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A B S T R A C T

Reverse osmosis (RO) and electrodialysis (ED) are the two most important membrane technologies for water
desalination and treatment. Their desalination and transport mechanisms are very different, but on a closer
look also have many similarities. In this tutorial review, we describe state-of-the-art theory for both processes,
focusing on simple examples that are helpful for the non-specialist and for classroom teaching. We describe
relevant theory for ion and water transport and the coupling with theory for chemical and mechanical
equilibrium on membrane/solution interfaces. For RO of neutral solutes, we explain the solution-friction (SF)
model which is closely related to the classical sieving or pore flow model. The SF model includes advection,
diffusion, and solute partitioning, and leads to simple relationships for the coupled fluxes of water and solutes
(and thus for solute retention as well), also when a diffusion boundary (or concentration polarization) layer is
included in the model. Subsequently this theory is extended to describe RO for symmetric salt solutions with
charged membranes. For the desalination of salt solutions, both for RO and ED we present two-dimensional
module-scale calculations which lead to a characteristic curve that determines optimum operational conditions
based on a simple cost calculation that offsets energy and material costs. We discuss the two-fluid model (TFM)
that comprehensively describes ion and water flow both in RO and ED, and we explain how this theory also
accurately describes osmosis experiments where water and ions are transported in opposite directions through
a membrane. Finally, we present results of optimization studies of the combination of multiple modules for
RO and ED, and we evaluate the relevance of concentration polarization by using a 3D model for cross-current
flow in an ED module.
. Introduction

Reverse osmosis (RO) and electrodialysis (ED) are the two most
pplied membrane methodologies for water treatment and desalination
deionization) [1,2]. A brief schematic of both methods is presented in
ig. 1. Water treatment generally refers to the removal of contaminants
ther than salts, such as organic micropollutants (OMPs), whereas
esalination and deionization refer to the removal of salts, thus of
ons. RO is a method that uses pressure to drive water through a
embrane, retaining on the retentate side most of the ions and other

olutes, producing freshwater on the permeate side.1 Nanofiltration
NF) is a companion technology of RO that uses lower pressures, and
embranes with larger pore sizes than in RO [3,4]. In NF, the retention

f monovalent ions is much lower than of divalent ions and thus
ivalent ions can be selectively removed. In ED, water flows through
hin channels next to ion-exchange membranes (IEMs) and an applied
urrent pulls the ions from one set of channels through the IEMs to

∗ Corresponding author.
E-mail address: jouke.dykstra@wur.nl (J.E. Dykstra).

1 In this work we alternatingly use the words ‘ion’ and ‘solute’ for the charged and uncharged species dissolved in the water.

other channels. The theories that we present for RO and ED, and the
relevant metrics that we define, also apply to NF and EDI and other
related desalination methods.

Though ED and RO are very different methods and use distinctly
different physical mechanisms, our aim is to demonstrate that the
underlying transport theory for flow of water and solutes is the same.
As we will show, the effects of charge and current that are of key
importance in ED, also play a role in RO. Similarly, in ED pressures
develop which influence ion and water transport. Thus it is relevant to
present a generalized treatment that applies to both process types. We
also demonstrate that key performance indicators on the module level,
of relevance for (economic) process optimization, are defined for RO
and ED in very similar terms, and relate to one another in a similar
fashion. The theories that we present for RO and ED, and the relevant
metrics that we define, also apply to other desalination methods such
as NF and electrodeionization (EDI).
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Fig. 1. Overview of reverse osmosis (RO) and electrodialysis (ED). (A) In RO, pressure is applied to drive water through a membrane, retaining on the retentate side most of the
solutes. (B) In ED, electrical current runs across channels and membranes, generated in electrodes placed at both ends of a stack that holds many cell pairs. (C) RO and ED have
continuous pathways where water and ions move through. The membrane charge and chemical affinity lead to partitioning of solutes on the two outsides of a membrane. (D)
On the upstream side of an RO membrane (retentate side), ion concentrations increase towards the membrane (concentration polarization) through a diffusion boundary layer.
On the downstream side, freshwater (permeate) is produced. Concentration profiles develop in an ED cell pair with diluate and concentrate channels separated by ion-exchange
membranes. (E) Desalination systems can consist of multiple modules of different size, which can be connected in various ways.
In this review we focus on the theory of desalination of ionic solu-
tions, i.e., how to use membranes to obtain freshwater from brackish
water or seawater by RO and ED. In Section 2 we describe thermody-
namic equations and metrics that apply to both methods. We continue
in Section 3 with a discussion of simple models for RO that assume
neutral solutes, and we compare the often used solution–diffusion (SD)
model with the more accurate solution-friction (SF) model. For the
SF model we present analytical solutions for retention, also including
the effect of concentration polarization (CP). We also analyze energy
efficiency in a 2D flow calculation for an RO module. For ED we
discuss in Section 4 a co-current plug flow model valid when several
system properties are symmetric. Both for RO and ED we set up in
these sections a method of cost calculation that demonstrates why
the counter-intuitive result that ‘inexpensive membranes have higher
energy efficiency’ holds true. In Section 5 we describe the general two-
fluid model (TFM) and we apply the resulting equations to a novel
data set for the osmosis experiment where we have counter-directional
salt and water flow, and we explain the origin of the phenomenon
of osmosis: why does water flow to a solution of high salinity? In
Section 6, the theory for RO and ED that we set up earlier, is extended
to describe several highly relevant cases. For RO we discuss in this
section theory describing retention of ions with charged membranes,
and for ED we discuss the effect of flow geometry within an ED
system, and the effect of stacking of multiple units. For ED, we also
present results of a 3D cross-current calculation including concentration
polarization.

