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Abstract

Geomorphological maps provide information on the relief, genesis and shape of the

earth’s surface and are widely used in sustainable spatial developments. The quality

of geomorphological maps is however rarely assessed or reported, which limits their

applicability. Moreover, older geomorphological maps often do not meet current

quality requirements and require updating. This updating is time-consuming and

because of its qualitative nature difficult to reproduce, but can be supported by novel

computational methods. In this paper, we address these issues by (1) quantifying the

uncertainty associated with manual geomorphological mapping, (2) exploring the use

of convolutional neural networks (CNNs) for semi-automated geomorphological map-

ping and (3) testing the sensitivity of CNNs to uncertainties in manually created

evaluation data.

We selected a test area in the Dutch push-moraine district with a pronounced relief

and a high variety of landforms. For this test area we developed five manually cre-

ated geomorphological maps and 27 automatically created landform maps using

CNNs. The resulting manual maps are similar on a regional level. We could identify

the causes of disagreement between the maps on a local level, which often related to

differences in mapping experience, choices in delineation and different interpreta-

tions of the legend. Coordination of mapping efforts and field validation are neces-

sary to create accurate and precise maps. CNNs perform well in identifying

landforms and geomorphological units, but fail at correct delineation. The human

geomorphologist remains necessary to correct the delineation and classification of

the computed maps. The uncertainty in the manually created data that are used to

train and evaluate CNNs have a large effect on the model performance and evalua-

tion. This also advocates for coordinated mapping efforts to ensure the quality of

manually created training and test data. Further model development and data

processing are required before CNNs can act as standalone mapping techniques.
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1 | INTRODUCTION

Geomorphological maps provide information on the relief, landforms

and genesis of the earth’s surface, and have been developed all around

the world (Bishop et al., 2012; Paron & Claessens, 2011;

Verstappen, 2011). Their use is not only of scientific significance, but is

also important for all kinds of spatial developments at the regional scale,

such as natural hazard mapping (Chelli et al., 2021), urban development
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(Douglas, 2020), archaeological prospecting (Van Lanen et al., 2015),

land-use planning (Bocco et al., 2001; Roccati et al., 2020) and climate

adaptation (Wageningen University and Research, 2020). However,

geomorphological mapping is time-consuming and expensive, done by

well-trained geomorphologists, and requires high time investment. In

addition, geomorphological maps are difficult to reproduce because of

interpretation and delineation differences between individuals. Hence,

the quality of geomorphological maps depends on their skills, knowl-

edge, experience and readily available data (e.g. Aspinall &

Pearson, 1995; Lark et al., 2014; Randle et al., 2018). There is a need

for more analysis on the background of interpretation differences

between geomorphologists and ways of quantifying agreement and dis-

similarities between the produced maps.

The increasing open availability and standardization of spatial data

comes with an increasing demand for quality assessments of this spa-

tial data (European Commission, 2021). Also, at a national level, quality

assessment of spatial data, such as geomorphological and soil maps,

has become more prominent. For example, in The Netherlands, the

geomorphological map has become part of the Dutch National Key

Registry of the Subsurface (Basisregistratie Ondergrond, BRO in Dutch),

which is a central database that contains all public data and models of

the Dutch subsurface (BRO, 2021). The Key Registry requires an esti-

mate of the quality from its entries. Such quality assessments help the

makers to guarantee, quantify and communicate the quality of their

products and help users appropriately use the data.

In addition to a more stringent quality control, recent advances in

spatial data collection, software development and computational tech-

nology and power enable the use of more advanced computational

and statistical methods to aid geomorphological mapping (Bishop

et al., 2012; Dramis et al., 2011; Giaccone et al., 2021). Such semi-

automated mapping techniques use explanatory map layers, such as,

for example, digital elevation models (DEMs) and their derivatives

(also called land-surface parameters, LSPs) and maps derived from

remote sensing, to identify and map geomorphological objects. Semi-

automated mapping techniques can be roughly grouped into pixel-

based approaches and object-based approaches. Pixel-based

approaches assign a class to each pixel of a raster map, based on the

information that is present for that same pixel on all explanatory

maps. Object-based approaches extend this classification by also tak-

ing into account spatial context and information, such as typical sizes

and shapes of the objects, representative positions for the objects and

hierarchical orders of landforms (Anders et al., 2011; Dr�aguţ &

Blaschke, 2006; Dramis et al., 2011; Feizizadeh et al., 2021; Kassouk

et al., 2014). Both techniques make use of machine learning tech-

niques for classifying pixels of a raster into a geomorphological unit

(Giaccone et al., 2021; Ma et al., 2017; Valentine & Kalnins, 2016).

Machine learning makes use of self-learning computer algorithms and

statistical techniques to perform tasks like classification and predic-

tion, often using large amounts of human-annotated data. Different

machine learning techniques have been used in a large variety of envi-

ronmental analyses. Examples are random forests in digital soil map-

ping (Sekuli�c et al., 2020), support vector machines (SVMs) in

earthquake-triggered landslide susceptibility (Xu et al., 2012), ground-

water spring mapping with artificial neural networks (Corsini

et al., 2009) and convolutional neural networks (CNNs) in land use

and land cover mapping (Zhu et al., 2017) and digital soil mapping

(Wadoux et al., 2020).

A promising machine learning technique for geomorphological

mapping is deep learning, particularly CNNs. CNNs are algorithms

designed for pattern recognition on spatial or temporal data. These

models learn from examples how to generalize the data to detect the

desired patterns, eliminating the need for variable selection or feature

design. CNNs can be used for a variety of tasks, such as speech recog-

nition (Deng et al., 2013), text analysis (Young et al., 2018), image clas-

sification (Krizhevsky et al., 2017) and semantic image segmentation

(Ronneberger et al., 2015). Particularly semantic segmentation

(i.e. classifying each pixel of an image into a single semantic class) can

be useful for geomorphological mapping. Due to the combination of

spatial data generalization and segmentation, CNNs can be seen as a

combination of object-based and pixel-based mapping techniques.

This promising method is increasingly applied for mapping landforms

and geomorphology (Abolt & Young, 2020; Bhuiyan et al., 2020; Du

et al., 2019; Li et al., 2020; Palafox et al., 2017; Shumack et al., 2020;

Verschoof-Van der Vaart & Lambers, 2019).

Taking these developments into consideration, the process of

geomorphological mapping could be made more time-efficient and

reproducible. On top of that, the quality should be properly described.

Therefore, in this research we aim to (1) quantify the uncertainty asso-

ciated with manual geomorphological mapping, (2) explore the use of

CNNs for semi-automated geomorphological mapping and (3) test the

sensitivity of CNNs to uncertainties in the manually created

evaluation data.

To achieve our goals, we compare the manual mapping results of

five different geomorphologists in a case study setting and carry out a

semi-automated mapping procedure in the same area. The central

push-moraine district in The Netherlands offers a suitable case-study

area, considering its distinct landforms and wide availability of

supporting, high-resolution DEMs and subsurface data and rich map-

ping history (Pierik & Cohen, 2020).

