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A B S T R A C T   

Soil biota contribute to the delivery of multiple soil functions. However, soil biological methods are highly 
underrepresented in the assessment of soil functionality in agricultural production systems. Here we present a 
flexible tool to support decision-making during the selection process of soil biological methods for monitoring 
soil functions. This tool is based on a structured and conceptual framework that connects soil biota to soil 
functions through their contribution to different soil processes. The methods assessed by the tool were selected as 
a result of a thorough literature review. Soil biology experts supported the development of the tool (i) by 
providing feedback on the reviewed methods through a survey and (ii) by determining the relevance of different 
soil biota to the soil processes related to soil multifunctionality during a workshop. The tool is freely accessible 
online at the Biological Soil Information System (BIOSIS) platform, where researchers or users with an under
standing of research practices can interact with the tool to define the context of their assessment and preferences 
for technical criteria of the methods. By incorporating user input, this flexible tool can help inform a wide variety 
of research and assessment programs interested in applying soil biological methods to monitor soil multi
functionality at different scales.   

1. Introduction 

Selecting appropriate methods to assess soil multifunctionality is the 
first step towards improved understanding, monitoring and managing of 
agricultural soils. Soil functions represent bundles of soil processes 
(Kibblewhite et al., 2008) that are driven by the interaction between 
chemical, physical and biological soil attributes (Vogel et al., 2018), 
agricultural management practices and climate (Tóth et al., 2013; Smith 
et al., 2016; Debeljak et al., 2019). In comparison to soil chemical and 
physical attributes, soil biological attributes are less frequently 
measured in soil quality assessment programs (van Leeuwen et al., 2017; 
Bünemann et al., 2018), even though they are very sensitive to soil 
management (Bastida et al., 2008) and involved in at least 26 soil pro
cesses crucial to soil multifunctionality (Creamer et al., 2022). Hence, 
measuring the soil biota and the processes that they support could 
enhance assessment of the capacity of soils to deliver multiple soil 
functions as well as facilitate the identification of potential trade-offs. 

Several challenges arise when selecting soil biological methods for 

the assessment of soil multifunctionality. First, determining the perti
nence of different biological methods to soil multifunctionality is 
complicated as most scientific studies are specialized, focusing only on a 
single biological taxon or only consider one process at a time (De Ruiter 
et al., 1993; Blouin et al., 2013; de Groot et al., 2016). When bundling up 
these processes to the function level, it becomes extremely complex to 
summarize the contribution of different biota to soil functions and 
multifunctionality. In fact, we are only beginning to disentangle the 
mechanisms and the magnitude by which different soil biota impact soil 
functioning in agricultural production systems (Lemanceau et al., 2015; 
Bender et al., 2016). As a result, simplified biological indicators such as 
measurement of microbial biomass have been put forward that cannot 
always be related to “the capacity of the soil to function” (Andrews et al., 
2004). 

Second, there are also various technical criteria to consider when 
selecting soil biological indicators. These can relate to (i) more practical 
matters such as ease of field sampling, overall costs or possibility to store 
samples (Doran and Parkin, 1997; O’Sullivan et al., 2017), (ii) 
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sensitivity of a method to management and spatio-temporal variation, 
and (iii) interpretation of data generated by the method (Bünemann 
et al., 2018). Third, monitoring agricultural land can serve different 
purposes and therefore the context of the assessment needs to be un
derstood (Powlson, 2020) and this is likely to change the relative 
importance of different technical criteria. Soil quality assessment pro
grams targeted towards farmers may prioritize methods that can be 
performed by local soil laboratories and have the ultimate aim to pro
vide information that supports on-farm soil management decisions. On 
the other hand, soil monitoring at national or regional scale can help 
governments assess the societal consequences of different land man
agement practices or environmental policies that may not be easily 
detected at the farm scale. National and regional monitoring programs 
easily visit over a thousand field sites during one sampling campaign and 
therefore need to limit the amount of time spent and the amount of 
sample collected at each site. In conclusion, soil biological method se
lection for the assessment of soil multifunctionality is a complex 
decision-making process, which requires flexibility to weigh certain 
selection criteria over others depending on the objective and type of 
assessment. 

