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SHORT COMMUNICATION

Predictions of the accuracy of genomic 
prediction: connecting  R2, selection index 
theory, and Fisher information
Piter Bijma1*  and Jack C. M. Dekkers2 

Abstract 

Background: Deterministic predictions of the accuracy of genomic estimated breeding values (GEBV) when com-
bining information sources have been developed based on selection index theory (SIT) and on Fisher information (FI). 
These two approaches have resulted in slightly different results when considering the combination of pedigree and 
genomic information. Here, we clarify this apparent contradiction, both for the combination of pedigree and genomic 
information and for the combination of subpopulations into a joint reference population.

Results: First, we show that existing expressions for the squared accuracy of GEBV can be understood as a proportion 
of the variance explained. Next, we show that the apparent discrepancy that has been observed between accuracies 
based on SIT vs. FI originated from two sources. First, the FI referred to the genetic component that is captured by 
the marker genotypes, rather than the full genetic component. Second, the common SIT-based derivations did not 
account for the increase in the accuracy of GEBV due to a reduction of the residual variance when combining infor-
mation sources. The SIT and FI approaches are equivalent when these sources are accounted for.

Conclusions: The squared accuracy of GEBV can be understood as a proportion of the variance explained. The SIT 
and FI approaches for combining information for GEBV are equivalent and provide identical accuracies when the 
underlying assumptions are equivalent.
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Background
The accuracy of estimated breeding values (EBV) is a 
key determinant of response to selection in livestock and 
plant genetic improvement. For this reason, a priori pre-
diction of the accuracy of EBV is important for the opti-
mization of genetic improvement programs. In genomic 
prediction (GP), the accuracy of EBV can be increased 
by combining information sources, such as pedigree and 
marker information [1], or information from multiple 
genomic reference populations [2]. Hence, to understand 
and optimize genomic selection programs, we need to 

understand the effect of combining information sources 
on the accuracy of genomic EBV.

Dekkers et  al. [3] derived predictions of the accuracy 
of genomic EBV (GEBV) by combining pedigree and 
genomic information using two approaches: a deriva-
tion based on selection index theory (SIT) vs. a deriva-
tion based on Fisher information (FI). Both approaches 
are based on the assumption that sampling errors, which 
are inherent to the pedigree-based and genomic infor-
mation, are independent of each other. Nevertheless, the 
two approaches resulted in slightly different accuracies of 
GEBV. van den Berg et al. [2] used FI to predict the accu-
racy of GEBV when combining information from two 
subpopulations.

The purpose of this paper is to clarify the apparent 
contradiction observed by Dekkers et  al. [3] between 
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predicted accuracies based on SIT vs. FI, and to show 
that these two approaches are equivalent when the same 
assumptions are made. We will consider two common 
cases where information sources are combined for GP: (i) 
the combination of pedigree and genomic information, as 
in Dekkers et al. [3], and (ii) the combination of informa-
tion from two subpopulations, as in van den Berg et  al. 
[2]. We will show that the difference between the SIT and 
FI approaches observed by Dekkers et  al. [3] originated 
from two sources, which, when accounted for, make the 
SIT and FI approaches equivalent. First, the FI referred to 
the genetic component that is captured by the markers, 
rather than the full genetic component. Second, the SIT-
based derivation of the accuracy did not account for the 
additional increase in the accuracy of GEBV that results 
from a reduction of the residual variance when combin-
ing information sources.

To explain these differences, first we show that exist-
ing expressions for the squared accuracy, or reliability, 
of GEBV [3–5] can be understood as a proportion of the 
variance explained ( R2 ), which simplifies subsequent der-
ivations. Next, we consider derivations for the accuracy 
of GEBV when combining information sources based 
on SIT or on FI, first for the combination of informa-
tion from two subpopulations, and second for the com-
bination of genomic and pedigree data. Throughout this 
manuscript, we assume that the trait follows the additive 
infinitesimal genetic model [6].

