

000

Bienvenidos

Tecnología e innovación por una palmicultura colombiana resiliente

Performance analysis of a new circular palm oil mill set-up Preliminary results

Análisis del desempeño de un nuevo concepto de planta de beneficio basada en economía circular

Work team

Cenipalma

Wageningen UR

Juan Camilo Barrera Hernández Jesús Alberto García Núñez David Arturo Munar Florez Julien Voogt

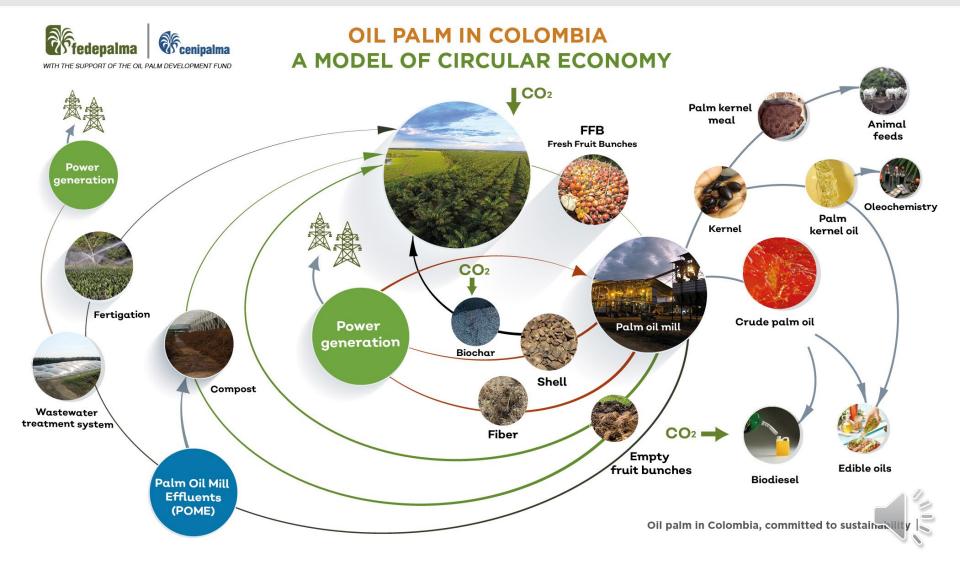
.

Johan van Groenestijn

Wolter Elbersen

El evento técnico sobre la agroindustria de la palma de aceite más importante de Colombia

Background of the project


- Colombia is an important source of palm oil for the Netherlands
- In 2018 an agreement was signed to collaborate on sustainable oil palm (with focus on circularity)
- Goal: to Increase efficient use of land, nutrients, biomass, and water
 - Circular downstream processing: more value out of palm residues
 - Intercropping and yield gap modeling: more yield per ha and less risk

Evaluated cases

Ecenipalma

Base case – Open POME ponds

- Biomass boiler (MF and Shell)
- CH4 emission from POME ponds
- EFB mulching

Anaerobic digestion of POME

- Biomass boiler (MF and Shell)
- EFB mulching
- Surplus electricity to grid

Anaerobic digestion of POME, EFB, and MF

- Boiler on biogas
- Anaerobic digestion of EFB and POME
- Surplus electricity to grid

Biogas instead of solid biomass as energy source

- Biomass boiler (MF & Shell)
 - Low thermal efficiency (60%)
 - Cyclone and electrostatic filter required
 - CAPEX and OPEX (electricity: 4.5 kWh/ton FFB)
 - Nitrogen is lost (emission)
 - Availability of minerals (P & K) in boiler ash?
- Biogas from EFB & MF
 - Thermal efficiency (87%)
 - Lower flue gas emissions and treatment
 - Biogas production for steam and electricity generation
 - Nutrient (N, P & K) value of sludge and effluent
 - Carbon in sludge available for soil
 - Extra process steps
 - Covered lagoon, H2S washer, biogas boiler, biogas generator

How to improve biogas yield?

