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A B S T R A C T   

We propose a conceptual model for progressive freeze concentration, which predicts solute loss through inclusion 
in the ice based on the system’s phase behaviour as illustrated in a state diagram. We compare the outcomes of 
the model for sodium chloride, sucrose, and bovine serum albumin (BSA). For ice growth rates in the order 10− 2 

μm/s there was no solute inclusion for sodium chloride or sucrose, but above this range, local super-cooling gives 
rise to a freezing zone. In this freezing zone ice and solution co-exist and the resulting uneven advancement of the 
ice causes inclusions. The model predicts that for macromolecular solutions such as BSA, no inclusion will take 
place through the proposed mechanism.   

1. Introduction 

Freeze concentration is a mild process that involves the concentra
tion of solutions by selective freezing of water. The process is typically 
used for the concentration of fruit juices, coffee extract, dairy products, 
and ice bock; all these products are susceptible to thermal degradation 
and benefit from the low temperatures in the process (Samsuri et al., 
2016). Freeze concentration is also considered for the treatment of waste 
water (Holt, 1999), especially when these streams are corrosive, which 
can be reduced by the low temperature during the process. 

Current freeze concentration process forms are suspension freeze 
concentration, block freeze concentration, and progressive freeze con
centration (Sánchez et al., 2009, 2011). We here focus on progressive 
freeze concentration in which a layer of ice is created on the surface ofa 
heat exchanger. After the ice layer is grown, the concentrated solution is 
removed, the ice is melted and withdrawn from the system. This may be 
repeated multiple times to obtain a large enough concentration factor. 
Critical for the feasibility of this process is that the loss of solutes due to 
inclusion in the growing ice layer is minimised. These inclusions occur 
due to accumulation of solutes in the solution close to the ice growth 
front, which then induces uneven growth of the ice layer. Solute losses of 
up to 50% of the initial concentration can be found in the ice layer (Vuist 
et al., 2020, 2021; Jusoh et al., 2009; Ojeda et al., 2017). Depending on 
the amount of the inclusions and use of the ice fraction this can pose a 
significant loss of solutes. 

The mechanism of solute inclusion during progressive freeze con
centration in the growing ice layer is not yet completely unravelled. The 
phenomenon is generally understood to be caused by a temperature 
decrease in the boundary layer towards the ice interface. During ice 
growth, both water and heat are removed from the bulk solution, 
leading to an accumulation of solute on the ice surface, and a concurrent 
decrease in temperature in the boundary layer. Depending on the cir
cumstances, the temperature in the boundary layer decreases below the 
freezing point of the local solution, which can then lead to ice growth 
from the surface, into the boundary layer (Fig. 1b). If the undercooling 
in the boundary layer is small, this may be seen as a ripple on the surface 
of the ice; but with increasing undercooling, dendritic ice crystals will be 
formed, which are surrounded by concentrated solution. During further 
growth of the ice layer, part of this concentrated solution gets included 
as pockets in the frozen ice layer. 

The extent to which this inclusion takes place determines the effec
tiveness of the concentration of the solution. Jusoh et al. (2009) found 
experimentally that the overall experimental partition coefficient for 
glucose was relatively constant, when removing a similar amount of ice. 
Miyawaki et al. (1998) found that the distribution coefficient was 
dependent on the freezing rate and stirring rate. This led them to suggest 
a constant limiting distribution coefficient for a particular solute or so
lution. However, a simple consideration shows that this cannot be 
fundamentally valid. Ice growth at an infinitesimally slow freezing rate 
at the freezing temperature of the solution will avoid any accumulation 
of solutes before the ice, and therefore should result in pure ice. Thus, in 
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this limiting case, the distribution coefficient will be zero. On the other 
hand, infinitely fast – or instantaneous – freezing will certainly lead to 
complete freezing of the solution, with just as much solute in the ice 
included, as was present in the original solution. In that case, the dis
tribution coefficient will be one. Thus we conclude that the freezing rate 
influences the distribution coefficient: it varies at least with the rate of 
freezing, and it will therefore vary in time, as initially the freezing rate at 
the onset of the process will be large due to the absence of the ice film. 
Later in the process the freezing rate will drop, and thus the distribution 
coefficient will decrease. As indicated, previous research did not fully 
consider the impact of the dynamics on the inclusion behaviour of sol
utes, which is important for the effectiveness of this concentration 
method. 

