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diversity’s extents will be useful in several ways. First, it can help
us to infer the evolutionary mechanisms that have generated
diversity, so that we can predict how those same mechanisms
may play out in the future. Second, it may assist in assessment of
which systems may be most resilient to global change. Third, if
undetected species are mostly rare and rare species are more
vulnerable to extinction risk, having a better grasp of those num-
bers is essential to managing for biodiversity preservation.
Finally, with an understanding of total species pools, it is possi-
ble to quantify the impacts of regional conservation efforts while
also improving the ability to predict extinctions, manage diversity
hotspots, or collect germplasm (22, 23).

Because of the limited extent of data available, estimates of
tree species diversity in large geographic domains still rely
heavily on expert opinions and compiled published lists of spe-
cies descriptions that are geographically uneven in coverage
(24, 25). Although local specialists have been increasingly join-
ing efforts to consolidate species lists in many domains, these
limitations have precluded efforts to scale this information to
generate a global perspective. Here, based on a ground-sourced
global database numbering∼64,100 species [a value similar to a
prior enumeration of the total of known tree species of∼60,000
(17)], we developed estimates of the number of tree species at
biome, continental, and global scales. Speci�cally, by comparing
species accumulation curves (SACs) of tree species across dif-
ferent spatial scales, we estimated the number of species that
have not been recorded in the global data compilation used
herein.

Results and Discussion
Global-, Continental-, and Biome-Level Patterns. We compiled a
comprehensive global occurrence dataset with 9,353 (100-×
100-km) grid cell samples (called “samples” or “sampling units”
hereafter of ∼1°) (Materials and Methods) by combining an
abundance-based tree species dataset (the Global Forest Biodi-
versity Initiative [GFBI]) (Fig. 1), based on forest plots world-
wide and comprising ∼38 million trees for 28,192 species,
with a large high-quality occurrence-based dataset (TREE-
CHANGE) that includes forest plots and botanical vouchers
(26) (Materials and Methods). It is important to note that
despite the large number of grid cells, extensive data, and high
mean global sample coverage (96.4%) (Table 1), sampling within
grid cells in many regions of the world remains very sparse.

From this dataset, with a nonparametric estimator [Chao2
(27)], we calculated occurrence-based values of potential global
and continental tree species richness (Materials and Methods,
Fig. 2A, and Table 1). This estimator is sensitive to accurate
quanti�cation of the numbers of uniques and duplicates (below
and Materials and Methods), and it is known that there are

problems with false uniques in forest species richness datasets
(24). These Chao2 values may thus represent an overestimate
to the degree that tree species recorded in only one sampling
unit have been mistakenly identi�ed as unique. Therefore, we
estimated the true number (Chao2adj) of unique species (28)
(Materials and Methods) by accounting for the relationships of
uniques, duplicates, triplets, and quadruplets to constrain the
estimated numbers of unique species and from this adjusted
number, computed a more conservative estimate of global tree
richness, which is∼73,300 species (Chao2adj). Based on the
good performance of this estimator and its adjusted version
reported in previous studies (9, 29–33), we considered the
adjusted value (Chao2adj) our most reasonable approximation to
global tree species richness. We then derived SACs at global
(Fig. 2A) and continental (Fig. 2B) scales. Moreover, for each
continent, from the observed number of tree species, we also esti-
mated the asymptotic richness at the within-continent biome-level
extent (Fig. 3 andSI Appendix, Table S2).

At the global scale, we infer that there likely are∼9,200 tree
species yet to be discovered (Table 1), given the∼64,000 species
already encountered (3, 4, 34–37). Our estimates at continental
scales (Fig. 2B and Table 1) show that roughly 43% of all
Earth’s tree species occur in South America, followed by Eur-
asia (22%), Africa (16%), North America (15%), and Oceania
(11%). However, a lack of saturation (driven by the existence
of high numbers of species uncommon in the landscape, incom-
plete sampling, or both), particularly in the South American
accumulation curve (Fig. 2B), suggests that our estimates may
still be incomplete accounts of continental and global tree spe-
cies richness. More undiscovered species likely occur in South
America than any other continent. Our �ndings are in general
agreement with recent studies of Amazonian plant diversity,
which suggested that there are many undiscovered species;
moreover, different approaches to the problem arrived at dif-
ferent estimates of total numbers of known and unknown