Accuracy of GEBV interpreted as an R2

In general, the reliability ( r2 , i.e., squared accuracy) of 
best linear unbiased predictions (BLUP) of breeding val-
ues that are based on a “single” source of information 
(e.g., a single phenotype or an average) is equal to the 
proportion of variance ( R2 ) in the information source 
that is explained by the genetic effect of interest. In 
other words, r2 is equal to R2 . For example, the reliabil-
ity of the EBV of a sire based on a progeny test, where 
each offspring has a unique dam (as in cattle), is equal to 
the proportion of variance in the progeny means that is 
explained by the effect of the sire, i.e.:

where σ 2
P is the phenotypic variance, σ 2

s  is the variance in 
progeny means that is explained by the effect of the sire, 
n is the progeny group size, and 

(

σ 2
P − σ 2

s

)

/n is the resid-
ual variance of the progeny means after accounting for 
the sire effect. Thus, r2 is the ratio of the variance in the 
progeny means that is explained by the sire over the full 
variance in the progeny means, which is the R2 due to the 
sire. This result is equivalent to well-known expressions 

r2 =
σ 2
s

σ 2
s +

(

σ 2
P − σ 2

s

)

/n
,

for the accuracy of progeny testing e.g., [7], as evident 
from substituting σ 2

s = 1
4
h2σ 2

p  , which yields the well-
known result r2 = nh2/

[

nh2 +
(

4 − h2
)]

 , where h2 is the 
heritability.

The reliability of GEBV follows by analogy. In the fol-
lowing, without loss of generality, we assume that σ 2

P = 1 , 
so that additive genetic variance is equal to h2 . Deriva-
tions of the accuracy of GEBV make use of the concept 
of effective chromosomal segments [8]. By definition, 
effective chromosomal segments are independent, have 
equal variance, and together explain the full additive 
genetic variance [8]. For this reason, the reliability of the 
full GEBV is identical to the reliability of the prediction 
of the effect of a single segment ([5]; note that here we 
ignore that all markers are fitted simultaneously in GP, 
which will be addressed below). Moreover, with a total of 
Me effective segments that together explain the full addi-
tive genetic variance, each segment explains an amount 
h2/Me of the phenotypic variance. Then, for a reference 
population of N  genotyped and phenotyped individu-
als, the residual variance of the mean phenotype of the 
N  individuals, after accounting for the effect of the focal 
segment, equals 

(

1− h2/Me

)

/N  . In this expression, 1 
represents the phenotypic variance, h2/Me the variance 
due to the focal segment, and we divide by N  because 
we consider the variance of an average of N  independent 
residuals. Hence, analogous to the derivation of the reli-
ability of EBV based on a progeny test, the reliability of 
the GEBV can be found as the R2 due to a single segment:

In the second term of this expression, the numerator 
represents the contribution of the focal segment to the 
variance of the mean phenotype of the N  individuals, 
while the denominator represents the full variance of this 
mean. If we assume that a single segment explains a neg-
ligible proportion of the phenotypic variance, such that 
h2/Me ≪ 1 , we find:

This result was first derived by Daetwyler et al. [4] (see 
also Appendix A in Wientjes et al. [5]).

Equations (1a) and (1b) ignore that the genotyped mark-
ers may capture only a proportion q2 of the full additive 
genetic variance [4, 9], which has two consequences. First, 
since markers now explain only a proportion q2h2 of the 
phenotypic variance, the heritability of the component cap-
tured by markers is reduced to q2h2 . Second, since genomic 
information predicts only the component that is captured 

(1a)r2 =
h2/Me

h2/Me +
(

1− h2/Me

)

/N
=

Nh2/Me

Nh2/Me + 1− h2/Me
.

(1b)r2 ≈
Nh2/Me

Nh2/Me + 1
.
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by markers, gM , rather than the full genetic effect, gG , 
the reliability of the marker-captured component, say 
r2M , must be multiplied by a factor q2 to obtain the reli-
ability of the prediction of gG . In other words, r2 = q2r2M . 
Hence, to account for the fact that the markers capture 
only a proportion q2 of the total genetic variance, we have 
to substitute the h2 in Eq.  (1a) by q2h2 and multiply the 
full equation by a factor q2 . We then obtain:

where

Assuming q2h2/Me ≪ 1 , we find:

Thus, in contrast to Eqs. (1a) and (1b), Eqs. (2a) to (2c) 
take into account that the markers may not capture the 
full genetic variance, i.e., that q2 < 1.