The aim of this study is therefore to offer an analysis to understand 
solute inclusion during progressive freeze concentration and how it is 
influenced by freezing point depression. For this we carry out a con
ceptual analysis of the freezing process, using state diagrams to visualize 
and analyse the process. We do this by constructing the trajectory of the 
solution through the state diagram while freezing, as function of the 
system parameters, and relative to the freezing curve in the state dia
gram. We consider the freeze concentration of three different types of 
solutes: NaCl as a representative of fast diffusing, low-molecular weight 
solutes; sucrose as a slower diffusing, intermediate molecular weight 
solute, and BSA as a representative of high molecular weight solutes. 
Finally, we extrapolate our findings towards even larger solutes, such as 
colloidal particles, which could for example be non-dissolved proteins. 

2. Theory 

2.1. State diagram 

The freezing process takes place at the interface between the ice and 
the solution, assuming the presence of an initial ice layer that acts as a 
seed. The solute concentration on this surface is significant. Even if the 
solution itself has a limited solute concentration (say, a few percent), 
then the concentration polarization will result in much higher concen
trations on the surface (Fig. 1). We therefore need to take freezing point 
depression into account; which is represented in a state diagram as a 
freezing curve with a negative slope. 

The freezing point depression can be described with the Clausius- 
Clapeyron equation; but it is generally used with a constant enthalpy 
of fusion (Fellows, 2017). Since the enthalpy of fusion for water is quite 
dependent on the temperature, this leads to inaccurate description of the 
freezing curve in the state diagram; especially at higher solute concen
tration and hence lower freezing temperatures (Bertolini et al., 1985). 

Therefore, we choose Blagden’s law instead, which states that the 
freezing point of a solution is a in direct proportion to its concentration 
(Barrow, 1961): 

Tm = T0
m − Kf ⋅b⋅i (1) 

With Kf the cryoscopic constant (equal to 1.86 (Kkg)/mol), b the 
molality of the solution, and i the Van ’t Hoff factor. 

Fig. 2a shows for solutions of sucrose in water that while all de
scriptions are accurate for diluted solutions, Clausius-Clapeyron’s 
equation deviates at lower temperatures and hence higher concentra
tions of sucrose. The established form of Blagden’s law with i = 1, is just 

Nomenclature 

Subscripts 
ice Ice 
b Bulk 
c Composition path 
f Freezing point 
i Interface 
m Melting point 

Symbols 
Δhf Heat of fusion [J/mol] 
δ Thickness of boundary layer [m] 
η Cooling duty used for ice formation [%] 
λ Thermal conductivity [W/(m K)] 
ρ Density [kg/m3] 
b Molality [mol/kg] 

c Concentration [M] 
cp Heat capacity [J/kg] 
D Diffusion coefficient [m2/s] 
i Van ‘t Hoff factor [− ] 
K Instantaneous distribution coefficient [− ] 
k Mass transfer coefficient [m/s] 
Kf Cryoscopic constant [(K kg)/mol] 
NNu Nusselt number [− ] 
NPr Prandtl number [− ] 
NRe Reynold number [− ] 
NSc Schmidt number [− ] 
NSh Sherwood number [− ] 
q Cooling duty [W/m2] 
T Temperature [K] 
v Rate of water towards the interface/ice growth rate [m/s] 
z Coordinate [m]  

Fig. 1. Partial state diagram (a) and depiction of the concentrations and temperatures near the ice layer (b). At infinitesimally slow growth rates, there is no 
concentration polarization, indicated by subscript 0; at higher rates, there is concentration polarization and subsequently stronger freezing point depression at the ice 
surface, indicated by subscript 1 (Myerson et al., 2019). 
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as accurate for diluted solutions, but deviates somewhat at higher con
centrations. We adjusted this by assuming a Van ‘t Hoff factor of 1.16. 
One should regard this correction as merely a fit to take into account 
some nonideality of the solutions at higher concentrations. For NaCl 
solutions (Fig. 2b), we find that Clausius-Clapeyron and Blagden are 
identical, as long as i = 1.9 is taken for both descriptions. 