The “logical sieve” framework developed by Ritz et al. (2009) pro
vides a useful tool to support the decision-making process during the 
selection of biological methods. The original tool scores soil biological 
methods based on a range of scientific and technical selection criteria in 
the context of a national-scale monitoring scheme in the UK. The final 
output is a list of methods with scores, where the highest-ranking 
methods are identified as the most promising candidates to be 
included in UK soil monitoring. Others have applied this approach to 
select biological indicators for European monitoring programs (Stone 
et al., 2016; van Leeuwen et al., 2017). In this paper, we present a 
flexible biological method selection tool, called Biological Soil Infor
mation System (BIOSIS) tool. This tool is adapted from the original 
framework by Ritz et al. (2009), which enhances its efficacy and use in 
several ways. 

The BIOSIS tool assesses methods in relation to four soil functions 
that are relevant to a wide range of temperate agricultural production 
systems (Millennium Ecosystem Assessment, 2005; Haygarth and Ritz, 
2009; Schulte et al., 2014; Vogel et al., 2018): Carbon and Climate 
Regulation, Water Regulation and Purification, Nutrient Cycling and 
Disease and Pest Regulation. To define the list of methods, we use the 
cognitive soil function models in Creamer et al. (2022), which are based 
on decades of soil biology research and the models by Debeljak et al. 
(2019) to put a structure on the complexity of biotic interactions 
contributing to soil multifunctionality. We also use the structure of the 
cognitive models to evaluate the pertinence of different methods to in
dividual soil functions and soil multifunctionality. 

In the BIOSIS tool, the fixed scores of the methods mostly rely on 
scientific publications and technical information that could be derived 
from existing protocols rather than expert-opinion as was done in Ritz 
et al. (2009). The built-in flexibility of the tool lets the users determine 
which functions are relevant to their objectives and which technical 
criteria are most important to them, influencing the method scores and 
final output of the tool. This is similar to the approach of the ‘Soil 
Management Assessment Framework’ (SMAF) originally developed by 
Andrews et al. (2004), who also advocated for user input to be included 
during method selection for soil quality assessments. This allows the tool 
to make case-specific recommendations for which methods are most 
appropriate considering the context and objectives of the assessment. 

2. Methodology 

We built a flexible soil biological method selection tool that is freely 
accessible at the Biological Soil Information System (BIOSIS) platform 
(https://biosisplatform.eu/) and is connected to the structure of the four 
cognitive soil function models developed by Creamer et al. (2022). 
These models describe the relationship between actors and soil 

processes that contribute to the delivery of each soil function. We use the 
term actors to refer to soil biota. 

The BIOSIS tool can support decision-making during the selection 
process of soil biological methods for a wide variety of soil assessment 
programs focusing on different stakeholders such as farmers, land 
managers and policy makers. However, the tool itself is meant for users 
that are involved in research and/or have a comprehensive under
standing of research practices because a certain level of expertise is 
required to specify the context of the soil assessment program and to 
interpret the final output list of the tool. 

2.1. Reviewing methods 

To develop the list of methods that would be assessed by the BIOSIS 
tool, we conducted a thorough literature review of methods associated 
with the actors and processes from the four cognitive soil function 
models described by Creamer et al. (2022). Therefore, methods that 
were not directly related to the actors and processes in the cognitive soil 
function models were not included in the list. Different types of methods 
for actors and processes were included when possible, such as methods 
based on traditional microscopy or cultivation-based methods, 
biochemical methods (biomarkers), activity methods (incubations, en
zymes, bioassays) and molecular methods. We aimed at having at least 
one commonly applied method for each actor and process. We did not 
include methods that we considered too specialized for soil monitoring 
purposes such as stable isotope-based methods and metabolomics. Some 
methods relate both to an actor and a process (e.g. functional genes). 
Here we evaluated on a case by case basis whether the method would be 
classified as an actor- or process-based method (see Tables S1 and S2). 

