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Abstract
Having a sense of direction is a fundamental cellular trait that can determine cell shape, division orientation, or function,
and ultimately the formation of a functional, multicellular body. Cells acquire and integrate directional information by
establishing discrete subcellular domains along an axis with distinct molecular profiles, a process known as cell polarization.
Insight into the principles and mechanisms underlying cell polarity has been propelled by decades of extensive research
mostly in yeast and animal models. Our understanding of cell polarity establishment in plants, which lack most of the reg-
ulatory molecules identified in other eukaryotes, is more limited, but significant progress has been made in recent years. In
this review, we explore how plant cells coordinately establish stable polarity axes aligned with the organ axes, highlighting
similarities in the molecular logic used to polarize both plant and animal cells. We propose a classification system for plant
cell polarity events and nomenclature guidelines. Finally, we provide a deep phylogenetic analysis of polar proteins and dis-
cuss the evolution of polarity machineries in plants.

Introduction

Living systems display an astounding degree of spatial
organization that is essential for their development and
function. Key to this organization is the regulated asym-
metric distribution of molecules and structures at the
subcellular level, termed cell polarity. This ubiquitous
phenomenon, which appears even in single-celled organ-
isms, fueled the increase in morphological and functional
complexity of life forms throughout evolution. The es-
tablishment of cell polarity provides cells with a coordi-
nated system that can be interpreted at the cell or tissue
level to spatially organize diverse cellular and develop-
mental processes. In dividing cells, polarity can influence
the orientation of the cell division plane or the segrega-
tion of fate determinants to generate daughter cells with

different morphologies and developmental potential.
These asymmetric cell divisions (ACDs) are responsible
for cell type diversification in both prokaryotes and
eukaryotes, and are essential for the development of
multicellular organisms (Sunchu and Cabernard, 2020).
Polarity is also crucial in nondividing cells: the spatial in-
formation provided by cell polarity can determine cellu-
lar morphology and function by instructing the
positioning of organelles, cortical structures, and func-
tionally relevant molecules, such as those involved in di-
rectional intercellular transport or pathogen perception
(Klunder et al., 2017; Nakamura and Grebe, 2018).
Similarly, migrating or expanding cells require a polarity
axis that determines the localization and direction of mi-
gration or growth (Woodham and Machesky, 2014; Qin
and Dong, 2015). Finally, the polarity of individual cells
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can be integrated within the plane of a tissue, known as
planar cell polarity (PCP), to coordinate the patterning
and positioning of structures at higher organizational
scales (Butler and Wallingford, 2017).

Although multicellularity arose independently in plants
and animals, in both lineages, cell polarity is vital in address-
ing problems of body organization and homeostasis. Unlike
animals, however, plant cells are constrained by the presence
of a rigid cellulosic cell wall. This prevents cell migration and
morphogenic cell movements, which are the key features of
animal development and allow animal cells to end up in
locations distant from where they originated. Instead, cell
lineage, position, and fate are inextricably linked in plants.
Thus, precise selection of the cell division plane, often
instructed by polarity, is critical for the generation and orga-
nization of different cell types into tissues and organs. In ad-
dition, polarity is often fundamental to the morphogenesis
and physiology of individual cells.

Compared to animal cells, little is known about the mo-
lecular mechanisms underlying the establishment of plant
cell polarity, perhaps due to the unique constraints posed
by plant development. Beyond basic cellular processes, not
much appears to be shared with the mechanisms of cell po-
larity in other lineages. However, insights gained from non-
plant systems can be instructive regarding the general
principles involved. In this review, we introduce a concep-
tual framework to guide further studies on plant cell polar-
ity. We discuss recent developments regarding the
mechanisms that establish and maintain polarity at both
the cell and tissue level, provide a deep phylogenetic analysis
of known regulators of cell polarity, and speculate on the
evolution of polarity machineries within the plant kingdom.

What is in a name? The flavors of plant cell
polarity
The term “cell polarity” encompasses a diverse array of cases
and processes in which proteins or other cellular compo-
nents are unevenly distributed in the cell, but on a mecha-
nistic level these phenomena do not necessarily form a
coherent grouping. We suggest that they can usefully be
classified into three categories: localized growth polarity,
transient polarity, and axial polarity (Table 1). The major

conceptual distinction between axial polarity and the two
other types lies in their scale of applicability to cells within
an organ. Localized growth polarity and transient polarity re-
fer to the establishment of cellular asymmetry within an in-
dividual cell or small group of cells, distinct from the overall
population in the organ. Examples of localized growth polar-
ity include the tip growth of pollen tubes, root hairs, rhi-
zoids, and protonema, in which growth is focused in a small
domain of a single cell. An example of transient polarity
comes from the stomatal lineage in Arabidopsis thaliana, in
which patterns of polarization and subsequent oriented
ACD occur during a limited period in a subsection of a leaf
formed by descendants of a protodermal cell. In contrast,
axial polarity is relevant for most cells in an organ indepen-
dently of cell type and can be described as the basal coordi-
nate system that guides the spatial organization of cellular
processes along the major developmental body axes, such as
the embryonic and post-embryonic root–shoot axis.
Different types of polarity can be superimposed in the same
cell, as demonstrated by the persistence of axial polarity
markers in root hair-forming trichoblasts with disrupted
localized-growth axis positioning (Pietra et al., 2013), or the
restriction of a polar marker to a single lobe in pavement
cells (discussed below; Mansfield et al., 2018), which show
shape-defining alternating polar domains in lobes and inden-
tations (Majda et al., 2017). In this review, we primarily focus
on the principles and mechanisms underlying axial polarity.

Coordination of cell polarities with axes and
polarity fields
Cell polarity provides a cell with control over its shape, divi-
sion plane, or functions, but these are most meaningful
when placed in the context of the organ the cell resides in.
The Arabidopsis root has been a fruitful system for the
study of cell polarization. The highly stereotyped cell divi-
sions and the organized cell layers they give rise to make it
straightforward to describe the polar distribution of cellular
components with regard to the root’s major axes. The in-
ner–outer axis extends from the center of the root to its
surface: the inner domain of a cell is oriented toward the
vasculature, and the outer domain toward the surface of the
organ and the soil beyond (Figure 1, A–D). The apical–basal

Table 1 Key concepts in plant cell polarity

Term Description

Cell polarity Regulated asymmetric distribution of cellular components and structures along an axis
Polarity field Individual cell polarities coordinated across tissues and organs
Polarity regulator Contributes to polar domain formation and polar protein localization
Polarity effector or client Uses pre-existing polar domains for localization
Axial polarity Stable polarity axes aligned with the major body axes
Localized growth polarity Polarity axis that determines the direction of and sustains (out)growth in specific cell types
Transient polarity Transient polarity axis that determines morphological and/or fate asymmetry of cell division in specific cell types
Symmetry-breaking Stimuli-induced or spontaneous initial local asymmetry that orients the polarity axis and initiates the polarization

program
Reinforcement Amplification of the initial asymmetry into stable polar domains via positive feedback and inhibitory mechanisms
Implementation Recruitment of effectors to polar domains that drive polarization of cellular components, processes, and functions
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axis runs from the tip of the shoot toward the root, with
cellular domains accordingly described as apical (shootward)
or basal (rootward; Figure 1, A and B). The remaining two
faces of the typical cuboid root cell, which face the neigh-
boring cells of the same tissue layer perpendicular to the
apical–basal axis, represent a distinct polarity that is neither
inner–outer nor apical–basal. We suggest the term circum-
ferential polarity for this rarely considered and poorly de-
scribed orientation (Figure 1C). Further increasing the
complexity of the system beyond cell faces, cell edges and
corners also appear to form polarity domains with unique
molecular composition (Elliott and Kirchhelle, 2019).
Although only a handful of edge-localized proteins have
been identified, these are involved in vesicular trafficking,
microtubule nucleation and stability, and modification of
cell wall properties, and likely have important functions in

defining the biochemical and mechanical properties of cell
edges.