Fig. 1. The number of tree species and individuals per continent in the
GFBI database. This dataset (blue points in the central map) was used for
the parametric estimation and merged with the TREECHANGE occurrence-
based data (purple points in the central map) to provide the estimates in
this study. Green areas represent the global tree cover. GFBI consists of
abundance-based records of ∼38 million trees for 28,192 species. Depicted
here are some of the most frequent species recorded in each continent.
Some GFBI and TREECHANGE points may overlap in the map.

Signi � cance

Tree diversity is fundamental for forest ecosystem stability
and services. However, because of limited available data,
estimates of tree diversity at large geographic domains still
rely heavily on published lists of species descriptions that are
geographically uneven in coverage. These limitations have
precluded efforts to generate a global perspective. Here,
based on a ground-sourced global database, we estimate the
number of tree species at biome, continental, and global
scales. We estimated a global tree richness ( � 73,300) that is
� 14% higher than numbers known today, with most undis-
covered species being rare, continentally endemic, and tropi-
cal or subtropical. These results highlight the vulnerability of
global tree species diversity to anthropogenic changes.
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species, suggesting that, as a scienti�c community, we still have
much more work to do to arrive at accurate estimates region-
ally, continentally, or globally (12, 24, 34–37). Additionally, a
considerable number of species have likely not yet been encoun-
tered in each of the other four continents as well (Table 1), most
likely in the species-rich and more poorly studied tropical regions
within each (see below).

Our biome-level estimates of tree richness (Fig. 3 andSI
Appendix, Table S2) provide a more detailed description of the
distribution of species richness within continents and shed
more light on South America’s extremely high total tree

diversity. As expected, the highest estimates of tree species in
all continents are for the tropical and subtropical moist forest
biome; for example, roughly half to two-thirds of all already
known species occur in these forests on all �ve continents (SI
Appendix, Table S2). Moreover, the hotspots of undiscovered
species (Table 1 andSI Appendix, Table S2) may largely occur
in these same species-rich and undersampled (37) regions.
However, high numbers of known and unknown species also
occur in other biomes, including tropical and subtropical dry for-
ests, temperate forests, mangrove forests, and areas classi�ed as
nonforested biomes (e.g., lowland and montane grasslands,

Table 1. Observed, asymptotic, and adjusted tree species richness and sample coverage at continental and global scales (note that
the global value is lower than the sum of the continental ones due to overlapping species among continents [Fig. 4] and due to
independent estimators being run for each continent and globally)

Continent

No. of
sampling
units (∼1°
grid cells)

Species
(observed)

Sample
coverage,

%
Chao2

(asymptotic)

95%
CI lower
Chao2

(asymptotic)

95%
CI upper
Chao2

(asymptotic) Chao2 adj

95%
CI lower
Chao2adj

95%
CI upper
Chao2adj

To be
discovered
(∼Chao2adj

� Sobs) Hotspot biomes

Global 9,353 64,088 96.4 89,147 89,141 89,152 73,274 73,271 73,276 9,186
Africa 1,575 10,441 96.0 14,031 14,028 14,033 11,875 11,874 11,877 1,434 Tropical /subtropical moist

and dry forests, mainly
in the Congo River
basin

Eurasia 2,896 14,071 94.3 18,311 18,305 18,316 16,264 16,262 16,265 2,193 Tropical/subtropical moist
and dry forests, mainly
in Southeast Asia

North
America

2,418 8,646 98.6 10,295 10,290 10,299 11,131 11,129 11,134 2,485 Tropical subtropical moist
and dry forests, mainly
in Central America

South
America

1,461 27,186 95.0 46,738 46,729 46,747 31,112 31,110 31,115 3,926 Tropical/subtropical
forests, grasslands,
savannas, and
shrublands, mainly in
the Amazon River
basin and Andean
high mountains

Oceania 1,003 6,680 97.4 9,273 9,267 9,277 8,235 8,232 8,237 1,555 Tropical/subtropical moist
forests, mainly in
northeast Australia
and the Pacific Islands

We also list some biomes that are hotspots of undiscovered species in each continent ( SI Appendix, Table S2). Bold indicates the number of species to be discovered globally and

continentally.

