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Ecological communities are constantly changing as a response to environmental and 
anthropogenic pressures. Yet, how changes in community composition influence the 
structure of food webs over time and space remains elusive. Using ecological network 
analysis, we assessed how food web structure changed across six distinct areas of the 
North Sea over a sixteen-year time-period. We used multivariate analyses to disentan-
gle and compare spatio-temporal dynamics in community composition (i.e. changes 
in species abundances) and food web structure (i.e. changes in network properties). 
Specifically, we assessed how changes in community composition were reflected in food 
web structure. Our results revealed a strong spatial coupling between community com-
position and food web structure along a south–north gradient. However, the temporal 
covariation between community composition and food web structure depended on the 
spatial scale. We observed a temporal mismatch at regional scale, but a strong coupling 
at local scale. In particular, we found that community composition can be influenced by 
hydro-climatic events over large areas, with diverse effects manifesting in local food web 
structure. Our proposed methodological framework quantified and compared spatio-
temporal changes in community composition and food web structure, providing key 
information to support effective management strategies aimed at conserving the struc-
ture and functioning of ecological communities in times of environmental change.

Keywords: community structure, ecological network analysis, food web, marine 
ecosystems, North Sea, spatio-temporal dynamics, tensor decomposition, trophic 
interactions

Introduction

Ecological communities are constantly changing as a response to environmental and 
anthropogenic pressures (Blowes et al. 2019). Understanding ecosystem dynamics is 
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a prime focus of 1) community ecology, looking at changes 
in species diversity and community composition but ignor-
ing feeding interactions; and 2) ecosystem ecology, looking 
at fluxes of matter or energy but ignoring species diversity 
(Thompson  et  al. 2012). Food web approaches provide an 
opportunity to bridge the gap between community ecology 
and ecosystem ecology by considering species diversity and 
the feeding interactions among them (Thompson et al. 2012, 
Gravel et al. 2019).

Food web ecology provides a framework to quantify how 
changes in community affect food web structure and its func-
tioning (Baiser  et  al. 2019). There is a growing number of 
studies addressing how food web structure vary through either 
space (Pellissier et al. 2018, Braga et al. 2019, Kortsch et al. 
2019, Gauzens  et  al. 2020) or time (Griffith  et  al. 2019, 
Olivier et al. 2019) but none of these empirical studies address 
the simultaneous changes in ecological communities through 
space and time. Recent modeling studies forecasted spatio–
temporal changes in food web structure based on projected 
species distribution under climate change (Albouy  et  al. 
2014, Hattab et al. 2016). Yet, these projections were derived 
from species distribution models that neglected trophic inter-
actions. Therefore, empirical observations of abundance time 
series across multiple areas are needed to reveal how spatio–
temporal changes in community composition influence food 
web structure.

Comparing the spatio–temporal dynamics of community 
composition and food web structure raises methodological 
challenges due to the high dimensionality and the complex-
ity of the data. Here, we propose a comprehensive framework 
based on ecological network analysis and advanced multivari-
ate analysis (Fig. 1). This framework relies on species abun-
dance time series and a list of potential trophic interactions 
(i.e. a metaweb). First, we constructed snapshots of food webs 
over space and time from the metaweb and then computed 
multiple food web metrics to quantify food web structure. 
This methodology has previously been used to study food 
web dynamics over space (Havens 1992, Kortsch et al. 2019) 
and over time (Griffith  et  al. 2019, Olivier  et  al. 2019). 
Second, we used tensor decomposition (Leibovici 2010), a 
multivariate analysis to simultaneous investigate changes over 
space and time across multiple state variables (species abun-
dances or food web metrics) (Frelat et al. 2017). Using tensor 
decomposition, we analyzed the spatio–temporal dynamics 
across multiple taxa (estimating community composition) 
and the subsequent changes in food web metrics (estimat-
ing food web structure) separately. Third, we compared the 
dynamics of community composition and food web struc-
ture. This comparison was performed at two spatial scales by 
comparing the temporal dynamics among and within loca-
tions, i.e. at regional and local scale, respectively. The three 
successive steps provide a comprehensive framework assessing 
how the spatio–temporal changes in community composi-
tion are reflected in food web structure.

To test our methodological framework, we used long-term 
abundance data from six different locations in the North 
Sea (Ehrich  et  al. 2007). The objective of this study is to 

understand how demersal fish and epifauna communities 
have varied over space and time by 1) identifying the domi-
nant spatio–temporal dynamics in community composition 
and food web structure and by 2) comparing the dynamics 
between community composition and food web structure at 
regional and local scales.

Material and methods

North Sea abundance dataset

Abundance data were collected during the German Small-
scale Bottom Trawl Survey (GSBTS), a long-term, high-inten-
sity scientific sampling in selected areas of 10 × 10 nautical 
miles (called boxes) spread across the North Sea (Ehrich et al. 
2007). The survey monitors demersal fish in combination 
with benthic epifauna every summer since 1998. In each of 
the six boxes, demersal fish were sampled with an otter trawl 

Figure  1. Schematic overview of the methodological framework. 
Using community composition (assessed by 114 species abun-
dances) and a metaweb, the structure of food web snapshots in time 
and space are quantified by 16 metrics (step 1). Then, two tensor 
decompositions are calculated on community composition and 
food web structure separately to summarize their main spatio-tem-
poral dynamics (step 2). Finally, co-inertia analysis is calculated to 
compare the dynamics of community composition and food web 
structure (step 3).