2 | DUTCH GEOMORPHOLOGICAL MAP
AND STUDY AREA

2.1 | Legend of the geomorphological map of The
Netherlands

The geomorphological map of The Netherlands (scale 1:50 000) is a

nationwide morphogenetical map. The map classification contains a dis-

tinction between geomorphological units based on both their mor-

phometry as well as their genesis. This genetical approach is essential

to distinguish geomorphological units in the flatter parts of The

Netherlands, where differences in relief can be minimal. The geomor-

phological map of The Netherlands was mostly developed in the

1960s–1990s through field surveys, soil corings and low-resolution ele-

vation measurements (Koomen & Maas, 2004). The map is currently

being updated using detailed digital elevation data and high-resolution

subsurface information (Van der Meij & Maas, 2020). The map is part

of the Key Registry Subsurface in The Netherlands. Wageningen Envi-

ronmental Research is responsible for the maintenance of this map.

The geomorphological map is a digital polygon vector file that

can be visualized and analysed in a geographic information system

(GIS). Each polygon in the map is described by several legend units,

which can be separately visualized. The legend of the Dutch
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geomorphological map has a hierarchic structure (Maas

et al., 2021). The different legend units describe the landform, gen-

esis, relief and optional additions of a geomorphological unit

(Figure 1). At the upper level, the landform describes the morphol-

ogy of a landform, such as ridges, terraces, plains or valleys. At the

second hierarchical level, the genesis describes which type of pro-

cesses created the landform, for example periglacial, aeolian, marine

or anthropogenic processes. The combination of a landform and

genesis unit, together with a unique index number, forms the geo-

morphological unit. In the example of Figure 1, the landform R

(valley), with genesis 2 (periglacial) and index number 1 forms the

geomorphological unit ‘dry valley’. At the third level, a relief unit

and optional additional units can be added to describe relief, atypi-

cal surface sediment covers and optional active geomorphological

processes. The legend of the geomorphological map of The

Netherlands (in Dutch) can be found at https://

legendageomorfologie.wur.nl/. This online legend contains defini-

tions and descriptions of each legend entry.

In this study, we evaluate the manual geomorphological maps at

the legend level of geomorphological units (Figure 1). The geomorpho-

logical units describe both the shape and genesis of the various land-

forms; most of the names of the geomorphological units are more

widely used in geomorphological research and literature and this leg-

end level is the standard level of visualization for the

geomorphological map.

2.2 | Study area

The study area of Utrechtse Heuvelrug is located in the central

push-moraine district of The Netherlands. We have chosen this

area for its distinct relief, the occurrence of large regional land-

forms in combination with small local landforms, which are both

relatively easily distinguishable on DEMs and in the field. The geo-

morphological history and shallow subsurface geology of this area

are well understood and documented (Jongmans et al., 2015;

Maarleveld & Van der Schans, 1961; Stouthamer et al., 2020; Van

den Berg & Beets, 1987; Zagwijn, 1974). Also, a large amount of

reliable corings are readily available (BRO, 2021; Van der Meulen

et al., 2013). The geomorphological map of the Utrechtse

Heuvelrug was first mapped in 1975 (Ten Cate et al., 1975) and

was most recently updated in 2019. This provided enough data

for individual mapping by geomorphologists and training the CNNs

to learn how to automatically recognize the geomorphological

units.

The Utrechtse Heuvelrug is a push moraine that was formed in

the Saalian ice age and is currently located around 50 m higher than

its surroundings. At the end of the Saalian, melting ice formed large

outwash plains and slopes in front of the push moraine, on the west-

ern and southern side (Van den Berg & Beets, 1987). In the

Weichselian, running water from melted snow was prevented from

infiltration due to permafrost and as a consequence created incised

valleys in the push moraine. These landforms are currently still present

as dry valleys. Aeolian processes during the same period deposited a

thick layer of coversands over large parts of the area. These cov-

ersands can occur in belt-like landforms around the push moraines,

especially towards the east due to the prevailing western winds,

sometimes referred to as ‘belted coversands’ (Maarleveld & Van der

Schans, 1961). In more recent times, during the Middle Ages, parts of

these coversands got remobilized by agricultural (over)exploitation of

the area, forming large drift sand complexes with steep dunes and

accompanying plains and depressions (Pierik et al., 2018). Also, mining

activity left its mark on the landscape, in the form of deep quarries

that are currently filled with water. Currently, the area is mostly cov-

ered by forest and there are no large urban areas. The most commonly

occurring geomorphological units in the area, according to the legend

of the geomorphological map (Maas et al., 2021), are described in

Figure 2. More detailed descriptions of the legend entries are pro-

vided in the Table S1. We are mainly interested in natural geomorpho-

logical units and ignore anthropogenic structures such as ditches and

roads. Anthropogenic structures that change the landscape functions,

such as deep quarries and large excavations, are included in the map.

3 | METHODS

In this section we describe how the different geomorphological maps

in this study were produced and evaluated. Because of the large num-

ber of different maps used and created in this study, we clarify their

names and sources in Table 1.

3.1 | Available data

For the research, two main datasets were available. The first dataset

is the 2019 geomorphological map of The Netherlands (scale 1:50 000;

F I GU R E 1 Structure of the legend of the geomorphological map of the Netherlands. The blue box indicates the legend level that is used to

evaluate the manual geomorphological maps [Color figure can be viewed at wileyonlinelibrary.com]
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Table 1). The structure of the map and its legend have been explained.

The geomorphological map of the study area Utrechtse Heuvelrug

was updated in 2019 with a desk study and digital information. The

findings from this study have been incorporated into the update,

which will be published in the next version of the Dutch geomorpho-

logical map. The 2019 geomorphological map was divided into a train-

ing area (550 km2) and a test area (24 km2; Figure 2). The map of the

test area was not provided to the manual mappers or to the CNN in

the training phase.

The second dataset is a DEM, for which we used the AHN2

(Actueel Hoogtebestand Nederland version 2, https://www.ahn.nl/).

The AHN2 is a LiDAR-derived DEM that was published in 2012. It has

a cell size of 5 m. We used the AHN2 instead of the newer AHN3,

because we had a version of AHN2 available where all no-data values

were filled. Since the study area considers a rural area, the difference

with AHN3 is expected to be minimal. The DEM shows a detailed rep-

resentation of the Dutch land surface, including anthropogenic struc-

tures like roads, trails and ditches, but without buildings and

vegetation.

3.2 | Manual mapping

To quantify the uncertainty associated with manual geomorphological

mapping, we needed several maps of the test area, independently cre-

ated by different geomorphologists. For this, we approached nine

experts working at different universities and institutes in The

Netherlands, from which a team of five geomorphologists was formed

with different backgrounds and experience ranging from 1 to

40 years. The geomorphologists were familiar with the area, but have

not worked there professionally. Three team members work at

Wageningen Environmental Research. The two others work at

Wageningen University and the University of Groningen. Four of the

geomorphologists followed the same educational Master’s programme

at Wageningen University, although graduating in different years.

The mapping process was initiated with an introductory work-

shop, where the principles of the geomorphological map, its legend

and the available data were presented, and the mapping protocol (Van

der Meij & Maas, 2020) was discussed. Each team member subse-

quently received a data package to use during the mapping, consisting

F I GU R E 2 The geomorphological map of the study area Utrechtse Heuvelrug. Map A shows the training area, which has been used to train
the CNNs. Map B shows the test area, for which the manual maps and computed maps were developed and evaluated. The displayed maps are
from the 2019 geomorphological map (Table 1). This specific area was updated in 2019 and adjusted with the results from this study. The base
map for both maps is a hillshade map of the DEM. The reference system used is RD New (https://epsg.io/28992) [Color figure can be viewed at
wileyonlinelibrary.com]
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of the DEM and hillshade map of the entire Utrechtse Heuvelrug, and

the 2019 geomorphological map of the training area, excluding the

test area. Everyone was free to use other data to assist during the

modelling. Other data that were used are, for example, shallow geo-

logical models (Stafleu & Dubelaar, 2016) and historical land-use

maps, which are freely available for The Netherlands. Each team mem-

ber independently created a geomorphological map of the test area as

a desktop exercise, resulting in five geomorphological maps, named

manual maps in this study (Table 1). One of these manual maps was

the map that was made for the 2019 geomorphological map. The

mapping was performed in ArcMap. There was no discussion about

mapping methods and classification decisions between the team

members during the creation of the manual maps. For efficiency rea-

sons, it was expected that each geomorphologist would not spend

more than 24 h on the mapping. There were no guidelines provided

for mapping scale. Although the application scale of the geomorpho-

logical map of The Netherlands is legally set to 1:50 000, most map-

pers mapped at a more detailed scale (�1:20 000).