Fig. 2. Occurrence-based accumulation curves at global ( A) and continental ( B) scales. InA, nonparametric (interpolated) and asymptotic (extrapolated)
species numbers from Chao2 (upper –lower 95% CI as shaded areas around the means; note that the CI shaded area is narrow because of the high number
of sapling units), the Chao2 adj estimate for the true number of singletons (red line) vs. the number of samples (1 ° grid cell ∼100 × 100 km), and the num-
ber of species listed in GlobalTreeSearch (green line) are shown. In B, nonparametric (interpolated) and asymptotic (extr., extrapolated) estimates
(upper –lower 95% CI as shaded areas around the means) and Chao2 adj values for the true number of singletons (dashed lines) are displayed vs. the num-
ber of samples (1 ° grid cell ∼100 × 100 km) within continents; the percentage of the global estimated richness in each continent is shown in the carto-
gram in B, Inset (total richness per continent is reported in Table 1).
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savanna, shrublands, deserts) but that include considerable areas
of tree-rich, and often speciose, vegetation. The high total tree
diversity in South America is dominated by the lowland wet
tropics and subtropics, yet roughly one-third of all tree species on
that continent are found only outside of that biome.

Rarity in Forests Worldwide. We also calculated indices of tree
species rarity (percentages of singletons and doubletons) at
continental and global scales (SI Appendix, Table S3) to help
illuminate possible within-sample and among-sample abun-
dance patterns. In fact, since the sample coverage de�cit (1 –
coverage= slope of the SAC at its right-hand end) is a statisti-
cally rigorous way of assessing the incompleteness of sampling
(38), the proportion of singletons/uniques is, thus, strongly
driven not only by long tails on the underlying species abun-
dance/occurrence distribution but also, by sampling intensity/
completeness.

Our most reliable abundance-based asymptotic richness esti-
mates depend on the total number of observed species and the
number of species with only one (singletons) or two (double-
tons) individuals in each sample (which may represent meas-
ures of abundance-based rarity). Similarly, occurrence-based
estimates depend on the number of species present in only one
(unique) or two (duplicate) samples of each continent (which
may represent measures of occurrence-based rarity). Rarity
data within samples (α; i.e., from the abundance-based dataset)
provide an indication of the relative proportion of species that
are rare at the landscape to small regional scale represented by
individual grid cells (100× 100 km). The global rarity value is
33%, with Africa (38%) and South America (37%) having the
highest percentage of species rare within samples and North
America (17%) and Eurasia (24%) having the lowest (SI
Appendix, Table S3). It is important to note that our data do
not mean that one-third of all species occur only once or twice
in nature; instead, their rarity in our dataset suggests their rar-
ity in nature but with unknown distributions of real occur-
rences. The ratio of singletons to doubletons within grid cells is
higher in Africa and Oceania followed by South America and is
quite low in North America and Eurasia.

From the rarity data among samples (occurrence-based rar-
ity), we estimated that South America accounts for the highest
total number of rare species (∼8,200) followed by Eurasia
(∼6,100) and Africa (∼3,900). In Eurasia and North America,
the percentage of species rare among grid cells was∼43%, and
it was <40% in the other continents, with the lowest value in
South America (∼30%) (SI Appendix, Table S3). The ratio of

singletons to doubletons among grid cells in North America
(1.83) is the highest among continents; for all other continents,
it is lower than 1.5. At a global scale, percentage abundance-
based rarity is higher than occurrence-based rarity, while the
ratio of singletons to doubletons shows the opposite trend.
Since we were aware that the numbers (and proportions) of sin-
gletons/uniques and doubletons/duplicates (and their relative
magnitudes) are very much a function not only of true rarity
but also of sampling effort, in relation to true richness, we esti-
mated all indices adjusting them for “true singletons/uniques”
(Materials and Methods). However, our �ndings still con�rm
that most forests are likely to be dominated by just a few tree
species (17) and include a long tail of rare species, which repre-
sents a consistent 30 to 40% of the overall tree richness in all
continents. Although more species-rich regions (such as South
America and Africa) have higher abundance-based rarity,
North America and Eurasia (which contain more of a mix of
biomes) showed higher occurrence-based rarity, and this �nd-
ing could provide insights to better understand the biogeogra-
phy of tree species on Earth.