Following the literature review, we shared the list of actor- and 
process-based methods with soil biology experts for validation and ad
justments, which is explained in more detail in the next section. The final 
list contains 191 actor methods and 98 process methods (289 methods in 
total), which will be open for review through the BIOSIS platform. For 
each method, we have included a reference to the original protocol or a 
reference with an example of how the method can be applied (Tables S1 
and S2). 

2.2. Expert contributions 

During the development of the BIOSIS tool, we asked for the input of 
soil biology experts on two different matters. First, we used expert 
opinion in the scoring of the relevance of an actor in contributing to a 
soil function. Second, we asked experts to review and comment on the 
list of methods included in the soil biological method selection tool. 

To achieve the first objective, we organized an online workshop with 
40 soil biology experts from across the globe on February 2nd, 2021. 
Using Mentimeter (https://www.mentimeter.com/), we asked the ex
perts to score the importance of actors to the delivery of the processes 
that they are involved in following the structure of the four cognitive soil 
function models (1 = very low importance, 5 = very high importance). 
Experts could skip questions if they felt the question was too far from 
their expertise. We repeated these questions for all the actor-process 
links in the cognitive soil function models except for the obvious cases 
where only one actor is listed to contribute to a process (e.g. mycorrhizal 
fungi to mycorrhizal acquisition). In this case, the actor received a very 
high relevance score. The mean relevance score for each actor-process 
link evaluated by the experts was calculated to be included in the 
pertinence tier of the BIOSIS tool. 

For the second objective, we sent out a survey with all the actor- 
based methods to 74 experts that validated and adjusted the methods 
in December 2020. From this survey we received 49 responses. A similar 
survey with the process-based methods was sent out to the 40 partici
pants of the workshop in February 2021, for which we received 12 
responses. 
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2.3. BIOSIS: Biological method selection tool 

We used the “logical sieve” framework developed by Ritz et al. 
(2009) as the backbone of the BIOSIS tool dividing the method selection 
process into three tiers: (i) pertinence to soil functions, (ii) applicability 
to ecosystem under consideration and (iii) technical properties (Fig. 1). 
Within each tier, methods are assessed according to multiple criteria and 
assigned a numerical score (see formulae 1-4). When a method receives 
a final score of zero, the method is discarded. The tool assesses methods 
for each function individually, resulting in a final output of a maximum 
of four lists (one list for each function) with recommended methods. 
Users can indicate which functions should be considered during the 
selection process. 

These selection criteria and scoring methodology are described in 
detail in Table 1. The pertinence tier (TP) consists of three selection 
criteria, which aim to collectively assess the importance of the method 
to each respective soil function. This is achieved by scoring the level of 
functional information yielded by each method (Sinfo), the frequency of 
the actor or process within one soil function model that the method is 
measuring (Sfreq), and the relevance of the actor to the delivery of the 
processes in each function model (Srelevance). The functional information 
scores represent the degree by which an actor or process method pro
vides information about the capacity of a soil to deliver an individual 
soil function. The frequency scores are determined by the four cognitive 
models developed by Creamer et al. (2022). For each function, number 
of times that an actor or process appears in the cognitive model is 
counted. The relevance scores are based on the outcomes from the 
expert workshop described in the previous section. To obtain the 
pertinence score, these three scores are multiplied and divided by three 
to maintain a balance between the pertinence and technical tier. 

TP =
Sinfo × Sfreq × Srelevance

3
(1) 

The applicability tier (TA) only consists of one criterium, which 
scores the applicability of the method to the ecosystem under consid
eration (SA = 0 or 1). In this paper, we focus on arable production sys
tems, but the online BIOSIS tool will be expanded to grasslands and 
forests as well. We removed the discrimination criterium applied in the 
original framework of the logical sieve because Ritz et al. (2009) re
ported that the level of discrimination between samples of different 
contexts was extremely difficult to confirm in practice. Especially for 
novel methods, we do not have a complete dataset representing a large 
range of soil types and land uses to systematically evaluate the method’s 
discrimination potential and sensitivity to spatial and temporal varia
tion. The applicability score is multiplied by the pertinence tier. 

