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A B S T R A C T   

Traditionally, early warning systems for food safety are based on monitoring targeted food safety hazards. 
Optimal early warning systems, however, should identify signals that precede the development of a food safety 
risk. Moreover, such signals could be identified in factors from domains adjacent to the food supply chain, so- 
called drivers of change and other indicators. In this study, we show for the first time that such drivers and 
indicators may indeed represent signals that precede the detection of a food safety risk. The dairy supply chain in 
Europe was used as an application case. Using dynamic unsupervised anomaly detection models, anomalies were 
detected in indicator data expected by domain experts to impact the development of food safety risks in milk. 

Additionally, a Bayesian network was used to identify the chemical food safety hazards in milk associated with 
an anomaly for the Netherlands. 

The results showed that the frequency of anomalies varied per country and indicator. However, all countries 
showed in the period investigated (2008–2019), anomalies in the indicators “raw milk price” and “barely milk 
price” and no anomalies in the indicator” income of dairy farms”. A cross-correlation analysis of the number of 
Rapid Alert for Food and Feed (RASFF) notifications and anomalies in indicators revealed significant correlations 
of many indicators but difference between countries was observed. Interesting, for all countries the cross cor-
elation with indicator “milk price” was significant, albeit the lag time varied from 5 months (United Kingdom) to 
22 months (Italy). 

This finding suggests that severe changes in domains adjacent to the food supply chain may trigger the 
development of food safety problems that become visible many months later. Awareness of such relationships 
will provide the opportunity for food producers or inspectors to take timely measures to prevent food safety 
problems.   

1. Introduction 

Food safety, which is enforced by national and international legal 
requirements, is an important element to consider ensuring a safe and 
sufficient supply of food. Control and prevention measures are imple-
mented to detect potential food safety risks, including chemical, bio-
logical and physical risks. Most of the implemented systems are 
symptom based (i.e., they check for the presence of a hazard or disease) 
and should therefore be considered reactive systems (Marvin & Kleter, 
2014; Marvin et al., 2009). Such systems consequently detect food safety 
issues only when these issues have already developed and may pose a 
risk to human and/or animal health. An analysis of food safety incidents 
concluded that a wider recognition of the environment in which food is 

being produced is needed to ensure that a similar incident will not occur 
in the future (Costa et al., 2017; Kleter & Marvin, 2009; Maeda et al., 
2005; Marvin & Kleter, 2014; Marvin et al., 2009). Approaches and 
procedures towards such proactive systems have been developed, 
including systems for the early detection of food safety issues or food 
fraud in (social) media using text mining (Kate et al., 2014) and ontol-
ogies (Luijckx et al., 2016; Van de Brug et al., 2014), system approaches 
to integrate data of impacting drivers of change and food safety moni-
toring data using Bayesian networks (BNs) (H.J. Marvin & Bouzembrak, 
2020a; H.J.P. Marvin & Bouzembrak, 2020b; Marvin et al., 2016, 2020; 
Bouzembrak & Marvin, 2019), artificial neural networks (ANNs) (Lin 
et al., 2019), anticipation systems for food safety issues using 
autoregression-based screening tools (Verhaelen et al., 2018), support 
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vector machines (SVMs) (Zhang, 2020), and unsupervised machine 
learning applied on a media corpus (i.e., the Europe Media Monitor 
Medical Information System) to rapidly detect specific food fraud in-
cidents in the media (Rortais, Barrucci, Ercolano, Linge, Anna, et al., 
2021a, 2021b). Although these systems have shown great potential, 
successful future warning of food safety risk has been difficult to 
demonstrate. Recently, the usefulness of anomaly detection to identify 
risks was demonstrated in various studies (Li et al., 2016; Ryan et al., 
2019; Salehi & Rashidi, 2018). Anomaly detection can not only detect 
the outliers of sample sets but also recognize rare events in nature as 
preliminary signals of risks (Rembold et al., 2019). 

Within a system approach, the food supply chain is considered in its 
whole environment in which drivers of change and associated in-
dicators, from within and outside the food supply chains, are evaluated 
for their potential to impact directly or indirectly the development of a 
food safety risk. Such impacts are very complex since each driver or 
indicator may act in various places in the supply chain at the same time, 
interact with each other and may induce multiple types of hazards 
(microbial, chemical or physical). Drivers of change and indicators are 
identified by means of expert consultations (Marvin et al., 2020; Marvin 
and Bouzembrak, 2020a, 2020b), although, generally, the experts have 
high uncertainty regarding the mode of action or the actual effect 
(Kendall et al., 2018). 

In this study, we aimed to investigate whether anomalies in drivers of 
change & indicators, which have been selected by domain experts, can 
be used as an early warning for a future food safety risk. To test this 
hypothesis, the milk supply chain was selected as an application case 
because of its economic relevance for the EU, its complexity and the 
regular finding of food safety hazards in milk as judged by the report-
ing’s in the European Rapid Alert for Food and Feed system (RASFF)1 

(Van Asselt et al., 2017). 
As an application case, the milk supply chains of the six largest milk- 

producing countries in Europe (i.e., Germany, France, the UK, the 
Netherlands, Italy and Poland) were considered. Milk, as an outstanding 
nutrient source for various population groups (from infants to the 
elderly), is one of the most important foods worldwide (Papademas & 
Bintsis, 2010). In 2018, 683 million tons of milk was produced, 32% of 
which came from Europe (FAOSTAT, 2020). The dairy supply chain is 
complex: it involves feed production, raw milk production, processing 
by dairy companies, etc. (Van Asselt et al., 2017). Food safety hazards 
can enter various stages and cause food safety issues. For example, 
during the period of 2010–2019, 627 notifications related to milk and 
milk products were reported in RASFF. Therefore, it is essential to obtain 
advance alert signals and take appropriate measures to prevent a crisis. 