3

at ~21 stations, and benthic epifauna with a 2-m beam trawl 
at ~9 stations. The positions of the six boxes were selected to 
cover a high diversity of habitats, including different com-
binations of hydrological and geographical conditions typi-
cal of characteristic subregions in the North Sea (Supporting 
information).

The GSBTS recorded 75 fish species and 369 epifauna 
species over the study period (1999–2014). We excluded 
pelagic fish species, and taxa that were only recorded occa-
sionally, because their time series within the survey data 
may not represent their actual trends in the field. Thus, 
we only kept taxa that had been detected for at least nine 
years over the sixteen-year time period (Supporting infor-
mation). In total, 43 demersal fish and 71 epifauna spe-
cies were selected, accounting for 99% of the demersal fish 
abundances and 96% of epifauna abundances, respectively. 
The selected taxa comprised nine distinct taxonomic phyla. 
Chordata included fish taxa and the sea squirt Ascidiella sca-
bra. Epifauna taxa mostly belonged to Arthropoda (n = 16), 
Cnidaria (n = 11), Echinodermata (n = 18) and Mollusca 
(n = 16). Eleven epifauna taxa occurred in colonies, for 
which the numbers of individuals could not be determined 
(e.g. Hydrozoa, Bryozoa and sponges). For these uncount-
able taxa, we recorded the occurrence of colonies, instead. 
The term ‘community’ refers to the studied demersal fish 
species and benthic epifauna together.

We calculated the relative species abundances by using 
Hellinger transformation on log transformed abundances 
(natural log(x + 1)). The Hellinger transformation is known 
to reduce the importance of species with high abundances 
(Legendre and Gallagher 2001). Additionally, using the rela-
tive abundances from Hellinger transformation facilitates the 
comparison of the abundances between species sampled by 
beam trawl (mostly epifauna) and species sampled by otter 
trawl (mostly fish). In the following text, ‘abundance’ refers 
to the Hellinger-transformed relative abundance and, thus, 
has no unit.

To eliminate possible bias due to differences in sampling 
effort among locations or years, we used a constant number 
of sampling stations (10 otter trawl stations and 5 beam trawl 
stations) over a two-year window. Because not all boxes were 
sampled every year by the intended number of stations due 
to extreme meteorological conditions or technical issues with 
the ship, we used a two-year sliding window that provides 
continuous and comparable time series of community com-
position at every location. Although the time-step is a two-
year window, we refer to it in the following text as ‘year’, and 
every year cited in the text corresponds to a two-year window, 
e.g. 2001 refers to the period 2001–2002. We estimated the 
average abundance of each species per location and per time-
step based on a random selection of the constant number of 
sampling stations. We repeated this random selection of sta-
tions 100 times, which provided 100 estimates of the spatio–
temporal dynamics of species abundances. The analysis was 
repeated for each of these 100 abundance datasets. The scores 
from the tensor decompositions and co-inertia analysis pre-
sented below are the median score over these 100 repetitions.

Metaweb

A metaweb is a compilation of potential feeding interactions 
among all species found within a specific geographical area 
and time period, but does not represent observed realizations 
of trophic interactions at a given location and time (Dunne 
2006). Subsampling trophic interactions from a metaweb 
based on community composition at a given location and 
time-step enables building multiple snapshot food webs 
across space and time that are methodologically consistent. 
Following the metaweb approach, co-occurring species with 
documented feeding links in the metaweb are assumed to 
interact across the geographical and temporal range, and con-
sequently, changes in community composition beget changes 
in food web structure.

We compiled a metaweb containing the 114 taxa (fish and 
epifauna) and five aggregated trophic groups that were not 
sampled by the GSBTS survey but are important for food 
web structure: three primary producer groups (phytoplank-
ton, benthic microalgae and macroalgae), one zooplankton 
and one detritus group (Supporting information). Detritus 
includes suspended organic matter, dissolved organic mat-
ter, organic particles such as marine snow and carrion. 
Information on the trophic interactions was collected 
through an extensive literature review of diet and feeding 
studies, expanding previous work for the southeastern box A 
(Olivier et al. 2019). We considered adult feeding links only 
and excluded feeding interactions involving juveniles, larvae 
or eggs. Despite a thorough review process, diet information 
for some taxa was still lacking. In this case, we inferred links, 
assuming that taxonomically closely related species (spe-
cies within same genus or family) could share predators and 
prey. All inferred links were carefully double-checked using 
feeding ecology information and comparing size of prey 
and predators. Hence, our metaweb represents a network of 
potential trophic interactions between taxa. The species list 
and the metaweb with references are available as Supporting 
information.