TA =TP × SA (2) 

The technical tier (TT) scores 13 criteria (Sc) relating to the logistical 

aspects of the assessment or monitoring program. These include among 
others logistics related to field sampling, sample storage, lab analysis, 
sample archivability, data processing and interpretation, and regional 
infrastructure. We derived the information needed to score the technical 
criteria associated with each methods from scientific publications or 
protocols (Tables S1 and S2). These technical scores are normalized 
between 0 and 1. After this, the user can choose which technical criteria 
should be considered and what the associated weighting factors (Wci) 
should be. The level of the weighting factor should reflect the impor
tance of the criteria to the context of a given assessment program. A total 
of 50 weighting credits are distributed among the technical criteria ac
cording to their importance. Finally, an user-filter based on the technical 
criteria (Fi = 0 or 1) can be applied by the user that excludes methods 
that do not meet minimum logistical user’s requirements, for example 
whether it is possible to return to the sampling site multiple times. These 
filters associated with the different technical criteria are multiplied. 
Weights and technical scores are multiplied and subsequently added, 
where Sci is the score for technical criteria i, Wci is the weighting factor 
assigned by the user for technical criteria i, and n is the number of 
technical criteria. 

TT =

(

F1 × F2 × … × Fn

)

×
∑n

i=1
(Sci × Wci) (3) 

Finally, the aggregated score (AS) is determined by multiplying the 
technical tier by the applicability tier. Note that at each tier the method 
score can turn into a zero, in which case the method is sieved out. 

AS = TA × TT (4) 

Subsequently, the aggregated scores are ranked. For each soil func
tion a list is created showing the scores and ranks of each method. This 
list should support the user in selecting the appropriate methods for the 
assessment at hand. 

2.4. Interpretation of output 

The final output of the BIOSIS tool is a list of methods with associated 
scores ranked from high to low. The individual method scores are the 
result of multiplication and addition algorithms using the pre-defined 
scores and user-selected weighting factors. As the user can apply 
different weighting factors and exclusion filters, the output scores of 
different runs should not be compared. A higher score indicates a more 
suitable method. We recommend that the user picks a combination of 
both high-ranking actor and process methods from this list. Yet, method 
scores should not be followed blindly because multiple methods for the 
same process or actor may be recommended and subtle preferences of 
the user may not be considered by the tool. For example, if a user is 
interested in Nutrient Cycling, but primarily in the cycling of nitrogen, 
the user could selectively look at the highest scoring nitrogen 

Fig. 1. BIOSIS tool: a flexible biological method selection tool adapted from the original logical sieve framework by Ritz et al. (2009).  
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Table 1 
Description of selection criteria and scoring protocol modified from Ritz et al. (2009).  

Tier Criteria Description Scoring information User-defined 
weighting 
factor 

User-defined filter (F) Compared to 
criteria from  
Ritz et al. 
(2009) 

Pertinence Functional 
information 

The degree by which an actor or 
process method provides information 
about the functional capacity of a soil 
to deliver an individual soil function. 

1 = Actor abundance 
(actor) 
2 = Actor phylogenetic 
information 
3 = Actor functional 
information (e.g., 
functional gene, functional 
group), potential process 
(DNA) 
4 = Potential process (e.g., 
RNA, enzymes) 
5 = Actual process (e.g., 
lab incubation, field 
measurement) 

No No New 

Pertinence Frequency Number of occurrences of an actor or 
a process within a given function 
model. 

0 = no occurrence 
1 = occurs once 
2 = occurs twice 
3 = occurs more than twice 
but not in the top 10% 
most frequently occurring 
actors 
4 = part of top 10% most 
frequently occurring actors 

No No New 

Pertinence Relevance Expert-opinion score on the relevance 
of the actor to the delivery of a 
process. If actors contributed to 
multiple processes, scores were 
averaged to obtain a relevance score 
at the function level. 