We illustrate in Fig. 2 that RO and ED have many aspects in
common with one another, which they also have in common with
the phenomenon of osmosis. In all these processes, the same three
features play a key role, as we discuss next. First, in all cases there are
differences in concentration between the two sides of the membrane.
Furthermore, there is a certain electrical current, and finally there is a
pressure difference across the membrane. In certain cases, the electrical
current will be zero, as in RO, and likewise the hydrostatic pressure
difference will be (close to) zero in some cases, for instance in the
osmosis experiment when the two sides are open to atmosphere and the
2

Fig. 2. In reverse osmosis (RO) nanofiltration (NF), electrodialysis (ED), and electro-
deionization (EDI), and in the osmosis experiment, salt concentrations on the two sides
of the membrane are different, there is an electrical current, and there is a pressure
difference. Even when the current or pressure difference is zero or near zero, that
information is still an input in the transport models. Thus, on a theoretical level, these
three processes are very similar, and a general theory can be used that describes all
three processes.

liquid levels about equal. Nevertheless, in the transport theory, current
and pressure being zero is a key part of the model structure, i.e., when
building a theoretical model, it does not matter very much whether
current is zero or non-zero, and in all cases a relation for current is part
of the model structure. And the same holds for the pressure difference,
unless we do not care about pressure, and assume we know the value
of the water velocity (zero or otherwise). Because of these similarities
in the required theoretical description for RO, for ED and for osmosis,
a combined discussion of these processes is important and insightful.

In this review we necessarily can only address a limited number
of topics, and must refer the reader to other literature for many other
topics of relevance in RO and ED, such as: ion selectivity in multi-ionic
mixtures [5], removal of organic micropollutants [6,7], module and
stack design [2], fouling abatement [8], studies of membrane lifetime
and robustness, membrane cleaning [9], the design of spacers and
membrane geometries [10], and full system-level cost optimization.
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2. Thermodynamics and metrics

For all water desalination methods, in all cases the same thermo-
dynamic equations apply, and the same setpoints and metrics (perfor-
mance indicators) can be used. It is useful to start the discussion with
the topic of setpoints and metrics.

2.1. Setpoints and metrics for water desalination

Every water desalination process is defined by certain operational
characteristics, i.e., objectives, or setpoints. These are the amount of
water to be treated, the water recovery, and the extent of desalination
(or salt removal). Different setpoints can be defined but in the end they
describe how much freshwater is obtained from how much feedwater,
and what is the salt concentration of the product water. These are
considered as setpoints and are ‘hard’ objectives that must be attained.

After the setpoints of a process have been defined, metrics (or,
equivalently, ‘performance indicators’) come into play. They describe
optimized operation. Such metrics can be manifold. We can for instance
have a measure of energy use (energy efficiency), the degree of re-
moval of specific compounds (selectivity), or a measure of how well
the membrane is retaining its integrity over time and able to handle
fouling.

2.1.1. Setpoints for water desalination
Setpoints for a water desalination process are operational parame-

ters that are ‘hard’, that must be attained. It is not the case that they
are just ‘nice to have’, i.e., to be optimized in some direction. Instead,
they define a certain desalination operation. They are also essential for
a calculation of the theoretical minimum energy use (see Section 2.2).
In practice, the aim is not that these setpoints are reached in an
individual desalination unit (module, stack), but they will be the result
of operation of a total desalination plant. So a first module desalinates
to a certain percentage, and only in a second module the final salt
concentration is reached. In that case, setpoints are only reached at the
overall level of a full water desalination plant.