A number of proteins are known to be polarized relative
to the inner–outer axis of the root, many with functions re-
lated to the transport of small molecules. The directional
transport of silicon from the soil to the stele in rice (Oryza
sativa) is dependent on the polar distribution of importers
(Lsi1) and exporters (Lsi2) to the outer and inner plasma
membranes of outer root cell layers, respectively (Ma et al.,
2006, 2007). Boron uptake in Arabidopsis is facilitated in a
similar manner by the boron importer NOD26-LIKE
INTRINSIC PROTEIN5;1 (NIP5;1), localized to the outer do-
main of root epidermal cells, and the exporters REQUIRES
HIGH BORON1 (BOR1), and BOR2, localized to the inner
domain of different root cell files (Alassimone et al., 2010;
Takano et al., 2010; Miwa et al., 2013; Figure 2, A and F).

Figure 1 Major plant body axes. Diagrams indicate the major body axes in: (A) longitudinal root section; (B) transverse root section; (C) longitudi-
nal section of a lateral root; (D) early embryo; (E) leaf. The identities of the root tissues in (A)–(C) are described in the color-coded legend.
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Several proteins involved in pathogen defense, such as the
ATP-BINDING CASSETTE G subfamily (ABCG) transporter
proteins ABCG34/PDR6, ABCG36/PEN3, and ABCG37/PIS1,
are also localized to the outer domain of root epidermal
cells, facing toward invading pathogens (Strader and Bartel,
2009; Langowski et al., 2010; Khare et al., 2017). Finally, sev-
eral developmental proteins display inner–outer polarity.
The leucine-rich repeat receptor-like kinase (LRR-RLK)

INFLORESCENCE AND ROOT APICES RECEPTOR KINASE
(IRK) is localized to the outer domains of cells in the pericy-
cle and endodermis, where it influences the plane of cell di-
vision (Campos et al., 2020; Figure 2A). The receptor-like
cytoplasmic kinase SCHENGEN1 (SGN1) localizes to the
outer faces of differentiating endodermal cells, spreading
also to the circumferential, apical, and basal faces
(Alassimone et al., 2016). Here, it positions CASPARIAN

Figure 2 Proteins that polarize relative to the major plant body axes. A, In a longitudinal section of the root, NIP5;1 and PEN3 localize to the outer
domain, while BOR1 and BOR2 localize to the inner domain. In the endodermis, IRK and SGN1 localize to the outer domain, and SGN3 is found
in the apical and basal domains. B, In a transverse section of the root, SGN3 localizes to the circumferential domain of endodermal cells where
neighboring cells of the same tissue layer meet. SGN1 localizes to the outer domain. C, In root protophloem cells, OPS localizes to the apical do-
main, while BRX and PAX localize to the basal domain. D, SOK1 is natively expressed in vascular cells, where it localizes to the apical outer corner.
SOK2 is natively expressed in the endodermis, where it localizes to the basal inner corner. When ectopically expressed, SOK2 maintains the same
polar localization in all cell layers. In contrast, although SOK1 remains apical in all cell layers, its distribution along the inner–outer axis is oriented
toward the cortex-endodermis junction. Root tissues in (A)–(D) are color-coded as indicated in Figure 1. E, Ectopically expressed BASL throughout
the leaf localizes to a single lobe of pavement cells aligned with the proximal–distal axis. F, Polar distribution of NIP5;1 to the outer domain and
BOR1 to the inner domain in the eight-cell stage embryo.
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STRIP MEMBRANE DOMAIN PROTEIN (CASP) proteins and
the future Casparian strip, where its activity overlaps with
that of SGN3, which is located in a wide band along the api-
cal, basal, and circumferential faces (Figure 2, A and B).
SGN3 and CASP proteins may thus also represent a rare ex-
ample of proteins polarized to the circumferential domain.

Among the proteins that display apical–basal axial polarity
are the well-studied proteins involved in polar auxin transport
(PAT). These are extensively reviewed elsewhere (Adamowski
and Friml, 2015) and will not be covered in detail here. In
brief, in the stele, the efflux transporters PIN-FORMED 1
(PIN1), PIN3, PIN4, and PIN7 are basally localized, directing
auxin in the rootward direction. In an illustration that the po-
larity of a protein relative to body axes can be cell type spe-
cific, PIN3 and PIN7 lose their basal polarity in the columella,
becoming apolar, while PIN2 is located basally in the cortex
but apically in the epidermis and root cap (Müller et al.,
1998; Gälweiler et al., 1998; Friml et al., 2002a, 2002b, 2003).
Other proteins that polarize according to the apical–basal
axis are found in developing protophloem sieve elements.
BREVIS RADIX (BRX) and PROTEIN KINASE-ASSOCIATED
WITH BRX (PAX) localize to the basal domain of these cells
(Scacchi et al., 2009; Marhava et al., 2018), while OCTOPUS
(OPS) is apically localized (Truernit et al., 2012; Figure 2C).
The apical–basal polarity axis is also read out by BREAKING
OF SYMMETRY IN THE STOMATAL LINEAGE (BASL), a polar
scaffold protein important for stomatal lineage development.
When this protein is ectopically expressed in the root, it local-
izes to the basal domain (Dong et al., 2009), presumably po-
larized by some common feature of this domain across the
various cell types and layers of the root.

The existence of a widespread coordinate system in the
root is also suggested by the polar localizations of the re-
cently identified SOSEKI (SOK) proteins. This family is repre-
sented by five members in Arabidopsis, each of which
localizes to specific corners and edges of cells (Yoshida et al.,
2019). For example, SOK1 is localized to the outer apical
corner and outer face of vascular cells, and SOK2 to the in-
ner basal corner of endodermal cells. When ectopically
expressed throughout the root, both SOK1 and SOK2 main-
tain their polarity relative to the apical–basal axis, even in
cell types they are not normally present in (Figure 2D). This
behavior suggests that, similar to ectopic BASL, they polarize
according to an apical–basal polarity cue that is present in
all the cells of the root, hinting at the existence of a global
coordinate system. When a new lateral organ forms, such as
the emergence of a lateral root, new axial polarity axes are
established oriented relative to the direction of the organ’s
growth rather than that of the parent axis, as evidenced by
the analogous localization of polar markers (Benková et al.,
2003; Mansfield et al., 2018; Yoshida et al., 2019).

In contrast to their consistent apical–basal localization,
SOK1 and SOK2 differ in their polarization relative to the in-
ner–outer axis when expressed in different tissue contexts.
SOK2 is localized toward the inner domain, regardless of the
tissue, whereas SOK1 always points toward the junction

between the endodermis and cortex—that is, it is localized
to the inner domain of cells on the outer side of this
boundary (cortex and epidermis), and to the outer domain
of cells on the inner side of it (stele and endodermis;
Yoshida et al., 2019; Figure 2D). This indicates that the api-
cal–basal and inner–outer polarity cues are genetically sepa-
rable, and that polarity along the inner–outer axis may
combine several independent cues. The behavior of other
proteins also suggests that polarization can occur according
to different cues or landmarks along the inner–outer axis.
While the classical inner–outer markers BOR1 and NIP5;1
are always polarized toward the stele and soil, respectively
(Alassimone et al., 2010), other proteins have been shown
to polarize toward the cortex–endodermis junction, includ-
ing SGN1 and IRK (Alassimone et al., 2016; Campos et al.,
2020). This suggests the existence of some positional cue
directing polarization toward the junction between these
cell types. The nature of these cues, if and how both trans-
membrane and soluble factors are guided by the same cue,
and the significance of the cortex–endodermis junction in
lateralization and redirecting polarity are all interesting open
questions.