Overall, almost a third of global tree richness on Earth is
made up of rare species, which appear only once or twice in
our samples. Thus, if the global forest system is dominated by a
relatively modest number of abundant tree species, the global
number of tree species strongly depends on those rarely
detected (∼35%) (SI Appendix, Table S3) and undetected spe-
cies (some large fraction of the∼9,200 unobserved over the
∼73,300 estimated) (Table 1) (34). These results highlight the
vulnerability of global forest biodiversity to anthropogenic
changes, particularly land use and climate, because the survival
of rare taxa is disproportionately threatened by these pressures
(16–19). The higher threats for rare species are an important
concern if we consider that their functions in ecosystems, the
services they provide, and the ecoevolutionary patterns of these
hyperrare tree species are still poorly known (16–20, 25).

Comparisons across Continents. To better understand the bioge-
ography of richness patterns across land masses, we also esti-
mated species turnover among continents (Fig. 4). Speci�cally,
we combined the data of the �ve continents to obtain the values
of estimated tree species richness in all 31 possible intersections
(Materials and Methods). The two continents that share the
highest estimated numbers of tree species are North and South
America (Fig. 4), which is not surprising since these continents
are interconnected by land (since about 3 Mya) in a region
where nearby species-rich tropical forests occur on both conti-
nents. Consistent with this pattern, the second-highest number
of shared species is between Eurasia and Oceania (Fig. 4),
which had a geological continuity through the Southeast Asian
archipelago that is another hotspot of tree diversity. Overall,
other than the highest number of rare species, South America
also shows the highest estimated percentage (49%) of continen-
tal endemic species (Fig. 4), while Eurasia and Africa account
together for almost another 32% of unique tree species in the
world. The percentage of shared species estimated among all
�ve continents is lower than 0.1 (Fig. 4).

To summarize our main �ndings, we estimated that the abso-
lute number of tree species on Earth is considerably higher
than previously reported, with 14.3% more species than cur-
rently known to science (3). By establishing a quantitative
benchmark, this information could contribute to tree and forest
conservation efforts and the future discovery of new trees and
associated species in certain parts of the world. For instance,
considering that we estimated that about 31,100 tree species
are expected in South America (Chao2adj estimator) and those
known to science are about 27,200 (Table 1), there might be
about 3,900 tree species yet to be discovered in this continent,
and most of them could be endemic (Fig. 4) and located in

Fig. 3. Biome-level tree species richness estimates. The map shows the
number of tree species estimated ( S estimated from Chao2 adj) in terrestrial
biomes of each continent as a color gradient from low richness (yellow) to
high richness (red). More information is provided in SI Appendix, Table S2.
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diversity hotspots of the Amazon basin and the Andes–
Amazon interface. This makes forest conservation of para-
mount priority in South America, especially considering the
current tropical forest crisis from anthropogenic impacts such
as deforestation, �res, and climate change. Similar arguments
can be made about the prioritization of conservation of tropical
and subtropical forests on other continents given the consider-
able numbers of likely undiscovered species on each and their
likely rarity. For example, there are likely high numbers of
undiscovered species in Central America and in Southeast
Asia.

This study accelerates our science by estimating global tree
richness with a more extensive dataset and more advanced sta-
tistical methods than previous attempts. However, both the
underlying data and Chao richness estimators and adjustments
are imperfect. We recognize several methodological issues that
might have potentially biased our estimates and/or contributed
to uncertainty. The �rst involves the uneven and unrepresenta-
tive distribution of the sampling areas in the globe and within
continents, which is an issue despite the high–sample coverage
metrics that we used. The second involves the possibility that
some species might have been misclassi�ed due to misidenti�-
cation, failure to update taxonomic name changes, and mis-
spellings, which could reduce accuracy in estimates of species
numbers (24, 33, 34). There is compelling evidence of errors in
most biodiversity datasets due to the inclusion of false uniques
(24). For example, if two botanists in different parts of the
same forest region encounter the same species of rare and
unfamiliar tree, they may identify it differently or use different
synonyms to identify it, biasing the count of uniques and the
estimators. Therefore, because of the likely discrepancy
between the actual proportion of uniques in a sample and the
observed unique count included in our datasets, we estimated
the true number of unique species (28) and from this adjusted
number, computed and focus on a more conservative estimate
of global tree richness, which is∼73,300 species (Chao2adj).
There is also uncertainty about the accuracy of nonparametric

