 
et al., 1996; Hiemstra and van Riemsdijk, 2006; Klinkert and Comans, 
2020) or the specific adsorption parameters for Ca (Town et al., 2019). 
Both aspects may have resulted in an overprediction of Ca competition 
on Zn adsorption, thereby leading to an overestimation of Zn concen-
tration in solution by the model. Future research should confirm which 
of the above mentioned limitations is most important for explaining the 

observed overprediction of soluble Zn, which is according to our results 
a general modeling error irrespective of Zn levels or soil types. 

For Cu, the multi-surface model underestimated the dissolved Cu 
concentrations especially in soils with low Cu loadings (Fig. S13). 
Groenenberg et al. (2017) found similar results for a large set of Dutch 
soil samples and attributed this error to an incomplete recovery of Cu by 
the 0.43 M HNO3 extraction at low Cu loadings due to very strong 
binding. The Cu concentration in solution is underestimated by the 
multi-surface model for the soils with low reactive and dissolved Cu 
concentrations. An alternative explanation for the prediction error for 
Cu may be that for these soils with low concentrations, the presence of 
organo-mineral colloids may enhance the measured Cu concentrations 
in the CaCl2 extraction, while this process is not taken into account by 
the multi-surface model. 

The speciation of Zn, Cu and B in the solid and solution phase ac-
cording to the multi-surface model is shown in Fig. 3. In line with pre-
vious findings, soil organic matter was found to be the most important 
reactive surface for Zn and Cu adsorption in the solid phase (Groenen-
berg et al., 2017; Tiberg et al., 2018; Weng et al., 2001). However, with 
increasing pH, the metal (hydr)oxides start to play an important role. 
For Zn, this is already noticeable from pH 5.5–6, while for Cu above pH 
7. Interestingly, for B, the opposite trend was found as shown by Fig. 3: 
the adsorption to metal (hydr)oxides dominates B adsorption in low pH 
soils, while soil organic matter becomes increasingly important with 
increasing pH. In the solution phase, Zn and B are mainly present as the 
free Zn2+ ion, and as B(OH)3. Only for Cu, DOC was found to play an 
important role for the solution speciation. 

3.4. Partition relations 

Two different types of partition relations were derived for calcu-
lating the solid-solution partitioning of the three micronutrients: C-Q 
relations, in which the concentration in the 0.01 M CaCl2 extraction was 
optimized based on soil variables and the reactive content (Eq. (4)) and 
Kf relations in which the two Freundlich parameters and regression 
coefficients were optimized simultaneously (Eq. (5)). 

3.4.1. C-Q partition relations 
The C-Q partition relations based on the tropical soils from this study 

for the three different micronutrients are shown in Table 2. The soil pH 
explained most variation (57%) in the Zn concentrations measured in 
the CaCl2 extraction, with a negative coefficient. This is consistent with 
the previously observed relation between Kd and the concentration in 
the CaCl2 extraction with pH (Fig. 1). For B and Cu, for which we found a 
less clear relation between Kd and soil properties, the reactive content 
appears to be most important variable to predict soluble B and Cu: 
respectively 49 and 25 % of the variance in the dissolved concentration 

Fig. 2. Comparison between measured and predicted concentration in a 0.01 M CaCl2 soil extraction, using multi-surface modelling for Zn (left), Cu (middle) and B 
(right) in soils from Burundi (grey markers), Kenya (yellow markers) and Rwanda (blue markers).The numbers given in the graphs represent the root mean squared 
error (RMSE) and the mean error (ME) in log M. The solid line is the 1:1 line, points within the dashed lines are within 0.5 log M deviation from the measured 
concentrations. 
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was due to the variation in the reactive content (Table 2). 
The partition relations, with their most important input variables 

and coefficients, were in agreement with the importance of the various 
reactive surfaces from the multi-surface modelling calculations (Fig. 3). 
For Zn and Cu, the multi-surface modelling calculations have shown that 
soil organic matter is the most important reactive surface for adsorption 
in the solid phase. In line with these results, SOM appears as a significant 
variable in both regression equations with a negative coefficient 
(Table 2). For Zn and B, we found a positive regression coefficient for 
clay in the C-Q relations, which is unexpected based on adsorption 
processes. For Zn, clay was found to be only slightly significant (p-value 
of 0.04), and the contribution to the variance in the dissolved Zn con-
centration was found to be only minor (0.8 %) as shown in Table 2. 

