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ABSTRACT

Space-borne SAR instruments can provide backscatter on
a high spatial resolution, and with the introduction of the
Sentinel-1 satellites, these can co-exist with relatively high
temporal resolutions. Here, we use a combination of ac-
tive microwave Sentinel-1 and optical Sentinel-2 data in the
MULESME algorithm to estimate soil moisture on a field in
Southeastern Luxembourg. Satellite data were compared to
data gathered in the field and semi-continuous measurements
from a nearby permanent station. Our results indicate that
the accuracy of MULESME soil moisture estimates increases
with a decrease in spatial resolution, but that this increase
stagnates rather soon after the first few spatial aggregations,
thus confirming the value of high resolution data. Future
endeavours will focus on the analysis of soil moisture varia-
tion in time, compared to soil moisture measurements from a
nearby permanent station.

Index Terms— Soil moisture, Sentinel-1, MULESME

1. INTRODUCTION

With the arrival of more and more space-borne instruments
that can estimate soil moisture, both the spatial and tempo-
ral resolution of these estimates is improving. The Sentinel-1
constellation (S1), carrying a C-band SAR instrument, pro-
vides backscatter data at a very high resolution, which can in
turn be used to estimate soil moisture. The backscatter data
is provided on a ± 20x20 m2 resolution with revisit times of
three days over Europe. This makes that data from this satel-
lite constellation is extremely well suited for multi-temporal
algorithms, where the roughness is assumed to remain con-
stant within a number of consecutive acquisitions.

Regardless of the high native resolution of the S1 acquisi-
tion, retrievals are affected by noise from the SAR instrument.

This project was supported by the Fonds National de la Recherche Lux-
embourg (FNR) (PRIDE15/10623093 – HYDRO-CSI)

To reduce this so-called speckle noise, multi-looking (i.e. spa-
tial averaging) can be applied, at the cost of spatial resolution.
This leads to reported resolutions of final products of 100 [1],
500 [2, 3] or 1000 [4, 5] meters, which are still useful for
applications such as hydrological and crop modelling [6]. In
this study, we look for ways to provide accurate soil moisture
estimates at a higher spatial resolution, making use of readily
available data from the S1 and Sentinel-2 (S2) satellites. In
the best case, the 20 meter native resolution backscatter data
could translate to soil moisture estimates in the same resolu-
tion. At such scales, the combined high spatial and temporal
resolution of the soil moisture estimates could be useful for
e.g. precision agriculture.

Validation of remotely sensed soil moisture is a well-
known issue [7]. First of all, reference data with the correct
spatial and temporal resolution on large scales is near to im-
possible to find. Though high resolution data can be gathered
in dedicated field campaigns, field reference data often consist
of point data and thus lack spatial representativeness when
compared to gridded satellite data, [7]. Moreover, due to the
heterogeneity of soil moisture in both space and time, even
reference data cannot be considered to be “ground truth”.
As such, uncertainties are difficult to quantify. Addition-
ally, there are several trade-offs which occur when estimating
soil moisture using remotely sensed data. For instance, high
temporal soil moisture resolution usually coincides with low
spatial resolution data and vice versa [8, 7]. Another impor-
tant trade-off exists between spatio-temporal resolution and
accuracy of the soil moisture estimates [7].

Here, we try to identify an adequate spatial resolution for
S1 based soil moisture estimation, considering the trade-off
between product resolution and accuracy. We use the uncer-
tainty of the soil moisture estimate as a guide parameter, and
focus on how product accuracy depends on factors such as
soil wetness, and characteristics of the vegetated canopy. To
this end, we compare S1 soil moisture estimates to both in
situ data and global reference data sets with a lower spatial
resolution.
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2. METHODS & DATA

The S1 satellite constellation carries a C-band Synthetic
Aperture Radar (SAR) which measures the amount of the
signal scattered back to the satellite from the Earth’s surface,
with a temporal resolution of 3 days over Europe [9]. The
amount of backscatter is dependent on the dielectric constant
of the soil surface and can therefore be used to estimate sur-
face soil moisture (SSM) [10], the water content in the top
few cm of the soil. However, the backscatter coefficient is
also sensitive to soil roughness and vegetation.

Optical data can be used to counter the effect of vegeta-
tion on soil moisture estimates. Combining S1 and S2 data
is not uncommon, as both spatial and temporal resolution are
comparable. This combination is applied in several different
empirical or machine learning based approaches [11], such
as linear regression [12], artificial neural network [13, 14],
support vector regression [4], or multi-temporal approaches
[15, 2, 5, 16]. In this last approach, the roughness sensitivity
is countered by assuming that the roughness remains constant
over the considered time period. The change detection algo-
rithm used in this study is the MULESME algorithm [2]. It is
an algorithm well-suited for operational performance and by
default provides soil moisture estimates on a 500 x 500 m2

resolution [2].
Remotely sensed surface soil moisture data used in this

study were obtained by applying the MULESME algorithm
[2] on S1 backscatter data. Data were obtained from two dif-
ferent descending (morning) overpasses throughout 2020, but
processed separately in the algorithm. From March 2020 un-
til present, a field campaign was performed in Southeastern
Luxembourg on 24 different days coinciding with S1 over-
passes. Each measurement day consisted of 5 TDR measure-
ments on each of the 72 sampling locations on a regular grid
with 20 m spacing (Figure 1), as well as 12 volumetric soil
samples distributed over the field. A nearby setup of perma-
nent soil moisture probes at the Elvange-Burmerange station
additionally provided continuous measurements of soil mois-
ture at different depths, from 10 to 60 centimetres.