The first setpoint that defines operation of a desalination plant or
module, is how much freshwater (diluate, permeate) is obtained in
m3/s, i.e., the freshwater flowrate, 𝜙v,p (where ‘p’ refers to permeate or
roduct water). In case operation is not at all times at the same level,
ne must precisely define whether this capacity refers to an average
lowrate, or refers to a peak capacity. In this review we neglect this
ssue and focus on steady-state operation of one or two modules, with
onstant flow rates and setpoints.

The second setpoint is water recovery, WR, which is the fraction of
ll feedwater that is turned into freshwater, thus

R =
𝜙v,p

𝜙v,p + 𝜙v,c
=

𝜙v,p

𝜙v,f
(1)

where 𝜙v,𝑗 ’s are volumetric flowrates in m3/s. Other terminology is
recovery ratio, often described by the symbol r, RR, or 𝛼. All flowrates
𝜙v,𝑗 can be replaced here by ‘integrated’ volumes, 𝑉𝑗 . Subscripts ‘f’, ‘p’
and ‘c’ refer to the feedwater, product water (freshwater, or in RO: per-
meate), and concentrate (retentate), respectively. A related definition
is ‘split ratio’ for the ratio 𝜙v,p∕𝜙v,c, which equals WR/(1−WR).

The third setpoint is the extent of desalination, which one can
define as the difference in salt concentration between feedwater and
product water, 𝛥𝑐 = 𝑐f − 𝑐p. Alternatively, the setpoint can simply
be the salt concentration of the freshwater that is obtained. Another
way to express this setpoint is as a retention, rejection, or passage. Salt
retention, 𝑅𝑖, is defined as

𝑅𝑖 = 1 − 𝑐p,𝑖∕𝑐f,𝑖 . (2)

Retention and rejection have the same meaning, while passage, 𝑃𝑖, is
given by 𝑃𝑖 = 1−𝑅𝑖. These latter definitions of 𝑅𝑖 and 𝑃𝑖 are particularly
3

useful for RO, not so much for ED. The above three setpoints can be
rewritten to other setpoints, but the above formulations are common
choices.

In general, we can attain the second and third setpoints in any well-
designed RO or ED module, but must then adjust the flowrates of the
water treated. Besides the flowrates, in ED we can tune the current
density (or voltage) that is applied to a stack. So in most cases, it will
be possible to find an operational setting where the second and third
setpoints are attained, for a given flow of water that is treated. The
same is valid in RO, where we have two flow rates and a pressure
difference that can be tuned.

The third setpoint, the degree of desalination, relates to a total
or average desalination of the feedwater as a whole. In reality, most
water sources contain many different salts, and we aim for a certain
separation level of several critical salts amongst all salts. In practice,
still, it is useful to treat the desalination as a setpoint, for instance as a
‘total 𝛥𝑐’ formulated as a summation over all ions, including perhaps a
weighing to account that some ions are more relevant to remove than
others. The degree of desalination for individual ions, related to ion
selectivity, is not a setpoint but a metric.

Thus, for a given module, we can arrive at setpoints for WR and 𝛥𝑐,
but this can only be achieved for one (maximum in the) flowrate of the
water that is treated. We cannot just achieve any level of the volumetric
rate of freshwater that one may desire in a given module, if there are
two or more other setpoints to achieve. This can also be rephrased into
the statement that the setpoints for WR and 𝛥𝑐 determine the ratio of
system size (e.g., membrane area) over volume flowrate of the water
to be treated (or, to be obtained as freshwater). Let us call this factor
the specific membrane area , i.e., the total membrane area per m3/s
of freshwater to be obtained. Typically, with more stringent setpoints
for WR and 𝛥𝑐 (i.e, higher WR and 𝛥𝑐), this factor  will increase,
thus more membranes are needed. In addition, also more energy will
be required to attain higher WR and 𝛥𝑐. We will quantitatively analyze
these predictions in upcoming sections on RO and ED.

2.1.2. Metrics for water desalination
Metrics, or performance indicators, are those factors that for a

certain desalination process, defined by certain setpoints, are ‘nice to
have’, that have a value that ideally is as high, or as low, as possible.

A first metric tracks the specific removal of certain key compounds,
and the more the removal of these, the better. So a metric could be a
removal degree of one or several key ions, perhaps expressed as single
number by summing over several key ions including a weighing factor
describing the importance of the removal of each.

Another example of a metric is the energy efficiency, 𝜂, which is
the ratio of the theoretical minimum energy to achieve a certain de-
salination (defined by the setpoints) over the actual energy investment.
(This metric is also called TEE, for ‘thermodynamic energy efficiency’.)
There are many possible definitions for 𝜂, depending on which energy
contributions are included in the actual energy input. For instance, for
ED we can limit analysis to the electrical energy input required for
current to flow across the stack, but we can also include the (much
smaller) costs of pumping the water through the channels. In RO we
can decide to include for a certain percentage the recovery of ‘pressure
energy.’ We can take into account efficiencies of power sources and
pumps, and of other electric equipment, for instance to convert (AC)
electricity into pumping power for RO, or into DC stack current for
ED [11]. So, a report detailing values of 𝜂 must carefully lay out which
energy factors are considered.