In this work, we test the above-mentioned hypothesis and demon-
strate that anomalies in several drivers of change & indicators identified 
and selected by domain experts show significant correlations with the 
number of food safety notifications in RASFF. By means of a dynamic 
unsupervised anomaly detection (DUAD), anomalies were detected in 
the data of each indicator, and detrended cross-correlation analysis 
(DCCA) was used to detect possible time lags between the anomalies in 
the indicators and the number of liquid milk reports in RASFF. To 
determine whether hazards can be associated to these anomalies, a 
Bayesian Network model was developed combining all data of the in-
dicators and food safety reports in liquid milk. Unfortunately, due to 
data availability only chemical hazards and the Netherlands could be 
considered in this part of the study. To obtain an early warning system 
for food safety risks, we integrated the whole working process (i.e., data 
collection from indicators, data processing, anomaly detection, BN 
modelling) in a KNIME workflow to allow automatic real-time pro-
cessing and analysis. The workflow also generates automatic warnings 
when anomalies are detected including associated food safety hazards. 

Because of the observed lag times between this anomaly signal and 
observed food safety contaminations, risk managers have time to 
implement preventive actions. 

In this study, we show for the first time that an anomaly in specific 
indicators of the drivers of change, such as milk price, feed price, and 
average monthly precipitation, can be statistically linked to a food safety 
hazard reported by monitoring programmes many months later. 
Furthermore, we predicted the specific type of hazards associated with 
such anomalies, thereby enabling stakeholders to take preventive 
actions. 

2. Materials and methods 

The applied approach consists of five distinct steps, as shown in 
Fig. 1: (1) identification of the main drivers and indicators of emerging 
and existing food safety risks in the dairy supply chain for the six largest 
milk-producing countries in Europe, including the Netherlands, Italy, 
Germany, France, United Kingdom, and Poland, (2) identification of 
data sources of the selected indicators, including a quality assessment, 
(3) creation of KNIME workflows to automatically retrieve, process and 
integrate the data of the indicators from the data sources, (4) develop-
ment of an anomaly detection model for each indicator and (5) devel-
opment of an automated BN model to predict the probability of 
contamination (on hazard type level) in liquid milk when an anomaly 
was observed in any of the indicators using the latest data. 

2.1. Identification of drivers and indicators of emerging and existing food 
safety risks 

In our research, four drivers of change and associated indicators (39 
in total) that have a direct and/or indirect impact on the development of 
a food safety hazard in the diary supply chain were obtained from two 
early studies (SANC, 2013; van der Spiegel et al., 2012) and are provided 
in Supplement 1. An online questionnaire was designed to determine the 
three most important indicators for each driver. The draft questionnaire 
was tested for clarity, completeness and completion time by three dairy 
experts who were not members of the research team. Based on the 
feedback received, the questionnaire was modified and sent by email to 
73 European dairy experts. These experts were senior having broad 
experience in the dairy supply chain and were identified based on a 
literature study, web search and consultation with various food safety 
authorities in Europe. Note that the objective of this step was to obtain 
the main indicators from the overall list, which then can be used for the 
further analysis and method development. Hence, the outcome will not 
represent the complete view of the stakeholders in the milk supply chain 
in Europe. The final questionnaire is attached in Supplement 1. 

2.2. Identification and quality assessment of data sources 

The data sources, which represented the selected indicators in step 1, 
were either provided by experts or found by the authors. All the selected 
data sources were open source. If multiple data sources represented the 
same indicator, a quality assessment was performed according to the 
method described by Rodgers and colleagues (Rodgers et al., 2011). This 
quality assessment consisted of eight criteria: relevance, accuracy, edi-
tion of the data source, timeliness, accessibility, clarity, comparability. 

An overall summary of the quality criteria and the related weights 
and scores can be found in a table in Supplementary 2. 

2.3. Data collection and integration in workflows 

KNIME workflows were built for each indicator and associated data 
source to automate the data collection, processing, integration, analysis 

1 https://webgate.ec.europa.eu/rasff-window/portal/?event=SearchForm&c 
leanSearch=1. 
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and visualization. KNIME2 is an open-source software for creating data 
science workflows. It makes data analysis and data workflows reusable 
and accessible. It enables to model each step of the data analysis, control 
the flow of data, and ensure the automatic update of the parameters and 
the models. 

Different data retrieving KNIME nodes (e.g., file reader, csv reader, 
and get request) were used depending on the type of data source (Warr, 
2012). For each of the six countries, raw data from different sources 
were formatted into an integrated dataset X by means of a series of file 
handling and manipulation nodes to remove irrelevant columns and 
rows and structure the data indexed by time. Therefore, the series data 
(Xk

i ) of indicator i in country k can be represented by the following 
formula: 

Xk
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(1)  

where xk
i,t is the datum of indicator i in country k at time point t. 

In this way, both historical and new data, once available in the data 
sources, were collected and processed automatically and made available 
for further analysis in the KNIME workflows. All workflows are available 
in a GitHub3 repository. 