Continuous score rescaled 
between 0 and 4 with most 
relevant actor scoring 4 
5 = process 

No No New 

Applicability Applicability Applicability of method to the 
ecosystem(s) under consideration 

1 = applicable 
0 = not applicable 

No No Same 

Technical Throughput The amount of samples that can be 
processed per week 

1 = < 20 samples per week 
2 = 20–50 samples per 
week 
3 = 50–100 samples per 
week 
4 = > 100 samples per 
week 

Yes No, F = 1. Same 

Technical Storage Allowed storage time before post- 
sampling measures (laboratory 
analysis) 

0 = not possible 
1 = within 1 week 
2 = within 1 month 
3 = within 6 months to one 
year 

Yes Yes, default score: F = 1. User 
can activate filter to exclude 
methods where samples cannot 
be stored for >1 month (F = 0). 

Modified 

Technical Temporal sample 
collection 

The number of sampling times (field 
visits) needed 

0 = more than one 
sampling needed 
1 = one time is enough 

Yes Yes, default score: F = 1. User 
can activate filter to exclude 
methods that require multiple 
field visits (F = 0). 

Modified 

Technical Spatial sample 
collection 

Number of samples needed per 
location or treatment 

0 = more than one 
replicate needed 
1 = one composite sample 
is enough 

Yes No, F = 1. New 

Technical Archivability Potential for long-term storage as 
dried or frozen sample 

0 = not archivable 
1 = archivable as fixated or 
extracted sample 
2 = archivable as dried soil 
sample 

Yes No, F = 1. Modified 

Technical Amount of sample Soil mass needed for sampling and 
determination 

1 = large mass (>1 kg or 
>2 L) 
2 = small mass (<1 kg or 
< 2 L) 
3 = very small mass (<100 
g or < 0.5 L) 

Yes Yes, default score: F = 1. User 
can activate filter to exclude 
methods which require sample 
size >100 g. 

Modified 

Technical Lab analysis cost 
per sample 

Labour, hardware and consumable 
costs per sample 

1 = high costs 
2 = moderate costs 
3 = low costs 

Yes Yes, default score: F = 1. User 
can activate filter to exclude 
methods with high costs (F = 0) 

Modified 

Technical Ease of use in 
laboratory 

The level of skill required to realise 
the method in the laboratory 

1 = specialized 
2 = moderate 
3 = straightforward 

Yes No, F = 1. Modified 

Technical Ease of data 
processing & 
interpretation 

The level of skill required to process 
and interpret the data 

1 = specialized 
2 = moderate 
3 = straightforward 

Yes No, F = 1. New 

(continued on next page) 
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transformation methods. Therefore, it is up to the users to make the final 
selection of methods that they want and can apply. The selection tool 
attempts to optimize a complicated decision-making process, for which 
there may not be a perfect solution. Hence, users’ judgment is needed to 
pick the methods from this output list that ultimately suit their context 
and objectives. 

In the case of soil multifunctionality, the lists of the four soil func
tions need to simultaneously be assessed by the user. Here, we also 
recommend picking a combination of actor and process methods that 
represent the four individual soil function models and thereby soil 
multifunctionality. 