estimators. Previous studies report that nonparametric estima-
tors give lower values of tree species richness than parametric
ones for the Amazon basin (34–36). However, our nonparamet-
ric estimate of tree species diversity in South American tropical
forest biomes was higher than both parametric estimation and
previous estimates in the Amazon (36). This might have
resulted from previous studies being mainly based on Amazon
lowlands, ignoring highlands. Thus, we examined sample com-
pleteness comparing continents but limiting their latitude to
23°N and S (tropical regions) (SI Appendix, Table S4). Results
generally showed similar sample coverage at the grid-scale size
used.

Future estimates of tree species richness in tropical, subtrop-
ical, and montane areas on all continents will be more accurate
if an increased sample size is obtained (37), especially from
areas poorly investigated. This begs the question on why South
America alone could harbor >40% of all tree species. Com-
pared with forest ecosystems on other continents, South Amer-
ica could have offered a larger continuous tropical forest area,
a higher rate of speciation, a more robust mechanism of biodi-
versity maintenance, and reduced extinction rates [for instance,
mild climates and the shortest period of human disturbance
(39, 40)]. We also noticed that the SAC of South America con-
tinued to rise along the samples, whereas those of other conti-
nents start to level off, supporting the idea that undiscovered
species numbers are likely high there, including in the Andean
forests between 1,000- and 3,500-m altitude. A key challenge
now is to install more plots in the Amazon-Andean transition
zones, and to identify and monitor the trees within these plots.

Overall, our study points toward an estimated global tree
richness (∼73,300) that is roughly 14% higher than numbers
known today (3, 4), with many unknown species belonging to
the tail of rare ones and often endemic to certain regions all
across the globe. These results highlight the vulnerability of
global tree species diversity to anthropogenic land use changes
and to future climate (16–18). Losing regions of forest that
contain these rare species will have direct and potentially
long-lasting impacts on the global species diversity and their
provisioning of ecosystem services (18–20). These results dem-
onstrate both the lack of knowledge we still have about the tree
species within our global forest systems and the value of
approaches to help �ll those gaps, which will be useful in pro-
viding fundamental insights about the diversity of life on our
planet and its needed conservation.

Materials and Methods
Dataset and Sample Coverage. We used the tree de finition agreed on by
IUCN's (International Union for Conservation of Nature) Global Tree Specialist
Group (GTSG):“a woody plant with usually a single stem growing to a height
of at least two meters, or if multi-stemmed, then at least one vertical stem five
centimeters in diameter at breast height. ” A tree inventory abundance data-
set from 105,749 forest plots, ∼38 million stems of 28,192 species, distributed
across allfive continents was compiled from the GFBI ( https://gfbinitiative.net/ )
database. For the Tonga and Niue data in the GFBI dataset, the original source
was the New Zealand National Vegetation Survey Databank. For the estima-
tion of the total number of tree species worldwide, we further compiled an
independent occurrence dataset that we combined with the GFBI data. The
occurrence-based dataset (hereafter, TREECHANGE) consists of taxonomy and
location of >6 million tree individuals. Being a major data infrastructure itself,
this dataset represents species occurrence information and encompasses a
huge variety of data —from ground-sourced forest plot data (similar to the
GFBI). Supported by a large body of collaborating institutions all over the
world, this dataset features extensive global coverage and has been used
across many large-scale studies (26). A limitation of the TREECHANGE dataset is
that its underlying datasets do not have a coherent and consistent design
and sampling scheme, but as described below, it complements the calculation
of the estimated total number of tree species worldwide based on GFBI data.
We extracted taxonomic data and associated geographic coordinates from five
main data aggregators of species occurrences: the Global Biodiversity Informa-
tion Facility [accessed through rgbif R package (41)], the public domain of the