The molecular weight of BSA is so large, i.e. 66.5 kDa, that the 
precise value of i is not very important. While a BSA molecule may have 
several counter-ions that would give rise of an i value that is clearly 
larger than one, for our considerations the freezing line for BSA is 
practically horizontal; therefore, we describe it with Blagden’s law as 
well. 

2.2. Concentration polarization and heat transfer 

We now turn to the dynamics of the freeze concentration process. We 
assume that we extract heat from the system with a cooling duty or heat 
flow of q watts per m2, through the layer of ice that has already formed. 
This heat is extracted by freezing water on the interface between ice and 
solution, and through heat extraction from the bulk of the solution. We 
assume that the bulk of the solution is well-mixed, with a boundary layer 
determining the rate of both heat and mass transfer to the interface. 

First, we consider heat transfer through the boundary layer. If we 
assume an interface fixed frame of reference, heat transfer is through 
two modes, convective (transfer of water towards the interface, 
vρcp(Tb − Ti)); and conductive ( − λ dT

dz). Further, heat is released by 
freezing, (vρΔhf), with v the rate of water towards the interface (m/s) 
and q is the cooling duty (Scholz et al., 1993): 

vρcp(Tb − Ti) − λ
dT
dz

+ vρΔhf = q (2) 

As the advective contribution is very small compared to the 
conductive and freezing contributions, we will neglect the first term. 
Using the heat transfer coefficient h, given by h = λ

δ, with δ the thickness 
of the boundary layer, we get: 

h(Tb − Ti) + vρΔhf = q (3) 

The percentage of the cooling duty used for the formation of ice can 
be expressed as: 

η =
vρΔhf

q
× 100% (4) 

The heat transfer is found through a Nusselt relation, which may be 
of the form for flat plates under turbulent conditions: 

NNu = 0.004 3 N0.8
Re N0.33

Pr (5) 

We then turn towards mass transfer, by considering the local con
centrations of solute in the boundary later. Mass transfer through the 

same boundary layer can be described by: 

vc − D
dc
dz

= vcice or
dc
dz

=
v(c − cice)

D
→

ci − cice

cb − cice
= exp

(v
k

)
(6) 

With the mass transfer coefficient k = D/δ, found through a Sher
wood relation, analogous to the Nusselt relation as it takes place through 
the same boundary layer: 

NSh = 0.004 3 N0.8
Re N0.33

Sc (7) 

Both mass and heat transfer occur in the same boundary layer. That 
means that the compositions and temperatures in the boundary layer 
will form a curve, that starts at the point (cb,Tb) and ends on the freezing 
curve at (ci,Ti). Schematically, the curve could look as in Fig. 3. 

We can calculate this curve more precisely by using both the tem
perature and the concentration gradients in the boundary layer to find 
the dependence of the temperature as function of the concentration 
(Chen et al., 2015). 

Tz = Ti + (Tb − Ti)
z
δ

ci − cice

cb − cice
= exp

(
v(δ − z)

D

)

⎫
⎪⎪⎬

⎪⎪⎭

Tc = Tb − (Tb − Ti)
k
v

ln
(

ci − cice

cb − cice

)

(8) 

In this relation, we do not yet know the concentration and temper
ature on the interface, ci and Ti, and the concentration of solute in the 
ice, cice. We can find these by making use of the relations that we have. If 
we have solute inclusion, we can introduce the distribution coefficient K 
= cice/cb, and thus eq. (8) can be rewritten in (Chen et al., 2015): 

Tc = Tb − (Tb − Ti)
k
v

ln
(

ci − Kcb

cb − Kcb

)

(9) 

We solve these eqs. (1), (3) and (9) for two distinct cases, in the first 

Fig. 2. Description of the freezing curve of sucrose- 
water solutions (a) and NaCl-water solutions (b) by 
Clausius-Clapeyron’s equation using Δhf = 6001 J/ 
mol; and using Blagden’s law. For sucrose lines are 
shown with i = 1 (blue line) and with i = 1.16 (red 
line). For NaCl solutions, lines are shown with i = 1, 
and with the generally assumed value of 1.9 
(Leighton, 1927; Prentice, 1978; Rodebush, 1918). 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   

Fig. 3. Concentration profile in the boundary layer, starting at the bulk tem
perature and concentration, and ending on the solution-ice interface with 
concentration and temperature ci, Ti. 
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case we assume slow freezing and that there is no inclusion, i.e. cice =

0 or K = 0. In the second case we assume that the freezing is faster and 
that there will be inclusions. The system of equations was solved using 
MathCad Prime (PTC Inc., USA; version 4.0). 