After the mapping, the team jointly carried out a field survey to

discuss their created maps and validate the areas with most discrep-

ancies using qualitative field observations and soil corings. The find-

ings from this field validation were processed into the most detailed

manual map, creating the consensus map (Table 1), which was jointly

considered by the team as the most representative geomorphological

map of the study area. The findings from the semi-automated map-

ping procedure were not included in this map. The manual maps and

their quality, presented in this study, are incorporated into the quality

document of the Dutch geomorphological map as well (Van der

Meij & Maas, 2020).

3.3 | Semi-automated mapping

CNNs are models that can learn to recognize patterns or objects by

applying a series of mathematical operations on the input data

(Albawi et al., 2017). We used a CNN to recognize geomorphological

patterns on images, in our case a DEM and a relief map.

The mathematical operations comprise convolutions, max pooling

operators, batch normalizations and rectified linear unit activation

functions (ReLU), which will be explained here respectively. Convolu-

tions are matrix calculations with moving-window filters (kernels), typ-

ically of 3 � 3 cells, that are used to summarize local spatial

information in the input images. This operation is similar to moving-

window calculations for determining slope or topographic properties

from a DEM. Pooling operators are methods that reduce the extent of

the input images by locally aggregating them, in our case by passing

on the maximum value in the aggregation of 2 � 2 cells. This pooling

will increase the spatial dimensions, or receptive field, over which the

convolutions can summarize spatial information, but this comes with a

loss of spatial information due to the aggregation. Batch normaliza-

tions are functions that normalize the output of the convolutions, to

make the model faster and more stable. A ReLU is a function that is

designed to introduce non-linearity in the calculations of the CNN, by

setting the negative outputs of a convolutional calculation to zero,

while the positive values remain the same. CNNs need this non-

linearity in order to be able to fit non-linear functions. Otherwise,

applying multiple linear operations, such as convolutions, one after

the other would only allow the CNN to learn a linear function of the

input, which would not be suitable to solve most tasks.

The spatial dimensions of the input images are reduced due to

the pooling operators. This means that spatial information gets lost.

Although this may be a desirable behaviour for image classification,

where the image is assigned to one single class, we would like to pre-

serve the spatial information contained in the input images in order to

classify each pixel into its corresponding geomorphological unit. For

this reason, we selected U-Net (Ronneberger et al., 2015), a CNN

architecture designed for semantic segmentation, or pixel-wise classi-

fication, in which the aim is to obtain a semantic map in which each

individual pixel in the image is assigned to a class. In the U-Net model,

the loss in spatial information is compensated by upsampling deeper

layers in the model and combining them with shallower ones where

the spatial information is richer. This architecture allows the model to

obtain a larger receptive field, while the spatial detail is maintained.

The combination of a larger receptive field and preservation of spatial

information allows for semantic segmentation. Moreover, this combi-

nation enables associating each pixel in the input images with a cer-

tain class, instead of giving one class to the entire image. Semantic

segmentation CNNs such as U-Net can thus recognize objects based

on local information, while considering the larger context

(Ronneberger et al., 2015). This makes them suitable for geomorpho-

logical mapping.

We used a symmetric U-Net architecture with four encoding

layers, using two sets of 16, 32, 64 and 128 convolutional filters,

respectively, all followed by a batch normalization operation and a

T AB L E 1 Overview of the different types of maps used, made
and described in this study

Map name Description

2019 geomorphological map Geomorphological map of the

Utrechtse Heuvelrug,

updated in 2019 using

manual mapping and which

served as a basis for the

different analyses in this study.

Manual maps Geomorphological maps of the

test area created by manual

mapping (M1–M5).

Composite map Map of the test area created by

overlaying all five manual maps

and determining the most

commonly mapped

geomorphological unit for

each raster cell.

Agreement map Map accompanying the composite

map, showing the agreement

between the manual maps.

Computed maps Landform maps of the test area

created by semi-automated

mapping with a CNN.

Consensus map Final geomorphological map of

the test area, created by

processing all findings from

this study into a single map.

We consider this map as the

most representative map of

the test area.
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ReLU activation, and the same number of convolution-transposed fil-

ters in the upsampling network (Figure 3). All kernels have a 3 � 3

spatial footprint. The max pooling layers and convolution transpose

layers aggregate or de-aggregate the images with 2 � 2 cells. The

U-Net was trained using the stochastic gradient descent algorithm, to

find the model parameters with the best fit between the predicted

and actual classes. This fit was calculated using a multi-class cross-

entropy loss function using a log-softmax activation on the output

scores. The model trained for 5000 iterations (epochs). The initial

learning rate was 0.001 and decayed following an inverse proportional

law with respect to the epoch number.

U-Net requires two types of data sources for training: ground-

truth example maps with objects that need to be predicted and input

images on which to recognize these objects. All the data was provided

in raster format. The ground-truth objects were derived from the

2019 geomorphological map for the training area, excluding the test

area. This area was used for the evaluation of the results.

In order to be trained well, U-Net requires a limited amount of

input classes which are sufficiently present in the training area. To sat-

isfy this requirement, we created three subsets from the 2019 geo-

morphological map (Table 2). With these three subsets, we wanted to

test how U-Net performed in mapping different types of landforms or

geomorphological units. Subset 1 contains the main landforms in the

study area, representing the highest level of the legend of the geo-

morphological map (Figure 1). We made a distinction between the

push moraine and other types of ridges, which are often located on

top of the push moraine. The aim of this subset was to create a spa-

tially exhaustive landform map. In subset 2 we selected the dry val-

leys, as a representative geomorphological unit for distinct local

geomorphological units. The areas that were not a dry valley on the

2019 geomorphological map were classified as a background class. In

subset 3 we selected all drift-sand-related geomorphological units.

These units are representative for distinct regional geomorphological

units. Also here, the parts of the 2019 geomorphological map that

were not related to drift sand were classified as a background class.

For each subset, the 2019 geomorphological map for the training area

was converted to a raster map, where each polygon was converted to

a certain class following the selection criteria from Table 2. It should

be noted that the mapping tasks for U-Net were different from the

manual mappers. The manual mappers created a complete geomor-

phological map of the test area, while U-Net only mapped the land-

forms or certain geomorphological units in the test area. The number

of classes in a complete geomorphological map would have been too

much for U-Net to be trained well. Next to that, U-Net would not

have been able to distinguish similar geomorphological units with a

different genesis, because U-Net only had elevation data as input (see

next paragraph), while other data about substrate is necessary to

determine the correct genesis.