Often, instead of an efficiency 𝜂, the inverse factor is reported,
which then is the factor by which the actual desalination energy is
‘above the minimum’. Generally, values as low as two, for this inverse
factor, are considered to be very low, i.e., we now have an actual energy
use that is only a factor two above the thermodynamic minimum. In
many cases, especially for water of low salinity, this factor is much
higher, for instance 5 or 10, which implies the actual energy is equal

to that number of times the thermodynamic minimum.
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Other metrics may refer to lifetime of the membranes and track the
state of membrane functionality and integrity over time. Another metric
is total cost of operation. It is clear that many metrics can be defined
and used. But important is that setpoints and metrics are clearly de-
fined, both when comparing different materials and operational modes
within a certain technology, and when making comparisons between
different desalination methods.

2.2. Minimum energy of desalination

For given setpoints, we can calculate the theoretical minimum
energy that must be invested to attain that particular degree of de-
salination. This minimum energy does not depend on what method is
used to desalinate. Of course, both in RO and ED there are additional
constraints that increase the minimum energy further: for instance, in
an RO module we can only apply one pressure, which – on that side of
the membrane – is then effective through the entire module. And in an
ED stack, there is one value of the cell pair voltage, which then applies
in the entire stack. All kinds of modifications are possible to relax these
system limitations, especially by working with multiple modules that
operate at different conditions. But still, the thermodynamic minimum
that we analyze in this section, that is system-independent. This min-
imum only depends on the composition of the water to be treated,
temperature, and setpoints.

This minimum energy that must always be invested to desalinate
water, 𝑒min, can be calculated on the basis of a thermodynamic analysis
of the energy in the three streams that are involved. These three streams
are the feedwater ‘f’, the obtained freshwater (permeate, ‘p’, or diluate,
‘d’), and the concentrate (or, retentate, ‘c’). In each stream there are
multiple ions, each at a concentration 𝑐𝑖, and all ions are used in the
general equations we will discuss first. For a 1:1 salt of one cation and
one anion, we can define a salt concentration, 𝑐∞, which is equal to 𝑐𝑖
of each of the two ions involved.

2.2.1. The thermodynamics of ideal solutions
For thermodynamically ideal solutions, the only contribution to the

theoretical minimum energy of desalination, 𝑒min, is the decrease in ion
entropy (Gibbs free energy of mixing), and thus 𝑒min = −𝑇𝛥𝑆 where

𝛥𝑆 = 𝑆p + 𝑆c − 𝑆f (3)

with the entropy of each stream given by

𝑆𝑗 = −𝑅𝜙v,𝑗
∑

𝑖
𝑐𝑖,𝑗 ln 𝑐𝑖,𝑗 (4)

where R is the gas constant (8.3144 J/mol/K), 𝜙v,𝑗 the volumetric
flowrate of a certain stream j (in m3/s), and 𝑐𝑖,𝑗 the concentration of
ion i in stream j, with 𝑐𝑖,𝑗 having the unit mol/m3, i.e., mM.

This equation can be used for any mixture of ions, and irrespective
of how successfully each ion is separated in a membrane process.
The complete calculation also includes two balances, first a volumetric
balance, which is

𝜙v,f = 𝜙v,p + 𝜙v,c (5)

and secondly a mass balance per solute type,

𝜙v,f 𝑐f,𝑖 = 𝜙v,p𝑐p,𝑖 + 𝜙v,c𝑐c,𝑖 . (6)

In setting up the volume balance we assume that the mass density of
each of the three streams is the same. A calculation based on these
equations is easily performed in spreadsheet software, and results in
the input energy in W = J/s required to attain a certain separation in
a steady-state process. It can be helpful to interpret 𝜙v,𝑗 as volumes 𝑉𝑗 ,
such that the equation provides the energy in J to treat a certain volume
of water. We can define the minimum energy per m3 of freshwater
produced, 𝐸min, as 𝐸min = 𝑒min∕𝜙v,p. An important result (to check
one’s calculation) is that 𝐸min = 1.0 kWh per m3 freshwater produced
or a 1:1 salt, with 50% water recovery, i.e., WR = 0.50, a feed salt
4

concentration 𝑐∞ = 525 mM, 𝑐∞,p = 0 mM, and temperature 𝑇 =
298 K. Note that a 1:1 salt solution with salt concentration 𝑐∞ contains
both cations and anions at that concentration, and both ions must be
counted. The ion’s charge does not play a role in calculating the entropy
of desalination.