Although the root is far better understood due to its ease
of study, the aerial organs of plants surely possess proteins
that display axial polarity. Stem tissues possess the same api-
cal–basal and inner–outer axes as the root, according to
which proteins could polarize (Gälweiler et al., 1998; Bennett
et al., 2006; Yoshinari et al., 2016). In contrast, planar leaves
have a different set of axes: proximal–distal (from the base
of the leaf toward the tip), adaxial–abaxial (from the face
nearest the shoot apex to the opposite face), and mediolat-
eral (from the centerline of the leaf toward its edges; Figure
1E). There is growing evidence of axial cell polarity relative
to the proximal–distal leaf axis. Various models of leaf devel-
opment describe how cells can vary their anisotropic growth
and division according to a proximal–distal axis. These mod-
els successfully recapitulate the shapes and, in some cases,
the clonal lineages or mutant phenotypes observed in the
morphogenesis of planar leaves (Kuchen et al., 2012;
Richardson et al., 2016), petals (Rebocho et al., 2017), and
the highly curved traps of Utricularia (bladderworts; Lee et
al., 2019; Whitewoods et al., 2020), suggesting the existence
of a polarity field in planar lateral organs throughout their
development. Consistent with this hypothesis, it has long
been known that the polarity of trichomes is coordinated
across the entire Arabidopsis leaf, with the asymmetrically
branched hairs aligned according to the proximal–distal axis
of the leaf (Hülskamp et al., 1994; Bouyer et al., 2001). In
other species, similar morphological polarization relative to
the proximal–distal leaf axis has also been observed, such as
that of trichomes in barley (Richardson et al., 2016) and
quadrifid glands in the traps of Utricularia (Lee et al., 2019).

As with the root, ectopic expression of BASL has been
useful in reading out polarity in the leaf. The existence of a
polarity field of the kind proposed in models has been dem-
onstrated at the molecular level by Mansfield et al. (2018).
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Although BASL is usually only expressed in stomatal lineage
cells, in the ectopic environment of the jigsaw puzzle-
shaped pavement cells, it localizes to a single lobe out of
multiple seemingly identical lobes. The use of a genetic
background that lacks stomata removed the confounding
factor of spiral patterns of BASL polarity in stomatal
domains, and revealed that the polarity of each pavement
cell is strongly aligned to the proximal–distal axis of the leaf
(Figure 2E). The alignment is strongest along the midrib, but
diverges toward the lamina during later growth stages; this
pattern is similar to the observed growth directions of cells
during leaf development, and to the hypothetical polarity
field proposed to account for them by modeling (Kuchen et
al., 2012). Strikingly, the polarity field that ectopic BASL
responds to exists throughout leaf development and persists
in interphase pavement cells, indicating that the coordina-
tion of cell polarities is not a transient phase during mor-
phogenesis but rather is maintained even in the mature leaf.
Thus, although no proteins have yet been discovered that
natively display axial polar localization in the leaf, ectopically
expressed BASL provides a readout demonstrating that these
cells are axially polarized.

Mechanisms for the establishment of axial
cell polarity
A polarized cell can be identified based on morphological
asymmetries, such as overall cell shape and biased localiza-
tion of organelles, or by the asymmetric distribution of mol-
ecules such as lipids, proteins, and RNA. The existence of
several axially polarized proteins has been known for deca-
des, but our mechanistic understanding of how plant cells
establish these polar domains is rudimentary compared to
what is known in other eukaryotes or localized growth po-
larity in plants. Moreover, most known polar proteins in
plants appear to be “clients” or “effectors” of the polarity
system rather than regulators. We operationally define a reg-
ulator as a protein that influences the polar localization of
other proteins, and clients as those that use existing polarity
information for their targeting, without themselves control-
ling aspects of the polarity system (Table 1). Clearly, the
nonlinear and nondeterministic nature of plant develop-
ment and molecular signaling obscures the absolute binning
of proteins as one type or the other, but within a given con-
text, the regulator/client definition may help to clarify func-
tional relationships. Multidisciplinary research across model
organisms has revealed that the establishment of cell polar-
ity is a self-organized process driven by a complex network
of biochemical and biomechanical interactions that trans-
form a local heterogeneity or noise into a stable cell-wide
asymmetry (Li and Bowerman, 2010; Goehring and Grill,
2013). This process is hierarchical and can be broken down
into three major steps: symmetry-breaking, reinforcement
(or amplification) of the asymmetry, and implementation of
this asymmetry to affect other cellular processes (Figure 3
and Table 1). In the following sections, we will explore each

of these steps and how they apply to axial cell polarity in
plants.

Symmetry breaking
As a first step in polarization, cells must undergo a
symmetry-breaking event. These events are local and often
transient, triggering a subsequent cellular program that rein-
forces the initial asymmetry in order to polarize the entire
cell. Diverse cues have been described that can drive
symmetry-breaking in biological systems. These can be ex-
trinsic to the system, such as light (Kropf et al., 1999), me-
chanical stress (Hikita et al., 2018), diffusible molecules
(McDonald et al., 2010), cell–cell or cell–matrix contacts (Yu
et al., 2005), and the sperm entry site in egg cells (Hable and
Kropf, 2000). These cues can also be cell-intrinsic, such as
inherited landmarks from the system’s past, for example a
remnant of a prior cytokinetic event (Park et al., 1999; Lam
et al., 2006). Spatial cues are not always required, but can
serve to orient or increase the efficiency and robustness of
polarization in systems that are already poised to polarize
(Wedlich-Soldner and Li, 2003). In these spontaneously po-
larizing systems, symmetry-breaking depends on stochastic
fluctuations and eventual accumulation of polarity regula-
tors at the cell cortex, which establish, at least initially, a ran-
domly oriented axis, as recently exemplified by polarization
of BASL in isolated protoplasts (Chan et al., 2020).

Unambiguous identification of a symmetry-breaking cue is
rarely a trivial undertaking due to their often discrete spatio-
temporal nature and their function in activating asymmetry
amplification, which complicate the task of disentangling
concurrently acting mechanisms. In most contexts in land
plants, there is the added challenge that cells are rigidly em-
bedded in a tissue that can provide spatial cues. Thus, it
may be unsurprising that the symmetry-breaking mecha-
nisms that establish the different axial polar domains remain
elusive. In Arabidopsis, polarity along the apical–basal axis is
already evident in the egg cell prior to fertilization by the
asymmetric distribution of organelles and longitudinal orien-
tation of microtubules (MTs; Mansfield and Briarty, 1991;
Ueda et al., 2011). These hallmarks of polarity are transiently
lost upon fertilization but reemerge in the zygote, which
elongates along the apical–basal axis prior to the first trans-
verse cell division (Ueda et al., 2011; Kimata et al., 2016).
The zygotic division is markedly asymmetric, generating
daughter cells with different morphologies and fates.
Subsequent development of the smaller apical daughter,
which forms most of the proembryo, involves successive
changes in division plane orientation in a series of highly
predictable symmetric and asymmetric divisions (ten Hove
et al., 2015).

Despite significant progress in uncovering molecules in-
volved in zygotic elongation as well as fate and morphologi-
cal division asymmetry, it is currently unclear how the
apical–basal axis arises. Fertilization causes the egg cell to
lose its former high degree of polarization (Ueda et al., 2011;
Kimata et al., 2016), and elongation and subsequent division
asymmetry require zygotic genome activation (Kao and
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Nodine, 2019; Zhao et al., 2019). However, the existence of a
persistent polarizing signal from the egg cell that guides axis
establishment in the zygote cannot be excluded. In some
animals and fucoid brown algae, the sperm entry site can
provide an orienting cue for polarity establishment (Hable
and Kropf, 2000; Piotrowska and Zernicka-Goetz, 2001).
However, experiments with isolated in vitro-fertilized rice
zygotes showed no correlation between the sperm entry site
and the orientation of the first cell division (Nakajima et al.,
2010). Given that the Arabidopsis ovule and embryo sac are
themselves polarized structures (Mansfield and Briarty,
1991), that the zygote is attached to the maternal tissue at
a specific position, and the both zygote elongation and sub-
sequent divisions follow a robust and reproducible orienta-
tion relative to the embryo sac (Lukowitz et al., 2004;
Yoshida et al., 2014), an alternative explanation would be
that a signal from the surrounding tissues determines the
apical–basal axis in the zygote. Whether this is the case, and
what the signal might be, are still conjectures. Maternally
provided auxin could act as a putative symmetry-breaking
signal (Robert et al., 2018), but with the exception of the
guanine nucleotide exchange factor for ADP-ribosylation fac-
tor (ARF-GEF) GNOM, whose role in the zygote is not fully
understood (Steinmann, 1999; Geldner et al., 2003), defects
in auxin-related mutants are only detected after the forma-
tion of the apical–basal axis (Möller and Weijers, 2009).

