INTERBULL BULLETIN NO. 56. Leeuwarden, The Netherlands, April 26 — 30, 2021

Genomic GxE approaches modelling heterogeneous SNP

variances: applied to simulated data

B. Gredler-Grandl' and M.P.L. Calus’

! Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700 AH
Wageningen, The Netherlands

Abstract

Genotype by environment interaction (GxE) can be modelled using a multi-trait approach where the
same trait measured in different environments is considered a different, but correlated trait. An
alternative is to model GXE with reaction norm models where the breeding values are modeled as a
function of the environment defined as a continuous variable. Genomic implementations of both models
can be parameterized such that homogeneous (co)variances are assumed for all SNP across the genome.
Since specific regions in the genome may harbor QTL and others may not or loci may have a large effect
in one environment and a zero effect in another, the assumption of equal (co)variances across the
genome is violated. We have developed an analysis protocol based on readily available BLUP software
packages to allow for heterogeneous SNP (co)variances in genomic GXE models. The analysis protocol
consists of a two-step approach, where the data set of interest is split in two subsets. One subset is used
to estimate SNP effects and derive weights for each SNP, which are subsequently used to upweight SNP
in the analysis of the second subset. We have carried out a simulation study that showed a small increase
in accuracy of genomic breeding values when allowing for heterogeneous SNP (co)variances compared
to homogeneous SNP (co)variances.
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Introduction equal (co)variances across the genome may be
violated. To overcome this limitation, we have

Genotype by environment interaction (GxE) developed an analysis protocol allowing for

is typically modelled by a multi-trait approach, heterogeneous SNP (co)variances across the

where the same trait measured in different genome in genomic GXE models. The analysis

environments is considered being a genetically protocol can be implemented using standard

different, but correlated trait (e.g. Falconer, BLUP software packages. The objective of the

1952). As an alternative, GXE can be modelled study was to evaluate the accuracy of genomic

with reaction norm models, where the breeding GxE models allowing for heterogeneous SNP

values are modelled as a function of the (co)variances across the genome in simulated

environment defined as a continuous variable data.

(Kolmodin et al., 2002; Calus and Veerkamp,

2003). Both models can be implemented in Materials and Methods

genomic prediction models by replacing the

pedigree based relationship matrix by the Simulation

genomic relationship matrix. Both, genomic

o ; The analysis protocol was tested on
multi-trait models or reaction norm models,

simulated data. For this purpose, we have
simulated two populations and crossed these to
produce F1 crossbred individuals. The
simulations were performed using the QMSim

implicitly assume the same (co)variance matrix
for every SNP. Since certain regions in the
genome may contain QTL, the assumption of
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software (Sargolzaei and Schenkel, 2009). A
historical ~ population 000
generations, consisting of 10 000 individuals in
the base population (generation -1 000), was
simulated. The population size decreased
linearly to 400 individuals across 980
generations until generation -20. This
bottleneck was used to achieve LD. The
population continuously increased to a size of 4
100 individuals in generation 0. The last
generation of the historical population consisted
of 100 males and 4 000 females, and was
randomly divided in two groups of 4 100
individuals (100 males and 4000 females)
forming two separated populations (A and B).
In both populations A and B, random mating

spanning 1

was applied for 210 generations to produce 1
000 male and 1 000 female offspring in each
generation. A crossbreeding program started in
generation 206 where 200 male and 500 female
individuals were randomly selected to produce
1 000 crossbred offspring (500 males and 500
females) until generation 210. The simulated
genome consisted of 30 chromosomes with
length of 100 cM each. In total 51 000 markers
were simulated equally distributed across the
whole genome, which is similar to the 50k
BeadChip. Table 1 the
parameters used for the selection design and the

Bovine shows
simulated genome.

Table 1. Parameters used in the simulation

Item

Litter size 1
Proportion of male 0.5
progeny

Mating design random
Selection design random
Sire replacement 0.5
Dam replacement 0.25
Culling criteria Age
Genome

No. Chromosomes 30
Chromosome length 100

(cM)
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No. markers per 1700
chromosome

No. QTL per 150
chromosome

QTL effects Sampled from

normal distribution

Marker mutation rate 25x%1 0'5 (recurrent)

5
25x10
random

QTL mutation rate

Position of markers
and QTL

Phenotypes were simulated to follow a linear
reaction norm model with a custom Fortran
program and calculated per individual for its
assigned the
environmental value and true breeding values

environment  as sum of
and a residual error. Environmental values were
drawn from a normal distribution with N(0,1)
and ranged between -2.063 and 2.063. The
genetic variances for intercept and slope were
assumed to be 0.3 and 0.025, respectively. The
genetic covariance between intercept and slope
was 0.05 leading to a genetic correlation of
0.577. The residual variance was set to 0.5. The
resulting  simulated  heritability  across
environments is shown in Figure 1. The
individuals were randomly assigned to the
environments.