Food web metrics

To describe changes in food web structure, we selected eleven 
unweighted food web metrics for each snapshot in space 
and time (Table 1, Supporting information). The calcula-
tion of unweighted metrics only considered species occur-
rences. Species richness (S), connectance (C), generality (G) 
and vulnerability (V) are classical properties capturing the 
main dimensions and horizontal structure of the food webs 
(Schoener 1989, Dunne et al. 2002). Short-weighted trophic 
level (TL) and the level of omnivory (Omni) describe the 
vertical trophic structure (Williams and Martinez 2004). 
Trophic coherence (Q) measures how neatly species fall into 
distinct trophic levels, a property influencing food web stabil-
ity (Johnson et al. 2014). We assessed small-world properties, 
such as the mean shortest path between species pairs (Path) 
and the clustering coefficient (Clu), i.e. the probability that 
two taxa linked to a same third taxon are also linked together 
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(Watts and Strogatz 1998). Modularity (Mod) quantifies 
the extent to which sub-groups of species (called modules) 
interact more within than between sub-groups (Guimerà and 
Nunes Amaral 2005). The presence of densely linked mod-
ules could prevent the spread of perturbations (Landi et al. 
2018). To find the best partition, we used the simulated 
annealing algorithm (Reichardt and Bornholdt 2006), a 
stochastic optimization approach that identifies modules by 
maximizing the modularity function (Newman and Girvan 
2004) implemented in the function ‘cluster_spinglass’ in the 
R package ‘igraph’ (Csárdi and Nepusz 2006). Niche overlap 
was evaluated as the average maximum diet similarity (Sim) 
(Williams and Martinez 2000).

In addition to the unweighted metrics, we calculated five 
node-weighted metrics (Supporting information). Node-
weighted metrics capture changes in species abundances, 
assuming that dominant species have a strong structuring 
role in the food web (Olivier et al. 2019, Kortsch et al. 2021). 
These metrics are weighted averages of node properties using 
nodes’ relative abundances. For instance, node-weighted gen-
erality is calculated as the average number of prey per preda-
tor, weighted by the relative abundance of the predator.

In total, we calculated sixteen network metrics on the tem-
porally and spatially resolved food web snapshots. For each 
location and time-step, a list of the species was compiled and 
used to subsample trophic interactions from the metaweb. 
To compute the node-weighted metrics, we used the relative 

abundances estimated from the Hellinger transformation. 
For the five trophic groups and eleven epifauna taxa with no 
estimates of abundance, we assigned, when present, a con-
stant abundance corresponding to the average relative abun-
dance of all other species. Because these values are constant, 
this approximation on the five trophic groups has no effect 
on the relative dynamics of node-weighted metrics. For the 
eleven uncountable epifauna taxa, using average abundance 
provide them with a similar weight as most taxa, without 
overweighting nor downweighing these taxa compare to the 
community. In a sensitivity test, we found similar dynamics 
and results when these taxa were discarded for the calculation 
of node-weighted metrics (Supporting information).

Tensor decomposition

Tensor decomposition allows the simultaneous investigation 
of changes over space and time across multiple state variables. 
Inherently, spatio-temporal datasets consist of three dimen-
sions: 1) the state variables measured (in our case, species 
abundances or food web metrics), 2) the location of the mea-
surement and 3) the time of the measurement. Tensor decom-
position is an extension of a 2-dimensional multivariate 
analysis such as principal component analysis (Cichocki et al. 
2015). The objective is to summarize the maximum variabil-
ity of the original dataset in a minimum number of compo-
nents while considering the covariations between these three 

Table 1. Description of the food web metrics. Abbreviations of metrics are shown in brackets. Metrics highlighted by a star indicate metrics 
also calculated with node-weighted averages, i.e. as weighted averages of node properties using nodes’ relative abundances (Supporting 
information).

Metric Definition Ecological implications References

Richness (S) Number of taxa (nodes) in a food web Taxonomic richness is an indicator of 
diversity 

Schoener 1989

Connectance (C and wC)* Proportion of all possible links that are 
realized (number of links divided by 
squared number of taxa)

A measure of network complexity that 
relates to the robustness of food 
webs in the face of perturbation

Dunne et al. 2002

Generality (G and wG)* Average number of prey per predator Indicates if the system contains more 
generalist or specialist species

Schoener 1989

Vulnerability (V and wV)* Average number of predators per prey Indicates the degree to which species 
function as prey

Schoener 1989

Trophic level (TL and wTL)* Average of the short-weighted trophic level, 
calculated for each node as the mean of the 
prey-average trophic level and the shortest 
trophic level

A measure of how many steps energy 
must take to get from an energy 
source to a focal taxon

Williams and 
Martinez 2004

Omnivory (Omni and 
wOmni)*

Average standard deviation of TL of prey per 
predators

Average level of diet width, which is 
known to influence stability

Williams and 
Martinez 2004

Incoherence (Q) Incoherence is the standard deviation of the 
trophic distance of all links in the food web

Trophic coherence is associated to 
food-web stability 

Johnson et al. 2014

Path Length (Path) Characteristic path length is the mean shortest 
path between two taxa

A simple measure of how quickly 
effects can spread throughout a food 
web (Dunne et al. 2013)

Watts and Strogatz 
1998

Clustering (Clu) The clustering coefficient describes the 
probability that two taxa that are linked to 
the same taxon are also linked together

Food webs with higher clustering 
contain taxa that are more highly 
interlinked

Watts and Strogatz 
1998

Modularity (Mod) Modularity describes how densely sub-groups 
of species interact with one another 
compared to species from other sub-groups