Consistent with the prediction by the multi-surface model that 

metals such as Zn and especially Cu in the CaCl2 solution are present as a 
complex with DOC (Fig. 3), DOC concentration was found to be a sig-
nificant variable with a positive coefficient explaining dissolved Cu and 
Zn in the partition relations (Table 2). 

For B, the partition relation showed that the B concentration in so-
lution is mainly governed by the reactive content (Table 2). Initially, a 
significant contribution of DOC was found for soluble B in these tropical 
soils, with a negative coefficient (results not shown). However, our 
multi-surface modeling calculations did not show an important role of 
DOC for B solubility (Fig. 3). The negative contribution of DOC on B 
solubility cannot be explained by soil chemical processes. The DOC 
concentrations were found to be strongly related to the SOC content 
(Fig. S8). As such, DOC may be a surrogate for SOC in the partition 
relation. When the partition relation was re-calibrated without DOC as 

Fig. 3. The chemical speciation of Zn, Cu and B in the solid phase (left figures) and the solution phase (right figures) of all samples as it is predicted by the multi- 
surface model. The speciation is shown as a function of the soil pH measured in the 0.01 M CaCl2. In the solid phase, the ions are adsorbed by clay, ferrihydrite (Fh), 
solid humic acids (SHA) and solid fulvic acids (SFA). In the solution phase, the elements are present as free ion (or in the case of B as B(OH)3), inorganic complexes or 
adsorbed to dissolved fulvic acids (DFA). 
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possible input variable, SOM was selected as a significant variable next 
to the reactive concentration (Table 2), and the negative coefficient for 
SOM is in line with the multi-surface modeling predictions that showed 
that SOM is an important reactive surface for B adsorption. The final 
model had the same R2 and prediction error as the model with DOC. 

The explained variance in dissolved Cu concentration by the parti-
tion relation (35%) was relatively low (Table 2), probably because of a 
too small variation in the experimental solid-solution partitioning. For B 
(62%) and Zn (80%), the explained variation was higher. However, the 
prediction error of the partition relations in the dissolved concentrations 

Table 2 
The C-Q partition relations as shown in equation (4), derived based on # soil samples for predicting the concentrations of Zn, Cu and B in the 0.01 M CaCl2 (logC, in M). 
The final model was selected based on the AIC value, with the following variables: the concentration measured in the 0.43 M HNO3 of the specific element (Q), the pH 
(CaCl2), the soil organic matter (SOM), the clay content, the sum of Fe and Al measured in the ammonium oxalate extraction (AO-FeAl) and the dissolved organic 
carbon concentration in the 0.01 M CaCl2 extraction (DOC). For each soil variable, the coefficient in the model is given with the standard error between brackets, 
followed by the % of variation that is explained by the model and attributed to the particular variable. The coefficient of determination (R2) is given to show the 
percentage of variation in logC that is explained by the model.   