The origin of the inner–outer axis is equally mysterious.
The ectopic expression of the inner–outer domain boron
transporter pair BOR1 and NIP5;1 using an embryo-specific
promoter revealed that inner and outer membranes already
have a distinct molecular composition as early as the four-
cell stage, before multiple tissue layers have developed
(Alassimone et al., 2010; Liao and Weijers, 2018). The estab-
lishment of this polarity axis precedes any known physiologi-
cal need for nutrient exchange and the secretion of the
protective cuticle by peripheral cells (Rodkiewicz et al., 1994;
Alassimone et al., 2010), arguing for a function for inner–
outer polarity during early development beyond localized
transport. Although specific sorting and trafficking pathways
have been implicated in maintaining the polarized distribu-
tion of inner–outer cargoes during post-embryonic develop-
ment (e.g. Langowski et al., 2010, 2016; Mao et al., 2016;
Wang et al., 2017a; Yoshinari et al., 2019), to our knowledge,
no mutants that perturb the establishment of the inner–
outer polarity axis itself have been identified. Disruption of
auxin signaling leads to aberrant orientation of cell division
planes beginning at the two-cell stage (Hamann et al., 1999;
Yoshida et al., 2014), suggesting that auxin could be involved
in inner–outer axis formation or its integration with cell di-
vision orientation. Still, alternative mechanisms exploited by
other eukaryotes remain mostly unexplored in plants. The
presence of a cytokinetic landmark (Lujan et al., 2017),

Figure 3 Mechanistic principles of cell polarity establishment. Schematic representation of two common mechanisms of cell polarity establish-
ment in eukaryotes. Symbols represent one or multiple molecular entities. Curved arrows represent self-reinforcing interactions, and flat-ended
arrows represent inhibitory interactions.
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recognition of cell–cell or cell–free surfaces (Nance and
Priess, 2002), and mechanical or biochemical heterogeneities
between internal and external membranes (Prager-
Khoutorsky et al., 2011; Nagata et al., 2021) could all serve
as initial cues for inner–outer axis establishment that are
propagated in subsequent divisions.

It is not clear whether newly formed cells after early em-
bryogenesis ever require symmetry-breaking from a
completely unpolarized state, as a polarized state could be
inherited from the mother cell. For instance, lateral cargoes
such as BOR1 retain their polarized localization in transversely
dividing root cells (Yoshinari et al., 2016), despite the tran-
sient rerouting of cellular trafficking pathways toward the cell
plate (Geldner et al., 2001; Dhonukshe et al., 2006; Men et al.,
2008; Mravec et al., 2011; Richter et al., 2014; Glanc et al.,
2018). Persistent polar localization is likewise seen for apical–
basal cargoes in root cells undergoing transverse divisions. In
the apical daughter cell, the redirection of trafficking toward
the cell plate causes PIN2 to transiently accumulate in the
basal domain, but the prior apical PIN2 domain is also main-
tained, whereas the NPH3-like protein NAKED PINS IN YUC
MUTANTS 5 (NPY5), also known as MAB4/ENP/NPY1-LIKE 1
(MEL1), remains exclusively localized to the apical membrane
of the apical daughter during division (Glanc et al., 2018).
Thus, while newly formed cells need to redefine the polar
identity of at least one membrane domain and reroute traf-
ficking machineries, symmetry-breaking per se might be un-
necessary, as a partially polarized state is inherited from the
mother cell.

Reinforcement
Reinforcement (conceptually similar to amplification) mech-
anisms are the core components of polarity establishment
that can turn stochastic fluctuations or stimulus-induced lo-
cal asymmetries into stable cell-wide asymmetries.
Theoretical and experimental evidence gathered for over
half a century has demonstrated that reinforcement in bio-
logical systems is heavily reliant on positive feedback loops
that arise from interactions between regulatory proteins, re-
ferred to as polarity regulators, and structural components
such as the cytoskeleton and the plasma membrane
(Freisinger et al., 2013; Goehring and Grill, 2013;Thompson,
2013). These positive feedback loops translate into a self-
reinforcing accumulation of polarity regulators, either at a
specific domain when defined by a spatial cue or stochasti-
cally, but always in close association with the plasma mem-
brane. Although the localization of polarity regulators at the
cell cortex seems to be required for stable polarization, cyto-
plasmic and nonpolar regulators are often involved in this
process. Notably, most polarity regulators described so far
do not have any transmembrane domains and are instead
peripherally associated with the plasma membrane. The di-
rect association of soluble polarity regulators with the mem-
brane can be mediated by specific lipid-binding domains or
post-translational acylation (e.g. palmitoylation). Both are re-
versible, allowing for plasticity in the establishment of polar
domains, and such reversibility is often the basis for

inhibitory mechanisms that stabilize the polar domains (dis-
cussed below).

Numerous molecular interactions are able to generate the
positive feedback loops required for self-reinforcing accumu-
lation at the membrane. Examples include cortical recruit-
ment and stabilization of polarity regulators by complex
formation (Hong et al., 2001; Kozubowski et al., 2008), re-
cruitment of molecules that alter the lipid composition of
the membrane to favor membrane association (Weiner et
al., 2002; Marhava et al., 2020), or the simple and often
employed strategy of oligomerization (Dickinson et al., 2017;
Gamblin et al., 2018). Self-reinforcement, however, is not suf-
ficient to generate a stably polarized cell, as unrestricted ac-
cumulation of polarity regulators would eventually spread
throughout the whole cell cortex. To ensure the spatial re-
striction of the polar domain and the singularity of the po-
larity axis, reinforcement mechanisms must therefore
include features that counteract the self-sustained accumu-
lation of polarity regulators. Such features include rapidly
diffusing factors (e.g. GTPase-activating proteins or GDP-
dissociation inhibitors) in Cdc42-driven polarization;
Freisinger et al., 2013; Woods et al., 2016), mechanical forces
(e.g. membrane tension; Houk et al., 2012), or even limiting
pools of polarity regulators (Goehring et al., 2011), which
can all function as global inhibitors. In addition, membrane-
associated factors can act as local inhibitors preventing the
spread of the polarity regulators across the membrane
(Fletcher et al., 2012).

Stable polarization requires tight regulation of both concen-
tration and activity of polarizing and inhibitory molecules.
We will draw on anterior–posterior polarization of the nema-
tode Caenorhabditis elegans one-cell embryo as an illustrative
example of roles for both in reinforcement. Polarization of
this system is centered on the conserved mutual antagonism
between the anterior and posterior PAR modules (aPAR and
pPAR, respectively), resulting in an asymmetric positioning of
the division plane and fate determinants (Lang and Munro,
2017). The formation of the aPAR module depends on the
scaffold protein PAR-3, which recruits the scaffold PAR-6 to-
gether with the aPKC kinase (Beers and Kemphues, 2006; Li
et al., 2010). Anterior enrichment of the aPAR module is re-
dundantly promoted by distinct positive feedback loops,
among which oligomerization of PAR-3 is of particular rele-
vance. Oligomerization of PAR-3, which directly interacts with
membrane lipids (Krahn et al., 2010; Claret et al., 2014),
increases its avidity for membrane association and interaction
with PAR-6/aPKC and allows PAR-3 to be efficiently segre-
gated to the anterior pole by aPAR-dependent cortical flows
(Dickinson et al., 2017; Rodriguez et al., 2017; Wang et al.,
2017b). aPAR also stimulates local enrichment of the lipid
phosphatidylinositol-4,5-biphosphate (PI(4,5)P2), which in turn
promotes aPAR polarity (Scholze et al., 2018), possibly via an
interaction between PAR-3 and PI(4,5)P2 (Krahn et al., 2010;
Claret et al., 2014). pPAR proteins PAR-1, PAR-2, and Lgl all
interact directly with membrane lipids and self-reinforce via
positive feedback (Moravcevic et al., 2010; Motegi et al., 2011;
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Dong et al., 2015). As PAR-3, PAR-2, and Lgl form oligomers,
which for PAR-2 was shown to increase membrane residence
time (Arata et al., 2016; Strand et al., 1994). Critically, mem-
brane association of aPAR and pPAR modules is negatively
regulated by PAR-1- and aPKC-dependent phosphorylation,
respectively (Hao et al., 2006; Hoege et al., 2010; Motegi et al.,
2011). When coupled to self-recruitment and limiting pools
of PAR proteins, this kinase-driven mutual antagonism in cor-
tical localization is the critical step that stabilizes the bound-
ary between the opposing polar domains.