Indicates the presence of densely 
linked sub-groups within a network, 
which could prevent the spread of 
perturbations

Guimerà and 
Nunes Amaral 
2005 

Maximum trophic similarity 
(Sim)

Mean of all species largest diet similarity Reflects the level of niche overlap and 
competition for food

Williams and 
Martinez 2000
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dimensions. Among tensor decomposition methods, princi-
pal tensor analysis (PTA) is a generalization of singular value 
decomposition and offers an easy-to-interpret and robust 
method to decompose a tensor (Leibovici and Sabatier 1998, 
Frelat  et  al. 2017). We performed two PTAs to separately 
investigate the spatio-temporal dynamics of 1) community 
composition and 2) food web structure (Fig. 1, step 2). We 
scaled the two sets of variables (abundance per species and 
food web metrics) so that their specific average values across 
the locations and time series equaled zero and their standard 
deviation equaled one. The scaling removed the differences in 
units for food web metrics, and the differences in dominance 
between species, focusing the analysis on species-specific 
abundance anomalies. Therefore, the tensor decomposition 
of community abundances is calculated on the anomalies of 
Hellinger transformed abundances.

The percentage of variance explained by each successive 
principal tensor (PT) indicates the number of significant PTs, 
i.e. the best trade-off between the minimum number of PTs 
and the maximum percentage of variance explained (Cattell 
1966) (Supporting information). PTs provide scores for the 
three dimensions: species or food web metrics, location and 
time. Each PT was interpreted based on its temporal and 
spatial scores, plotted in a 2D heatmap that represented the 
dominant spatio-temporal dynamics in the dataset. The inter-
pretation of PTs is similar to the interpretation of principal 
components in PCA. Scores with high absolute values are the 
most meaningful while the scores close to 0 are not well cap-
tured by PTs. The high number of species (n = 114) rendered 
the interpretation of the species’ scores difficult. Hence, we 
computed Euclidean distances between species based on their 
scores on the PTs and subsequently conducted a hierarchical 
cluster analysis based on Ward’s criterion (Ward 1963). We 
selected the number of groups from a graphical interpretation 
of the dendrogram (Supporting information). The clustering 
provides a simplification of the dynamics of the multitude 
of species into fewer sub-assemblages, sharing similar spatio-
temporal patterns. The clusters were named using the letter 
of the Box, in which organisms from the respective cluster 
had the highest average abundance. We added a sign (‘+’ for 
increasing or ‘−’ for decreasing) when the clusters showed 
strong temporal dynamics.

Comparison between community composition and 
food web structure

The two tensor decompositions were compared using a 
co-inertia analysis highlighting the spatio–temporal co-
dynamics between community composition (i.e. species 
abundances) and food web structure (i.e. measured by food 
web metrics) (Dray et al. 2003) (Fig. 1, step 3). Co-inertia 
is an unconstrained symmetric analysis searching for axes 
that maximize the covariance between two tables. Here, 
we applied co-inertia analysis on the results (i.e. scores) of 
the two tensor decompositions. The 3D tensors were trans-
formed into 2D matrices with time and space collated into 
a single dimension, consisting of the unique combinations 

of years and locations. Co-inertia analysis identifies principal 
components (PCs) representing the spatio–temporal dynam-
ics with highest covariance between community composi-
tion and food web structure among Boxes, later referred to 
as regional co-dynamics. By comparing the scores of species 
and food web metrics on these PCs, we can identify which 
species and which network properties were associated with 
the dominant co-dynamics.

Additionally, we investigated the within-location temporal 
relationship between community composition and food web 
metrics. For each location, we calculated a separate co-inertia 
analysis to explore the local co-dynamics. We then compared 
the six local co-dynamics to assess whether the identified 
co-dynamics were synchronous among boxes and whether 
the relationship between food web metrics and community 
composition was similar across the North Sea. Therefore, we 
conducted two hierarchical clustering analyses to evaluate the 
degree of similarity among the co-dynamics. The first clus-
tering compared the temporal scores on PC1, grouping syn-
chronous co-dynamics. The second clustering compared the 
food web metrics scores on PC1, grouping similar structural 
changes in the food web. Furthermore, we tested the associa-
tion between the dynamics of community composition and 
food web structure with a Monte–Carlo permutation test and 
the RV coefficient (Heo and Gabriel 1998). The RV coeffi-
cient is a generalization of Pearson’s correlation coefficient for 
matrices (instead of vectors). The permutation test with 1000 
random permutations was performed for each box separately 
to evaluate whether the association between the temporal 
dynamics of community composition and food web structure 
was significantly stronger than expected by chance.

Software

All statistical analyses were conducted in the programming 
environment R ver, 4.0.2 (<www.r-project.org>). Food web 
analyses were conducted with the package igraph ver. 1.2.5 
(Csárdi and Nepusz 2006), the tensor decomposition was 
calculated with the package PTAk ver. 1.3 (Leibovici 2010) 
and the co-inertia analysis with the package ade4 ver. 1.7 
(Dray and Dufour 2007).