The classes in each subset are unevenly distributed in the study

area. To avoid a bias in the model training towards the more com-

monly occurring classes, we assigned weights to each class during the

training of the model. These weights were based on the relative sur-

face area of each class in the training area. We calculated three sets

of weights for each subset of geomorphological units, by taking the

square root, the absolute values and the square of the inverse of the

relative surface areas of each class.

The images on which U-Net should recognize the classes from

each subset were derived from the DEM. The DEM contained a lot of

anthropogenic structures, such as roads and ditches, which could

affect the training and predictions of U-Net. Therefore, we created a

smoothed digital terrain model (DTM) using a Gaussian filter of 5 � 5

cells, largely to remove these anthropogenic structures. This filtering

removed a large part of the anthropogenic structures, but also some

characteristics of the target objects, such as small dunes, which are

F I GU R E 3 Architecture of U-Net as used in
this study. The arrows indicate mathematical
operations performed in the model in order to
classify the input images into geomorphological
maps. The light blue blocks represent the input
and processed data, also called tensors. The
number above the tensor indicates the number of
channels in each tensor. The leftmost tensor is the
DTM image, containing a single channel, while the
last one is a tensor of the same spatial extent as
the input but with C channels, where C refers to
the number of output classes [Color figure can be
viewed at wileyonlinelibrary.com]

1094 VAN DER MEIJ ET AL.

http://wileyonlinelibrary.com


typically up to 50 m in diameter. Nonetheless, the overall characteris-

tics of the natural terrain were not modified to a large extent by these

filters and the landforms of interest were still well visible. We then

applied a Laplacian filter of 9 � 9 cells on the smoothed DTM to cre-

ate a relief map. The DTM and the relief map served as input for

U-Net. The input raster files were divided into tiles of 256 � 256

cells, with an overlap of 25% to improve predictions around the edges

of the tiles.

The size of the raster cells determines the extent and level of

detail of the geomorphological units that U-Net can recognize,

because the number of cells in the tiles is fixed. Larger raster cells give

a larger spatial extent on which larger geomorphological units might

be more easily recognizable, but provide less detail. Conversely,

smaller raster cells might work better to recognize smaller objects, but

they provide a smaller spatial context as well. To test how raster reso-

lution affected the results, we worked with three cell sizes rep-

resenting different spatial extents (5, 10 and 25 m). All together this

resulted in 27 model runs (three subsets of geomorphological

units � three sets of weights � three cell sizes).

3.4 | Evaluation procedure

We performed a quantitative evaluation of all the maps created in this

study in three steps (Figure 4):

1. The manual maps were compared among each other.

2. The computed maps were evaluated by comparison with the 2019

geomorphological map.

3. The manual and computed maps were compared among each other

and to the consensus map.

Raster files are easier to compare with each other and with the

results of the semi-automated mapping. Therefore, the manual maps,

that were mapped in vector format, were converted to raster format

for evaluation. We used a resolution of 10 m, which roughly corre-

sponds to a map scale of 1:20 000 (Tobler, 1987), which was the

approximate scale that most geomorphologists used for their

mapping.

We performed the evaluation of the manual maps on the geomor-

phological units in the map. We determined the agreement between

the manual raster maps by stacking them and determining the most

commonly mapped geomorphological unit for each raster cell. The fre-

quency of this class determined the agreement between the manual

maps, which ranges from 0 to 1 [Equation 1]:

agreement¼ frequency�1ð Þ
#maps–1ð Þ ð1Þ

This procedure resulted in two maps: a composite map showing the

most commonly mapped geomorphological unit (mode) and an agree-

ment map showing the agreement between the different geomorphol-

ogists (Table 1). The agreement map was aggregated to a class

agreement and overall agreement by spatially averaging the agree-

ment map per class or over the entire map.

The maps created by the semi-automated mapping were evalu-

ated by comparing them with the 2019 geomorphological map,

which was also used to train the model. We selected two standard

statistics to evaluate machine learning results. These are overall

accuracy and Cohen’s kappa. The overall accuracy (OA) describes

the overall agreement between two maps, based on the cells that

are classified the same in both maps, divided by the total number of

cells [Equation 2]:

OA¼ correctly classified cells
total number of cells

ð2Þ

The agreement determined with OA does not depend on the fre-

quency of individual map components, which means that every raster

cell has the same weight. The scores of the accuracies range from 0 to

1, where 1 indicates perfect agreement. Depending on the number of

classes, a value of 0.125 (eight classes) or 0.5 (two classes) indicates a

random agreement.

Cohen’s kappa (κ) (Cohen, 1960) measures the agreement

between two maps by correcting the OA with an expected random

chance accuracy (pe), meaning that it corrects for agreements that

can occur by chance [Equation 3]. pe is defined as the sum of the

product of the number of times n class k is classified on map

T AB L E 2 Names of the three subsets, their classes and the selection criteria to derive these classes from the 2019 geomorphological map
(see Figure 2 for details of the geomorphological units)

Subset Name Class number: name Selection criteria

1 Aggregated landforms 1a: Push moraine Geomorphological units B11 and D11

1b: Other ridges Landform B, excluding B11

1c: Sloping areas Landforms G and H

1d: Complexes of small landforms Landform L

1e: Plains Landform M

1f: Non-valley-shaped depressions Landform N

1g: Valleys Landform R

2 Dry valleys 2a: Dry valleys Geomorphological unit R21

2b: Background All others

3 Drift sands 3a: Drift sands Geomorphological units L54, N51, M54, B58 and units

with addition ‘s’

3b: Background All others
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1 and map 2, divided by the square of the total number of obser-

vations N:

κ¼OA�pe
1�pe

,withpe ¼
1

N2

X
k
nk1nk2 ð3Þ

The values of Cohen’s kappa range from �1 to 1, where 1 indicates

perfect agreement, 0 indicates an agreement that can be expected by

random chance and values lower than zero indicate an agreement that

is worse than random. Both statistics can handle multiple classes.

Cohen’s kappa also gives similar importance to less common classes

as to more common classes. This is important, because local geomor-

phological units often cover a very small area relative to regional or

background units, while they play a large role in landscape functions

like biodiversity or water routing.

To test the effect of uncertainty in ground-truth data on the eval-

uation of the computed maps, we evaluated the computed maps using

each manual map as a separate ground-truth map. This resulted in a

set of evaluation statistics for each computed map, with one value for

each of the manual maps. For this, the manual maps were converted

to raster maps using the same classification as was used for making

the subsets for training the semi-automated mapping (aggregated

landforms, dry valleys and drift sands; Table 2).

Next to that, we also wanted to compare the quality of the man-

ual maps and the computed maps compared to an independent map.

For this, we selected the consensus map. The manual map on which

this consensus map was based was left out of the further analysis. We

calculated Cohen’s kappa for each manual or computed map in com-

parison to the consensus map.

4 | RESULTS

4.1 | Evaluation of manual maps

The five manual maps that were developed in this study are presented

in Figure 5. From visual qualitative analysis, each map sketches the

same general geomorphological division of the study area, with the

push moraine in the centre, flanked by coversands and drift sands to

the east and sandrs and drift sands to the west. Dry valleys are ori-

ented south-westwards off the push moraine on the western flanks,

and are also present on the eastern slopes—albeit less prominent.

There are also considerable differences, such as the length of the dry

valleys and the extent of the drift sands in the western part of the

map. Some geomorphologists made the drift sand in their maps less

prominent than others, by mapping it as a legend unit addition instead

of a geomorphological unit (cf. Figure 1), but these additions are not

made visible in these maps. In practice this means that some geomor-

phologists made the drift sands more prominent than others. Another

difference is the level of detail of the maps. The geomorphologists

with the most experience with geomorphological mapping (M1, M4)

drew the most individual polygons. The average number of vertices

for each polygon also differs per map, with M1, M3 and M4 (working

at Wageningen Environmental Research) being higher than M2 and

M5 (working elsewhere).