2.3. Dynamics of slow freezing: no solute inclusion 

In the case of very slow freezing, the ice inclusions will be zero, and 
thus cice = 0. In that case, it is straightforward to find the values of the 
parameters, see Fig. 4. We first set v, the freezing rate, as independent 
parameter, which will give us ci through eq. (6) by taking cice = 0; then 
using eq. (1) with Tm = Ti, to find Ti, which can then be used to find 
h(Tb − Ti) and therefore q using eq. (3) (Fig. 4c and f). In Fig. 4a and 
d the slow freezing is shown in the state diagram. The composition of the 
boundary layer does not cross the freezing line and therefore there won’t 
be inclusions. If faster freezing is applied the composition in the 
boundary layer will cross the freezing line and a zone with super-cooling 
occurs in which solution and the tips of the ice crystals are present. This 
effect is also known as constitutional supercooling. In this case we need 
to invoke an extended model to account for the fast freezing (Fig. 4b and 
e). 

The model also allows us to determine the concentration at the 
interface, ci, and the minimum required cooling duty for ice growth 
(Fig. 4c and f). The concentration at the interface is useful information 
for to determine the maximum cooling duty to have no inclusions. This 
will be expanded upon in the next section. The minimum cooling duty 
arises from the heat flux for cooling down the bulk solution. This cooling 
down takes up part of the heat removed from the applied cooling duty 
(eq. (3)) and has to be overcome for the system to be able to form ice. 

2.4. Dynamics of fast freezing: solute inclusion 

If freezing is faster (induced by a larger temperature difference over 
the layer of ice), then the situation becomes different. The freezing front 
is stable, as long as the slope of the composition curve in the point (ci,Ti)

is larger (in absolute sense) than the slope of the freezing curve. In Fig. 5 
we see an ‘artist impression’ of the situations. 

At larger freezing rates (relative to the rate of diffusion of the solute), 
the concentration profile becomes steeper, and at some point it may 
cross the freezing curve (Fig. 5C). At this point, the solution within the 
boundary layer is below the freezing curve and therefore can freeze it
self. One also can observe that the driving force for the formation of ice, 
which is the temperature difference between the local composition and 
the freezing curve, is smallest on the ice surface, and gets larger with the 
distance from the surface. That means, that any irregularity on the ice 
surface will have a larger driving force for freezing and therefore will 
grow faster than the ice surface on average. This means that there is a 
driving force for the ice to form oscillations, ultimately leading to the 
formation of needle-shaped, or dendritic ice crystals, from the surface, 
into the boundary layer, creating a freezing zone. The solution sur
rounding these ice crystals will become more and more concentrated 
and will ultimately be trapped into the ice, while the ice front will 
continue to move towards the bulk solution. 

From a macroscopic standpoint, we observe that the ice incorporates 
a part of the solution, while the concentration polarization itself will 
become less extreme since a part of the solutes is not accumulating 
anymore in the boundary layer (Vuist et al., 2020, 2021). The situation 
as displayed in panel C of Fig. 5 will therefore relax with the situation in 
the boundary layer on the verge of instability. 