2.4. Detecting anomalies 

2.4.1. Dynamic unsupervised anomaly detection 
DUAD models were developed for each indicator to detect anomalies 

in the collected data (Winters et al., 2014). The DUAD model of indicator 
i was developed as follows:  

• A training set Y with the customized time window width (n) and lag 
interval (l) was constructed.  

• An autoregressive model Mi was trained on the training set.  
• The standard deviation (σ) of the absolute values of ε (|ε|) was 

calculated, where the letter E is interpreted to mean the expected 
value and |ε| is absolute differences between the values observed and 
the values predicted by the regression model: 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

k=1
(|εk| − E)2

√

(2)    

• The confidential interval (CI) of ‘normality’ was defined with a one- 
tailed p value (p = 0.05): 

CI  =  [0,  1.64∗ σ) (3)    

• xi, t was predicted and the absolute value of the prediction error (|εt |) 
was calculated, where c is a real variable: 

|εt| = xi, t −

(

c+
∑n

k=1
φn− k+1xi, t+(k− n− 1)*l

)

(4)    

• was compared with CI: if |εt | ∕∈ CI, an anomaly of indicator i at time 
point t was detected.  

• pi,t was calculated as the probability of |εt | ∈ |ε|, which represents the 
probability of record t of indicator i being normal: 

pi,t =
1̅̅̅
̅̅

2π
√

σ
exp

(

−

(
xi, t − μ

)2

2σ2

)

(5)  

μ=
1
t

∑
xi, t (6) 

Seasonal trends should be considered before detecting anomalies; 
therefore, a seasonality test was conducted on the datasets of monthly or 
quarterly updated indicators. For the indicators with significant 

Fig. 1. Discrete steps in the automated food safety early warning system.  

2 https://www.knime.com/.  
3 https://github.com/WFSRBigData/Demeter (access can be requested). 
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seasonality, the DUAD models were trained with the data of the same 
month for the past ten years, while the models of the indicators without 
significant seasonality impact were built using data from the past ten 
months. The DUAD models of all the yearly and quarterly updated in-
dicators were trained with the data from the past three years or quarters. 

2.5. Bayesian network model to predict food safety hazards 

A BN is a graphical model that presents probabilistic relationships 
among a set of factors to represent a knowledge under uncertainty, and 
drawing conclusions based on available information (Cheng et al., 
2002). 

BNs are suitable for integrating data from several indicators, and 
such models often have high prediction accuracy for the factor for which 
they have been optimized ( Bouzembrak & Marvin, 2019; Marvin & 
Bouzembrak, 2020a,b; Marvin et al., 2016). A similar approach was 
followed in this study using a naïve BN module available in KNIME. The 
objective was to trigger a BN analysis when an anomaly was observed in 
any of the indicators using the latest data. In this way, the probability of 
having contamination in liquid milk above a certain threshold (i.e., 
LOD) that is associated with this anomaly was obtained. 

A BN model was developed using the monitoring data on liquid milk 
that was available only for the Netherlands. The records related to ‘raw 
milk’ performed in the time period of 2005–2018 were extracted from 
the Quality Program for Agricultural Products database (KAP) (Marvin 
& Bouzembrak, 2020a, 2020b). KAP database contains the results of the 
national monitoring program for chemical contaminants in agricultural 
products in the Netherlands. Hence, microbial contamination in milk is 
not reported in KAP. It is hosted by the National Institute for Public 
Health and the Environment (RIVM) in Bilthoven in the Netherlands. 
Each record contained the following information: reference number, 
date, product category, product name, hazard, hazard category, con-
centration, country of origin, country of notification, control point, the 
corresponding limit of detection (LOD), legislation level, and compli-
ance to legislation. 

This data set contains all results of the analytic analysis of liquid milk 
samples (i.e., positives and negatives) therefore provides an accurate 
representation of the safety level of liquid milk in the Netherlands. Based 
on the concentrations of the hazard reported and the LOD, all records 
were labelled with the corresponding ‘risk class’: (1) ‘<LOD’ (i.e., haz-
ard concentration was below the LOD); (2) ‘>LOD’ (i.e., hazard con-
centration was above the LOD). To prepare the input dataset for the BN 
model, each record of the monitoring dataset was linked with the in-
dicators dataset. Each row in this dataset is considered as a separate case 
(observation of a liquid milk contamination at a given time). The factors 
used in the BN model developments are agriculture R&D investment, 
antibiotic usage, average age of dairy farmers, farm income, feed barley 
price, feed maize price, feed wheat price, grassland share, machinery 
installations in dairy farms, milk price, monthly average precipitation, 
monthly average temperature, the number of patents, total population, 
urban population and the types of hazard. In the period of 2005–2018, 
122299 records were extracted from KAP, of which 5096 records were 
positive (i.e., LOD >0) and 117203 were negative (i.e., LOD <0). The BN 
prediction model was trained with 80% of the collected records, which 
were randomly extracted from the total dataset. The remaining 20% 
were used to validate the model. In the BN model, the input parameters, 
including all the identified indicators, were used to predict the levels 
(‘<LOD’ or ‘>LOD’) of the related records. The BN model was developed 
with ‘Numeric Binner’, ‘Naïve Bayes Learner’, and ‘Naïve Bayes Pre-
dictor’ from KNIME. Three performance metrics were used to evaluate 
the BN model performance: accuracy (percentage of records labelled 
correctly), sensitivity (percentage of ‘>LOD’ records classified correctly) 
and specificity (percentage of ‘<LOD’ records classified correctly). 