Sequencing of numerous plant genomes and transcrip-
tomes has revealed that the known regulators of polarity in
yeast and animals are not present in plants (Kania et al.,
2014), and that plants must have evolved their own mecha-
nisms to generate stable cellular asymmetries. A notable ex-
ception is RHO OF PLANTS (ROP) signaling in the
polarization of different cells undergoing localized growth,
which functions in an analogous manner to the distantly re-
lated small GTPase Cdc42, a master regulator of polarity in
other eukaryotes (Yang, 2008; Scholz et al., 2020). Similar to
other systems, ROP activity is tightly controlled by both acti-
vating (Gu et al., 2006; Denninger et al., 2019) and inhibitory
(Hwang et al., 2010) factors, and it also involves local restric-
tion by scaffold proteins (Kulich et al., 2020). Beyond this
significant progress in uncovering the molecular mechanisms
of localized growth, examples of reinforcement mechanisms
in axial polarization are surprisingly scarce and limited to
specific tissues and lineages. Although the conserved regula-
tors of axial polarity in plants remain mysterious, research
for the last few years has started to reveal some striking par-
allels in the molecular circuitry used to reinforce and stabi-
lize asymmetries in the different kingdoms.

Mutant screens for altered PIN, BOR1, and CASP localiza-
tion have identified several regulators of membrane biogene-
sis and trafficking (Feraru et al., 2011; Lin et al., 2012; Uehara
et al., 2014; Alassimone et al., 2016; Rakusová et al., 2019;
Zhang et al., 2020). However, whether such proteins should
be considered polarity regulators is debatable, since while
they affect the localization of other proteins, they do not
appear to play a role in defining the identity of the domain
itself. The characterization of polarity regulators in plants
has thus been mostly limited to transient polarity during
stomatal lineage development in Arabidopsis. This lineage
starts with a markedly asymmetric division of meristemoid
mother cells that produces daughter cells with different sizes
and fates: a smaller meristemoid and a larger stomatal line-
age ground cell (SLGC), which can undergo additional ACDs
before differentiating into a pavement cell (Bergmann and
Sack, 2007). It is well established that both daughter cell size
and fate asymmetry depend on the prior formation of a
crescent-shaped polar domain that is inherited by the larger
SLGC (Dong et al., 2009). Reminiscent of the situation in
animals, formation of the polar crescent and proper division
asymmetry require cortical localization and activity of scaf-
fold proteins such as BASL, POLAR, and members of the
BRX family (BRXf; Dong et al., 2009; Pillitteri et al., 2011;

Gudesblat et al., 2012; Bringmann and Bergmann, 2017;
Rowe et al., 2019).

None of these proteins contain transmembrane domains,
but mechanisms for cortical localization and self-
reinforcement are now starting to emerge. Both BASL and
BRXf contain putative palmitoylation sites that could confer
membrane association. Indeed, mutation of the putative
sites severely compromises cortical localization and function
of BRXf proteins (Rowe et al., 2019). Similar experiments do
not show an impact of palmitoylation on cortical localiza-
tion of BASL (Zhang et al., 2016a), which instead appears to
be directly recruited by BRXf (Rowe et al., 2019). This is con-
sistent with the observation that BRXL2 polarizes before the
formation of the BASL crescent (Gong et al., 2021).
However, it is likely that BASL helps to focus the distribution
of BRXf, as BRX and BRXL2 were reported to be more uni-
formly distributed across the membrane in basl mutants
(Rowe et al., 2019). Interestingly, the essential function of
the BASL polarity module in cell fate asymmetry is mediated
by scaffolding components of fate determinant signaling
pathways at the polar crescent, which in turn promote
BASL polarity (Pillitteri et al., 2011; Zhang et al., 2015;
Houbaert et al., 2018). Specifically, cortical localization and
stability of BASL are promoted by direct regulatory interac-
tions with mitogen-activated protein kinase (MAPK) path-
way components such as the MAPK kinase kinase YODA, as
well as MAPK3 and MAPK6, at the polar crescent (Zhang et
al., 2015, 2016b). The cortical localization of BASL is also
promoted by kinases of the GLYCOGEN SYNTHASE
KINASE3 (GSK3) family such as BRASSINOSTEROID
INSENSITIVE2 (BIN2), which localize to the crescent via
POLAR to regulate cell fate (Houbaert et al., 2018).

Despite the significant progress in identifying components
and their function in this system, there are still exciting
questions ahead. Biochemical and mechanical stimuli have
been proposed as cues that define crescent positioning
(Dong et al., 2009; Bringmann and Bergmann, 2017), but
their relative contributions and whether other positional
cues exist is unclear. Further research is also necessary to un-
derstand the relationship between BASL and POLAR/BIN2,
as pairwise interactions between BASL and POLAR or phos-
phorylation of BASL by BIN2 have not been demonstrated
in vivo. Of note, inhibitors of the BRXf–BASL module that
act to delimit the crescent have not yet been identified.

Another recently described system that shares some char-
acteristics with animal reinforcement mechanisms operates
during protophloem sieve element differentiation in
Arabidopsis. In protophloem cells, the AGC-family member
PROTEIN KINASE-ASSOCIATED WITH BRX (PAX) localizes to
the basal membrane where it recruits the putative scaffolding
protein BREVIS RADIX (BRX) (Marhava et al., 2018, 2020). In
turn, the PAX–BRX complex promotes the recruitment of
the phosphatidylinositol-4-phosphate (PI4P) 5-kinases PIP5K1
and PIP5K2, which convert PI4P into PI(4,5)P2, likely via a
BRX–PIP5K interaction (Marhava et al., 2020). As seen for ani-
mal PAR-3, membrane association of PAX depends on
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PI(4,5)P2 (Barbosa et al., 2016; Platre et al., 2018; Marhava et
al., 2020). Thus recruitment of PIP5K results in the self-
reinforcing accumulation of PAX–BRX–PIP5Ks at the plasma
membrane. It is proposed that this polarity module induces
PI(4,5)P2-dependent endocytosis of PIN1 mostly at the center
of the basal domain, leading to a distinctive “donut-like” PIN1
distribution required for sieve element differentiation, which
is complementary to the “muffin-like” or super-polar distribu-
tion of PAX–BRX–PIP5Ks (Marhava et al., 2020).
Notwithstanding mechanistic similarities with mammalian po-
larity reinforcement, the PAX–BRX–PIP5K module is unlikely
to be a core regulator of cell polarity. PIN1 still localizes to
the basal membrane in pax, brx, or pip5k1/2 mutants, promo-
tion of endocytosis was not observed for other integral mem-
brane proteins (Marhava et al., 2020), and PAX–BRX polarity
is maintained in pip5k1/2 mutants, suggesting that the initial
basal targeting of PAX is PIP5K-independent. Further analysis
of additional polarity markers should clarify whether this
module can confer basal membrane identity in developing
sieve elements or simply act as a client of a pre-existing polar-
ity axis to fine-tune PAT.

Lastly, SOK proteins may also play an important role in
polarity reinforcement. While their function or relevance for
polarity establishment remains obscure since no mutant
phenotypes have yet been reported in sok mutants in
Arabidopsis (Yoshida et al., 2019), a framework for how
SOKs localize to the cell cortex is starting to surface. SOK
proteins appear to be ubiquitous in land plants and primar-
ily localize to specific cell edges in Arabidopsis, as well as in
bryophytes such as the liverwort Marchantia polymorpha
and the moss Physcomitrium patens (Yoshida et al., 2019;
van Dop et al., 2020). Among the conserved features in all
analyzed SOK sequences is the presence of a “CG” motif,
which constitutes a putative palmitoylation site. Mutations
within this motif abolish membrane association of
Arabidopsis SOK1 and SOK5 (van Dop et al., 2020), suggest-
ing that the membrane targeting of SOK proteins may de-
pend on palmitoylation at this site. Notably, experiments
with SOK chimaeras identified a discrete region that deter-
mines the preference of SOKs for specific polar domains
(Yoshida et al., 2019). Understanding how this region influ-
ences polar domain selection might provide valuable insight
into the molecular code underlying the axial coordinate sys-
tem and how it is read by soluble factors.