2.5. Future developments 

The transparent framework of the BIOSIS tool allows for further 
development, inclusion of new methods and expansion to other eco
systems of interest. We invite the scientific community to collaborate 
with us to achieve these goals. The R script and list of methods with the 
associated pertinence, applicability and technical scores are available to 
be used and reviewed by others through the Database 4TU.ResearchData 
(https://doi.org/10.4121/14431418). Moreover, the online version of 
the tool can be tested out at the BIOSIS platform (https://biosisplatform. 
eu/) and we are open for suggestions to improve the usability of the tool. 
Currently the BIOSIS tool requires basic scientific background of the user 
to define the relevant technical criteria and to be able to translate the 
findings of the sample results from the analyses finally performed in 
labs. Therefore one future direction of the tool would be the inclusion of 
field-based methods that can be applied by farmers where they are 
relevant and simplifying some of the technical criteria that require prior 
research knowledge. With the rapid development of new molecular, 
spectroscopic and isotopic methods (Bünemann et al., 2018; Fierer et al., 
2021), we made sure that this tool can easily incorporate future 
methods. To further expand the tool, we also consider building an al
gorithm into the current framework that generates a list of recom
mended methods for soil multifunctionality taking into account the 
frequency of the actors and processes across the four function models 
and the relevance of different actors and processes to soil 
multi-functionality. 

3. Case studies 

3.1. Description 

To demonstrate the flexible framework and use of the BIOSIS tool 

Table 1 (continued ) 

Tier Criteria Description Scoring information User-defined 
weighting 
factor 

User-defined filter (F) Compared to 
criteria from  
Ritz et al. 
(2009) 

Technical Reference material Option to include or develop 
reference material 

0 = none 
1 = potential but not often 
applied in practice 
2 = yes, an internal 
reference 
3 = yes, an international 
standard 

Yes Yes, default score: F = 1. User 
can activate filter to exclude 
methods without internal 
reference or international 
standard (F = 0). 

Modified 

Technical Reproducibility 
(user bias) 

Inherent ability of method to yield 
reproducible results 

1 = low 
2 = moderate 
3 = high 

Yes Yes, default score: F = 1. User 
can activate filter to exclude 
methods with moderate or low 
reproducibility (F = 0). 

Modified 

Technical Deployment status Level of method development 0 = not ready, years of 
development needed 
1 = developed for 
experimental use 
2 = developed for routine 
use 

Yes No, F = 1. Same 

Technical Regional 
Infrastructure 

The state of regional infrastructure to 
realise the assessment 

1 = none/few specialized 
labs 
2 = moderate 
infrastructure 
3 = ubiquitous 
infrastructure 

Yes Yes, default score: F = 1. User 
can activate filter to exclude 
methods for which specialized 
infrastructure is required (F =
0). 

Modified  

Table 2 
User-preferences considered by the soil biological method selection tool for case 
1 (farm-scale soil quality assessment) and case 2 (monitoring soil multi
functionality at European scale).   

User-preferences for biological method selection  

Case 1: Farm-scale soil 
quality assessment 
program 

Case 2: Monitoring soil 
multi-functionality at 
European scale 

Soil functions All four All four 
Ecosystem of interest Arable Arable 
User filter No specialized 

infrastructure 
No multiple field visits 

Weighting factors 
Throughput Very low importance 

(score = 1) 
Very high importance 
(score = 5) 

Sample storage Low importance (score =
2) 

Very high importance 
(score = 5) 

Temporal sample 
collection 

Very low importance 
(score = 1) 

Very high importance 
(score = 5) 

Spatial sample 
collection 

Very low importance 
(score = 1) 

Very high importance 
(score = 5) 

Archivability Not important (score =
0) 

Very high importance 
(score = 5) 

Amount of sample Low importance (score =
2) 

Very high importance 
(score = 5) 

Lab analysis cost per 
sample 

Very high importance 
(score = 5) 

Medium importance (score 
= 3) 

Ease of use in 
laboratory 

High importance (score 
= 4) 

Very low importance (score 
= 1) 

Ease of data processing 
& interpretation 

Very high importance 
(score = 5) 

Low importance (score = 2) 

Reference material Medium importance 
(score = 3) 

Very high importance 
(score = 5) 

Reproducibility (user 
bias) 

Medium importance 
(score = 3) 

Very high importance 
(score = 5) 

Deployment status High importance (score 
= 4) 

Very high importance 
(score = 5) 

Regional Infrastructure Very high importance 
(score = 5) 