The new situation, that results in zone freezing and solute inclusion, 

Fig. 4. (a) and (b) are state diagrams for sodium chloride with q = 40 W/m2 (a) and with q = 80 W/m2 (b). (d) and (e) are state diagrams for sucrose with q = 20 W/ 
m2 (d) and q = 40 W/m2 (e). At (a) and (d), the freezing is stable. For the other situation, the composition in the boundary layer is unstable and will create a freezing 
zone in the boundary layer. The blue line represents the freezing line, the black line represents the temperature and composition in the boundary layer. The dashed 
lines indicate the temperature and composition at the interface. (c) sodium chloride and (f) sucrose, are plots of the freezing rate v and concentration at the interface 
ci, as function of the cooling duty q. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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has one extra requirement, being that the slopes of the composition path 
and the freezing curve are the same (Tiller et al., 1953): 

dTc

dc (ci ,Ti)
=

dTm

dc (ci ,Ti)
(10) 

We can see in Fig. 6 that in the new situation the surface temperature 
goes up, and therefore we extract less heat from the solution; therefore 
more of the cooling is used to actually freeze water, albeit at lower 
purities. By simultaneously solving eqs. (1), (3) and (9) and applying 
boundary condition (10), we can find now the composition path that 
represents the compositions in the boundary layer that is now on top of 
the zone that undergoes dendritic (or similar) freezing. So, in this zone 
pure ice crystals and concentrated solution co-exist. When the freezing 
continues the freezing boundary will move into the direction of the so
lute and the ice crystals will overtake this mixed zone causing the solute 
inclusion. The distribution coefficient, K, is derived from eq. (9), since 
this the only unknown not determined by the other equations. Note in 
Fig. 6 that because the solution on top of the freezing zone has a higher 

temperature, this means that although we lose purification, we lose less 
heat through conduction from the bulk solution i.e. Ti at the top of the 
freezing zone is higher (eq. (3)). We typically see a sudden, slight 
reduction in overall energy duty necessary at this transition. 

3. Results and discussion 

3.1. Low-molecular weight solutions: NaCl-water and sucrose-water 

Low molecular weight components such as NaCl and sucrose are 
abundant in food and other industrial streams. To not complicate the 
analyses, we neglect the temperature dependence of the parameters. 
These would change the quantitative outcomes, but not the qualitative 
ones. For a 4% (w/w) solution, we assumed that the diffusivity of NaCl 
in water is 1.5 × 10− 9 m2/s, and that of sucrose in water 5.2 × 10− 10 m2/ 
s; and that the bulk solution was at 298 K. We also assumed that the 
thermal conductivity was constant at 0.561 0 W/(m K), and that the 
density of the solution remained at 1000 kg/m3. 

Both NaCl and sucrose give similar patterns as function of the 
freezing rate, with a stable freezing region below a certain cooling duty 
and freezing rates characterised by no inclusions, and unstable growth 
with increasing levels of inclusion above this threshold (Fig. 7). Due to 
the lower diffusion coefficients of sucrose in water, the transition occurs 
at a lower cooling duty with sucrose than with NaCl. During unstable 
freezing (and thus solute inclusion, the solute concentration on the 
interface between the freezing zone and the solution has a lower con
centration and thus a higher temperature (dictated by the freezing line), 
and the amount of heat extracted from the bulk solution decreases at a 
higher rate again before levelling off (eq. (4)). At higher bulk concen
trations the threshold between stable and unstable freezing will shift to 
lower freezing rates and therefore the process will be further limited, i.e. 
the maximally allowed cooling duty is lowered at higher concentrations. 
The threshold can be shifted to higher freezing rates if the Reynolds 
number goes up, i.e. if mixing in the bulk is improved. 

It should be noted that the diffusivity of sucrose is in reality highly 
dependent on the temperature and concentration: since it is not too far 
off from the glass transition, it therefore follows Williams-Landel-Ferry 
kinetics, characterised by a much faster increase in viscosity and 
reduction in diffusivity than expected merely on basis of Arrhenius 
dependence (Kerr and Reid, 1994). The transition towards unstable 
freezing is therefore expected at even lower threshold values than 
indicated in Fig. 7. Difference between the two will therefore be much 
stronger in reality. 

3.2. High-molecular weight solutions: proteins 

While the principles are the same with high-molecular weight sol
utes, the state diagram dictates a somewhat different process. We here 
take the protein bovine serum albumin (BSA) as an example and 
calculated the composition paths during freeze concentration of BSA for 
different cooling duties (Fig. 8). The large molecular weight of the solute 
dictates a much more horizontal freezing line in the state diagram. 