In stark contrast to most known plant polar proteins, the
localization of Arabidopsis SOKs appears robust to numerous
perturbations, including disruption of trafficking systems and
the cytoskeleton, but is dependent on cell-wall integrity
(Yoshida et al., 2019). Interestingly, the polar localization of
the single M. polymorpha SOK in gemmae (van Dop et al.,
2020) shows a striking resemblance to that of the conserved
PCP component Dishevelled (Dsh) in the fruit fly (Drosophila
melanogaster) wing (Figure 4; Axelrod, 2001). The similarities
with Dsh are not limited to localization pattern, as both pro-
teins contain a structurally and functionally homologous N-
terminal DIX domain. Despite high-sequence divergence, the

structures of Arabidopsis SOK4 and human DVL2 DIX
domains are virtually identical, and swapping of SOK and
DVL2 DIX domains produce functional chimeras in cross-
kingdom complementation assays (van Dop et al., 2020). Just
like its animal counterpart, the DIX domain mediates
concentration-dependent oligomerization of SOK proteins
and is essential for their polar localization and function (van
Dop et al., 2020). Arabidopsis SOK1 mutants that are unable
to polymerize localize uniformly to the cell cortex (Yoshida et
al., 2019; van Dop et al., 2020), suggesting an oligomerization-
dependent inhibition of lateral diffusion that might be contin-
gent on increased membrane-binding avidity, as seen for
PAR-3 (Dickinson et al., 2017). Further extending the mecha-
nistic similarities between SOKs and Dsh, as well as PAR-3,
oligomerization of SOK proteins likely functions to increase
the avidity for interaction partners (Schwarz-Romond et al.,
2007; Dickinson et al., 2017), as supported by the
polymerization-dependent recruitment of ANGUSTIFOLIA
(AN) by Arabidopsis SOK1 (van Dop et al., 2020). These char-
acteristics make it tempting to speculate that SOKs could be
part of a conserved self-reinforcing mechanism that defines
local membrane identity in a coordinated manner between
cells.

In conclusion, despite molecular divergence, it appears
that similar mechanistic principles underlie the origin of self-
organized subcellular patterns in both plant and animal cells.
Examples include the exploitation of reversible membrane
association, oligomerization, modulation of the lipid micro-
environment, as well as central roles of scaffolding in the as-
sembly of polarity regulatory complexes and of
phosphorylation in driving self-reinforcing loops. In addition
to helping us understand the basic circuitry behind cellular
pattern formation, these similarities reveal the usefulness of
integrating the knowledge from the more developed animal
cell polarity field to guide future research into the establish-
ment of plant cell polarity.

Implementation
The accumulation of polarity regulators at the cell cortex
triggers a polarity program that segregates molecules and
cellular processes according to the new axis, effectively
imparting distinct characteristics and functions to each do-
main. Implementation of polarity programs commonly
involves altering the molecular composition of the plasma
membrane and cell cortex (and cell wall in plants), concomi-
tantly with the spatial reorganization of vesicular trafficking,
cytoskeleton, and organelles.

A common theme appears to be the feedback between
cellular reorganization and domain amplification and stabil-
ity. The above-described mutual self-reinforcement of phos-
phoinositides and polarity regulators in animals illustrates
how altering membrane composition both regulates and
implements a polarity program, as these lipids have con-
served roles in trafficking, membrane organization, and mo-
lecular composition of the cell cortex (Hammond and Hong,
2018). Despite the asymmetric localization of some phos-
phoinositide species and their involvement in self-reinforcing
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polar modules in axially polarized plant cells (Tejos et al.,
2014; Marhava et al., 2020), their contribution to the polar
domain formation has only been proposed during localized
growth (Stenzel et al., 2008; Stanislas et al., 2015). Similar
synergistic interactions have been described for both actin
and MT networks and associated vesicular trafficking sys-
tems in other eukaryotes (Siegrist and Doe, 2007; Orlando
and Guo, 2009) as well as localized growth polarity in plants
(Hwang et al., 2008; Yanagisawa et al., 2018; Ge et al., 2020).
For example, the establishment of the intercalating polar
domains driving localized growth in puzzle-shaped
Arabidopsis pavement cells was recently shown to rely on a
positive feedback between reorganization of cortical MTs
and stabilization of clusters of polarity regulators. The for-
mation of sterol- and TRANSMEMBRANE KINASE1-enriched
clusters downstream of auxin induces local activation of
ROP6 and subsequent reorganization of cortical MTs, which
are in turn required for stabilization and coalescence of the
proteo-lipid clusters (Pan et al., 2020).

Experimental evidence for similar feedback mechanisms
during the establishment of axial polar domains, in addition
to the critical role of these processes in domain specializa-
tion, is lacking. This knowledge gap is partly explained by
the lack of known bona fide regulators of axial polarity, as
well as the scarce availability and use of distinct reporters to
probe domain identity, which is generally limited to factors
that do not necessarily reflect overall polarity (e.g. PINs or
other transmembrane proteins). Demonstrating the latter
point, after division of epidermal cells, the peripherally
membrane-associated NPY5 protein polarizes to the newly
formed apical membrane much more rapidly than PIN2
(Glanc et al., 2018), a commonly used marker for polarity
that is dependent on rerouting of trafficking from the cell
plate. Although the effects of trafficking disruption on NPY5
polarity were not analyzed, the faster polarization of a solu-
ble protein strongly suggests that, at least initially, re-
establishment of apical identity occurs independently of
trafficking.

The dramatic subcellular changes downstream of polarity
are mediated by the localized recruitment of effectors to the
cell cortex. The repertoire of polarity effectors varies based
on the specific functions of each cell and is dynamically al-
tered throughout the development and in response to envi-
ronmental conditions. The number of known polar proteins
in plants has been steadily increasing over the last few deca-
des. For some, functions are understood in some detail.
These include the previously mentioned function of stoma-
tal polarity regulators in determining cell fate through spa-
tial restriction of signaling components (Zhang et al., 2015;
Houbaert et al., 2018), and the positioning and formation of
the extracellular diffusion barrier known as the Casparian
strip in endodermal cells (Roppolo et al., 2011; Lee et al.,
2013; Pfister et al., 2014; Alassimone et al., 2016; Kalmbach
et al., 2017; Doblas et al., 2017; Nakayama et al., 2017; Fujita
et al., 2020). However, for most polar proteins, insights into
the mechanisms that define their subcellular localization are
only now starting to emerge. This is perhaps best illustrated
by the polarization of transmembrane hormone (e.g. PINs)
and nutrient (e.g. BOR1 and NIP5;1) transporters. Extensive
research into the localization of these proteins has clearly
demonstrated that plant cells use specific transport and traf-
ficking routes to ensure polar distribution of cargoes to dis-
tinct domains. This aspect of polarity implementation has
been extensively reviewed, and readers are referred to excel-
lent articles on the topic (Kania et al., 2014; Adamowski and
Friml, 2015; Yoshinari and Takano, 2017; Nakamura and
Grebe, 2018).