Very low importance (score 
= 1)  
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and how it can benefit a variety of assessment programs, we developed 
two case studies (Table 2). In the first case study, an applied researcher 
working with farmers is looking for soil biological methods to be 
included in a soil multifunctionality assessment program at the field 
scale. Here, the ease of data processing and interpretation as well as 
costs of sample analysis were considered to be among the most impor
tant technical criteria. Moreover, we implemented a filter to exclude 

methods that required highly specialized infrastructure that the 
researcher and farmers may not have access to in their local surround
ings. The second case focuses on the development of a European soil 
monitoring program to assess soil multifunctionality. Technical criteria 
related to the sampling logistics, laboratory throughput and quality 
control were considered as most important, while costs and level of 
specialization to carry out the method or process the data were marked 

Table 3 
Recommended methods for case study 1 (assessment of soil multifunctionality for farmers). Columns show the top-4 scoring methods for each function from the 
final output of the soil biological method selection tool. Colors in front of actor or process indicate to which soil functions the method is applicable. Methods in bold 
are recommended to be included in the assessment of multifunctionality and exclude duplicate methods suggested for multiple soil functions. If multiple methods 
for the same actor or process were among the top-4 methods, we only selected the highest-scoring method to show here. If multiple methods for the same actor or 
process obtained the same score, we show both or all three methods. For the full list of method scores see Table S3. 

Carbon and climate regulation Water regulation and 
purification

Nutrient cycling Disease and pest regulation

Nematodes (actor) Aggregation (process) Protozoa (actor)

Microbial respiration
(process)

Bioturbation (process)

Denitrification (process) Earthworms (actor) Parasitism (process)

Nitrification (process) Microbial assimilation 
(process)

Disease and pest control 
(subfunction)
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as less important. In the second case, we also implemented a filter to 
exclude methods for which multiple field visits to the same site were 
required. 

It is important to note that the outcomes of the case studies presented 
here should not be used as universal guidelines for developing a soil 
assessment program for farmers (case study 1) or a soil monitoring 
program at the regional or continental scale (case study 2). Even when 
assessment programs are targeted towards the same stakeholders, the 
objective and logistical context of assessment programs can vary. These 
differences can be considered by means of adjusting the weighting fac
tors and exclusion filters of the BIOSIS tool. 

3.2. Outcomes 

The output of the BIOSIS tool recommends both case studies to 

measure similar actors and processes (Tables 3 and 4) because their 
pertinence to soil functions will not change depending on the logistical 
context of different assessment programs. Overall, we find that earth
worms, nematodes, protozoa, bacteria and fungi are important actors to 
monitor in both case studies. These actors frequently occur in the 
cognitive soil function models developed by Creamer et al. (2022) and 
were scored as highly relevant to soil functions by soil biology experts. 
In addition, the output of the tool also contains high-scoring process 
methods, of which aggregation, bioturbation, mineralisation and para
sitism are recommended to be measured in both case studies. 

The differences between case studies become visible when we 
compare the specific methods recommended. For case study 1, 
commonly applied methods are recommended that are easy to interpret. 
In contrast, the output for case study 2 recommends more specialized 
and novel methods, which also maximize ease of field sampling and 