2.6. Detrended cross-correlation analysis 

The output of the DUAD models were compared with notifications of 
hazards in milk reported in the European Rapid Alert for Food and Feed 
(RASFF)4 database to test whether an anomaly in an indicator can be 
used as an early warning for a potential food safety risk. 

The RASFF online database has been established to support the 
control and safety of food and animal feed on the European market. It 
provides food and feed control authorities with an effective tool to ex-
change information about measures taken responding to serious risks 
detected in relation to food or feed. The database offers public access to 
summary information about the notifications most recently transmitted 
by RASFF Member States (EU-28 national food safety authorities, Eu-
ropean Commission, EFSA, ESA, Norway, Liechtenstein, Iceland and 
Switzerland) as well as the ability to search for information on any 
notification issued in the past (Bouzembrak & Marvin, 2019). 

Notifications in RASFF with the product category of ‘milk and milk 
products and notification country of Germany, France, Italy, the 
Netherlands, Poland or the United Kingdom from 2005 to 2019 were 
extracted. Only liquid milk notifications were used, notifications related 
to different dairy products such as cheese, ice cream and yoghurt were 
removed from the dataset. The counts of the notifications in each 
country were summed by month and year. Consequently, for each 
country, two time series (counts of the notifications per month and per 
year) were constructed. 

A DCCA was conducted to investigate whether there were significant 
correlations and time lags between the time series of level of anomaly 
(LA) and the time series of the number of RASFF records per month. 
Based on the normal probability (pi,t) of indicator i at time t from the 
DUAD model, the level of the anomaly (LAi,t) of indicator i (monthly 
updated) at time t was calculated as: 

LAi,t = ln
(
1 − pi,t

)
(7) 

DCCA defines correlation coefficients based on different time lags 
and time windows. In our case, the time lags refer to the number of 
months offset between the anomaly level and RASFF notifications, while 
time windows refer to the number of data points used in each pairwise 
analysis. For instance, R(lag = 5, window = 10) = 0.4 means that the cor-
relation coefficient between the anomaly levels in months 1–10 and the 
number of RASFF notifications in months 6–15 is 0.4. To determine 
when the coefficients are significant, a threshold R0 (lag, window) was 
calculated using random data by repeating the calculations 500 times 
and taking the value at the 0.975 quantile. If the correlation R(lag = I, 

window = j) is larger than R0, then the cross-correlation is significant at the 
specific lag and window. The detailed steps of DCCA can be found in 
Zebende (2011). 

A similar DCCA analysis was performed between the time series of 
LA and the time series of the number of KAP records above LOD to 
explore whether there were correlations and time lags between these 
values. According to on the power test (Cohen, 1977), the data sizes of 
yearly updated indicators were not adequate; hence, DCCA was applied 
on monthly updated indicators only. 

3. Results and discussion 

3.1. Indicator selection and data collection 

The questionnaire was sent by email to 73 European dairy experts, 16 
completed questionnaires were received (i.e., response rate of 21.9%), of 
which seven (43.8%) came from experts working in the dairy industry, four 
(25%) came from public research institutes and three (18.8%) came from 
academia. The countries of residence of the respondents were the 

4 https://ec.europa.eu/food/safety/rasff_en. 
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Netherlands (six respondents, 37.5%), Italy (three respondents, 18.8%), the 
United Kingdom (three respondents, 18.8%), Germany (two respondents, 
12.5%), France (one respondent, 6.3%), and Ireland (one respondent, 
6.3%). In literature, response rates between 20 and 25% have been indi-
cated as reasonable scores (Frewer et al., 2011), which may be improved by 
personalized emails and repeated contacts with the target population 
(Muñoz-Leiva et al., 2010). Hence, improvement of the response rate may 
be reached by several actions such as using personal email addresses, 
involving only experts interested on emerging risks topic. 

Feedback was received of respondents from all six main milk pro-
ducing countries in EU, except Poland. The answers of the respondents 
will be influenced by their working environment and experience. 
However, the objective of this step was to obtain the main indicators 
from the overall list, which then can be used for the further analysis and 
method development. Hence, the outcome will not represent the com-
plete view of the stakeholders in the milk supply chain in Europe. The 
impact of drivers and indicators on the dairy supply chain will differ 
among countries due to differences in economic size, organisation and 
technology level in the supply chain but it also will vary between the 
different actors within a country. Hence, the impact is complex but may 
be addressed adequately using a system approach and artificial intelli-
gence (Marvin & Bouzembrak, 2020a, 2020b). 

The three indicators with the highest votes per driver were consid-
ered the most important indicators and were included in this study 
(Table 1). All the results of the completed on-line questionnaires are 
available in Supplement 1. 

As shown in Table 1, for each driver/indicator, the differences be-
tween the votes of the first and second indicators were larger than those 
between the second and third indicators per driver (except for the dif-
ferences in technological indicators, which were the same). The results 
suggest that the respondents tended to reach agreement on the most 
important indicator while remaining divided over the second and third 
most important indicators. 

For the driver “economy”, the indicator ‘raw milk price’ ranked 
highest. Clearly, milk price is related to many aspects such as policy, 
market demand but also relationships to quality parameters, such as the 

levels of fat and protein percentages (Dommerholt & Wilmink, 1986), 
and food safety hazards such as total bacteria counts and aflatoxin M1 
have been reported (Hoffmann & Moser, 2017; Lindahl et al., 2018; 
Popescu & Angel, 2019). Regarding the environmental indicators, ‘usage 
of antibiotics’ was the most important indicator. Antibiotics, especially 
those with a broad antibacterial spectrum, can be applied to treat acute 
diseases in cows. However, these drugs can be deposited in cows’ 
mammary glands and milk and eventually ingested by humans (Sachi 
et al., 2019). Most respondents selected ‘population’ as the most 
important social indicator of existing and emerging risks in the dairy 
supply chain. A growing population would result in a higher demand for 
milk and consequently a demand for more farmland. Competition with 
other land uses may pose constraints on the dairy supply chain and 
eventually lead to new or known food safety risks (Huws et al., 2018). 