Fig. 4. Species richness partitioning among continents. Estimates of the
percentage of continental endemic (bold percentage values close to each
continental map are based on the Chao2 adj estimator) ( Materials and
Methods) relative to the estimated richness per continent and shared spe-
cies among continents (numbers in overlapping sets). In the center (bold
percentage values at the intersection of all sets), the percentage of shared
species among all five continents is shown. E
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Botanical Information and Ecological Network v.3 [accessed through the BIEN
R package (42)], the Latin American Seasonally Dry Tropical Forest Floristic Net-
work [DRYFLOR (43)], the RAINBIO database (44), and the Atlas of Living
Australia [ALA; accessed through the ALA4 R package (45)]. The species list was
initially extracted from a world tree species checklist [GlobalTreeSearch (46)].
We checked for taxonomic correctness using the Taxonomic Name Resolution
online tool (47), following a quality assessment and control of the data using
the work flow outlined in ref. 26. This work flow minimized common errors
associated with occurrence data (43). GlobalTreeSearch uses the tree de finition
agreed on by IUCN's GTSG above mentioned.

For abundance-based analyses, we used the GFBI tree species dataset (at its
original plot size), whose samples cover a total area of more than 73,000 ha
(SI Appendix, Table S1). Then, to perform occurrence-based estimations, we
compiled a larger and more comprehensive global dataset with 100- × 100-km
sampling units ( ∼1° grid cells) by combining the abundance-based data in the
GFBI tree species dataset, which were converted in presence/absence occur-
rence data and pooled with the high-quality large occurrence-based TREE-
CHANGE dataset. Globally, this yielded a dataset of 9,353 sampling units, with
696,063 occurrences. At the continental level, the combination of the two
datasets to obtain a large occurrence-based dataset also yielded a number of
sampling units somewhat comparable, in the sense of being a similar order of
magnitude (Africa: 1,575; Eurasia: 2,896; North America: 2,418; South America:
1,461; Oceania: 1,003).

To ensure that our estimations of species richness were not biased by dif-
ferences in sample coverage (e.g., an estimate of the total probability of
occurrence of the species observed in the sample, taking into account species
present but not detected) among continents, we estimated the inventory
completeness (as defined by ref. 48) for the complete database and for each
continent separately using the Chao –Shen sample coverage estimator (38, 48),
which is a bias-reduced estimator of sample completeness:

Cn ¼ 1 �
f1

n
n � 1ð Þf1

n � 1ð Þf1 þ 2f2

� �
,

where f1 and f2 are the numbers of singletons and doubletons (for
abundance-based data) or the species occurred in only one (uniques) and in
two (duplicates) 100- × 100-km (∼1°) samples (for occurrence-based data),
respectively; n is the total number of individuals (for abundance-based data)
or occurrences (for occurrence-based data) in the sample; and Cn is the propor-
tion of the total number of individuals (for abundance-based data) or occur-
rences (for occurrence-based data) in an assemblage (observed and not
observed) that belong to the species represented in the sample (49, 50).

Because estimates of species richness can be strongly dependent on differ-
ences in inventory completeness, we checked whether sample coverage was
similar in all five continents. Since all continents showed a similar proportion
of sample coverage (all >94%), both from occurrence- (Table 1) and
abundance-based data ( SI Appendix, Table S1), we confirmed that our global
estimate —based on global sample coverage of 96.44% (occurrence data) and
99.97% (abundance data) —was not disproportionately in fluenced by any spe-
cific continent. However, the slightly lower occurrence-based sample coverage
of South America and Eurasia, with 95 and 94.26%, respectively, and the
clustered distribution of some plots could explain the nonsaturating trend
of their accumulation curves compared with the other continents (Fig. 2 B).
We also note that sample completeness at finer scales would be lower in all
continents.

We selected the continental scale for our estimates, together with the
common study frames of biomes (51), because nonparametric species richness
estimators perform better when samples are collected in a continuous incre-
mental area without relevant landmass separation such as oceans (31 –33).