The manually made maps were aggregated to the composite map

visible in Figure 6a, which shows the most commonly mapped geo-

morphological unit (mode) on the manual maps. Figure 6b shows the

agreement between the manual maps. The highest agreements can be

F I GU R E 4 Workflow for making and evaluating the manually and semi-automatically created geomorphological maps. The tiles with curved
lines represent maps in vector format. Tiles with grids represent maps in raster format. All analyses were performed with maps in raster format.
Map names are detailed in Table 1
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found in the centre of larger geomorphological units, such as the push

moraine (B11 and D11), sandrs (G11) and drift sand complexes (L54).

Smaller distinct geomorphological units that are clearly distinguishable

in the landscape are also mapped with higher agreement. Examples

are dry valleys (R21) and quarries (N91). However, at the edges of

these geomorphological units, both in width and length, the agree-

ment decreases. This indicates that there is considerable variation on

where the edges of the geomorphological units are drawn. For larger

geomorphological units, this edge has a relatively smaller effect than

for smaller geomorphological units. Geomorphological units with the

lowest agreement are those which might be too small for the map

scale and therefore only mapped by a few geomorphologists [e.g. ice-

meltwater hills (B15)], or geomorphological units which can be classi-

fied in multiple classes due to limited information for correct classifi-

cation [belted and non-belted coversands (L52 and L51)].

Figure 2b shows the consensus map which was created by incor-

porating findings from the field visit by all geomorphologists into the

manual map M4. The drawn boundaries in this map most closely

followed the boundaries as determined in the field, and contained the

most detail as well. The field visit provided new insights into the gene-

sis of several landforms. The most importance conclusion was that the

dune area east of the push moraine was classified by all team mem-

bers as a recent drift sand area (L54 or M54; Figure 5). Corings in the

field, however, showed that these dunes contain well-developed dry

Podzol soils, indicating that the soils must have been stable for several

millennia. It was therefore jointly concluded that the dunes consist of

Pleistocene/early Holocene coversands instead of recent drift sands.

Another major result was that the extent of the drift sand area in the

west turned out to be much smaller than on most manual maps. The

region between the drift sand and the push moraine indeed has a

locally small cover of drift sand, but the main geomorphological unit is

the underlying flat sandr plain. Based on these findings in the field, it

was concluded that the drift sand in that area is therefore better rep-

resented by the additional ‘s’ on top of the main sandr plain, rather

than classifying it as drift sand area.

4.2 | Evaluation of computed maps

For the analysis of the computed maps, we focus on the maps created

using the weights calculated by the square root of the inverse distri-

bution. This set of weights performed best overall for the different

subsets. Quantitative evaluation results for all model runs are pro-

vided in Table S2.

Figure 7 shows a visual comparison of the computed maps and

the ground-truth maps that were derived from the 2019

F I GU R E 5 The main geomorphological units as mapped on the different manual maps (M1–M5). Map M1 is the 2019 geomorphological map.
The text in the maps shows the years of experience with geomorphological mapping, the number of individual polygons in the map and the
average amount of vertices per polygon. See Figure 2 for descriptions of the geomorphological units belonging to the different codes. The base
map for each pane is a hillshade map of the DEM used in the study [Color figure can be viewed at wileyonlinelibrary.com]
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geomorphological map for the aggregated landforms, dry valleys and

drift sands. For the aggregated landforms, the general geographical

position of each class is predicted correctly, with the dominant push

moraine in the centre, flanked by the sandr and sandr plains including

the complexes of drift sand dunes on both the eastern and western

sections of the test area. However, the predicted extent of the push

moraine (class 1) is much larger than observed and the sloping areas

(class 3) and complex land forms (class 4) are predicted with different

extents as well. Relatively large differences between the ground-truth

and the predicted maps occur at a local scale as well: the small ridges

(class 2) are predicted mainly at the wrong locations, while the dry val-

leys (class 7) seem not to be predicted at all.

For the dry valleys, which are topographically lower than their

surroundings, mainly the steeper parts of the valleys on the push

moraine are detected, while the valleys on the flatter sandr are often

not recognized. The CNN performed reasonably well in detecting the

typical elongated patterns of such valleys, but there are gaps in the

predicted valleys. Also, the extent of the drift sand areas is predicted

much smaller than how they were mapped on the ground-truth map.

The predicted drift sands are mainly located in the areas with steeper

topography and more pronounced dunes, such as the dune area to

the east of the push moraine and in the southwest of the study area.

Several single dunes on the flanks and the top of the push moraine

were recognized as drift sand areas as well. In general, the semi-

automated mapping performs reasonably well in detecting landforms,

but is less precise in the correct delineation. A model that is trained

on a single landform (dry valleys of drift sands) seemingly performs

better than a model that is trained on a set of aggregated landforms,

because the latter contains more variation between classes due to the

higher number of classes.

Table 3 shows the evaluation statistics for the semi-automated

mapping results by comparing each computed map with the 2019

geomorphological map. The overall accuracy shows the overall

agreement between the test data and the model fit. The aggre-

gated landforms show the lowest overall accuracy. The dry valleys

show the highest overall accuracy, with an almost perfect agree-

ment. The high values for the overall accuracy are related to the

number and frequency of the classes in the data. For example, for

the subset with dry valleys, there is only a small area covered by

the valleys, while the background takes up a large surface area.

This distribution results in a high overall accuracy, where there is

no penalty for less represented classes. A comparison between

overall accuracy from the training and test set can say something

about model overfitting or underfitting. For the aggregated land-

forms and the dry valleys, the statistics are in the same order of

magnitude (see Table S2). For the drift sands, however, the overall

accuracy for the training set is much higher than for the test set,

indicating overfitting of the model.

F I GU R E 6 Composite map created from the manual maps showing the main geomorphological units (a), the agreement between the
different maps (b) and the agreement of this map summarized per landform (c). See Figure 2 for more details on the legend items [Color figure can
be viewed at wileyonlinelibrary.com]
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For Cohen’s kappa, the values range from 0.11 to 0.34, indicating

a slight to fair agreement (Table 3). The differences for each cell size

are minor, but in general, the 5 m cell size shows the lowest agree-

ments. For 10 and 25 m, the results are similar. Apparently, a cell size

of 5 m results in an extent that is too small to recognize the typical

topographical properties of the geomorphological units.

4.3 | Comparison of different mapping methods

Figure 8 shows a visual comparison of the manual agreement map

with the best-performing computed map for the dry valleys and the

drift sands. The location where the model predicted a dry valley

matches with the higher agreement of the manual maps. The model

recognized the large parts of the dry valleys to the west of the push

moraine, as well as most of the smaller dry valleys on the eastern side

of the push moraine. However, the smaller branches—including the

origins of the dry valleys—were not recognized by the model. Overall,

the CNN is rather conservative in recognizing the dry valleys and

appears to not recognize the typical elongated shape on gently sloping

areas.

The model mainly identified the areas with rougher topography

as drift sand areas. These are the dune areas in the southwest of the

study area and the dunes to the east of the push moraine. Also a few

individual dunes on top of the push moraine were correctly recog-

nized as drift sands. These patterns again match with the regions with

highest agreement from the manual maps. However, the model did

not recognize the more diffuse drift sand cover on top of the sandr as

drift sands. This area was also mapped with a lower agreement on the

agreement map, since they were also classified as plains of ice-

meltwater deposits with a local cover of drift sands.