2.2.2. Extensions for non-ideal solutions
We will discuss various simplifications in a later section, but let us

first briefly point out how additional energy terms can be included.
A first effect is that of electrostatic Coulomb interactions between
ions, which for a 1:1 salt can be described by the modified Bjerrum
equation [12]

𝑓elec = −3∕2 𝑘B𝑇 𝜆B 𝑛4∕3∞ (7)

where 𝑓elec is the contribution to the free energy density of a solution.
This contribution, 𝑓elec, can be evaluated for each of the three streams,
and then multiplied by the respective volume flow rate, 𝜙v, and all
erms are added to 𝑒min (with an additional minus-sign for the feed
tream). The salt concentration in numbers per volume, 𝑛∞, relates to
alt concentration 𝑐∞ in moles per volume according to 𝑛∞ = 𝑁av 𝑐∞,

where 𝑁av is Avogadro’s number. Furthermore, 𝜆B is the Bjerrum length
which in water at room temperature is around 𝜆B ∼ 0.72 nm, and 𝑘B is
Boltzmann’s constant. We can rewrite Eq. (7) to

𝑓elec = −𝛼 𝑐4∕3∞ (8)

where at room temperature the prefactor is 𝛼 ∼ 225 J ⋅ m∕mol4∕3. For
alt mixtures other than 1:1 salts, numerical analysis of the modified
jerrum theory is required [12].

Another contribution to the energy is an ion volume (size) effect that
hows up at higher concentrations, which describes that the (hydrated)
ons cannot overlap, i.e., they exclude space for one another. The
arnahan–Starling equation of state can be used to describe this effect
when we assume that all ions have the same hydrated size and all are
ore or less spherical), and this leads to a further contribution to the

ree energy, thus to 𝑒min. For each flow this contribution is [13]

𝑓vol
𝑅𝑇 𝑐tot

=
4𝜙 − 3𝜙2

(1 − 𝜙)2
= 4𝜙 + 5𝜙2 + 6𝜙3 +⋯ (9)

where 𝑐tot is the total ion concentration (for a 𝑧:𝑧 salt, 𝑐tot = 2𝑐∞) and
𝜙 is the volume fraction of all ions together, i.e., 𝜙 = 𝑐tot𝜈i, where 𝜈i
is the molar volume of an ion (all ions are assumed to have the same
volume.). The contribution 𝑓vol can be multiplied by 𝜙v and added to
𝑒min. As a numerical example, for a 1:1 salt at 𝑐∞ = 525 mM, with ions
of a hydrated size of 𝜎 = 0.5 nm (size is twice the radius), the ion
volume fraction is 𝜙 = 0.0414. With the electrostatic and volumetric
contributions implemented, then for the previous numerical example,
the minimum energy consumption increases from 𝐸min = 1.00 kWh/m3

to 𝐸min = 1.14 kWh/m3. Further extensions relate to the energies
of ion–ion association and ion (de-)protonation [14], but we do not
discuss these effects in this review.

2.2.3. Simplifications of the thermodynamic expressions
Various simplifications are possible to the above general expressions

for the theoretical minimum energy. Here we consider a symmetric
𝑧:𝑧 salt solution, with one type of cation and one type of anion. We
only discuss the ideal, entropic, contribution. We present results for the
energy per m3 of permeate (diluate, freshwater) produced. Each of the
three streams, feed, permeate and concentrate, is described by a certain
value for the salt concentration 𝑐𝑗 .

A first simplification relates to RO in the limit of very low WR and
very low cp. In this limit, on the feed side the concentration does not
change along the module. We only produce a very low volume of totally
clean freshwater. We now obtain the result that the minimum energy
per volume of freshwater is given by
𝐸min = 𝛱f (10)
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where 𝛱f is the osmotic pressure of the feed solution. The osmotic
pressure for ideal conditions is given by 𝛱 = 𝑅𝑇

∑

𝑖 𝑐𝑖, and thus for
a 𝑧:𝑧 salt, 𝛱 = 2𝑅𝑇 𝑐∞.