Results

Dynamics of community composition

The dynamics of community composition were summarized 
by five principal tensors (PT) explaining in total 57% of the 
variability (Fig. 2, Supporting information). The first three 
principal tensors (PT1–3) highlighted differences among 
locations but not among years as shown by homogeneous 
horizontal lines in the heatmaps, indicating strong spatial 
structuring of community composition (Fig. 2a). PT1 high-
lighted the south–north gradient in the North Sea, and spe-
cifically, the difference in community composition between 
the southernmost box (A), with highly negative score, and 
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the northernmost box (M), with highly positive score. PT2 
revealed a unique community composition in box C, with 
highly negative score compared to other boxes that have 
relatively low absolute scores. The east–west gradient was 
reflected in PT3 with negative scores for boxes in the north-
west (B and D) and positive scores for boxes in the northeast 
(L and M).

The last two principal tensors (PT4–5) summarized the 
temporal dynamics of the communities, as shown by the het-
erogeneous horizontal lines in the heatmaps (Fig. 2a). PT4 
showed a common trend among all boxes with low values 
in 1999–2002 and highest values in 2009–2015. This trend 
was particularly strong in the southernmost (A) and north-
ernmost (L and M) boxes. PT5 highlighted an opposite tem-
poral trend in box A versus boxes L and M. PT4–5 changed 
signs around 2006–2008, which suggests a major reorganiza-
tion in community composition during this period.

To summarize the dynamics of the multitude of species 
(n = 114), we conducted a cluster analysis on species’ scores 
and grouped the species into six clusters. These clusters con-
sist of species that share similar spatio-temporal dynamics 
(Fig. 2b, Supporting information). Four clusters had no or 

weak temporal dynamics and were characterized by their spa-
tial distribution (clust A, C, D and M). For instance, clustA 
grouped 21 species that are predominantly occurring in box 
A, such as the flatfish Solea solea or the sea snail Euspira nit-
ida. Similarly, clustC grouped 34 species caught in majority 
in box C, clustD consisted of 13 species distributed prepon-
derantly in box D, and clustM grouped 30 species mostly 
found in box M. Both vertebrate (Chordata, i.e. mostly fin-
fish and elasmobranchs) and invertebrate taxa (Arthropoda, 
and Mollusca) were found in these four groups (Supporting 
information). ClustA, the group of species predominantly 
in box A, was different from the other clusters because of 
the large proportion of fish (Chordata) and the absence of 
Cnidaria (e.g. sea anemones and hydrozoans). Additionally, 
two clusters showed a strong increasing temporal trend, in 
box A (clustA+, 7 species) or in box M (clustM+, 9 spe-
cies). Hence, the clustering analysis confirmed that species 
with the strongest temporal dynamics are found in boxes 
A and M (Supporting information). In box A, species with 
increasing abundance included Chordata (e.g. the flatfish 
Platichthys flesus), Mollusca (e.g. the bivalve Chamelea gal-
lina) and Echinodermata (e.g. the sea urchin Echinocardium 

Figure 2. Tensor decomposition of community composition. The PTA revealed five Principal Tensors (PT) with (a) spatio-temporal scores 
represented as heatmaps with time on the x-axis and locations on the y-axis and (b) species scores grouped in 6 different clusters of species. 
Four clusters were characterized solely by their spatial distribution (with the letter referring to Box with highest abundance: clust A, C, D 
and M) and two clusters showed an increasing temporal trend: in Box A (clustA+) and in Box M (clustM+). The percentages shown are the 
additional percentages of variance explained by the successive PTs. The color scale goes from brown for highly negative score to dark green 
for highly positive scores.
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cordatum). In box M, species that increased their abundance 
are Arthropoda (e.g. the crab Inachus dorsettensis), Chordata 
(e.g. the finfish Merluccius merluccius) and Cnidaria (the 
hydroid Hydrallmania falcata) (Supporting information).

Dynamics of food web structure

The spatio-temporal dynamics of food web structure were 
summarized by four PTs explaining 63% of the variability of 
the sixteen food web metrics (Fig. 3). PT1–3 revealed strong 
spatial differences among boxes. PT1 highlighted the differ-
ence between the food webs in box A and box M with, in box 
A, higher connectance (C and wC), higher omnivory (Omni, 
wOmni) and higher clustering (Clu) but lower richness (S), 
lower vulnerability (V and wV) and lower generality (G, 
wG). In other words, communities in the southern North 
Sea contain fewer species, with a lower diversity of prey and 
predators, and that are densely connected compared to com-
munities in the northern North Sea.

PT2 revealed that food web structure in box B differed 
from food web structure in box D because of higher diet 
overlap (Sim), and lower average trophic level (TL) and vul-
nerability (V) (Fig. 3). Hence, the community in box B had 
fewer top predators, shorter food chains and more overlap 

in diets compared to the community in box D. PT3 high-
lighted the unique structure of the food web in box C, with 
high modularity (Mod), high average shortest path (Path) 
and a low clustering coefficient (Clu). Thus, the food web in 
box C had strongly divided modules with low connectivity 
between them.

PT4 was the only PT showing strong temporal dynamics 
especially in the food webs of boxes A and M. In 1999–2002, 
the food webs had lower diversity of prey (G, wG) and preda-
tors (V), and lower shortest path lengths between taxa, com-
pared to the period 2006–2007. The dynamics were opposite 
and weaker in boxes B and D.