In contrast, the mechanisms that define the specificity of
trafficking routes for distinct membrane domains are poorly
understood, despite important progress in recent years with
the identification of polarly localized regulators of trafficking.
Two interesting cases involve the conserved exocyst complex,
which functions in polar secretion of PEN3 and NIP5;1 at the
outer membrane of epidermal cells (Mao et al., 2016), and in
positioning of the Casparian strip in endodermal cells, a pro-
cess that requires transient polarization by the specialized

Figure 4 DIX domain-containing proteins mark polarity fields in animals and plants. Schematic representation of the polar localization of Dsh
along the proximal–distal axis in the Drosophila wing epithelium (left), and MpSOK oriented toward the meristematic cell in the notch region of
a Marchantia gemma (right). The localization patterns shown reflect the in vivo localizations of both proteins, as observed by confocal
microscopy.
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subunit EXO70A1 independently of secretion (Kalmbach et
al., 2017). Another example is the gravistimulation-induced
polarization of the LAZY/LAZY-like (LZY)/RCC1-like domain
(RLD) module that controls PIN3 polarization during gravi-
tropism, as RLD proteins are putatively involved in a late traf-
ficking step to the membrane via regulation of RAB-E
endosomes (Furutani et al., 2020). Notably, the preference of
polar cargoes for specific routes can be dynamically modu-
lated during development or environmental adaptation to al-
ter the polarization state. Underlying these dynamics are
post-translational modifications of cargo proteins, often by
polarly localized regulators (Michniewicz et al., 2007; Kleine-
Vehn et al., 2009; Huang et al., 2010; Zhang et al., 2010;
Takano et al., 2010), and the activity of condition-specific fac-
tors, such as the above-mentioned polar LZY/RLD module
(Furutani et al., 2020).

Similar to polar trafficking, we also lack a mechanistic un-
derstanding of how other fundamental developmental pro-
cesses are coordinated by polarity, including the orientation
of cell division or the directional intercellular movement of
cell fate determinants through plasmodesmata (Perbal et al.,
1996; Oikawa and Kyozuka, 2009; Schlereth et al., 2010;
Skopelitis et al., 2018; Lu et al., 2018).

Origin and evolution of plant cell polarity
Our understanding of the mechanisms that give rise to axial
polarity in our best-studied model, Arabidopsis, is still full of
lacunae, but at least a growing number of polar proteins are
known, and some of the details of how their localization is
determined are being uncovered. We know next to nothing
about what is happening in other members of the
Viridiplantae. Thus, it is unclear which aspects of polarity
are peculiar to Arabidopsis or its close relatives. Neither is it
known which, if any, is deeply conserved components of a
core plant polarity toolkit, or how polarity mechanisms
changed and elaborated in different lineages during the
course of evolution. For instance, filamentous algae belong-
ing to the Zygnematales, the closest sisters to the land
plants (embryophytes), grow along a single axis, while the
embryophytes themselves grow in three dimensions. How
were the mechanisms of axial polarity adapted and elabo-
rated as new polarities, such as inner–outer, were acquired?
New cell types and tissues evolved in the descendants of
the last common ancestor of land plants, even new organs
with new axes, including leaves (Harrison and Morris, 2018),
roots (at least twice, independently; Raven and Edwards,
2001; Hetherington and Dolan, 2018), and a complex sporo-
phyte embryo (Radoeva et al., 2019). How were these inte-
grated into the ancestral system of axial polarity, if one
existed?

There are indications that at least some features of axial
polarity are conserved across land plants. Homologs of the
Arabidopsis SOK proteins are found in all land plants for
which genome sequence information is available, and in the
liverwort Marchantia and the moss Physcomitrium, SOK
orthologs are polarized according to axial cues (van Dop et

al., 2020). The single Marchantia MpSOK is localized toward
the meristematic apical cell, while Physcomitrium PpSOK4 is
localized toward the inner faces of developing buds, and
PpSOK2 to the lower inner edge of bud cells and the proxi-
mal medial edge of leaf cells. These findings, together with
the fact that orthologs are localized to specific polar domains
in distantly related species, points toward the existence of an
ancient coordinate system in plant cells (Yoshida et al., 2019;
van Dop et al., 2020). Although the DIX domain of SOK pro-
teins is structurally very similar to that of animal DIX and is
biochemically equivalent in function to the human domain,
suggesting that the involvement of this domain in polarity is
exceedingly ancient, the green algal relatives of the land
plants lack a bona fide SOK protein. This protein family may
have arisen as part of the conquest of the land and the evo-
lution of growth in three dimensions that occurred at this
time. Alternatively, DIX domain proteins may have been lost
in the algal relatives to land plants.

Canonical PIN proteins, whose highly polarized cellular lo-
calization is key to polar auxin flow and thus to many aspects
of development in Arabidopsis, are present throughout the
land plants, while Klebsormidium, a charophyte algae, pos-
sesses a PIN homolog that functions as a plasma membrane
auxin efflux transporter (Bennett, 2015; Skokan et al., 2019).
Immunofluorescence detects KfPIN at the periphery of cells,
but it does not show clear polarity, and the protein is not
polarly localized when expressed heterologously in
Physcomitrium or Arabidopsis (Skokan et al., 2019). In
Physcomitrium, the development of the gametophyte begins
with a protonemal stage consisting of branching tip-growing
filamentous cells. Each filament possesses a single basal–apical
axis, and the canonical Physcomitrium PINs polarize along this
axis, accumulating preferentially toward the apex of the fila-
ment. PINs are also expressed once three-dimensional growth
begins with the development of leafy gametophores. In the
proximal part of the single cell layer thick leaves, PINs are lo-
cated throughout the plasma membrane but are distributed
in an apolar manner, whereas in the distal region they are
confined to the proximal and distal ends of the cells (Viaene
et al., 2014), demonstrating an organ-wide polarity field of the
kind seen in Arabidopsis leaves.

The intrinsic membrane protease DEFECTIVE KERNEL1
(DEK1) also shows a striking cellular polarity during three-
dimensional growth in Physcomitrium, localizing toward the
inner faces of cells in the developing bud where they con-
tact other cells, and absent from the outer domains that
face the environment, a pattern seen also in the developing
Physcomitrium leaf (Perroud et al., 2020). DEK1 may thus be
creating or responding to an inner–outer positional cue.
Indeed, dek1 mutants are severely impaired in three-
dimensional growth (Perroud et al., 2014). The subcellular
polarity of DEK1 in angiosperms has not been determined,
but during maize (Zea mays), rice, and Arabidopsis embryo-
genesis, the protoderm fails to be properly specified (Becraft
et al., 2002; Johnson et al., 2005; Hibara et al., 2009), hinting
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at a conserved role for this protein in detecting or respond-
ing to the boundary with the exterior early in development.

In the light of these tantalizing hints, especially the con-
served SOK proteins with their polarization relative to major
plant axes, it seems likely that at least some components of
axial polarity mechanisms existed in the common ancestor
of land plants. Conversely, many polar proteins that have
been identified in Arabidopsis are likely to be of restricted
phylogenetic distribution. As a first step toward unraveling
how the “polarity toolbox” evolved, and distinguishing the
core conserved components of the polarity machinery, we
have carried out a deep phylogenetic analysis of several
well-known polarity regulators to estimate ancestral states
across the major lineages during land plant evolution
(Mutte et al., 2018; Mutte and Weijers, 2020; Figure 5;
Supplemental File S1).

As previously reported, the SOK proteins are deeply con-
served, first appearing in the common ancestor of land
plants. The bryophyte ancestors possessed a single SOK, al-
though subsequent gene duplications have increased the
complement in, for example, the Physcomitrium lineage. In
the vascular plants, beginning with the ferns, duplications
have produced an increasing number of SOK clades.

At the other end of the spectrum lies BASL. The intensive
study of this protein in the stomatal lineage has yielded
many insights into the mechanisms underlying plant polarity
(Dong et al., 2009; Zhang et al., 2015; Mansfield et al., 2018).
However, being phylogenetically restricted to the dicots,
BASL is not a member of a core polarity mechanism com-
mon to land plants. Surprisingly, its partners in stomatal de-
velopment, POLAR and BRX, are conserved since the
common ancestor of land plants. Among the bryophytes,
liverworts lack stomata, while these structures are found on
the sporophytes of mosses and hornworts (Ligrone et al.,
2012). Although the development of moss guard mother

cells is regulated by homologs of transcription factors and li-
gand–receptor pairs that regulate Arabidopsis stomatal de-
velopment (Caine et al., 2016), the POLAR and BRX
homologs have not been studied outside the angiosperms,
and it is unknown how deeply conserved their role in sto-
matal development is. Furthermore, since BRX existed before
the appearance of vascular plants, its polar localization and
function in vascular cell development were presumably co-
opted from some other earlier role. In contrast, OPS, which
is localized opposite to BRX at the apical domain of vascular
cells (Truernit et al., 2012), first appeared in seed plants, and
thus originated in a context in which vascular development
already existed.