In general, for a perfectly selective membrane, and thus 𝛱p = 0,
the hydrostatic pressure difference that must be applied across the
membrane in a pressure-driven process, 𝛥𝑃 h,∞, must be larger than
𝛱dbl∕mem, where 𝛱dbl∕mem is the osmotic pressure at the interface be-
tween the diffusion boundary layer (DBL) and membrane, and this
osmotic pressure is larger than 𝛱f by the over-pressurization factor,
1. This effect is commonly called concentration polarization (CP). The
actor 𝛼1 can be close to unity, when CP is negligible, which will be the
ase for a low permeate flux and high enough crossflow of water (water
low along the membrane), but values of 𝛼1 = 1.5 or larger are also
ossible. The hydrostatic pressure is typically larger than 𝛱dbl∕mem by
second factor, 𝛼2, again larger than 1, to have transmembrane water

low. Thus, in this simplest analysis of a perfectly selective membrane
t WR → 0, the energy efficiency of an RO membrane is given by

RO =
𝛱f

𝛥𝑃 h,∞ = 1
𝛼1𝛼2

. (11)

In a more general case, combining the various balances with the
expressions for 𝑆𝑖, we obtain for 𝐸min, now for arbitrary values of WR
nd 𝑐p, for a 𝑧:𝑧 salt of one anion and one cation, the result that [15]

𝐸min
2𝑅𝑇

=
𝑐f

WR ln
𝑐c
𝑐f

− 𝑐p ln
𝑐c
𝑐p

(12)

where all concentrations 𝑐𝑖 are salt concentrations in mol/m3. When 𝑐p
approaches zero, i.e., complete salt removal, then Eq. (12) simplifies
to [15]
𝐸min

2 𝑐f 𝑅𝑇
= −

ln (1 − WR)
WR = 1 + 1

2
WR + 1

3
WR2 +⋯ (13)

hich in the limit of WR → 0 simplifies to Eq. (10). Note that if we
pply these equations to a solution containing a single neutral solute,
ot a 1:1 salt, then factors ‘2’ on the left side of Eqs. (12) and (13) must
e omitted.

It is very important to note that Eqs. (10) and (13) are only correct
hen 𝑐p → 0. For non-zero values of 𝑐p, this energy, in the limit of
R → 0, is given by

min∕2𝑅𝑇 = 𝑐f − 𝑐p − 𝑐p ln
𝑐f
𝑐p

. (14)

2.3. Practical energy use in RO and ED

In the above section the thermodynamic, minimum, energy of a
desalination process was discussed. But what is the actual, real, or prac-
tical, energy consumption? The main factors are the pressure required
to pump fluid through channels, and in RO to press water through the
membrane, while in ED we need energy to generate a flow of electrical
current across the ED stack.

The energy required to pressurize a stream is 𝛥𝑃 h times flowrate
v,𝑗 , which is a number with unit J/s = W. This is the energy to
ump feedwater into a module. And to pump water exiting one module
nto the next operating at a higher pressure. At the end of a train of
odules, it is possible to install an energy recovery device (ERD). If

he water on the retentate side (the concentrate; a smaller volume than
he flow of feedwater) passes an ERD, exiting at atmospheric pressure,
n energy can be recovered equal to 𝜂ERD ⋅ 𝛥𝑃 h ⋅ 𝜙v,c, with 𝜂ERD the
nergy efficiency of the ERD.

Another practical limitation, even for ideal operation, is that we
enerally have a limited number of modules. In RO with a single
odule, for a membrane that perfectly retains all solutes, the minimum
ressure is given by the retentate (concentrate) concentration, which in
his case for perfect retention relates to 𝑐f by 𝑐c = 𝑐f∕ (1 − WR). So the
5

inimum energy per unit permeate, practically, cannot be less than
𝐸min,prac = 𝑅𝑇 𝑐f∕ (1 − WR) [15], and with 𝐸min given by Eq. (13), this
mplies a practical single stage RO efficiency of

RO = 1 − WR
WR ⋅ ln (1 − WR) = 1 − 1∕2 ⋅ WR − 1∕6 ⋅ WR2 −⋯ (15)

which can be multiplied by 1∕𝛼1𝛼2.
In ED also some energy is required to push water through tubings

and channels of the ED stack, but this is low compared to the main
energy input, which is electricity for running current across the stack.
For a certain current I (in A, i.e., Ampère), and cell pair voltage 𝑉cp,
then for each cell pair the electrical energy input is 𝐼 ⋅𝑉cp (unit J∕s = W),
and with N cell pairs in an ED stack, this energy is multiplied by N to
obtain the electrical energy input for the stack. Inside each cell pair
the voltage 𝑉cp is due to resistances for current to cross the diluate and
concentrate channels, to cross the membranes, and due to the Donnan
voltages at the membrane–solution edges. These Donnan voltages are
not a resistance (they are not a direct function of the current), but are
a consequence of the thermodynamics of desalination, i.e., the Donnan
voltage cannot be reduced to zero by running at low currents. Of the
Ohmic resistances, the largest loss is in the low-salinity diluate channel.
In EDI this resistance is reduced with ion-exchange resin material in
these channels. In an ED stack (of 10s or 100s of cell pairs) there
are also two end-compartments in which electronic current transfers to
ionic current, and vice-versa. There is a voltage loss associated with the
Faradaic reactions there, but with increasing numbers N of cell pairs,
this voltage loss (of the order of the voltage over 1 cell pair) becomes
inconsequential for the energy requirements of a full ED stack. In ED
generally only a single value of the cell pair voltage is applied to the
stack as a whole, which also leads to a practical limit in the energy
efficiency, which is discussed in Section 4.