Co-dynamics between community composition and 
food web structure

The co-inertia analysis, comparing the spatio-temporal 
dynamics of community composition (i.e. species abun-
dances) and food web structure (measured by network 
metrics), identified two main axes of covariation across the 
North Sea (Fig. 4). As expected from the two separate ten-
sor decomposition results, the strong south–north gradient in 
the North Sea was identified as the strongest axis of covaria-
tion, explaining 85% of the covariance. The community 

Figure 3. Tensor decomposition of food web structure. The PTA revealed four Principal Tensors with (a) the spatio-temporal scores repre-
sented as heatmap with time on the x-axis and location on the y-axis. (b) The scores of the food web metrics are shown as horizontal bars 
in increasing order. The abbreviations of the metrics are explained in Table 1. The percentages shown are the additional percentages of vari-
ance explained by the successive PTs. The color scale goes from brown for highly negative score to dark green for highly positive scores.
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in box A had fewer species, mainly limited to species from 
clustA and clustA+, but higher connectance (C and wC) and 
omnivory (Omni and wOmni) compared to box M. On the 
contrary, box M was composed of numerous species from 
clustM, clustM+ and clustC, and the food web had higher 
richness (S) with many prey and predators per taxa, result-
ing in high vulnerability (V and wV) and generality (G and 
wG). However, these species were on average less omnivorous 
(Omni and wOmni), leading to a lower density of interac-
tions (estimated as connectivity, C and wC).

Another source of covariation between community com-
position and food web structure is the difference between 
boxes C and D, which explained an additional 6.7% of the 
covariance (PC2, Fig. 4). PC2 highlighted differences in 
community composition with opposite scores for species in 
clustC and clustD. Compared to box D, food web structure 
in box C had higher modularity (Mod), higher diet overlap 
(Sim) but lower average trophic level (TL and wTL).

At the regional scale of the North Sea, the co-inertia analy-
sis revealed an absence of temporal covariation between com-
munity composition and food web structure. This temporal 
mismatch was partly observed when comparing the temporal 
scores from previous separate tensor decomposition on com-
munity composition (PT4–5) and food web structure (PT4) 
(Supporting information).

Local temporal co-dynamics

The temporal co-dynamics between community composi-
tion and food web structure were further explored by within-
location co-inertia analysis. At the local scale, Monte-Carlo 
permutation tests showed that temporal dynamics of com-
munity composition were strongly and significantly corre-
lated with food web structure for all boxes (p-values < 0.01) 
except for box D (p-value = 0.04) (Supporting information). 
Nevertheless, the identified local co-dynamics differed among 
Boxes (Fig. 5). Two separate hierarchical clustering analyses 
on temporal scores and food web metrics scores coherently 
revealed three pairs of geographically neighboring Boxes with 
distinct temporal co-dynamics.

In boxes A and C (southeastern North Sea), an abrupt 
change occurring between 2007 and 2008 separated two 
distinct periods, as indicated by the relatively low score in 
2000–2007 followed by highly positive scores in the years 
2008–2013 (Fig. 5a, Supporting information). The highly 
positive scores of generality and vulnerability and the highly 
negative scores of modularity and trophic level (Fig. 5b) indi-
cated that, during the early period (1999–2004), food web 
structure had lower generality and vulnerability and higher 
modularity and trophic level compared to the most recent 
period (2008–2013) (Fig. 5b). Interestingly, these similar 
and simultaneous changes were driven by different species 
in the two boxes (Supporting information). In box A, the 
most recent period is associated with an increase in species 
from clustA+, whereas the community in box C was mostly 
affected by changes in abundance of species from clustC 
(Supporting information).

In boxes L and M (northern North Sea), the linear trends 
in temporal scores (Fig. 5a, Supporting information) suggest 
a gradual change in species composition associated with a 
linear increase in food web richness, vulnerability, generality 
and maximum shortest path, and a decrease in omnivory and 
connectance (Fig. 5b). The species that contributed the most 
to these changes are species from clustM+ (Supporting infor-
mation). In boxes B and D (western North Sea), the period 
2006–2008 was different in terms of community compo-
sition as well as in terms of food web structure with lower 
richness, lower modularity, higher connectance and higher 
clustering coefficient compare to the rest of the time series 
(Fig. 5).

Discussion

This study identified and disentangled dominant spatio–
temporal dynamics and relationships between species com-
munity composition and food web structure. We identified 
a strong coupling in space with community composition and 
food web structure following a south–north spatial gradi-
ent. Curiously, temporal co-variation between community 
composition and food web structure depended on the spatial 
scale. We found a temporal mismatch at the regional scale, i.e. 
no simultaneous co-dynamics among boxes across the North 
Sea, but a strong coupling at the local scale, indicating that 
local changes in species composition had different impact on 
the food web structure. These empirical results contribute to 
the ongoing discussion about how ecological networks are 
structured over space and time (Poisot et al. 2015, Tylianakis 
and Morris 2017, Baiser et al. 2019).