A protocol consisting of several steps has
been developed to allow for heterogeneous
(co)variances across the genome in genomic
GxE models. Firstly, the data set is split in two
subsets: subset 1 is used to estimate SNP effects
that assumes
SNP. SNP
variances are then computed as 2p,(1-—

a model equal

specific

a using
(co)variances for all

pr)@Z. The model applied to subset 2 then
considers these SNP specific variances as
weights  to weighted SNP
(co)variance matrix.

compute a
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Figure 1. Simulated heritability  across
environments

Subset 1 consisted of 4 000 individuals of
generations 205 and 206 (including crossbred
individuals). Subset 2 consisted of individuals
of generations 207 to 210 (including crossbred
individuals), all of
generations 207 and 208 were used as training
population (n=4 000) and all remaining
individuals of generations 209 and 210 (n=4
000) were used as validation set.

where individuals

Analysis subset 1

A univariate linear genomic reaction norm
model has been applied to subset 1 using the
software package mtg2 (Lee et al., 2016):

y=1u+ Bo+ QB +e

where y is a vector of simulated phenotypes, y
is an overall mean, B¢ and 84 are the vectors of
intercept and first order of regression
coefficients for the random genetic effects, 1 is
a vector of ones, Q is a (diagonal) incidence
matrix storing the environmental values for
each individual, and e is the vector of random
residuals.

Calculation of SNP specific weights

Allowing for heterogeneous SNP variances
(HET), SNP specific weights for each SNP k for
each coefficient i of the reaction norm model
(i.e. intercept [, and the linear regression
coefficient ;) were calculated as:

Dy; = N 2px (1 — pr) @y,
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where Dy, is diagonal element i of diagonal
matrix D, that stores the weights for SNP £, p,,
is the allele frequency of SNP &, and &, is the
estimated effect of SNP £ for coefficient i. The
SNP effects @&, for intercept and linear
regression coefficient were obtained by
backsolving based on the GEBV for 8, and f;
obtained from the genomic reaction norm
model. SNP effects were calculated following
the approach described in Bouwman et al.
(2017) implemented in the companion program
compute SNP_effects of calc_grm (Calus and
Vandenplas, 2016).

Analysis subset 2

The following SNP-BLUP model was
applied to subset 2 using the MiXBLUP
software (ten Napel et al. 2020):

y= 1u+Zyy+QZy, + e

where y is the vector of simulated phenotypes
of individuals in the training set of each cross
validation run, u is an overall mean, Z is a
matrix including the centered genotypes for
each SNP, Q is a diagonal matrix storing the
environmental values for each individual, y,
and y4 are vectors of estimated SNP effects for
random intercept and linear regression
coefficient, respectively, and e is a random
residual term. For HET the following
(co)variance matrix is used for SNP £:

Var([yo,v1]") = Dy * G * Dy

where G is the estimated genetic (co)variance
matrix between intercept and quadratic
regression the
reaction norm model in the analysis of subset 1.
For HOM, homogeneous SNP variances for
intercept and linear regression coefficient are
provided by 67 /2 ¥, p. (1 — p), where o7 is the

coefficient obtained from

genetic variance for either intercept or linear
regression coefficient estimated in subset 1. The
GEBYV for validation animals were calculated as
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GEBV = 1+ Zyy + ZQy4 . The accuracies
of GEBYV for individuals in the validation set
were obtained as the correlation coefficient

between the simulated true breeding value and
predicted GEBV.

Results & Discussion

The estimated genetic variances for intercept
and linear regression coefficient of the genomic
reaction norm model in subset 1 were 0.35 and
0.031, respectively. The estimated genetic
covariance was 0.04. These results were in good
agreement with the underlying simulated
genetic covariance structure.

For the HOM scenario, the correlation
between GEBV and TBYV in the validation set
in subset 2 were 0.521 and 0.588 for intercept
and the linear regression coefficient,
respectively. For HET, where heterogeneous
SNP variances were allowed, the correlation
between GEBV and TBV for intercept and
linear regression coefficient were 0.551 and
0.601, respectively. This results in a small
increase in accuracy of HET compared to HOM
of 0.03 and 0.013 correlation points for
intercept and linear regression coefficient
across all environments, respectively. The
accuracy was highest in environments where
higher  genetic
(environmental value > 0.7) and lowest for
environments with smaller genetic variance
(environmental value < -0.7).

The increase in accuracy in HET compared
to HOM is small. In the current study, SNP
effects for intercept and linear regression
coefficient were estimated assuming equal
(co)variances for each SNP across the genome
in subset 1. Bayesian approaches to derive SNP
effects in subset 1 and upweight SNP in a
following GBLUP or SNP-BLUP analysis
could be beneficial. The current implementation
of the analysis protocol is based on readily
available software allowing for fast and large

variance was observed

scale implementations and resulting in an
increase in accuracy of GEBV in simulated
data.
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Conclusions

The aim of this study was to evaluate the
accuracy of genomic reaction norm models
allowing for heterogeneous SNP (co)variances.
We developed an analysis protocol to allow for
heterogeneous SNP (co)variances based on
readily available BLUP software packages. The
results show a small increase in accuracy of
genomic  GxE  models for
heterogeneous SNP (co)variances. The analysis
protocol allows for fast and large-scale
applications in routine genomic evaluations.

allowing
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