Both Eqs. (1a) and (1b) and Eqs. (2a) and (2c) ignore 
that we fit all markers simultaneously in GP, because 
their derivations consider a single segment at a time, dis-
regarding the effect of also fitting the other segments. 
Fitting all markers simultaneously reduces the residual 
variance and, therefore, increases the reliability (Appen-
dix S1 in [4]). To derive the reliability while accounting 
for the fitting of all segments, we can still use the R2 due 
to a single segment, but we have to remove the variance 
that is explained by the estimates of the Me − 1 other 
segments from the residual variance, which is equal to 
(Me − 1)r2h2/Me , where h2/Me is the variance of the 
true effects of the segments, which is multiplied by r2 
because we remove the variance of the estimated effects 
of those segments. Subtracting (Me − 1)r2h2/Me from 
the ( 1− q2h2/Me) term in the denominator of the second 
term in Eq. (2a), results in the following residual variance 
[2, 4, 9]:

where, the first term on the left-hand side is the pheno-
typic variance, the second term is the variance of the true 
effect of the focal segment, and the third term is the vari-
ance of the estimated effects of the remaining (Me − 1) 
segments. Assuming h2

(

q2 − r2
)

/Me ≪ 1 , the residual 
variance can be approximated by 1− r2h2 . Hence, from 
Eq. (2a), we find:

(2a)

r2 = q2r2M = q2
Nq2h2

Me

Nq2h2

Me
+ 1−

q2h2

Me

= q2
θM

θM + 1− q2h2/Me
,

(2b)θM = Nq2h2/Me.

(2c)r2 ≈ q2
Nq2h2/Me

Nq2h2/Me + 1
= q2

θM

θM + 1

1− q2h2/Me − (Me − 1)r2h2/Me

= 1− h2(q2 − r2 + r2Me)/Me,

Note that r2 appears on both sides of the equal signs in 
Eq. (3a), resulting in a quadratic equation in r2.

Equation (3a) is identical to Eq. 1 of Dekkers et al. [3], 
except for r2h2 in the denominator instead of r2q2h2 . Our 
derivation results in r2h2 , because the proportion of phe-
notypic variance that is explained by the estimated effects 
of all segments equals r2h2 , not r2q2h2 . Equation  (3a) is 
also equal to Eq. 1 of van den Berg et al. [2] when q2 = 1 . 
While we have obtained Eq. (3a) here as the R2 of a single 
segment, a derivation based on SIT yields the same result 
(see Appendix 14).

To find r2 , we have to solve the quadratic Eq.  (3a), 
which yields two solutions, one of which is greater than 1 
and thus irrelevant. The relevant solution is:

Equation (3b) accounts both for q2 < 1 and for the reduction 
of residual variance because all markers are fitted simultane-
ously in GP. This result is similar to Eq. 6 of Dekkers et al. [3], 
which is r2 =

[

1+ θM −

√

(1+ θM)2 − 4h2q4θM

]

/2q2h2 , but 

accounts for having r2h2 in the denominator of Eq.  (3a) 
vs. r2q2h2 in the denominator of Eq. 1 of Dekkers et  al. 
[3]. Note that the impact of this correction will be lim-
ited, because q2 is typically close to 1.

Fisher information versus selection index theory 
when merging information
FI is a measure of the amount of information that a data 
point carries about an unknown parameter. Formally, it 
is the variance of the score function, which then equals 
the expected information [10]. In this section, we use 
the general relationship between reliability and FI ( θ ), as 
given by van den Berg et al. [2], i.e.,

to connect expressions for the reliability of GEBV that 
are based on FI to the corresponding expressions based 
on SIT. First, we consider the case of merging genomic 
information from two subpopulations into a single refer-
ence population, followed by the merging of pedigree and 
genomic information, as in Dekkers et al. [3].