Large-scale dynamics

The spatial patterns in community composition and in food 
web structure mirror the strong environmental gradient 
along the south–north axis in the North Sea. This well docu-
mented latitudinal gradient in North Sea community com-
position has been linked to hydrographic variables such as 
bottom water temperature (Callaway et al. 2002). The 50-m 
depth contour in the North Sea has been identified as a con-
spicuous boundary, separating fish and epifauna communi-
ties, because it closely matches the edge between mixed and 
stratified waters (Ehrich et al. 2009, Reiss et al. 2010). The 
northern epifauna community is more diverse than its south-
ern counterpart, partly driven by the absence of sessile species 
in mixed waters at shallow depth in the South while being 
highly abundant at deeper locations with stratified water in 
the North (Neumann  et  al. 2008b). This spatial difference 
was also observed in the clustering of species dynamics, with 
the absence of the phylum Cnidaria and the large proportion 
of fish among species spatially distributed in southern box 
A. Additionally, our results revealed distinct food web struc-
tures linked to latitudinal differences in community composi-
tion. The diverse epifauna in the northern boxes (L and M) 
led to food webs with higher richness, but lower density of 
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Figure 4. Co-inertia analysis between community composition and food web structure. The two principal components of covariance are 
represented with (a) spatial and temporal scores as heatmap with time on the x-axis and location on the y-axis, (b) species scores grouped 
by clusters, and (c) food web metric scores. The abbreviations of the metrics are explained in Table 1. The percentages shown are the addi-
tional percentages of covariance explained by the successive PCs. The color scale goes from brown for highly negative score to dark green 
for highly positive scores. 
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connections among species. On the contrary, the large pro-
portion of omnivorous fish and the less diverse epifauna in the 
southern box A was related to a smaller but denser food web.

In a latitudinal comparison of food web structure in ter-
restrial vertebrate assemblages, two major axes of variability 
were identified, namely one related to species richness and 
mean trophic level, and a second related to the connectance 

and proximity of species within the web (Braga et al. 2019). 
While our results confirm that species richness is one of the 
main changes in food web structure (i.e. with high scores in 
the first axis), we found that connectance was negatively asso-
ciated to changes in richness and that trophic level was asso-
ciated with a separate component, indicating a disconnect 
between changes in richness and changes in trophic levels. 
Such differences suggest that the processes behind food web 
structure dynamics may be context-dependent. In our results, 
changes in species richness explained most of the covariance 
in the regional co-dynamics (i.e. north–south gradient). Yet, 
at the local scale, temporal changes in species richness were 
not always associated with corresponding changes in food 
web structure. For instance, higher species richness was asso-
ciated with an increase in average shortest path but a decrease 
in omnivory in boxes L and M, whereas it was associated with 
an increase in modularity and a decrease in clustering coeffi-
cient in boxes B and D. Additionally, the temporal dynamics 
in boxes A and C were not associated with changes in species 
richness, demonstrating that food web structure can change 
while species richness remains relatively constant. Together, 
these results highlight the need to account for species interac-
tions to more fully understand changes in ecological com-
munity structure.

A common temporal trend was identified in community 
composition, particularly strong in box A and M and with 
rapid changes in 2006–2008 (Fig. 2). This shift was caused 
by the increase in abundances of different fish and epifauna 
taxa, grouped into two distinct clusters clustA+ and clustM+ 
for box A and M, respectively. This period of drastic change 
coincided with quasi-synchronous biological shifts in phyto-
plankton, benthic epifauna and temperate reef fish in different 
marine ecosystem worldwide (Pacific, Arctic, Baltic-, North- 
and Mediterranean Sea) (Kröncke et al. 2019). These shifts 
were related to large-scale hydro-climatic forcing namely the 
position of the Icelandic low, which determines the flow of 
the Gulf stream. Interestingly, at the regional scale, food web 
structure did not follow the same temporal dynamics than 
community composition. These findings suggest that com-
munity composition can be influenced by hydro-climatic 
events over large spatial scales, but with different impact on 
the food web structure at the local scale.

Local temporal dynamics

The within-location temporal analyses revealed synchronous 
dynamics between community composition and food web 
structure at the local scale. Our results highlighted three dif-
ferent pairs of neighboring Boxes exhibiting similar dynamics, 
influenced by different water masses (Ehrich et al. 2009). For 
instance, epifaunal communities in the southern North Sea 
are more affected by climate-induced temperature increase 
than northern epifaunal communities (Neumann  et  al. 
2008a, 2009). Two different currents strongly influence the 
composition and the dynamics of epifauna communities in 
the northern North Sea (Schückel et al. 2010). In the north-
west, the vertically mixed water column and the major flow 

Figure 5. Within-location temporal co-dynamics between commu-
nity composition and food web structure. The scores of (a) years 
and (b) food web metrics on the first principal component of the 
within-Box co-inertia analyses are represented for the 6 Boxes (in 
x-axis). The abbreviations of the metrics are explained in Table 1.
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of Atlantic current (Fair Isle current) results in increasing SST 
and a deeper light penetration, which enhances primary pro-
duction and food supply. In the northeast, the water column 
is stratified and increasing temperatures strengthen this strati-
fication resulting in decreased in food availability. Together 
these results indicate that spatial differences in local water 
masses can lead to different food web dynamics. This has 
implications for marine management design, and highlights 
the need to separate the North Sea in to at least three distinct 
management areas: southern (boxes A and C), northwestern 
(boxes B and D) and northeastern (boxes L and M).