Fig. 5. Paths through the state diagram. A: before nucleation has started, a temperature gradient is created, but compositions have not yet changed. B: Slow freezing. 
The composition path stays outside the freezing line, and therefore the freezing front is stable. C: Fast freezing, resulting in ice formation in front of the freeze front 
and solute inclusion. 

Fig. 6. Situation for a 4 w/w% solution of sucrose in water starting at 278 K, 
with 29.6 W/m2 total heat removal duty. The blue curve is the freezing line. 
The red, unstable composition path gives rise to dendritic growth inside the 
boundary layer. The composition path for the boundary layer on top of the 
freezing zone, therefore relaxes to the verge of stability, indicated by the black 
curve. In this case we have a distribution coefficient of 0.49, meaning that the 
solute concentration in the ice is 49% of that in the bulk solution (which was 
4% (w/w)) (eq. (9)). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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Therefore, it is virtually impossible that the composition path in the 
boundary layer will get below the freezing line. Even at very high sur
face concentrations, the concentration polarization layer remains 
completely stable. 

This means that for a high-molecular weight solute, no unstable 
freezing inside the concentration polarization layer will occur, and that 
solute inclusion according to the mechanism proposed is not possible. Of 
course, this is only valid as long as the solute remains in solution and 
does not precipitate. 

It is known from the field of crossflow ultrafiltration, that concen
tration polarization of proteins on a membrane, at some point leads to 
the formation of a gel layer, in which the concentration of the protein is 
a constant (at equal temperature and solvent quality); often at around 
0.6 kg/m3 (Hiddink et al., 1980). We expect that this will also occur on 
top of an ice layer that extracts water from the solution and hence cre
ates the same type of concentration polarization. Thus, at higher rates of 
heat extraction, a gel layer will form on top of the ice layer. This gel layer 
will also be stable (i.e. will not induce dentritic ice growth) but will form 
an insulating layer, reducing the mass and heat transfer, and thus 
reducing the rate of freezing. Therefore, we expect that at higher 
freezing rates, the rate of freezing will increase less than proportionally 
with the driving force for freezing. We can therefore predict that the 
protein concentration will remain stable, even at higher freezing rates. 

This is only valid, as long as the freezing line has a very small, ab
solute, slope. This is the case when the solution contains only a high- 
molecular weight solute, but as soon as lower-molecular weight 

solutes are also present, then the freezing curve will have a larger, ab
solute, slope. At some point, the concentration in the polarization layer 
can cross the freezing line again, and cause unstable, dendritic ice 
growth in the boundary layer, and hence induce inclusion of both the 
low-molecular weight and the high-molecular weight solutes. We 
therefore predict that a solution containing both low-molecular and 
high-molecular weight solutes can result in solute inclusion again. So, 
unless the protein source is very pure, most realistic soluble protein 
solution will show solute inclusion in practice. 

For proteins that are not dissolved at all but that are suspended as 
colloidal particles, we expect that the Brownian diffusivity of the par
ticles is very small (Vuist et al., 2021). Even a very small amount of 
lower-molecular weight co-solutes will cause enough freezing point 
depression to allow these colloidal particles to be included. Therefore, 
we expect that for all practical conditions, undissolved components will 
be included in the ice. 

3.3. Discussion on application of the theory 

The results presented, are based on a highly simplified representa
tion of the system. Diffusion and viscosity values were assumed to be 
constant and independent on the temperature. Of course, this is an 
oversimplification. A concentrated sucrose-water solution is anoma
lously viscous, since it is quite close to its glass transition. Such solutions 
exhibit Williams-Landel-Ferry kinetics, characterised by very sharp in
creases in viscosity with a reduction in temperature or an increase in 

Fig. 7. Distribution coefficient K (blue line) 
and percentage of the cooling duty that is 
used for freezing of a 4% (w/w) solution (eq. 
(4), the rest is used for cooling the bulk so
lution; red line). Below the threshold, the 
composition paths are above the freezing line 
and freezing is stable. Above the threshold, a 
part of the profile is below the freezing line 
and distribution occurs, with an increasing 
value of the distribution coefficient, towards 
a value of 1 (implying no concentration at 
all). (For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the Web version of this article.)   