In the following, it is essential to realize that, in Eq. (4), 
r2 and the θ must refer to the same unknown genetic 
effect. In other words, if we aim to find r2 for the full 
genetic effect, gG , then we have to use FI for the full 

(3a)

r2 ≈ q2
Nq2h2/Me

Nq2h2/Me + 1− r2h2
= q2

θM

θM + 1− r2h2
.

(3b)r2 =
1+ θM −

√

(1+ θM)2 − 4h2q2θM

2h2
.

(4)r2 =
θ

θ + 1− r2h2
,
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genetic effect in Eq. (4). However, θM defined in Eq. (2b) 
and used in Eqs. (2a) and (2c) and in Eqs. (3a) and (3b) 
represents FI for the genetic component that is captured 
by markers, gM , rather than FI for the full genetic effect, 
gG . This is evident from comparing Eq.  (3a) to Eq.  (4). 
Equation  (3a) can be interpreted as r2 = q2r2M , where 
the term θM/

(

θM + 1− r2h2
)

 on the right-hand side of 
Eq. (3a) represents r2M . Note that this term is like Eq. (4), 
but refers to r2M rather than r2 . This indicates that θM 
in Eq.  (3a) represents FI for gM rather than gG . For this 
reason, substitution of the θM defined in Eq.  (2b) into 
Eq. (4) yields a prediction of r2M , which is why Eq. (3a) has 
an additional factor q2 to translate r2M into r2 . The same 
interpretation is suggested by Eq.  (2b), where θM is the 
proportion of phenotypic variance (i.e., R2 ) that is cap-
tured by a single segment, i.e., q2h2/Me , multiplied by 
the number of observations, N  , which makes intuitive 
sense as a measure of information for gM , rather than for 
gG . Therefore, Eq. (4) can be used to predict either r2M or 
r2. A prediction of r2M is obtained when using θM defined 
in Eq.  (2b) into Eq.  (4). A prediction of r2 is obtained 
when using θ for the full genetic effect in Eq. (4), but this 
requires having a value for θ.

Merging subpopulations into a single a reference 
population using the FI and SIT approaches
Consider a reference population of size N  , split into two 
non-overlapping subpopulations of sizes N1 and N2 , with 
N = N1 + N2 . Thus, the two subpopulations contain dis-
tinct individuals, such that the E terms in P = gG + E are 
independent between subpopulations. Hence, the two 
subpopulations have independent sampling errors, which 
allows FI of the two subpopulations to be summed to 
obtain FI of the full reference population, as in van den 
Berg et al. [2]. Note, however, that independence of sam-
pling errors does not require the individuals from one 
subpopulation to be genetically unrelated to individuals 
from the other subpopulation.

First, we ignore the reduction in residual variance that 
results from fitting all markers simultaneously and from 
joint analysis of the two populations, in order to math-
ematically demonstrate the equivalence of the SIT and FI 
approaches for this case. Realizing that r2 = q2r2M , where 
r2M follows from substituting θM defined in Eq.  (2b) into 
Eq.  (4), it follows that the reliability of GEBV based on 
analysis of a single subpopulation, i , equals:

where θM,i = Niq
2h2/Me , and i = 1 or 2. Because we 

ignore the reduction in residual variance here, we 
use q2h2/Me rather than r2h2 in the denominator, as 
explained above for Eq.  (2a). In Eq.  (5), only N  has 

(5)r2i = q2r2M,i = q2
θM,i

θM,i + 1− q2h2/Me
,

subscript i (and therefore also θM,i has subscript i , since 
it is a function of Ni ), because we consider the subpopu-
lations to be from the same overall population, such that 
q2 , h2 , and Me are identical for the two subpopulations.