The energy thus invested in RO and ED by pressure and electricity
(including energy recovery), is always larger than the thermodynamic
energy as calculated in Section 2.2. Thus, the ratio of thermodynamic
energy emin over the real, or practical energy, i.e., the energy efficiency
𝜂, is always less than unity, i.e., we always have 𝜂 < 1.

3. One- and two-dimensional models for RO with neutral solutes

3.1. Flowrates and retention in a 1D model of RO for neutral solutes

Reverse osmosis (RO) is a process to remove solutes from water by
pushing water through a membrane which largely blocks passage for
solutes. This is the general mechanism of all pressure-driven membrane
processes, but for water desalination the size of the pores (free volume)
in the membrane must be very small, typically well below 1 nm in
the selective toplayer of an RO membrane. In classical literature, RO
is called hyperfiltration, but nowadays this term has been replaced by
RO. Nanofiltration (NF) is similar to RO but has slightly larger pores,
and thus the applied hydrostatic pressure is lower, with the retention
of monovalent ions significantly reduced. NF is therefore considered to
be suitable for the selective separation of divalent ions and other larger
molecules from monovalent ions.

Because RO (and NF) can be used not only to desalinate water but
also to remove other (larger) molecules that may not necessarily be
charged, it is useful to start with theory for uncharged solutes. A key
parameter is the permeate water flux, 𝑣w, also called transmembrane
water velocity [5]. This is the flux, or velocity, of water in the direction
across the membrane. For uncharged solutes, if 𝑣w is known, and if
there are no special interactions between the solutes, then, interestingly
all solutes can be treated separately, and their transport rates are
not coupled. This is also why equations that we derive below for
the retention of neutral solutes in RO are independent of feed solute
concentration, as long as 𝑣w is set to a certain value. If 𝑣w is not fixed,
but instead the applied pressure is set to a certain value, then this
is not the case but via the osmotic pressure the concentration feeds
back into the transport problem and into the (prediction of) retention.
Note that this situation is very different for electrolyte solutions (i.e., a
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solution containing ions), because then an electric field develops to
ensure that the electrical current is zero, and this always leads to
various couplings between the ion fluxes. RO for electrolytes will be
discussed in Section 6.

Based on the solution-friction model, see Section 5, we can de-
rive for the flux of neutral species across a porous membrane (see
Eqs. (1), (18), and (19) in Ref. [16])

𝐽𝑖 = 𝐾f,𝑖 𝑐m,𝑖𝑣w −𝐾f,𝑖𝐷m,𝑖
𝜕𝑐m,𝑖

𝜕𝑥
(16)

where the transmembrane solute flux 𝐽𝑖 and water flux 𝑣w are defined
per unit geometric membrane area, thus they are superficial velocities,
i.e., they are not pore-based, interstitial, velocities. Concentrations are
defined per unit volume of the water-filled pores in the membrane.
Eq. (16) includes transport due to a solute concentration gradient
(second term), and due to solute advection, which is the movement
of solutes because they ‘flow along’, i.e., are advecting with, the water
that flows through the membrane (first term).2 Here, x is the coordinate
axis directed across the membrane. The diffusional term depends on a
membrane-based diffusion coefficient, 𝐷m,𝑖, which includes the effects
of porosity and tortuosity. Eq. (16) follows as a simplification of the
two-fluid model (TFM) that will be explained in Section 5. The friction
factor 𝐾f,𝑖 depends on the extent of solute–membrane friction, and thus
relates to membrane pore size and the (hydrated) size of the solutes. In
the absence of solute–membrane friction, the solutes move freely with
the fluid (i.e., with the water in the pores), while they are still subject
to diffusional forces (and electrical forces when charged), and in that
case 𝐾f,𝑖 = 1.

Now, for RO, a value of 𝐾f,𝑖 = 1 is unlikely, because that would
mean zero solute–membrane friction, and thus we expect 𝐾f,𝑖 to be
less than unity. However, it is not likely that we have 𝐾f,𝑖 = 0, in
which case not only the advection term cancels (which would lead
to the solution–diffusion model that we discuss later on), but then
there is no diffusional transport of solutes either, and such a membrane
would therefore perfectly block solutes under all conditions. This is not
the case in a real RO or NF membrane, with solutes still passing the
membrane, and thus it must be the case that 𝐾f,𝑖 is larger than zero.
Thus, in an RO membrane with neutral solutes, diffusion and advection
are to be considered jointly, as described by Eq. (16), and it is incorrect
to neglect advection altogether.