In Figure 7, the manual maps were compared with the 2019 geo-

morphological map as ground truth. This map was also used to train

the model outside the test area. However, as we have shown in

Figure 5, there can be considerable differences between manually

mapped geomorphological maps. To illustrate the effect of uncertainty

F I GU R E 7 Overview of ground-truth (observed, left) and best-performing computed maps (predicted, right) for the different subsets of
geomorphic units. Legend for the aggregated landforms: 1a, push moraine; 1b, other ridges; 1c, sloping areas; 1d, complex landforms; 1e, plains;
1f, non-valley-shaped depressions; 1g, valleys [Color figure can be viewed at wileyonlinelibrary.com]

T AB L E 3 Evaluation statistics for the model performances in the areas, for the square root weights and for each evaluated raster cell size.
Values lower than expected by random chance are printed in italics (see Table S2 for a detailed overview of all evaluation statistics)

Aggregated landforms Dry valleys Drift sands

Cell size [m] 5 10 25 5 10 25 5 10 25

Overall accuracy [-] 0.45 0.44 0.45 0.94 0.94 0.94 0.49 0.64 0.61

Cohen’s kappa [-] 0.2 0.24 0.25 0.2 0.32 0.19 0.11 0.34 0.29
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in ground truth on the evaluation of semi-automated mapping, we

used each manual map as ground truth for the computed maps and

visualized the spread in Cohen’s kappa in Figure 9a. There can be con-

siderable spread in the calculated Cohen’s kappa values, which range

from 0.24 to 0.57. Remarkably, the comparison with the 2019 geo-

morphological map shows the highest agreement for the dry valleys,

but for the other subsets most of the other manual maps show a

higher agreement with the computed maps.

Figure 9b shows Cohen’s kappa for all manual and best computed

maps compared to the consensus map, which we consider to be the

most representative ground-truth map due to the field validation. As

mentioned, the manual map on which the consensus map was based

was left out of this analysis. In general, the manual maps are more

similar to the consensus map, with a few exceptions. In all cases, there

is an overlap in the Cohen’s kappa for the manual and computed

maps. Of all subsets of geomorphological units, the dry valleys show

F I GU R E 8 Comparison between manual
mapping agreement of dry valleys (top) and drift
sand areas (bottom) with the best-performing
CNN prediction for both landforms delineated in
black [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 9 Boxplots showing the
spread in Cohen’s kappa (a) when the best
computed map is compared to each
separate manual map as ground truth and
(b) when comparing the best computed
map and all manual maps with the
consensus map. The crosses in part A
refer to the comparison where the 2019
geomorphological map was used as
ground truth. This map was also used to
train the data [Color figure can be viewed
at wileyonlinelibrary.com]
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the highest similarity with the consensus map, closely followed by the

aggregated landforms. The kappa scores range from 0.10 to 0.66, indi-

cating a slight to fair agreement. There is one kappa value below zero

for the drift sands, which indicates that any similarity between that

map and the consensus map is lower than can be expected based on

random chance. These maps are dissimilar rather than similar. The

drift sands have the lowest similarity of each subset, probably because

the extent of the drift sand area in the consensus map has changed

considerably due to the field validation.

5 | DISCUSSION

5.1 | Quality of manual maps

When evaluating the quality of manual mapping, the results show that

the general morphology of the area shows large similarities between

each map, but there were also considerable differences between the

spatial identification and classification of the geomorphological units

(Figures 5 and 6) and delineation at smaller spatial scales.

Differences in geomorphological interpretation of the landscape

can partly be attributed to the different backgrounds and working

styles of the geomorphologists. In general, geomorphologists who

maintain the geomorphological map as part of their daily job created

maps with more polygons and more detail (Figure 5, M1, M3 and M4).

Maps M2 and M5 were created by geomorphologists who were famil-

iar with the geomorphological map, but did not have much experience

with mapping. This reflects in the number of drawn polygons and the

number of vertices per polygon. Also, different choices were made

about which geomorphological units were prioritized. For example, in

M5 the regional geomorphological units (sandr plains, drift sands and

push moraine) were prioritized, while the other maps prioritized the

local geomorphological units, such as the dry valleys, individual dunes

and small ridges.

Another important issue coming out of the discussions was the

use of scale levels. Formally, the application scale of the geomorpho-

logical map as part of the Dutch National Key Registry is defined as

1:50 000. This means that the map can be used for purposes at that

scale, but is not to be used at more detailed scale levels without criti-

cal review. The scale level of 1:50 000 translates into a minimum size

map unit of �10 ha, which was favourable for printing purposes and

readability of the printed maps (Steur et al., 1991). However, when

mapping in GIS, often a more detailed scale can be used, because the

currently available digital information facilitates mapping at a more

detailed scale. In this project, although the mapping protocol was

described in detail, no mapping scale levels were defined. This means

that the level of detail in the manual maps exceeded the mapping

scale of 1:50 000. Some of the geomorphologists used a self-imposed

minimal scale, whereas others let this depend on the landform to be

digitized. Overall, most maps were created at a scale of �1:20 000.

Also, the delineation of the specific landform played a role, where in

some cases the landform can visually be sharply separated from bor-

dering landforms, whereas in other cases the exact boundary is not

relevant, since adjacent landforms can have diffuse boundaries and

merge into one another at the application scale of the map. The differ-

ences in the maps due to different interpretations of the mapping

scale indicate that a mapping scale should be defined explicitly in the

mapping protocol. There can also be several mapping scales defined,

depending on the geomorphological unit. Although the current data

sources facilitate mapping at a very detailed scale (up to 1:1000), the

applications of the final map often require less-detailed maps, which

should be considered in defining the required level of detail. When

different applications require different levels of detail from a geomor-

phological map, a hierarchical map and legend—that could be visual-

ized and analysed at a wide range of scales—could offer a solution

(De Jong et al., 2021).

The consistency, or inconsistency, of the manually created maps

is also referred to as inter-rater reliability. Maps that are more similar

have a higher inter-rater reliability, which results in higher evaluation

statistics and higher agreement between different maps

(McHugh, 2012). Ideally, the inter-rater reliability is as high as possi-

ble. This would indicate that the mapping technique of different map-

pers is very similar, which should result in a consistent map. In the

agreement map in Figure 6b, this would be the case for parts of the

push moraine, drift sands and the centres of the dry valleys. Lower

inter-rater reliability would indicate that maps created by different

geomorphologists are less consistent, for example the transition

between push moraine and sandr in the west and between push

moraine and the sand landscape in the west. A low inter-rater reliabil-

ity could propagate into training datasets for semi-automated map-

ping exercises (Sadr, 2016). We discuss the inter-rater reliability in the

manual maps in more detail below.

With mapping exercises like we performed in this study, areas

and geomorphological units with a low mapping agreement could be

pinpointed. In order to reduce differences in identification and delin-

eation, scale and zooming rules should be implemented in the geo-

morphological mapping protocol. From the evaluation of the different

maps and the validation in the field, it was also apparent that some

legend units are more open to different interpretations than others.

From the fieldwork, it became clear that general genesis was often

agreed upon. Based on topography, there was high agreement on the

sloping landforms. The interpretation on sandrs, alluvial fans or collu-

vial deposits showed less consistency. In addition, the dominance of

one landform over another was sometimes interpreted differently.