For instance, working at a global biome-level only would ensure that the
current climatic conditions are similar, but this approach to estimate species
richness, taken alone, would reduce the information implied in the estimates
because they would be affected by several factors. 1) Within each across-
ocean biome, there are still important ecological and evolutionary differences
that would affect the estimates at the global biome level [in fact, conven-
tional levels of ecological hierarchical organization are not scale dependent
(52), whereas species richness estimates are]. 2) With nonparametric estimates
based on SACs, it is better to ensure a continuity of sampled areas (e.g., contin-
uous terrestrial lands) (53, 54). 3) The ecological conditions that have shaped
the evolutionary patterns (phylogeny and diversity) of tree species on Earth
were much different when continents were conglomerate in Pangea (55) and
then slowly shifted away (i.e., during this long geological time, biomes were
much different to current ones) (56 –58).

Therefore, other than estimating global tree species richness at a global
biome level (Fig. 3 and SI Appendix, Table S2), we analyzed continental rich-
ness to also account for evolutionary changes in response to the biome main

variables (latitude, climate, solar radiation, etc.), which shaped current tree
diversity. Adding the figures at a continental (and a continental biome) level,
we ensured that our estimates are based on the 135-My biogeographical and
temporal continuity of the five main vegetated landmasses, which is an
implied assumption of the estimators. This approach also allows a better dis-
cussion of the results for species turnover among continents (Fig. 4), which
might be a result of their connections in Laurasia and Gondwana and the fol-
lowing continental drift.

Species Richness Estimators.We initially computed a parametric estimate of
species richness on the abundance-based data for 28,192 species from the
GFBI dataset (SI Appendix, Table S1). In particular, we considered the Fisher ’sα
for abundance data (calculated from http://groundvegetationdb-web.com/
ground_veg/home/diversity_index ).

We found that the abundance-based Fisher ’s α underestimated the abso-
lute species richness because our global ( SI Appendix, Table S1) Fisher estimate
was close but lower than the observed number of species in our occurrence-
based dataset (64,100 from GFBI + TREECHANGE). Because this parametric
estimator assumes a log-series distribution of abundances (59), we performed
a goodness-of-fit test and evaluated it with a Kolmogorov –Smirnov test of
whether our global and abundance data fit a log-series distribution. Since all
datasets (global: D = 0.1, P = 1; Africa: D = 0.1, P = 1; Eurasia:D = 0.5, P = 0.17;
North America: D = 0.2, P = 0.99; Oceania: D = 0.2, P = 0.99; South America: D
= 0.2, P = 0.99) follow a log-series distribution, we calculated the α-values. At
a global level, we obtained a Fisher ’sα-value of 3,040 ( SI Appendix, Table S1).

We used this value and the most recent estimates on the global number of
trees by Crowther et al. (60) to estimate the global number of species from
Fisher’s classical equation (61):

S ¼ aln 1 þ
N
a

� �
,

where N is the total number of trees and α is the Fisher’s α-parameter. This
yielded an estimate of 62,624 to 62,915 species (lower –upper bootstrap 95%
CI) from the 3.04 ± 0.19 × 1012 (±95% CI) global tree stems calculated by
Crowther et al. (60). Although Fisher ’s parametric approach stands on the very
strict assumption of in finite log-series species abundance distributions, giving
rise to overestimation of hyperrarity (62, 63), it estimated slightly less than the
observed number of species in our occurrence-based dataset (using the
α-value derived from our abundance-based dataset). We thus did not further
employ this estimate. Instead, with the larger occurrence dataset composed
of GFBI (converted to presence/absence) and TREECHANGE data, we then cal-
culated the Chao2 index, which is a lower-bound estimator and considered
one of the most reliable and less affected by bias among all nonparametric
indices (27, 64–66). The values of the estimators from the samples to plot the
curves shown in Fig. 2 were randomized, interpolated, and extrapolated with
the package iNext in R (67).