A prediction of the accuracy from joint analysis of the 
two subpopulations using the FI approach follows from 
summing the FI for each subpopulation. The FI for each 
subpopulation follows from solving Eq. (5) for θM,i , which 
yields:

In statistical theory, FI contributed by different infor-
mation sources can be summed if the sampling errors 
of the information sources are independent, such that 
θM = θM,1 + θM,2 [10]. Hence, we can find the reliability 
for the combined reference population by replacing θM,i 
in Eq. (5) by θM = θM,1 + θM,2 , giving:

Substituting Eq. (6) for both θM,1 and θM,2 and simplify-
ing the result yields a FI-based prediction of the reliabil-
ity of GEBV based on the full reference population (see 
Appendix 16) that is equal to:

Alternatively, we can derive r2 based on SIT. The 
detailed derivation is given in Appendix 18 and yields 
exactly the same result as Eq.  (7). Thus, the SIT and FI 
approaches yield the same predictions of the accuracy of 
GEBV when the additional reduction in residual variance 
that results from fitting all markers simultaneously and 
from merging the two subpopulations is ignored. Note 
that Eq. (7) is different from the SIT result of combining 
pedigree and genomic information derived by Dekkers 
et al. [3], (see their Eq. 8), because we consider combining 
genomic information from merging subpopulations.

Second, we account for the reductions in residual 
variance due to the merger of subpopulations into a 
joint reference population and due to fitting all mark-
ers simultaneously. Accounting for the effect of fitting 
all markers simultaneously in the SIT approach can 
be accommodated by including the effect of the other 
Me − 1 segments as an information source in the index, 
as illustrated in Appendix 14, and gives identical accu-
racy predictions as accounting for this effect in the FI 
approach. However, this is complex when also consider-
ing the merger of two subpopulations into a single ref-
erence population. To avoid this complexity, we use a 

(6)θM,i =
r2i
(

1− q2h2/Me

)

q2 − r2i
.

r2 = q2r2M = q2
θM,1 + θM,2

θM,1 + θM,2 + 1− q2h2/ME
.

(7)r2 =
r21 + r22 − 2r21r

2
2/q

2

1− r21r
2
2/q

4
.
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numerical example instead. This example will also illus-
trate that the difference between accuracy predictions 
based on the SIT approach used in Dekkers et  al. [3] 
and resulting in Eq.  (7), versus predictions based on FI 
result from the reduction in the residual variance when 
the reference population is increased. The standard SIT 
approach (Eq.  (7) as derived from SIT in Appendix 18, 
and [3, 11]) ignores this reduction in residual variance, 
while Eqs. (3a) and (3b) account for it when we add the FI 
for the markers (i.e., θM ) of the two subpopulations.

Example of the impact of the reduction in residual variance 
when combining subpopulations
Consider two non-overlapping subpopulations of the 
same size, with N1 = N2 = 1000, N = 2000, h2 = 0.3, 
q2 = 0.8, and Me = 400, such that θM,1 = θM,2 = 0.75 based 
on Eq.  (2b). We choose identical subpopulation sizes 
because it allows us to easily illustrate the impact of the 
reduction in residual variance. The reliability of GEBV 
based on one of the two subpopulations, accounting for 
the reduction in residual variance from fitting all markers 
simultaneously, follows from Eq. (3b), giving r2 = 0.3658. 
This is the reliability of GEBV for each of the two sub-
populations, using only information from the respec-
tive subpopulation. Next we consider the reliability of 
GEBV when merging the two subpopulations. When 
ignoring the additional reduction in residual variance 
that occurs when merging the two subpopulations, the 
reliability based on the merged population follows from 
Eq.  (3a) using θM = θM,1 + θM,2 = 1.5 and r2 = 0.3658, 
and yields r2 = 0.5020. The use of the original r2 (0.3658) 
in Eq.  (3a) means we ignore the additional reduction of 
the residual variance due to the increased size of the ref-
erence population. Exactly the same result is found with 
the SIT approach, using Eq.  (7), with r2

1
= r2

2
= 0.3658 . 