The LRR-RLK IRK is encoded by a single-copy gene in
Arabidopsis that shares a common ancestor with PXC2
(AT5G01890), with the split occurring at the base of the
eudicots. This suggests a specific functional role for IRK in
eudicots, which might have resulted from sub-
functionalization from the IRK-PXC2 common ancestor.
Recent data show that PXC2 shows the same polar localiza-
tion as IRK (Campos et al., 2020; Goff and Van Norman,
2021), suggesting that the original state of the IRK-PXC2 an-
cestor was indeed polar. Homologs of IRK are found in all
the plant lineages starting with green algae, but IRK belongs
to a large family of closely related kinases, and unraveling
their evolutionary history will be challenging. Studies in spe-
cies outside of the eudicots will be necessary to determine
whether these homologs polarize and function in ways simi-
lar to Arabidopsis IRK.

The NAKED PINS IN YUC MUTANTS (NPY) proteins are
members of the NPH3/RPT2-Like (NRL) family of Broad-
Complex, Tramtrack, and Bric a brac (BTB) domain-contain-
ing proteins that are involved in various developmental pro-
cesses including phototropism and gravitropism. These
proteins likely already existed in the last common ancestor

Figure 5 Reconstruction of the ancestral states of polar proteins in plant evolution. Phylogenetic trees show the copy number and phylogenetic
relationship of each member in the respective protein families. Each circle is colored according to protein type, as indicated in the box. Names on
top correspond to the proteins in A. thaliana. Note that only scenarios with strong bootstrap support are shown.
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of land plants (previously reported in Suetsugu et al., 2016),
although they appear to have been lost in hornworts. There
are eight NPY proteins in Arabidopsis, of which NPY1–5
have been characterized and display polar localization very
similar to that of PIN proteins, and may be involved in
enforcing this polarity (Furutani et al., 2007, 2011; Glanc et
al., 2021). Based on our and previous phylogenetic studies
(Suetsugu et al., 2016), we named the remaining orthologs
as NPY6–8 (Supplemental File S1), although experimental
evidence will be required to understand whether these pro-
teins display polar localization and contribute to PIN polar-
ity. The origin of this protein family in the first land plants,
where PIN polarization also appears to have first emerged,
hints that this interaction may be ancient, although as yet
there are no reports of the localization or function of NPY
outside of Arabidopsis.

This analysis illustrates that some of the polar proteins
that have been heavily studied in Arabidopsis are likely to
be relatively recent innovations, while others have deep phy-
logenetic roots, originating concomitant with and likely facil-
itating the novelty of 3D growth along multiple axes that
appeared with the first embryophytes. They hint at an an-
cient toolkit of proteins involved in axial polarity that are
common to all land plants, although for most of them, it
remains to be tested whether they are polarly localized and
what functions they might fulfill. Nevertheless, the investiga-
tion of axial polarity in lineages outside of Arabidopsis, and
especially in the sister lineages of the vascular plants, prom-
ises to illuminate the core polarity mechanisms that are
shared amongst plants and how new proteins were coopted
or innovated to perceive, create, and respond to new polari-
ties and in new contexts as plant development diversified
and elaborated during the course of evolution.

Concluding remarks and future perspectives
Our understanding of cell polarity in plants has grown im-
mensely over the last decade, particularly regarding the mo-
lecular mechanisms underlying localized growth and specific
aspects of axial polarity implementation. Still, the field is rid-
dled with exciting problems that will surely engage research-
ers for years to come. We still do not know how axial
polarity is established and maintained, how it coordinates
downstream events such as cell division plane orientation,
or whether it is inherited or re-established after cell division.
So far, the regulators of axial polarity remain elusive, and
most (if not all) proteins implicated in polarity appear to
act as effectors of a pre-established axis. The focus on post-
embryonic tissues in most studies of plant polarity might ex-
plain this significant gap, if, like in animals (e.g. Kemphues et
al., 1988; Perrimon, 1988; Chen et al., 2000; Tao et al., 2009),
loss of regulators leads to embryonic lethality. Moreover,
symmetry-breaking might only occur in the early embryo
and (partially) inherited in subsequent divisions, making the
predictable and anatomically simpler early embryo uniquely
suited to probe fundamental aspects of polarity. We identify
a number of urgent challenges for the field to address:

(1) Given that new polar proteins are steadily being identi-
fied, it is likely that the polar proteome is substantially
complex. Better understanding of polarity will naturally
come from expanding the known polar proteome,
which will also provide better tools to assess polarity,
such as nontransmembrane reporters of domain
identity.

(2) Although Arabidopsis has been at the forefront of plant
polarity research, more emphasis needs to be placed on
understanding polarity in a broader phylogenetic sam-
pling of land plants, including bryophytes that lack the
anatomic and genetic complexity of vascular and flow-
ering plants. Such studies will also help to reveal the an-
cient and novel components in plant cell polarity.

(3) Clearly, during the initiation of new lateral organs and
growth axes, new polarity axes are established. It will be
important to identify the nature of the polarity cues or
polarity fields that are intrinsic to organs, how such cells
reorient their polarity, and how global information is lo-
cally interpreted by individual cells.

(4) The study of axial plant cell polarity has much to gain
from the development and implementation of techno-
logical innovations. These include advanced and quanti-
tative image analysis software such as MorphoGraphX
(Barbier de Reuille et al., 2015), dedicated polarity
quantification tools such as POME (Gong et al., 2021),
but also next-generation protein interaction mapping
approaches, such as proximity ligation (Branon et al.,
2018).

Supplemental data
The following materials are available in the online version of
this article.

Supplemental File S1. Methods for phylogenetic analysis
of polar proteins.
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Zagórska-Marek B, Viotti C, Jönsson H, Mellerowicz EJ, et al.
(2017). Mechanochemical polarization of contiguous cell walls
shapes plant pavement cells. Dev Cell 43: 290–304.e4.

Mansfield C, Newman JL, Olsson TSG, Hartley M, Chan J, Coen E
(2018) Ectopic BASL reveals tissue cell polarity throughout leaf de-
velopment in Arabidopsis thaliana. Curr Biol 28: 2638–2646.e4

Mansfield SG, Briarty LG (1991). Early embryogenesis in Arabidopsis
thaliana.II. The developing embryo. Can J Bot 69: 461–476

Mao H, Nakamura M, Viotti C, Grebe M (2016) A framework for
lateral membrane trafficking and polar tethering of the PEN3
ATP-binding cassette transporter. Plant Physiol 172: 2245–2260

Marhava P, Aliaga Fandino AC, Koh SWH, Jelı́nková A, Kolb M,
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Whitewoods CD, Gonçalves B, Cheng J, Cui M, Kennaway R, Lee
K, Bushell C, Yu M, Piao C, Coen E (2020) Evolution of carnivo-
rous traps from planar leaves through simple shifts in gene expres-
sion. Science 367: 91–96

Woodham EF, Machesky LM (2014) Polarised cell migration: intrin-
sic and extrinsic drivers. Curr Opin Cell Biol 30: 25–32

Woods B, Lai H, Wu C-F, Zyla TR, Savage NS, Lew DJ (2016)
Parallel actin-independent recycling pathways polarize Cdc42 in
budding yeast. Curr Biol 26: 2114–2126

Yanagisawa M, Alonso JM, Szymanski DB (2018)
Microtubule-dependent confinement of a cell signaling and actin
polymerization control module regulates polarized cell growth.
Curr Biol 28: 2459–2466.e4

Yang Z (2008) Cell polarity signaling in Arabidopsis. Annu Rev Cell
Dev Biol 24: 551–575

Yoshida S, Barbier de Reuille P, Lane B, Bassel GW, Prusinkiewicz
P, Smith RS, Weijers D (2014) Genetic control of plant develop-
ment by overriding a geometric division rule. Dev Cell 29: 75–87

Yoshida S, van der Schuren A, van Dop M, van Galen L, Saiga S,
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