3.2. Identification and quality assessment of data sources 

In total, 60 related data sources were identified by the authors and 
interviewed experts. Among them, 20 were classified as relevant by an 
expert panel. The total quality of these 20 data sources was scored, and all 
the relevant data sources received full scores on accuracy, accessibility and 
clarity but varied in timeliness. The Koninklijk Nederlands Meteorologisch 
Instituut (KNMI)5 and European Patent Office (EPO)6 data sources had the 
highest timeliness scores, followed by the EU commodity price dashboard. 
The data sources with the highest total quality scores per indicator are 
listed in Table 1. Four of the selected data sources were updated monthly, 
and one was updated quarterly. The update frequencies of the other data 
sources were equal to or longer than one year. The values of all the in-
dicators except ‘usage of antibiotic’ could be extracted directly using 
modules available in KNIME. The data source of ‘usage of antibiotic’ was a 
PDF file; therefore, value extraction required additional text mining tech-
niques. Thus, a script was written in R and inserted into the KNIME 
workflow. 

Table 1 
Indicators selected by experts and descriptions of related data sources.  

Drive Indicator Rank Votes Data sources Available 
countries 

Update 
frequency 

Time range Data 
format 

Economic Raw milk price 1st 10 EU commodity price dashboard FR, DE, IT, 
NL, PL, UK 

Monthly 2005–2019 CSV file  

Feed pricea 2nd 6 EU commodity price dashboard FR, DE, IT, 
NL, PL, UK 

Monthly 1991–2019 CSV file  

Income of dairy farms 3rd 6 European Statistical Office FR, DE, IT, 
NL, PL, UK 

Every two 
years 

2005–2016 JSON file 

Environmental Usage of antibiotics 1st 8 Kerkgenootschap der Zevende-dags Adventisten 
Rapport, UK Veterinary Antibiotic Resistance and 
Sales Surveillance Report 

NL, UK Yearly 2009–2017 PDF file  

Share of land area 
used for pasture 

2nd 5 Food and Agriculture Organization FR, DE, IT, 
NL, PL, UK 

Yearly 1992–2015 ZIP file  

Average temperature 3rd 4 Koninklijk Nederlands Meteorologisch Instituut NL Monthly 1906–2019 Generic 
data file  

Average precipitation 3rd 4 Koninklijk Nederlands Meteorologisch Instituut NL Monthly 1951–2019 Generic 
data file 

Social Total population 1st 9 European Statistical Office FR, DE, IT, 
NL, PL, UK 

Yearly 2000–2018 JSON file  

Average age of dairy 
farmers 

2nd 5 European Statistical Office FR, DE, IT, 
NL, PL, UK 

Every four 
years 

2005–2013 JSON file  

Urban population 3rd 3 Food and Agriculture Organization FR, DE, IT, 
NL, PL, UK 

Yearly  ZIP file 

Technological Investment in R&D 
related to dairy sector 

1st 10 European Statistical Office NL, PL, UK Quarterly 2015–2019 JSON file  

Level of adoption of 
technology 

2nd 7 European Statistical Office FR, DE, IT, 
NL, PL, UK 

Yearly 2005–2017 JSON file  

Number of patents 
related to dairy sector 

3rd 4 European Patent Office FR, DE, IT, 
NL, PL, UK 

Yearly 1980–2019 Linked 
open data  

a The ‘Feed price’ including the feed barley price, feed maize price and feed wheat price. 

5 https://www.knmi.nl/over-het-knmi/about.  
6 https://www.epo.org/. 
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Fig. 2. An example workflow of data extraction and processing from the EU commodity price dashboard (a) and the dataset obtained after the integration (b).  

N. Liu et al.                                                                                                                                                                                                                                      



Food Control 136 (2022) 108872

7

3.3. Collecting and integrating data automatically via workflows in 
KNIME 

A KNIME workflow was built for each indicator and data source; in 
total, 15 KNIME workflows were developed and integrated in one 
overall KNIME workflow. Fig. 2 presents an example of a workflow of 
extraction and processing of the milk price and integration of the 
dataset. As shown in Fig. 2(a), the extraction of the milk price from the 
EU commodity price dashboard consists of six steps: (1) download raw 
data; (2) filter out relevant information; (3) structure the data in a table; 
(4) change the data format; (5) add a time label; and (6) integrate all the 
data. These six steps were realized by means of a series of KNIME nodes. 
These steps were repeated for each country, and the results were com-
bined in a single table. The result of this workflow (i.e., a table with milk 
prices per country per month) is presented in Fig. 2(b). 

3.4. Anomaly detection 

A KNIME workflow for anomaly detection was built for each indi-
cator, which yielded in 15 workflows integrated to the data collection 
and processing workflows. The DUAD models developed to detect 
anomalies were integrated in KNIME. A significant seasonal impact was 
observed only for the indicators ‘average temperature’ and ‘average 
precipitation’ (P < 0.05). Therefore, the DUAD models of these two 
indicators were trained with the data of the same month from the past 
ten years, while the models of the other monthly updated indicators 
were trained with the data from the past ten months. 