α0 pH logQ logSOM logFeAl logClay logDOC AIC R2 # samples    

mol kg¡1 % mmol kg¡1 % mg L− 1    

logC(Zn) − 0.95 ± 0.43 − 0.54 ± 0.03 
57% 

0.69 ± 0.06 
8% 

− 0.89 ± 0.17 
10% 

– 0.13 ± 0.06 
0.8% 

0.38 ± 0.13  

5%  

35.8  0.80 159 

logC(Cu) − 5.77 ± 0.26 − 0.04 ± 0.02  

2% 

0.47 ± 0.05  

25% 

− 0.53 ± 0.11  

3% 

– – 0.42 ± 0.10  

4%  

− 25.52  0.35 172 

logC(B) − 3.06 ± 0.26 – 0.68 ± 0.05  

49% 

− 0.20 ± 0.09  

6% 

– 0.12 ± 0.06  

6% 

–  64.7  0.62 169  

Fig. 4. The comparison between measured and predicted concentrations of Zn (upper), Cu (middle) and B (lower) in the 0.01 M CaCl2 extraction, using CQ relations 
(left), Kf partition relations (middle) and the CQ partition relations from (Groenenberg et al., 2012). The numbers given in the graphs represent the root mean squared 
error (RMSE) and the mean error (ME) in log M. The solid line is the 1:1 line, points within the dashed lines are within 0.5 log M deviation from the measured 
concentrations. 
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was similar for all three elements, as illustrated by the respective RMSE 
(Fig. 4). Based on this observation, we can conclude that the partition 
relations are accurate prediction models of the soluble Zn, Cu and B 
concentrations measured in a 0.01 M CaCl2 extraction for these soils 
from the tropics. 

The prediction error of the C-Q partition relations for all three 
micronutrients was not related to any input variable (Figs. S11-S13), but 
it was related to the dependent variable namely the concentration 
measured in the CaCl2 extraction: The dissolved concentrations are 
overestimated in the lower range, and underestimated in the higher 
range by the C-Q partition relation (Fig. 4). This modeling error becomes 
even more clear when using previously derived C-Q partition relations 
from (Groenenberg et al., 2012). These partition relations were cali-
brated based on a set of Dutch soils, with higher Zn, Cu and B concen-
trations in the CaCl2 extract (Zn: − 7 – − 3 log M, Cu: − 8 – − 6 log M, B: 
− 6 – − 4 logM). For Zn and especially for B, using the partition relations 
from Groenenberg et al. (2012) also overestimates the dissolved con-
centrations at high values, and the opposite at low values. The dissolved 
concentrations in these tropical soils are lower than, or at the lower end 
of, the concentrations used for calibrating the partition relations from 
Groenenberg et al. (2012). As discussed in the next section, this sys-
tematic prediction error can be reduced when using Kf instead of C-Q 
partition relations. Using the partition relations from Groenenberg et al. 
(2012) results in a systematic overestimation of dissolved Cu concen-
trations in these tropical soils. Comparison of both C-Q partition re-
lations shows that the effect of DOC and SOM on dissolved Cu is higher 
and lower, respectively, in the relations from Groenenberg et al. (2012) 
compared to the partition relations found in this study. Groenenberg 
et al. (2012) found larger fractions of reactive DOC (i.e. 50 %) for their 
multi-surface modeling calculations compared to this study, which may 
have resulted in a larger coefficient for DOC in their partition relations 
derived for the same set of temperate soil samples. In terms of SOC, these 
tropical soils have a lower Cu – SOC loading, which may result in a 
higher importance of high affinity sites for Cu adsorption, and therefore 
a larger coefficient of SOC in the partition relations for tropical soils. 

3.4.2. KF partition relations 
For the derivation of Kf partition relations, the solid-solution parti-

tioning itself was optimized instead of the concentration in solution, 
according to equation (5) (Groenenberg et al., 2010). The resulting 
equations are shown in Table 3. For Zn, this approach resulted in a 
partition relation that is similar to the C-Q relation. . Again, pH was the 
most important variable, similar as in the C-Q partition relation, 
explaining 69% of the variance in Kf. Compared to the C-Q partition 
relation, the total variance explained by the model is the same for the Kf 
relation (80%; Table 3), but the error in the Zn concentration is also 
slightly larger (see RMSE values in Fig. 4). More importantly, the 

systematic underestimation of Zn in solution at highest concentrations 
and overestimation at lowest concentrations, as observed in the C-Q 
relation, disappeared when using a Kf partition relation (Fig. 4). 