This was particularly the case in the more complex land units, where

the discussion was often raised whether drift sand dunes were domi-

nant over the underlying plains or undulating coversands, or whether

the coversands should be regarded as more prominent than overlying

small-scale land dunes. This is important, since a difference in inter-

pretation might result in a seemingly different geomorphological cod-

ing, whereas the difference in meaning is much subtler. Additionally,

differences in classifications were related back to boundary issues,

especially where the border from one landform into the next was

gradual both in the field and in the base data.

This has resulted in the similar general morphology of the area

and the generally high agreement of the different maps (Figure 6). The

field validation, however, showed that the agreement between the

manual maps did not mean they were correct. Everyone mapped the

dune area east of the push moraine as recent drift sands based on the

high relief and the 2019 geomorphological map, while field work

showed that these dunes should be classified as coversand dunes. In

the legend of the geomorphological map, high relief is defined by

slopes steeper than 1� (Maas et al., 2021). This shows that conven-

tions about typical relief of geomorphological units are not always
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valid, and field validation and continuous discussion should be an

essential part of the protocol for large mapping campaigns to avoid

mistakes due to wrong assumptions and mapping habits (Knight

et al., 2011). These points were also included in the mapping protocol

for the geomorphological map of The Netherlands (Van der Meij &

Maas, 2020).

5.2 | Geomorphological mapping using CNNs

5.2.1 | Geomorphological mapping with CNNs in
The Netherlands

Our attempt to map geomorphological units in the Dutch push-

moraine district using a CNN was partly successful. The model results

showed that, based on the surrounding training areas, a reasonable

agreement was achieved when mapping the aggregated landforms, as

well as single geomorphological units (dry valleys or drift sands;

Table 3). Still, the models were mainly successful in identification of

parts of the targeted geomorphological units instead of the entire

unit. For the dry valleys, the models identified parts of the valleys, but

did not predict a continuous valley from the push moraine into the

sandr areas. The morphology of the dry valleys on the push moraine is

much steeper and deeper incised than the valleys on the sandr, which

leads to a relative conservative interpretation by the CNN. Addition-

ally, the CNN is not able to recognize the entire typical elongated

shape of the legend item, and fails to connect upslope and downslope

portions of the same dry valley. In the legend of the geomorphological

map, these parts of the valleys are distinguished by the relief code,

but in the models no distinction was made. These ambiguous proper-

ties of the geomorphological unit might have contributed to the mod-

erate results of the model. The same goes for the drift sand areas. The

models predicted the drift sands mainly in areas with more pro-

nounced dune morphology. These areas are identified as a complex of

land dunes in the legend of the geomorphological map. Areas with less

pronounced drift sand morphology were not recognized by the model,

although these areas were present in the training data. Based on field

observations and corings, we decided that these areas should not be

classified as drift sands as the main geomorphological unit in the con-

sensus map, but as ice-meltwater deposits (sandr) with a cover of drift

sands (Figure 2b). The morphology was thus leading in the delineation

of drift sands by the CNNs as well as by the geomorphologists. This

again emphasized the need for field observations (by multiple geomor-

phologists) as part of updating geomorphological maps, both by man-

ual mapping and semi-automated mapping (Knight et al., 2011).

Studies that aimed to map specific landforms using CNNs achieve

overall better results than our study. For example, a study mapping

ice-wedge polygons in Alaska correctly predicted 91% of the poly-

gons, but also noted that their algorithm was unable to map polygons

with low relief (Abolt & Young, 2020). Palafox et al. (2017) mapped

geological landforms on Mars with accuracy around 94%. Verschoof-

Van der Vaart and Lambers (2019) achieved F1 scores of 0.68 and

0.79 for detecting archaeological landforms in The Netherlands. For

comparison, the F1 scores from our study ranged between 0.08 and

0.71 (see Table S2). Studies using other semi-automatic mapping tech-

niques for mapping the Dutch geomorphology yield similar results as

our CNN. For example, Seijmonsbergen et al. (2011) mapped low-

relief landforms in the northern Netherlands using object-based image

analysis. Their results match relatively well with the original geomor-

phological map of that area, with kappa values of around 0.57.

Despite the higher kappa values, their models also did not accurately

map specific shapes of geomorphological units, such as elongated val-

leys or dune ridges. This comparison indicates that our model scores

lower than other studies using similar methods. We partly contribute

this to the relatively large sizes of the geomorphological units that we

want to predict and to the anthropogenic structures (roads, ditches)

that are still in the DTM, despite the filtering. Such structures are

absent in the pristine landscapes of Alaska and Mars. Nonetheless, we

see room for improvement when mapping geomorphological units

using CNNs.

5.2.2 | Recommendations for geomorphological
mapping with CNNs

There are several steps that could be taken to improve semi-

automatic geomorphological mapping using CNNs. These are: (1) using

additional data sources as training data; (2) post-processing of the

results; and (3) exploring a combination with other methods for semi-

automatic geomorphological mapping.

In this first attempt at geomorphological mapping in The

Netherlands using CNNs, we only used a DTM and a relief map as

training data, and relied on the self-learning capabilities of CNNs to

recognize the geomorphological units on the training data. To improve

the predictions, there are data sources that show other terrain or

landscape properties, which can be used as additional training data.

These training data can, for example, be derived from the DTM. Such

LSPs or geomorphometric variables (Hengl & Reuter, 2008) can, for

example, contain information about the local relief (roughness) or the

hydrological situation (topographic wetness index or flow accumula-

tion). These LSPs provide information about the topography that is

not readily available in DTMs or relief maps. Also, this information is

difficult or impossible to derive by CNNs, because they require calcu-

lations over a larger spatial extent than that covered by the moving

window calculations done in the CNNs. In landscapes with limited

relief, such as coastal regions like the western Netherlands, the relief

of anthropogenic structures—such as roads, ditches and buildings—is

often much more pronounced than the natural relief. A simple filter

such as we applied would not suffice to remove these anthropogenic

objects from the DEMs; extensive filtering is required (e.g. Meyer-

Heß, 2020; Van der Meulen et al., 2020). In built-up areas, the natural

relief might even be completely overprinted and not be retrievable at

all by DEM filtering, and data sources other than DTMs and LSPs are

required.

In these cases, and in cases where different geomorphological

units have similar morphology, a distinction can be made based on

genesis. Examples of these geomorphological units are Holocene and

Pleistocene land dunes as shown in this study, or fluvial and marine

meander belts and channels which are omnipresent in many near-

coastal regions in the world. Information on genesis can be included

via remotely sensed spectral maps that contain information on soil

moisture or soil texture (Castaldi et al., 2016; Chan et al., 2016). Such

maps perform well in digital soil mapping (Maynard & Levi, 2017).

Other useful maps that can be used to separate geomorphological
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units on their genesis are continuous (geological) probability maps of

the subsurface’s texture or hydraulic conductivity, such as GeoTOP

and REGIS in The Netherlands (Stafleu & Dubelaar, 2016). These maps

are often based on coring data and directly represent the soil proper-

ties, instead of via a correlation like with spectral maps. In addition,

using coring data themselves may also improve CNN performance.

These geological maps and corings were also used during the manual

mapping.

Post-processing can also greatly improve the quality of the pre-

dictions from CNNs and other semi-automatic mapping techniques

(Salvi et al., 2021). Operations such as smoothing and cleaning can

remove noise from the predictions and create more realistic shapes

for the predictions (Sarzana et al., 2020). This could, for example, ben-

efit the mapping of elongated, continuous shapes of the dry valleys or

ridges. Also using more advanced techniques, such as conditional ran-

dom fields, could greatly improve the results of CNNs by providing

sharper boundaries of the mapped objects (Arnab et al., 2018).