Table 2 shows the detected significant anomalies (P < 0.05) for each 
indicator and country together with their frequency (the ratio of 
anomalous records to all records). In Table 2, the ratios of anomalous 
records per indicator show different patterns among different countries. 
For instance, the ratios of anomalous records of milk price were similar 
among countries, while the ratios of anomalous records of feed maize 
price and number of patents differed. Extremely high or low anomaly 
ratios among some indicators, such as the anomaly ratios of ‘average age 
of farmers’ and ‘farm income’, were due to the limited number of 
available records. Elsayed (2012) suggested that a small data size would 
lead to inaccurate reliability prediction when applying multiple 
regression models. Since the DUAD models built in this study were based 
on linear regression, the limited observations of some indicators could 
be the reason for the extreme anomaly ratios. 

Anomalies and trends may differ among countries, and to illustrate 
this possibility, the milk price is shown in Fig. 3. The milk prices in most 
countries showed a similar trend over the analysis period (2008–2020), 
showing upward trends from 2009 to 2014 and 2016 to 2020 and 
downward trends from 2008 to 2009 and 2015 to 2016. Several factors, 
including general demand, the energy market and various policies, 
could be responsible for the milk price trends. The considerable decline 
from 2015 to 2016 was mainly due to the lifting of the milk quota system 
in Europe, which had been effective since 1984 but was removed in 
2015 (Kersting et al., 2016). 

3.5. Bayesian network KNIME workflow 

A BN model was constructed and integrated as a workflow in KNIME 
to assess the potential risk of finding food safety hazards (contamina-
tions above LOD) in liquid milk in circumstances of anomalies. This 
workflow was constructed in such a way that when an anomaly is 
observed in any of the indicators, data are collected from all indicators. 

Data of all the indicators were integrated in one table and used by the 
BN model to predict the levels (above or below LOD) of different hazard 
groups. Since RASFF database only contains reports on food safety in-
cidents exceeding the legal limit, this database could not be used in this 
part of the study. However, such data was available from the reference 
data (KAP) for the Netherlands. Unfortunately, KAP database only 
contains monitoring data on chemical contamination in milk, which is 
only a small portion on the food safety issues observed (<5%). To 

Table 2 
Anomalies detected per indicator per country for the period of 2008-01-01 to 
2019-01-01.  

Indicators Ratio of anomaly records per country 

DE FR IT NL PL UK 

Raw milk price 6% 6% 5% 3% 4% 4% 
Feed barley price 6% 4% 7% 7% 7% 6% 
Feed maize price 7% 4% 4% 15% 9% – 
Feed wheat price 7% 6%  8% 6% 5% 
Income of dairy farms 0% 0% 0% 0% 0% 0% 
Usage of antibiotics – – – 0% – 67% 
Share of land area used for 

pasture 
0% 0% 0% 0% 13% 0% 

Average precipitation – – – 10% – – 
Average temperature – – – 9% – – 
Total population 0% 0% 0% 0% 10% 0% 
Urban population 0% 0% 0% 0% 0% 0% 
Investment in R&D related to 

dairy sector 
0% 20% 29% 0% 25% 0% 

Level of adoption of technology – – – 17% 17% 11% 
Number of patents related to dairy 

sector 
23% 23% 15% 15% – 0%  

Fig. 3. Milk price and detected anomalies in DE, FR, IT, NL, PL, UK from 2008 to 2019. The month when an anomaly is observed is indicated as a filled circle.  

Table 3 
Results of Naïve Bayes prediction model.   

Training set Validating set 

Sensitivity 74% 54% 
Specificity 88% 92% 
Accuracy 87% 90%  
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demonstrate the principle of the approach proposed, KAP data was used 
despite its limitations. 

The BN variables, description and a data overview used is presented 
in Supplement 3. The BN prediction results for the training set and 
validation set are presented in Table 3. The total accuracy and specificity 
of the training set and validation set were good (>85%), while the 
sensitivity of both sets was lower (74% and 54%). The lower sensitivity 
could be due to the limited number of positive records in the training set 
(Lee et al., 2015). An insufficient number of positive records (‘>LOD’) 
causes the model to place excess emphasis on negative records (‘<LOD’), 
resulting in lower sensitivity. The sensitivity can be improved by using a 
more balanced dataset. The ROC curves of the training dataset (i.e., AUC 
is 0.92) and the validation dataset (i.e., AUC is 0.92) (data not shown). 

In addition to providing probabilities of finding contaminations, the 
BN is used to indicate the corresponding hazard category. This infor-
mation is sent by email to the registered user together with information 
about the observed anomaly; thus, the user knows what to check for. 

3.6. Correlation between anomalous signals and food safety notification 

To determine whether anomalies in any of the indicators can be used 
as an early warning signal for the presence of a food safety risk, a cross- 
correlation analysis was conducted. To this end, for each month, the 
number of notifications reported in RASFF (all hazard types including 
microbial) for liquid milk per country in the period 2015 to 2018 was 
counted. The months having counts >0 in any of the months investi-
gated are presented in Table 4. Note that for the cross-correlation with 
anomalies in the indicators also the months with no notification reports 
are used. Furthermore, only indicators that are update monthly could be 
included in this analysis due to the limited number of data points in the 
yearly updated indicators. 