For Cu and B, a Kf partition relation resulted in a lower variance 
explained by the model, and a higher prediction error in the dissolved 
concentration compared to the C-Q relations. The Kf partition relation 
confirmed the previous result that the concentrations of Cu and B in the 
CaCl2 extractions were mainly determined by the reactive content 
(Table 2), and that the experimental Kd values were slightly related to 
the soil organic matter pools in the case of Cu (Fig. 1), or not clearly to 
any soil property in the case of B (Fig. S7). As a result, optimization of 
the solid-solution partitioning in the form of Kf relations did not give 
good results for B and Cu. 

3.5. Micronutrient availability in tropical soils 

Micronutrient availability depends particularly on the reactive and 
soluble pools. We have shown that the solid-solution partitioning of Zn is 
mainly controlled by soil pH. When the reactive content is known, it is 
possible to make a reasonable estimation of the dissolved concentration 
based on easily obtainable soil parameters such as soil pH and soil 
organic matter. In acidic soils with pH ~ 4, a large fraction of reactive Zn 
was found to be present in the solution phase. This implies that the 
buffering capacity of Zn in these soils is low, while the soluble concen-
tration may be relatively high due to limited adsorption. As a conse-
quence, the buffering capacity may limit uptake, and in these cases soil 
tests that approximate the reactive pool such as the 0.43 M HNO3 
extraction, may relate better to Zn uptake (Nawara et al., 2017). For B 
and Cu, the dissolved concentrations were mainly controlled by their 
reactive contents, the solid-solution partitioning was not related to soil 
properties. In terms of practical implications, measuring both nutrient 
pools instead of one may not give more information in terms of 
availability. 

The correlation table in Fig. S8 shows that the reactive content of Cu 
and Zn in these soils is strongly related to the soil organic matter and 
metal (hydr)oxides content, which may be explained by the fact that 
these are the most important adsorption surfaces, thereby controlling 
the buffering capacity of both nutrients. 

Our multi-surface modeling calculations for the large set of tropical 
soils in this study have confirmed the previous finding that the adsorbed 
amount of naturally present reactive B in soils is minor (Van Eynde et al., 
2020b). As a consequence, it is expected that other processes than 
adsorption will be important for buffering the B concentration in the 
solution, such as precipitation, aerosol deposition, B originating from 
mineral weathering or from mineralization of soil organic matter 
(Gaillardet and Lemarchand, 2018; Park and Schlesinger, 2002; Su and 
Suarez, 2004). Reactive B content in these soils was found to be mostly 

Table 3 
The Kf partition relations as shown in equation (5), derived for predicting the Freundlich parameters for Zn, Cu and B concentrations in the 0.01 M CaCl2 extract (logC, 
in M). The input variables were selected based on stepwise regression, using as possible input variables the concentration measured in the 0.43 M HNO3 of the specific 
element (Q), the pH(CaCl2), the soil organic matter (SOM), the clay content, the sum of Fe and Al measured in the ammonium oxalate extraction (AO-FeAl) and the 
dissolved organic carbon concentration in the 0.01 M CaCl2 extraction (DOC). For each soil variable, the coefficient in the model is given with the standard error 
between brackets, followed by the % of variation that is attributed to the particular variable. The coefficient of determination (R2) is given to show the percentage of 
variation in logKf that is explained by the model.   

n α0 pH logSOM logFeAl logClay logDOC R2 AIC # samples      

mmol kg¡1 % mg L− 1    

logKf(Zn)  0.64 − 2.91 ± 0.16 0.49 ± 0.02  

69% 

1.29 ± 0.12  

8% 

– – − 0.39 ± 0.11  

3%  

0.80  22.30 159 

logKf (Cu)  0.59 − 0.11 ± 0.23 0.01 ± 0.02  

1% 

0.54 ± 0.16  

9% 

0.22 ± 0.10  

10% 

0.10 ± 0.06  

7% 

− 0.44 ± 0.12 
4%  

0.31  22.09 172 

logKf (B)  0.53 − 2.30 ± 0.13 0.19 ± 0.02  

36% 

0.25 ± 0.09  

4% 

– – –  0.40  16.7 169  
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related to clay content (Fig. S8). The correlation between reactive B or 
dissolved B concentration and clay content (correlation coefficients of 
0.33 and 0.29 respectively) points towards the importance of chemical 
weathering for controlling the dissolved B concentrations in these 
tropical soils. 