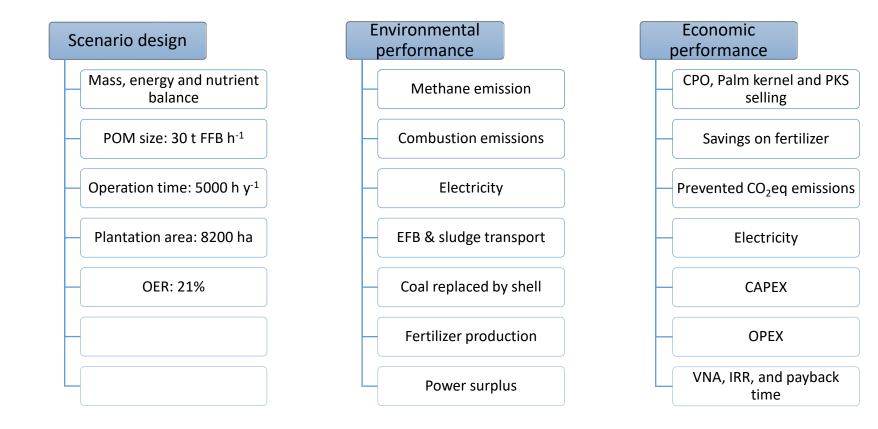
- Steam treatment of EFB & MF before anaerobic digestion:
 - Faster digestion
 - More organic matter digested
 - Higher biogas production
- Extra process step
 - CAPEX: Steam reactor
 - OPEX: Steam (~200°C)


Steam treatment of EFB & MF and digestion experiments

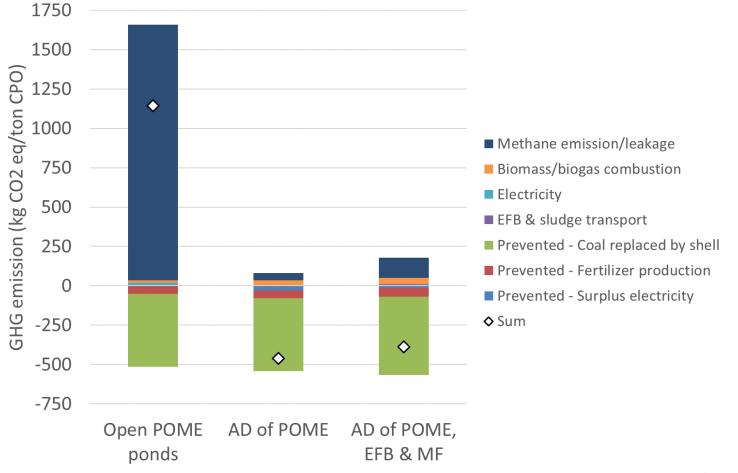
Experiments @Wageningen Research

- Untreated
 - EFB: 350 m3 biogas/ton OM, 56% OM digested
 - MF: 260 m3 biogas/ton OM, 35% OM digested
- Steam treated (200°C)
 - EFB: 475 m3 biogas/ton OM, 66% OM digested
 - MF: 360 m3 biogas/ton OM, 46% OM digested

Increase 35% EFB biogás yield Increase 38% MF biogás yield



Assessment methodology



Environmental performance (preliminary)

Economic performance (preliminary)

		Open POME ponds	AD of POME	AD of POME, EFB & MF
CAPEX	M\$	21.4	22.1	21.4
Average cash flow	M\$/y	4.0	4.7	4.7
Simple pay-back period	У	5.4	4.7	4.6
Net present value	M\$	14.3	20.4	20.6
Internal rate of return		13%	17%	18%

 The scenario with open POME ponds performs significantly worse compared to the other scenario's

Value of EFB and MF

- Biogas valorisation per energy use
 - Selling price: USD 0.06 0.13/kWh
 - EFB: USD 18 40/ton
 - MF: USD 24 53/ton
- Nutrient value (N, P, and K):
 - EFB: USD 15/ton
 - MF: USD 16/ton
- Soil carbon value not included (yet)

Circularity analyses (preliminary)

Anaerobic digestion of EFB and MF:

- Nitrogen to plantation increases from 27% to 42%
- Soil carbon to plantation increases from 25% to 57% (expressed as % of component in FFB)
- Availability of P and K better in sludge and effluent compared to mulched EFB and boiler ash?

Discussion

- Biogas instead of biomass
 - Easier and cheaper operation
 - Better air quality
 - Lower nitrogen loss
 - P and K could be more available for soil
 - More organic matter is water holding capacity and productivity (not incorporated in the economic performance yet...)
 - Improve GHG emission impact from 1142 kg CO₂eq/t CPO to aprox. -370 kg CO₂eq/t CPO
 - Better markets access

Acknowledgment

- Fondo de fomento palmero
- Embassy of Netherlands/Ministry of agriculture of the Netherlands

Gracias