Finally, it will also be useful to explore a combination of different

techniques for semi-automatic mapping. The results from our study

show that predictions for single geomorphological units with CNNs

are more realistic than spatially explicit maps, and that each geomor-

phological unit scores best with different weights and cell sizes

(Table 3). Other techniques, such as object-based image analysis or

classification by random forests, have been successful in mapping spe-

cific landforms or creating spatially explicit maps (Anders et al., 2011;

Dou et al., 2015; Giaccone et al., 2021; Pedersen, 2016;

Seijmonsbergen et al., 2011). This suggests that when different geo-

morphological units are mapped using the most suitable algorithm or

parameter set, the results can be combined or stacked into a single,

accurate geomorphological map.

5.3 | Effect of uncertainty in ground-truth data on
model performance

In machine learning, the ground-truth data (i.e. data used to verify the

model results) cannot be assumed to be without error (Bowler

et al., 2020; Zhang et al., 2020). The ground-truth data are annotated

or labelled by humans. This uncertainty in ground-truth data is often

not considered in machine learning. In studies where they do address

this issue, they often find (unacceptably) high variation in classification

by different individuals (Lyman & VanPool, 2009; Sadr, 2016),

although errors in the test data might also help to identify more

robust models (Northcutt et al., 2021).

In our study we also observe a high inter-rater variability in the

manual maps (Figures 5 and 8). When we used the different manual

maps as test data for the CNN results, the evaluation statistics could

vary widely (Figure 9a). In our case, the model performance ranged

from poor to moderate, depending on the subset and ground truth.

For the aggregated landforms and drift sands, the 2019 geomorpho-

logical map (the training dataset) does not show the highest agree-

ment with the computed maps in the test area. In fact, most of the

other manual maps have a higher agreement with the computed maps.

Figure 9a shows that uncertainty in ground truth can have a substan-

tial effect on model evaluation and might affect the selection of the

best-performing model. This uncertainty not only plays a role in the

evaluation of the models. During the training phase, the ground-truth

maps also contain a certain degree of uncertainty that will affect the

performance of the model. When the training data are annotated by

multiple people, there can be systematic differences in the ground-

truth data that can lead to poorer performance of the models

(e.g. Sadr, 2016). This shows the need for proper evaluation of the

ground truth-data before training and evaluating the models, because

the ground-truth data cannot be assumed to be without error.

The borders between different geomorphological units are often

diffuse, which creates uncertainty when deciding where to draw the

border. This partly depends on the intended scale level of the map

and the scale level at which the mapping was performed. Also, this

does not mean that the map is incorrect, since the aim of geomorpho-

logical maps is often to provide an interpretation of the origin and

genesis of the landscape in consideration. It is important that the user

of the map is aware of the aim of the map and the related uncertainty

in the location of its boundaries. Moreover, the legend with which the

landforms are classified is also subject to interpretation, where the

geomorphological units and their respective scale and borders are

predefined: they can be interpreted differently by geomorphologists

with different backgrounds, levels of experience and working styles.

These sources of uncertainty may propagate into the models and the

final results and might be one of the causes of the poor to moderate

model performance.

5.4 | Implications for geomorphological mapping

This study showed that uncertainty is inherent in geomorphological

mapping, due to different interpretations of the geomorphological leg-

end, subjective choices during the mapping and different levels of

experience of the geomorphologist.

For semi-automated geomorphological mapping, CNNs require a

considerable amount of ground-truth data for training the models.

This means that manual maps are a necessity at this stage. The geo-

morphological mapping of the Utrechtse Heuvelrug as training data,

data preparation for the model and training of the CNNs were time-

intensive tasks. Thus far, the use of CNNs has not saved us any time

in our mapping efforts. Nonetheless, the models that were trained

on specific landforms, like dry valleys and dune areas, can be applied

in other regions where these landforms occur. In The Netherlands,

and other regions of the world, there are ample landscapes where

dry valleys and drift sands occur, and where geomorphological maps

are not available or require updating. In these areas, the CNNs

developed in this study can assist in the mapping efforts. The use of

crowdsourcing has proven to be effective to generate training data

or improve the predictions of CNNs (e.g. Herfort et al., 2019;

Lambers et al., 2019). However, we do not foresee that such an

approach might be useful for geomorphological mapping, because it

requires geomorphological training to read the landscape and cor-

rectly identify geomorphological units. Especially for regional geo-

morphological units with diffuse boundaries, such as sandr plains

and drift sand areas, the delineation and classification might not be

straightforward, as we have shown in this study with experienced

geomorphologists.

At this stage, the incomplete delineation of the individual geo-

morphological units and the high uncertainty in the ground-truth data

indicate that CNNs may only be used for detection of large landforms
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or distinct geomorphological units instead of complete delineation

and mapping of these units. The human geomorphologist remains nec-

essary to properly delineate and classify the geomorphological units

that are predicted by the models. At this stage, semi-automated map-

ping with CNNs can be seen as an additional tool in the mapping pro-

cess, as the computed maps can identify areas that are ambiguously

defined or may spark the discussion of classification definitions, scale

issues and landform dominance. This is a more common find in studies

that try to detect landforms with deep learning (e.g. Verschoof-Van

der Vaart & Lambers, 2021). Before CNNs can (partly) take over the

work of manual mappers in creating geomorphological maps and

become part of the workflow for geomorphological mapping, more

development and testing of the models, parameters and input is

required. This will be the focus of future research.

6 | CONCLUSIONS AND
RECOMMENDATIONS

Geomorphological mapping is a time-intensive task that is often dif-

ficult to reproduce due to subjective choices during the mapping.

Semi-automated mapping techniques might deliver more robust and

reproducible results. The objective of this study was threefold:

(1) we wanted to quantify the uncertainty of manual geomorphologi-

cal mapping; (2) we wanted to explore the use of CNNs for semi-

automated geomorphological mapping; and (3) we wanted to test

how the uncertainty in manual maps affected the quality of

computed maps.

The manual maps created in this study show high similarities on a

regional level, but can differ substantially at a local level, due to differ-

ences in experience with mapping, choices in delineation, differences

in working styles and different interpretations and classifications of

geomorphological units. Agreement between manual maps does not

necessarily mean that the maps are correct (i.e. that they show the

actual geomorphology of the landscape). Coordination of mapping

efforts and field validation remain necessary to create accurate and

precise geomorphological maps.

The CNNs in this study were mainly successful in identifying the

general location of landforms and geomorphological units, but failed

at correct delineation. The predictions might be improved by adding

data layers that contain information about substrate and genesis, by

(advanced) post-processing of the results or by combining different

semi-automatic mapping techniques.

The quality of the computed maps varies substantially when using

different manual map for evaluation. This shows that ground-truth

data cannot be assumed to be without error, and that coordinated

mapping is required when developing accurate and precise training

and test data for semi-automated mapping techniques.

Our attempt at geomorphological mapping using CNNs as a semi-

automatic mapping technique shows that, at this stage, CNNs can be

a useful aid in geomorphological mapping, by identifying landforms,

but also in discussing and further defining the classification of land-

forms. The human geomorphologist, however, remains necessary to

correct the delineation and classification of the model results. More

development on the models, data processing and parameters is

required before CNNs can become a standalone technique for geo-

morphological mapping.
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