4. Conclusions 

Micronutrient availability depends on the soil nutrient status, and in 
particular on the reactive and soluble pools. To improve the under-
standing of the processes that control the solid-solution partitioning of 
Zn, Cu and B in tropical soils, a multi-surface model was used to 
calculate the micronutrient speciation in a series of 172 soils samples 
from Burundi, Rwanda and Kenya. Next, partition relations were 
developed for predicting the soluble Zn, Cu and B concentrations based 
on general soil properties. 

Most of the reactive Cu is present in the solid phase. Interestingly, we 
found that the solid-solution partitioning of Cu was rather constant 
among all 173 soil samples studied, and it was only partly explained by 
the soil organic matter in the solid and solution phase. The importance 
of soil organic matter (SOM) for Cu solid-solution partitioning was 
confirmed by the multi-surface model calculations, which showed that 
SOM was the dominant adsorbent for Cu, except for soils with pH larger 
than 7 in which the metal (hydr)oxides also start to play an important 
role. The weak relation between the rather constant Cu solid-solution 
partitioning and soil variables, resulted in partition relations in which 
the variation in soluble Cu was mainly explained by the reactive con-
centration. In comparison with the solid-solution partitioning of Cu in 
soils from temperate climates, lower Cu concentrations in solutions were 
found for the tropical soils in this study. We explained this phenomenon 
by the lower reactivity of dissolved organic matter that was measured in 
these tropical soils, and/or by the lower Cu:SOC ratio that was found, 
which may result in relatively higher Cu adsorption in the solid phase. 

Similarly as for Cu, we found for B that the variation in soluble Cu 
was mainly explained by the reactive concentration. However, in 
contrast to Cu, these results for B can be explained by the weak inter-
action of B with the solid phase, which was shown by the relatively low 
solid-solution partitioning ratios and the multi-surface modeling calcu-
lations. Although small, the interaction of B with the solid phase is 
dominated by adsorption to metal (hydr)oxides in low pH soils, and to 
soil organic matter in soils with pH above ~ 6. 

The solid-solution partitioning of Zn in the studied soils varied the 
most, and this variation was mainly explained by soil pH. The speciation 
of Zn in the solid phase was dominated by soil organic matter in low pH 
soils, but above pH 5.5–6, the metal (hydr)oxides started to play an 
important role. Due to the strong relation between the solid-solution 
partitioning of Zn and soil variables such as pH, the partition relations 
resulted in a higher explained variance of soluble Zn compared to Cu and 
B. 

For B, the interaction with the solid phase is limited, resulting in a 
large fraction of the reactive pool being present in the solution. For B, 
differentiation between the reactive and soluble pool by soil tests may be 
less relevant due to the strong relation between both B concentrations, 
that was found by the C-Q partition relations. 

Two types of partition relations have been derived that are reason-
ably good in explaining the variability of dissolved micronutrient con-
centrations. We have shown that partition relations in which the 
concentration in solution is optimized, may result in a systematic 
modelling deviation in relation to the measured concentration. This can 
be improved for Zn when models are calibrated in which the solid- 
solution partitioning itself is optimized. The partition relations from 
this study are easy-to-use tools for predicting the soluble concentrations 
of Zn, Cu and B in soils from the tropics with low contents of these 
micronutrients. These models can greatly enhance the usability of cur-
rent existing soil information data for SSA and may thereby expand 
current soil information with data on micronutrient availability, thereby 

facilitating future decision support tools for micronutrient fertilization. 
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Sauvé, S., Hendershot, W., Allen, H.E., 2000. Solid-Solution Partitioning of Metals in 
Contaminated Soils: Dependence on pH, Total Metal Burden, and Organic Matter. 
Environ. Sci. Technol. 34, 1125–1131. https://doi.org/10.1021/es9907764. 
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