The Chao2 estimator (bias corrected) is calculated by the following
formula:

Chao2 ¼ Sobs þ
m � 1
m

� �
Q1ðQ1 � 1Þ
2ðQ2 þ 1Þ

� �
,

where Sobs are the actual numbers of species observed in the samples ( m) and
Q1 and Q2 are the species that appear in only one (unique) and two (duplicate)
sampling units, respectively (27, 29). The 95% CI (CI bias corrected) of this
index can be calculated by the formula

Lower 95 % Bound ¼ Sobs þ T=K; Upper 95 % Bound ¼ Sobs þ TK,

where T ¼ Chao2 � Sobsand K ¼ exp 1:96 log 1 þ
^var ð̂SChao2Þ

T2

 !" #1=2
8<
:

9=
;:

This estimation yielded a global value of 89,147 ± 1,101.5 species (Chao2 ±
95% CI) (Table 1). We are well aware that some studies provide different pre-
ferred estimators (68 –70). However, many analyses, including simulation-
based experiments, encourage the use of Chao2 to minimize bias (a summary
is in ref. 71). This is the reason we considered the Chao2 index (based on occur-
rence data) our more useful estimator. Nonetheless, this estimator is sensitive
to accurate quanti fication of the numbers of uniques and duplicates, and it is
known that there are problems with false uniques in forest species richness
datasets (24). Our Chao2 values may, thus, represent an overestimate to the
degree that tree species recorded in only one sampling unit have been mistak-
enly identi fied as unique. Therefore, to check the reliability of our nonpara-
metric estimates, we calculated the true number of uniques ^ðQ1 Þ(28) in each
continent and at a global scale to understand whether our values were in flu-
enced by the number of “falsely unique species. ” This estimation of the true
number of uniques is calculated with the formula adapted from ref. 28 for
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incidence-based data:

Q̂1 ¼
T � 1
T

� �
2Q2

2

3Q3
þ

T � 1
T

� �
2Q2

Q2

2Q3
�

Q3

4Q4

� �
,

where Q̂1 is the estimated true number of uniques; T is the number of sam-
pling units (map cells); and Q2, Q3, and Q4 are observed duplicates, triplicates,
and quadruplicates.

At the global level, the estimate of the true number of uniques is 13,162
compared with the observed 24,768. At the continental level, the number of
estimated uniques was much lower than the observed one in South America
(4,888 vs. 13,110) and somewhat lower in Eurasia (3,424 vs. 5,806), Africa
(2,192 vs. 3,466), and Oceania (1,444 vs. 2,208), but it was slightly higher in
North America (2,460 vs. 2,360). We then used the adjusted number of
uniques in the Chao2 equation (see above) to calculate the Chao2 adj estimates,
ŜadjChao2 (27–29).

We also calculated tree species rarity at continental and global scales for
abundance (abundance-based rarity; i.e., based on the number of adjusted
singletons [ S1] and doubletons [ S2]) and occurrence (occurrence-based rarity;
i.e., based on the adjusted number of unique species and the number of dupli-
cate ones). We defined the number of rare species as the sum of adjusted sin-
gletons and doubletons. We also computed an index of rarity importance
using our occurrence-based dataset as the proportion of rare species over
total richness and an S1adjusted/S2 ratio, which is the proportion of singletons
over doubletons.

Continental Biodiversity Partitioning. We estimated the number of species
shared among continents and unique to each continent using the Chao2 esti-
mator (Fig. 4) from the occurrence-based data, and we represented them in a
Venn diagram. We combined the observations of species richness for the five
continents ( n = 5) in all possible 2 5 � 1 = 31 combinations.

First, we calculated asymptotic species richness (Chao2) from occurrences
observed in each continent; then, we intersected (creating a unique presence/
absence binary entry for each species) the observed occurrences per each pair,
triplet, quadruplet, and all five of continents (obtaining the occurrences of all
the observed species in each combination of continents) and calculated the
asymptotic species richness (Chao2) per each pair, triplet, quadruplet, and
quintuplet continents. Therefore, a total of 31 estimates were obtained by the
Chao2 index and plotted in a Venn diagram with the R package VennDiagram
(72).

Additional cross-checks of the data pooling approach and q1/q2 relation-
ship are in SI Appendix, SI Methods.

Data Availability. Anonymized numeric data have been deposited in GFBI,
https://gfbinitiative.net/data/ .
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