A cross-correlation was conducted for all monthly updated indicators 
and the results are shown in Table 5. Significant correlations were 
observed for the indicators: milk price, feed maize price, feed wheat 

price, feed barley price, monthly average temperature, monthly average 
precipitation, but with varying lag times. Differences are observed be-
tween countries but the indicator “milk price” was for all countries 
significant, albeit the lag time varied from 5 months (United Kingdom) 
to 22 months (Italy). To illustrate this better, the correlation coefficients 
(R) between the anomaly level of milk price and the number of reported 
RASFF notifications related to liquid milk in the related countries are 
presented in Fig. 4. 

A threshold R0 (lag, window) was calculated and presented in Fig. 4 to 
indicate when the coefficients were significant. The figure shows that 
significant correlations between milk price anomaly levels and RASFF 
notification numbers occur in all six countries, with very weak corre-
lations in Poland. Significant cross-correlation occurred under different 
time lags among the six countries. In the Netherlands and Germany, the 
highest peak appeared when the time lags were between 10 and 15 
months, while in France and Italy, the corresponding time lags were 
between 20 and 23 months. The time lag with the most significant 
correlation in the United Kingdoms was five months, the shortest among 
the six countries. 

These results suggest that, especially anomalies in the “milk price”, 
can be used as an early warning for the potential contamination 
(chemical, microbial) of liquid milk many months later. Especially, time 
lags of >12 months are useful because then this signal can be considered 
when governmental organisations are planning the risk-based moni-
toring programme for the forthcoming year. Due to the low, but sig-
nificant correlations, such signals should be taken as a (weak) warnings 
that a food safety risk has a higher chance to occur and may be a trigger 
for further investigations. Besides, a food safety risk is driven by many 
factors that are impacting directly and indirectly the food supply chain. 
Such complexity is not considered in this correlation analysis. 

Besides, by linking the anomalies of indicators to hazard categories, 
as done in the BN model for the Netherlands for chemical contamina-
tions, also the probability of the having a contamination of these hazards 
above LOD can be predicted at the time of observing an anomality, 
hence, giving a warning many months before the contamination occurs. 

The whole process of data collection, processing, anomaly calcula-
tions for all indicators, and BN prediction has been automated in KNIME. 
In addition to warning about anomalies, the system also informs the user 
which associated hazard categories are most likely to be the cause of 
contamination; hence, the system indicates when to look for what fac-
tors. The system is fully automated and reflects the situation as it 
currently is in the market. Making the whole process automatic by 
implementing it KNIME has many advantages. It saves much time 
because i) for each data source multiple steps are needed to find, retrieve 
and process the needed data, and ii) the data then should be structured 
in a way that the models can consumes, which is a time-consuming 
activity. It also provides a quality assurance, since it is programmed to 
collect the newest data of each data source each week and will warn the 
operators when issues have occurred in this process. The data sources 
are updated at different frequency (monthly, yearly) at an unknown 
period of the year, and by programming a frequent data collection it is 
ensured that the newest data is used to update the anomaly detection 
models and the BN model continuously and can warn timely. The KNIME 

Table 4 
Months, in the period 2015–2019, having 1 or more RASFF notifications related 
to liquid milk for DE, FR, IT, NL, PL and UK.  

Year Month FR UK IT NL DE PL 

2015 5 1 0 0 0 0 0 
2015 8 1 0 0 0 0 0 
2015 10 1 0 0 0 0 0 
2016 3 0 0 1 1 0 0 
2016 4 0 0 1 1 0 0 
2016 5 0 0 1 0 0 0 
2017 2 0 0 0 0 1 0 
2017 3 1 0 0 1 0 0 
2017 8 2 0 0 0 0 0 
2017 10 0 0 0 0 1 0 
2018 5 2 0 0 0 0 0 
2018 8 1 1 0 0 0 0 
2018 10 1 0 0 0 0 0 
2018 11 0 0 0 1 0 0 
2019 2 1 0 0 0 0 0 
2019 3 0 0 1 0 0 1  

Table 5 
Significant correlations between the number of reported milk safety notifications in RASFF and the level of anomaly per indicator per country.  

Indicator RASFF 

DE FR IT NL PL UK 

Lag R Lag R Lag R Lag R Lag R Lag R 

Raw milk price 10 0.38 21 0.37 22 0.35 10 0.41 11 0.27 5 0.38 
Feed maize price 7 0.48 20 0.42 – – 4 0.32 7 0.35 – – 
Feed wheat price 19 0.39 10 0.26 – – – – – – 13 0.31 
Feed barley price 19 0.33 – – 3 0.36 24 0.34 5 0.46 – – 
Average temperature 13 0.44 – – – – – – – – – – 
Average precipitation 9 0.40 – – – – 24 0.28 – – – –  
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Fig. 4. Cross correlation coefficient with different time lags and windows between RASFF notifications and anomaly levels of milk price in (a) Germany; (b) France; 
(c) Italy; (d) Netherlands; (e) Poland and (f) United Kingdom. The threshold surfaces are coloured in grey. 
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workflows will reduce the costs of implementation by stakeholders, 
since the manual extraction, structuring and integration of these data is 
time-consuming, and it required expert knowledge to find the related 
information from the data source. 

3.7. The early warning system limitations 

The automated early warning system, as developed in this study, 
shows promising results but has various limitations that may hamper its 
direct use by authorities. 

The complexity of the food supply chain implies an important degree 
of uncertainty in the food supply chain and sources of these un-
certainties may be the environment or originate from the system itself 
such as the lack of information (Marvin et al., 2019). The indicators 
selected and data used in this study was derived from expert elicitations 
(questionnaire) and based on the available publicly available data. The 
indicators which were selected by experts are uncertain in nature 
because some information is unobtainable in a long-time horizon (3–5 
years). Therefore, it is useful to consider the knowledge of experts about 
the indicators as a source of uncertainty (Marvin et al., 2019). 