This result illustrates that the SIT and FI approaches 
yield the same reliability of predictions when the same 
assumptions are made. However, the full increase in 
accuracy from merging the two subpopulations when 
also accounting for the additional reduction in residual 
variance follows from Eq. (3b) with θM = 1.5, which yields 
r2 = 0.5114. This prediction is slightly larger than the 
0.5020 because of the additional reduction in residual 
variance when the two subpopulations are merged, which 
is not accounted for in common SIT approaches, such as 
in Dekkers et al. [3], Harris and Johnson [11], and Eq. (7). 
In principle, this reduction in residual variance can be 
accounted for in a SIT-based derivation by extending the 
pseudo-BLUP derivation of Appendix 14, which yields 
the identical result as the FI-based approach ( r2 = 0.5114 
here) (derivations not shown due to their complexity).

Merging pedigree and genomic information using the FI 
and SIT approaches
Next, we consider the combination of pedigree and 
genomic information for GP, as in Dekkers et al. [3]. Sup-
pose we have a pedigree-based EBV, ĝA , with reliability 
r2A , and an EBV based on deviations of genomic relation-
ships from pedigree relationships, ĝD , with reliability r2D , 
as in Dekkers et al. [3]. We assume that distinct pheno-
types are used for the prediction of ĝA and ĝD , such that 
the sampling errors of ĝA and ĝD are independent [3]. 
Using SIT, the reliability of the total GEBV of gG follows 
from Eq. 8 of Dekkers et al. [3]:

This result ignores a potential increase in the reliabil-
ity that would result if combining pedigree and genomic 
information in a single GP analysis leads to a reduction 
of the residual variance (proof that this occurs is not 
straightforward and not given).

To derive the corresponding result based on FI, it is 
essential to distinguish between FI for gM and FI for gG . 
The pedigree-based EBV relates to FI for gG , because 
pedigree information captures the full genetic effect. The 
EBV based on deviations of genomic relationships from 
pedigree relationships, in contrast, relates to gM and θM . 
Because the θD presented in Dekkers et al. [3] relates to 
gM , while θA relates to gG , we cannot simply add θD and 
θA to obtain the full reliability, as was done in Dekkers 
et al. [3]. Instead, we first have to translate r2D into an FI 
that refers to the full genetic effect, after which we can 
add this FI to θA and finally find the full reliability from 
Eq. (4). To accomplish this, we translate the reliability of 
predictions based on deviations of genomic relationships 
from pedigree relationships, r2D , into an FI that refers to 
the full genetic effect by solving Eq. (4) for θ , resulting in:

We use the subscript DG here to distinguish θDG , which 
represents the FI for gG that originates from deviations 
of genomic from pedigree relationships, from θM and 
from the θD given in Dekkers et al. [3], which represent 
FI for gM . In other words, the θDG in Eq. (9) represents the 
FI due to genomic relationships deviated from pedigree 
relationships for estimation of gG , rather than gM . Param-
eter θDG can be solved for by entering r2D  into Eq.  (9), 
where r2D is calculated from Eqs. (2b) and (3b). Unfortu-
nately, substitution of Eqs. (2b) and (3b) into Eq. (9) yields 

(8)r2G =
r2A + r2D − 2r2Ar

2
D

1− r2Ar
2
D

.

(9)θDG =
r2D
(

1− r2Dh
2
)

1− r2D
.
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a very complex expression and is, therefore, not shown. 
(Note that Eq.  (9) follows from the general Eq.  (4), so it 
is not limited to marker information but can be applied 
for any source of information). Next, we can compute the 
total FI for gG as:

Finally, the reliability of the total GEBV follows from 
substituting the resulting θG into Eq. (4).

We use a numerical example to illustrate that this 
approach yields the same result as the SIT-based predic-
tion (Eq. (8)) if we ignore a potential reduction in resid-
ual variance due to the merger of pedigree and marker 
information.