Fig. 8. Composition paths for a starting solution of 4% (w/w) BSA, for three different rates of heat extraction. The freezing line is so flat, that it is virtually impossible 
for the concentrations in the boundary layer to come below the freezing line. Surface concentrations are 7,3 (a), 43.7 (b) and 79.5 (c) % (w/w), respectively. The blue 
line represents the freezing line, the black line represents the temperature and composition in the boundary layer. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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concentration. This implies that the local viscosity gradient for these 
solutions in the concentration polarization layer will be much steeper 
than assumed here. Similarly, the sucrose diffusion coefficient in water 
will be locally much lower in the concentration polarization layer, and 
hence the real concentration gradient will be much steeper. Therefore, 
the conclusions are only qualitative or at most semi-quantitative. The 
general behaviour that is found and described here, will however remain 
as is described. It is relatively straightforward to implement concen
tration and temperature dependence for the viscosity and diffusivities in 
the system, once these parameters are known with sufficient reliability 
in the relevant parameter space (temperature, composition). 

Miyawaki et al. (1998) suggested that the inclusion factor be a 
constant. Later Gunathilake et al. (2013) observed that the inclusion 
factor is concentration dependent. One should bear in mind that 
experimental values for the inclusion factor are integrated over time, 
while the results shown here are only for momentary heat extraction 
rates. In a real process, the heat extraction at the beginning is very high, 
since there is no insulating ice layer formed yet on the heat exchanging 
surface, and will gradually decrease when the ice layer grows over time. 
At the beginning of the process, the inclusion rate will therefore be high, 
and will come down during the process. The experimentally measured 
inclusion factor is therefore a value that is integrated over time (Vuist 
et al., 2021). It is therefore expected that these integrated, experimental 
values are less variable than the momentary values, which are predicted 
in this work. Further elaboration of the model could certainly include 
the integration of the model over time. 

4. Conclusions 

It was shown that state diagrams can be useful to interpret the ice 
formation process during progressive freeze concentration. As long asthe 
composition path in the concentration polarization layer on top of the 
ice, does not cross the freezing line, freezing will be stable and unstable, 
dendritic ice formation inside the boundary layer is avoided. Instable ice 
formation inside the boundary layer will result in inclusion of solutes. 
This generally happens at larger ice formation rates, such that the con
centration profile in the boundary layer becomes too steep, and in the 
state diagram, has a lower (absolute) slope than the freezing line. This 
prediction does not assume anything about the exact ice formation 
mechanism, and therefore, the phenomenon of solute inclusion there
fore does not depend on whether the unstable ice formation in the 
boundary layer is dendritic or through any other type of growth 
mechanism. 

We showed that inclusion of low-molecular weight solutes happens 
fairly quickly, due to the strong freezing point depression. The transition 
to unstable ice growth and solute inclusion happens at lower heat 
extraction rate with smaller molecules, larger absolute slope of the 
freezing line, and with slower-diffusing components, steeper concen
tration gradients. Solutions with only macromolecular solutes will not 
give any unstable ice growth, since the freezing line is virtually hori
zontal in the state diagram, not allowing the concentration gradient to 
cross the freezing line. We do expect however, that at some point, a gel 
layer will be formed on top of the ice, which will slow the formation of 
the ice. Solutions that contain both low-molecular weight and high- 
molecular weight components, will most probably show solute inclu
sion: the low-molecular weight components will give significant freezing 
point depression and a freezing line that has a larger absolute slope, 
while the macromolecular components have low diffusivities and hence 
will quickly accumulate on top of the growing ice layer. 

The system was here strongly simplified by assuming viscosities and 
diffusivities to be independent on concentration and temperature. In
clusion of these effects will improve the quantitative accuracy of the 
model. Integration of the model over time will yield overall inclusion 
factors that can be more easily compared to experimental values. 

The main application of this model is that it can be used to consider 
streams for progressive freeze concentration and to calculate their 

expected performance. Since the data needed for the estimation are 
easily measurable, an estimation of the expected performance can be 
made. This will save time and resources, which is especially valuable for 
scaling up progressive freeze concentration to a scale interesting for 
industrial application. 
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