The response rates between 20 and 25% have been indicated as 
reasonable scores in literature which may be improved by personalized 
emails, repeated contacts with the target population and involving only 
experts interested on emerging risks topic. In addition, including more 
experts of different backgrounds may lead to other prioritised indicators. 
This may be especially valid for the 2nd indicator of each driver, since 
large agreement was observed for the most import one (Faber & Fon-
seca, 2014). 

In the current research, more significant correlations were observed 
between the reference data RASFF and economic indicators. One of the 
main reasons leading to it can be that economic indicators have impact 
on the import/export volume of the countries, which would further 
influent the total number of reported notifications. Furthermore, in the 
current dataset, the availability (i.e., number of data points and time 
granularity) of more economic might make the correlations more sig-
nificant. Currently, only publicly available data could be retrieved from 
the different data sources. It is apparent that the value of the model will 
increase when more data points of all indicators is available and can be 
included. 

The BN model was trained on records reported in the KAP database, 
and therefore the model is only applicable for the Netherlands and is 
limited to chemical hazards. More data sources incorporating global 
monitoring data such as WHO Global Environmental Monitoring System 
(GEMS)/Food contaminants database and the European Food Safety 
Authority (EFSA) data warehouse could improve the system. In addition, 
several data sources used in the system were only updated annually or 
having a limited number of data points making their contribution to the 
system limited. For instance, for the indicators the ‘average age of 
farmers’ and ‘farm income’ only a limited number of records were 
available. This means there is a need for more frequently (e.g., daily, 
weekly) updated data sources to see the add value of the automatic 
system. 

Although the automated system would require maintenance in case 
the structure of any data source will change over time and might even 
scrape the wrong data without warnings as websites update, requiring 
an expert intervention to update the system. 

4. Conclusion 

In this study, we developed an early warning system for a future food 
safety risk to detect anomalies in drivers of change & indicators, which 
have been selected by domain experts. The current research developed a 
KNIME workflow system for six EU countries to monitor data sources of 
indicators expected to impact food safety in liquid milk. In the period 
2008–2019, anomalies were observed in all indicators except in indi-
cator “income of dairy farms”. Country variation is apparent, but all 

countries showed anomalies in the indicators “raw milk price” and “feed 
barley price”. For the Netherlands, the developed system could warn for 
the present of a chemical hazard in milk above LOD at the time of the 
occurrence of an anomaly in any of the indicators. It was shown that 
anomalies may precede the finding/reporting of a food safety hazard, 
hence allowing timely mitigating measures. The system was built on an 
open-source workflow platform, which will reduce the costs of imple-
mentation by stakeholders (authorities, industries, etc.). The automated 
early warning system as developed in this study showed promising re-
sults but was built on publicly available data. It is expected that per-
formance improvement will be realized when more detailed data 
(monitoring and indicators) can be used. Therefore, the presented sys-
tem should be considered as a proof of principle. 

We demonstrated that anomalies can be used as an early warning for 
contamination in liquid milk, and further research is needed to deter-
mine to what extent this methodology may be applicable for other food 
supply chain in other part of the world. 

CRediT authorship contribution statement 

Ningjing Liu: Conceptualization, Methodology, Writing – review & 
editing, Writing – original draft. Yamine Bouzembrak: Conceptuali-
zation, Methodology, Writing – review & editing, Writing – original 
draft. Leonieke M. van den Bulk: Methodology, Writing – review & 
editing, Visualizsation, Validation, Writing – original draft. Anand 
Gavai: Conceptualization, Methodology, Writing – review & editing, 
Writing – original draft. Lukas J. van den Heuvel: Writing – review & 
editing. Hans J.P. Marvin: Conceptualization, Methodology, Writing – 
review & editing, Writing – original draft. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The research leading to this publication received funding from the 
Dutch Ministry of Agriculture, Nature and Food Quality (LNV), contract 
number (WOT-02-002-004-RIKILT-4), and from the European Food 
Safety Authority (EFSA), contract number GA/EFSA/AFSCO/2016/01- 
01. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.foodcont.2022.108872. 

References 

Bouzembrak, Y., & Marvin, H. J. P. (2019). Impact of drivers of change, including 
climatic factors, on the occurrence of chemical food safety hazards in fruits and 
vegetables: A Bayesian network approach. Food Control, 97, 67–76. 

Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W. (2002). Learning Bayesian networks 
from data: An information-theory based approach. Artificial Intelligence, 137(1), 
43–90. 

Cohen, J. (1977). CHAPTER 9 - F tests of variance proportions in multiple regression/ 
correlation analysis. In J. Cohen (Ed.), Statistical power analysis for the behavioral 
sciences (pp. 407–453). Academic Press.  

Costa, M. C., Goumperis, T., Andersson, W., Badiola, J., Ooms, W., Pongolini, S., 
Saegerman, C., Jurkovic, M., Tuominen, P., Tsigarida, E., Steinwider, J., Hölzl, C., 
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Claude, S., & Svečnjak, L. (2021a). A topic model approach to identify and track 
emerging risks from beeswax adulteration in the media. Food Control, 119, 107435, 
2021. 

Rortais, A., Barrucci, F., Ercolano, V., Linge, J., Christodoulidou, A., Cravedi, J.-P., 
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