Example of the equivalence of the FI and SIT approaches 
when merging pedigree and genomic information
Suppose h2 = 0.3, Me = 400, N  = 5000, and q2 = 0.8. 
From Eq. (2b), we find θD = 3.0000. From Eq. (3b), using 
θM = θD , we find r2D = 0.6297. Suppose we have a ped-
igree-based EBV with the same reliability, r2A = 0.6297. 
We choose this same value on purpose, so we can eas-
ily ignore the reduction in residual variance in the FI 
approach (i.e., we have a single value for the initial accu-
racy, which can be used directly in Eq.  (4), as explained 
in the following). First, using SIT, the reliability of the 
total GEBV follows from Eq.  (8), giving r2G = 0.7728. 
Second, using the FI approach, the FI based on pedi-
gree follows from Eq.  (9), using r2 = r2A = 0.6297, giving 
θA = 1.3795. Analogously we find θDG = 1.3795. Note that 
θDG is smaller than θD , because the markers provide less 
information on gG than on gM . The prediction of reliabil-
ity of the total GEBV based on the FI approach then fol-
lows from Eq. (4), using θ = θG = θA + θDG = 2.7590 and 
r2 = 0.6297 . This yields r2G = 0.7728, which is the same 
result as obtained with the SIT approach, and illustrates 
that the SIT and FI approaches yield the same result 
when the same assumptions are made.

The use of the original r2 (i.e. 0.6297) in Eq. (4) in the 
previous paragraph ignores a potential reduction in 
residual variance due to the merger of pedigree and 
marker information. Thus, when combining pedigree and 
genomic information, SIT and FI yield the same accuracy 
predictions on the condition that: (1) we use a genomic 
FI that refers to the full genetic effect gG , rather than to 
gM , and (2) a potential reduction in residual variance in 
GP due to the increased amount of information when 
merging marker and pedigree data is ignored.

A prediction of r2G using the FI approach that accounts 
for (and assumes) a  reduction in residual variance due to 
the merger of genomic and pedigree information follows 
from solving Eq. (4) for r2 , giving:

θG = θA + θDG .

Using θG = 2.7590 in Eq.  (10) yields r2G = 0.7829 . This 
value is slightly larger than the 0.7728 presented above 
where we ignored a potential reduction in residual 
variance when combining pedigree and marker infor-
mation. However, while it is clear that the residual vari-
ance decreases when merging two subpopulations into 
a single reference population, we are not sure whether 
this decrease also occurs when merging pedigree and 
genomic data in a single GP, for example with single step 
GP [1, 12]. Hence, we draw no conclusions on the superi-
ority of Eq. (10) vs. Eq. (8).

Conclusions
Existing expressions for the reliability of GEBV can be 
understood as a proportion of the variance explained. 
Using this concept, we showed that the apparent dis-
crepancy between predictions of the accuracy of GEBV 
based the SIT vs. FI approaches in Dekkers et al. [3] origi-
nated from two sources. First, the FI in Dekkers et al. [3] 
referred to the genetic component that is captured by 
markers, rather than the full genetic component. Sec-
ond, the SIT approach did not account for the increase in 
accuracy of GEBV due to a reduction of the residual vari-
ance when combining information sources. Our results 
show that the SIT and FI approaches for combining infor-
mation for GP are equivalent and provide identical accu-
racies when the underlying assumptions are equivalent.

Appendices
Appendix 1
Derivation of Eq. 3a for the reliability of GEBV 
when accounting for the reduction in residual variance based 
on selection index theory
The accuracy of the estimated effect of one effective seg-
ment, accounting for simultaneous fitting of all segments, 
can be found from selection index theory by including 
the estimated effects of the other Me − 1 segments as 
an information source. In this way, we account for the 
reduction in residual variance due to the fitting of the 
other segments. This approach is an analogy of a pseudo-
BLUP selection index, where the EBV of the mates of an 
individual’s parents are included as an information source 
[13]. The index to predict the effect of the focal segment 
then contains two information sources; (1) the mean phe-
notype of the reference population given the effect of the 
focal segment, and (2) the contribution of the estimated 
effects of the other Me − 1 segments to the mean phe-
notype of the reference population. Drawing parallels 

(10)r2G =
1+ θG −

√

(1+ θG)
2 − 4h2θG

2h2
.
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to estimation of the breeding value of a sire based on 
the mean of its progeny using pseudo-BLUP to facilitate 
interpretation of these two information sources, the first 
information source is analogous to the mean phenotype 
of the progeny, while the second information source is 
analogous to the mean EBV of the dams of the progeny. 
Inclusion of the mean EBV of the dams of the progeny 
yields a more accurate prediction of the EBV of the sire. 
Analogously, for genomic prediction (GP), inclusion of 
the estimated effects of the other Me − 1 segments yields 
a more accurate prediction for the focal segment.