The MULESME algorithm was run on a spatial resolu-
tion of 20 x 20 m2 with 5 consecutive S1 backscatter images
at a time, as this was found to be the optimal number based
on a trade-off between accuracy and computation time [2].
NDVI images from the S2 satellite were used to provide an
estimate of the vegetation water content to the algorithm. The
algorithm makes a temporal average of the S2 data on the S1
sensing date when no S2 data is available on that specific day.
A Corine land cover map and a local slope map (SRTM) were
also included. As such, every algorithm run results in five
soil moisture content (SMC) maps and five uncertainty maps,
which can be used for further processing. A moving window
was applied on the input data, such that for each consecutive
run, one new backscatter image replaced the oldest one. In
the end, this approach resulted in five SMC and uncertainty

Fig. 1. Field campaign setup near Elvange, in Southeastern
Luxembourg. The 72 points show the locations at which TDR
and volumetric soil samples were taken.

maps for each S1 overpass.
To remove the most uncertain SMC estimates, the uncer-

tainty map was used as a mask on the SMC map, as suggested
by [2]. The 20 m resolution SMC map was then aggregated to
several lower spatial resolutions: 40, 60, 80, 100 and 120 m.
Additionally, a field average, based on the 20 m map, was
computed over the testing field (Fig. 1). For each overpass,
all five available SMC maps, resulting from the moving win-
dow approach, were averaged to get the most complete view
of the SMC on a specific date. Finally, both the separate and
the averaged soil moisture estimates were compared to the
different reference data sets, as mentioned earlier, to estimate
the accuracy of the S1 SMC data.

3. RESULTS & DISCUSSION

Figure 2 shows the Root Mean Square Error between the S1
MULESME soil moisture estimates and the TDR soil mois-
ture content gathered in the field. A clear decrease is visible
in the RMSE between different resolutions, especially in the
first two aggregation steps, from 20 to 40 and from 40 to 60
meters. The field average shows the lowest difference be-
tween SMC values gathered in the field and estimated from
backscatter data. The results in Figure 2 also show that a
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(b) Output for average per date

Fig. 2. Field average Root Mean Square Error (RMSE) between the TDR values gathered in the field and MULESME soil
moisture estimates on different resolutions. A color scale is included to distinguish between timing of the measurements over
the year. Figure (a) shows the result for all separate algorithm outputs, whereas (b) shows the result of averaging all outputs for
the same dates.

clear improvement on soil moisture estimates can be made
when all outputs for a specific date are averaged, as was done
to create the results in Figure 2b. The RMSE is clearly lower
in these plots than in the plots in Figure 2a. The set-up that
leads to lowest RMSE is a combination of averaging in time
and space, shown in the most right plot of Figure 2b. Here,
most RMSEs are below 0.10 and a majority falls below the
0.05 threshold.

That lower resolutions provide a better estimate of soil
moisture is not a new finding. However, the field average,
that showed the lowest RMSE, is still at a much higher reso-
lution than the scales of 500 x 500 m2 and 1 x 1 km2 that are
common in these types of studies. We will therefore continue
studying this process to see whether it is possible to get field
outlines from S2 images and use these to average soil mois-
ture in those fields. Judging from the difference between the
temporal moving average and the original algorithm results,
it seems that an improvement can be expected when a spatial
moving average is applied. It is yet to be seen whether or not
this is in fact the case. Moreover, as the decrease in RMSE

does not seem to be linear with a decrease in spatial reso-
lution, we will study the possibility of estimating within-field
soil moisture variation using a combination of S1 and S2 data.
Such and more hypotheses will be tested in the near future.

4. CONCLUSION

Based on a combination of active microwave S1 and optical
S2 data, we showed the potential of high-resolution space-
borne soil moisture estimates. Our results indicated that the
accuracy of MULESME soil moisture estimates increases
with a decrease in spatial resolution, but that this increase
stagnates rather soon after the first few spatial aggregations,
thus confirming the value of high resolution data. Future
endeavours will focus on the analysis of soil moisture vari-
ation in time, compared to the soil moisture measurements
from the permanent station. The uncertainty of the TDR data
will be considered, as well as the uncertainty of the S1 soil
moisture estimates. Additionally, the data discussed here will
be compared to other reference soil moisture data sets, such

6313



as those from the ESA CCI, the SMOS satellite constellation,
and the GLDAS.
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