Table 4 
Recommended methods for case study 2 (monitoring soil multifunctionality at European scale). Columns show the top-4 scoring methods for each function from the 
final output of the soil biological method selection tool. Colors in front of actor or process indicate to which other soil functions the method is applicable. Methods in 
bold are recommended to be included in the assessment of multifunctionality and exclude duplicate methods suggested for multiple soil functions. If multiple 
methods for the same actor or process were among the top-4 methods, we only selected the highest-scoring method to show here. If multiple methods for the same 
actor or process obtained the same score, we show both or all three methods. For the full list of method scores see Table S4. 
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throughput where possible. To give an example, both cases are recom
mended to measure earthworms in the assessment of Water Regulation 
and Purification and Nutrient Cycling. In case study 1, hand-sorting the 
earthworms in the field and quantifying them based on morphological 
characteristics to derive functional groups (Römbke et al., 2018) is the 
highest scoring method. In case study 2, metabarcoding of eDNA is 
recommended instead because this substantially simplifies field logis
tics. Another example is the assessment of the microbial community. 
Metagenomic analyses will provide case study 2 with a plethora of in
formation including functional genes related to many of the processes 
that the bacterial and fungal community support in the cognitive func
tion models (resulting in a high frequency score (Sfreq)). Moreover, 
metagenomic analyses allow for high throughput and only require small 
amounts of soil, which were two technical criteria listed as highly 
important in case study 2. Overall, this resulted in the high score for 
metagenomics in case study 2 focusing on monitoring soil functions at 
the European scale. Large-scale monitoring programs such as the LUCAS 
Soil survey are already testing the implementation of such advanced 
molecular methodologies in subsets of their sampling sites (Orgiazzi 
et al., 2018). Metagenomics is still very specialized in terms of local 
infrastructure, data processing and interpretation (Thomas et al., 2012; 
Laudadio et al., 2019). Therefore, this method was not advised to be 
used in assessment programs targeted towards farmers (case study 1). 
Instead, microbial process-based methods such as microbial respiration 
and mineralisation are performed by many local laboratories and are 
more intuitive to explain. 

Another difference between the two case studies is that the BIOSIS 
tool recommends fewer process-based methods for monitoring soil 
functions at European scale than for the on-farm assessment of soil 
multifunctionality. This is again attributed to the user-defined technical 
criteria. Process-based methods are easier to interpret, yet are often 
more time-consuming lowering the high throughput desired for large- 
scale monitoring programs (Griffiths et al., 2018; Fierer et al., 2021). 
While process-based methods link more directly to soil multi
functionality, actors often contribute to multiple processes. Hence, both 
provide valuable information to the assessment of soil multi
functionality. Therefore, we would recommend measuring a combina
tion of both actor- and process-based methods when possible. Depending 
on the user-defined technical criteria, the balance between actor- and 
process-based methods will shift to match the requirements of the 
assessment program. 

The BIOSIS tool evaluates methods based on three tiers (pertinence, 
applicability and technical). While the pertinence and the applicability 
scores are fixed, the user defines the scoring of the technical tier by 
determining the weighting factors and/or implementing exclusion fil
ters. Within the technical tier, criteria are scored, multiplied by user- 
determined weighting factors and subsequently added. In certain 
cases, users may have technical demands for which there is no perfect 
match. In case study 1 the applied researcher is looking for biological 
methods which are considered low cost (defined in the weighting of 
technical criteria) and do not require specialized facilities (applied in the 
exclusion filter as they do not have access to such facilities). Nematodes 
received a high pertinence score due to their high frequency in two of 
the four cognitive models (carbon sequestration and climate regulation 
and disease and pest regulation) and high relevance score given by the 
experts. The selection of nematode methods is then further assessed 
according to the technical criteria and exclusion filter. In this case the 
exclusion filter removes any methods that require specialized facilities 
and the remaining method is listed as morphological analysis of nema
todes which is the nearest possible solution to the demands of the 
researcher in case study 1. If the user does not want to consider 
expensive methods at all, an additional exclusion filter could be imple
mented. Yet, it is important to note that too many exclusion filters may 
result in very few or no recommendations for particular actors or 
processes. 

4. Conclusion 

Soil biology is crucial to the delivery of soil multifunctionality. 
However, few soil biological methods are included in soil monitoring of 
agricultural production systems. Here we presented a flexible tool to 
support decision-making during the selection process of soil biological 
methods for the assessment of soil multifunctionality. The BIOSIS tool is 
based on a structured and scientific framework that connects soil biota 
to soil functions through their contribution to different soil processes 
(Creamer et al., 2022) . Users interact with the tool to define the context 
of their assessment and technical considerations. By incorporating user 
input, the BIOSIS tool can be used by a wide variety of researchers and 
practitioners interested in applying soil biological methods to monitor 
soil multifunctionality at different scales. 
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