By definition, the Me effective segments are inde-
pendent (i.e., in linkage equilibrium) and each segment 
explains an amount h

2

Me
 of the phenotypic variance. The 

index weights follow from selection index theory [7] as:

The reliability of the resulting prediction can be derived 
as:

This result is identical to Eq.  (3a), prior to assuming 
that h2(q2 − r2)/Me ≪ 1.

Appendix 2
Derivation of Eq. (7) for the reliability of GEBV 
when combining subpopulations without accounting 
for the additional reduction in residual variance
Substituting θ1 and θ2 in the expression for r2 by Eq.  (6) 
yields:

Dividing the numerator and denominator by 
1− q2h2/ME yields:

�

b1
b2

�

= b = P−1g =





q2h2

Me
+

1−
q2h2

Me
N

r2h2(Me−1)
MeN

r2h2(Me−1)
MeN

r2h2(Me−1)
MeN





−1
�

q2h2/Me

0

�

=
N

Nq2h2 +Me − q2h2 − r2h2(Me − 1)

�

q2h2

−q2h2

�

r2 =
b′g

h2/Me
=

1

h2/Me

N

Nq2h2 +Me − q2h2 − r2h2(Me − 1)

[

q2h2 −q2h2
]

[

q2h2/Me

0

]

.

= q2
Nq2h2/Me

Nq2h2

Me
+Me − q2h2/Me − r2h2(Me − 1)

r2 = q2

r2
1

(

1−
q2h2

ME

)

q2−r2
1

+
r2
2

(

1−
q2h2

ME

)

q2−r2
2

r2
1

(

1−
q2h2

ME

)

q2−r2
1

+
r2
2

(

1−
q2h2

ME

)

q2−r2
2

+ 1− q2h2/ME

.

Writing all terms with 
(

q2 − r2
1

)(

q2 − r2
2

)

 as denomina-
tor and then cancelling this denominator yields:

Dividing the numerator and denominator by q4 yields 
Eq. (7).

r2 = q2

r2
1

q2−r2
1

+
r2
2

q2−r2
2

r2
1

q2−r2
1

+
r2
2

q2−r2
2

+ 1

.

r2 =q2
r21
(

q2 − r22
)

+ r22
(

q2 − r21
)

r21
(

q2 − r22
)

+ r22
(

q2 − r21
)

+
(

q2 − r21
)(

q2 − r22
)

=q2
r21q

2 + r22q
2 − 2r21r

2
2

q4 − r21r
2
2

Appendix 3
Proof that the SIT approach yields Eq. (7) when combining 
subpopulations without accounting for the additional 
reduction in residual variance
The two non-overlapping reference populations yield 
GEBV ĝ1 and ĝ2 . In both populations, the markers cap-
ture the same proportion of the genome. Hence, not only 
is the value of q2 the same for the two subpopulations, 
but the markers are also assumed to be associated with 
the same part of the genome in the two subpopulations. 
The derivation uses σ 2

g = 1 , such that σ 2
gM

= q2 , which is 
the variance of the (true) genetic component captured by 
markers. The index for the combined GEBV is:

The index weights follow from:

ĝ = b1ĝ1 + b2ĝ2.
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The off-diagonal element of the variance matrix, r
2
1
r2
2

q2
 , 

follows from Fig. 2 of [14], and  deviates from the intui-
tively expected value of r2

1
r2
2
 because ĝ1 and ĝ2 capture the 

same marker-associated part of the genome, such that 
cov

(

ĝ1, ĝ2
)

 = r2M,1
r2M,2

σ 2
gM

 = 
[

r2
1
/q2

][

r2
2
/q2

]

q2 = r2
1
r2
2
/q2.

The reliability of the resulting combined GEBV is:

which is identical to Eq. (7).
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