Curiously, boxes A and C show synchronous dynamics 
in food web structure despite hosting completely different 
communities (respectively dominated by clustA and clustC). 
The strong shift in 2007–2008 affected different species but 
resulted in comparable changes in food web structure, with 
decreased average trophic levels and modularity as well as 
increased vulnerability and generality (Fig. 5). Our results 
suggest that large-scale climatic forcing, or other anthro-
pogenic pressures, might have affected different species but 
with similar topological role (or trophic position) in the food 
web. Unfortunately, it is hard to distinguish a causal relation-
ship, and our framework cannot determine whether changes 
in community composition are due to selection of species’ 
traits or selection based on the species’ roles in the network 
(Dormann et al. 2017).

A framework to study food web dynamics

Our methodological framework captures only changes in 
food web directly linked to changes in species abundance. It 
does not consider other sources of structural changes, such 
as changes in interaction strength or changes in co-evolu-
tionary processes (Tylianakis and Morris 2017, Bartley et al. 
2019), because such data are scarce and only available for a 
handful of well-studied species. Using a metaweb constrains 
the amount of variation in the food web and may thereby 
inadequately capture the link between community composi-
tion and food web structure. However, despite using such 
a simplified framework, our results indicate that changes 
in community composition were not always triggering 
changes in food web structure. Similar results were reported 
beyond the North Sea. For instance, in the Baltic Sea and 
the Barents Sea, motifs configurations (i.e. tri-trophic sub-
module) were conserved despite major documented changes 
observed in community composition (Yletyinen et al. 2016, 
Griffith et al. 2019). Additionally, our results show that the 
coupling between changes in community composition and 
food web structure is complex and depends on the spatial 
scale. Therefore, the impacts of future changes in community 
composition on the ecosystem structure will be hard to pre-
dict without considering the network of trophic interactions. 
For instance, we found that large-scale hydro-climatic events 
might modify community composition across large areas, 
but with diverse effects on local food web structure. This 
result cautions against using the ‘space-for-time approach’ 
(Blois  et  al. 2013) when predicting future changes in food 

web structure, because drivers of spatial changes might be 
different from the drivers of temporal dynamics.

In our dataset, the temporal variability of community 
composition and food web structure was relatively weaker 
compared to the magnitude of spatial changes. Yet, these tem-
poral changes can drastically alter locally adapted biotic com-
munities. The strong spatial gradient was reinforced by the 
maximum diversity sampling strategy of the GSBTS, which 
selected the different Boxes to represent different environmen-
tal conditions (Ehrich et al. 2007). Using longer time series 
might help identifying stronger temporal dynamics. However, 
the relatively weaker temporal patterns compared to spatial 
patterns has been previously confirmed using a 30-year time 
series on fish communities in the North Sea (Frelat et al. 2017). 
The temporal scale might in fact have a counter-intuitive 
impact on food web structural changes, with stronger impact 
observed at finer temporal scales (CaraDonna  et  al. 2021). 
For instance, strong dynamics were reported for ecologi-
cal networks at fine temporal scales (from hours to months) 
(Fründ  et  al. 2011), whereas general stability was found at 
broader scales (centuries and beyond) (Dunne et al. 2008).

In this study, node-weighted metrics often had similar 
scores to their unweighted counterparts, indicating that struc-
tural properties varied both qualitatively (in terms of species 
occurrence) and quantitatively (in terms of relative species 
abundance). However, in another study on the Baltic Sea, 
node-weighted metrics were complementary to unweighted 
and link-weighted metrics for describing temporal changes in 
food web structure (Kortsch et al. 2021). Therefore, we rec-
ommend using multiple approaches to capture a more com-
plete picture of structural community changes. For instance, 
interaction strengths may be important for detecting struc-
tural and functional changes over time (Staniczenko  et  al. 
2017, Kortsch  et  al. 2021), but evaluating interaction 
strength comes with additional data requirements and mod-
eling assumptions. Our list of macroscopic structural metrics 
(i.e. indicators to characterize the whole food web) could also 
be complemented by microscopic metrics (characterizing the 
role of each taxa) or by motifs (characterizing the frequency 
of small building blocks) which may exhibit stronger spatio–
temporal variability (Trøjelsgaard and Olesen 2016). Due to 
the complexity of our methodological framework, the inter-
pretation of the results must be sequential and can rapidly 
become complicated if spatial components and the temporal 
components are entangled. Yet, we believe that PTA shows 
high similarity with the well-known PCA which may facili-
tate its adoption by ecologists.

By combining ecological network analysis with advanced 
multivariate analysis, we propose a framework to quantify 
and relate spatio–temporal changes in food web structure 
to changes in community composition. Our methodologi-
cal approach can readily be used in areas where long-term 
monitoring of multiple trophic groups is carried out synchro-
nously in order to support effective management strategies 
aimed at conserving the structure and functioning of ecologi-
cal communities in times of environmental changes and spe-
cies’ distributional shifts.
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