Before continuing with a discussion of transport models, we must
first introduce two other model elements. First, the solute concentration
just in the membrane is related to that just outside. To that end
we make use of a partitioning equation [17,18], which follows from
chemical equilibrium of a species i across an interface, which applies
on both outer surfaces of a membrane [5], resulting for neutral solutes
in

𝛷𝑖 = 𝑆𝑖 =
𝑐m,𝑖

𝑐∞,𝑖
(17)

here index ∞ refers to a position just outside the membrane. For RO
ith ions, see sections 5.2 and 6.2, an additional Donnan effect arises,
hich in this paper we treat separately, i.e., do not include in 𝑆𝑖 or 𝛷𝑖.
he partitioning coefficient, 𝛷𝑖, is the same as the solubility of a species

n a material, 𝑆𝑖, and this term is for instance due the chemical affinity
f a solute with a certain phase (medium) relative to its affinity with
nother phase, but also other effects of solute–membrane interaction
an be absorbed in 𝛷𝑖 [17]. In RO with neutral solutes, we always have
𝑖 < 1 or 𝐾f,𝑖 < 1, or both.

A further element in RO modeling is the ‘permeate equation’, an
quation essential to describe RO in a one-dimensional (1D) geometry,

2 Advection was just explained and is different from convection, which is
he flow of a continuum fluid because of pressure gradients.
6

valid when there is no flow along the membrane on the permeate side,
which is Eq. (8) in Ref. [5], and Eq. (24) in Ref. [19]

𝑐p,𝑖 =
𝐽𝑖
𝑣w

(18)

hich looks very simple, but is actually a quite intriguing result. It
tates that the concentration of solutes on the permeate side is a direct
unction of the ratio of solute flux through the membrane over the
ater flux. This is a correct result in steady-state, thus with conditions
n the upstream side unvarying in time. It is also valid when on the
pstream side conditions change in time and the permeate is regularly
emoved; as a consequence water that permeated the membrane at
arlier moments does not mix up with fresh permeate. In a complete
2D) module, Eq. (18) can also be used with average values of 𝐽𝑖 and
w (averaged over the complete module).

Let us first discuss the well-known solution–diffusion (SD) model.
n the SD-model, the advection term in Eq. (16) is set to zero and
hus only diffusion drives solutes across the membrane [20]. We can
hen integrate Eq. (16) on the basis of the fact that in steady-state the
olar flux of solutes, 𝐽𝑖, is constant across the membrane, and after

ombination with Eq. (17), we arrive at

𝑖 = 𝑘m,𝑖𝐾f,𝑖𝛷𝑖
(

𝑐f,𝑖 − 𝑐p,𝑖
)

(19)

where the membrane mass transfer coefficient, 𝑘m,𝑖, is 𝑘m,𝑖 = 𝐷m,𝑖∕𝐿m,
with Lm membrane thickness. The abbreviation SD refers to the com-
bination of a solution process (described by the 𝛷𝑖-term) and solute
diffusion across the membrane, of which the rate is described by
𝑘m,𝑖𝐾f,𝑖. In this SD-model, the flow of solutes, and that of the solvent,
‘are completely independent without any effect of one on the other
when, in general, they may be coupled by either frictional or convective
effects’ [21]. Combining Eqs. (18) and (19) leads to an expression for
retention 𝑅𝑖 in the SD-model given by

𝑅𝑖 =
Pe𝑖

Pe𝑖 +𝐾f,𝑖𝛷𝑖
=

𝑣w
𝑣w + 𝜔

(20)

where the membrane Péclet-number is given by Pe𝑖 = 𝑣w∕𝑘m,𝑖 and 𝜔
is a factor we discuss further on. Eq. (20) predicts that if we steadily
increase the permeate water flux 𝑣w, thus Pe𝑖, at some point we always
reach a retention as close to 100% as desired [22], at least as long as
CP-effects can be avoided.

When we do not make the SD assumption, we can solve Eq. (16)
including advection as well. Calculation results stemming from this
model are presented in Fig. 3. With the same assumptions as before,
integration of Eq. (16) across the membrane results in

𝐽𝑖 = 𝐾f,𝑖 𝑣w
𝑐m,L,𝑖 exp

(

Pe𝑖
)

− 𝑐m,R,𝑖

exp
(

Pe𝑖
)

− 1
(21)

where subscripts L and R refer to the left and right sides of the
membrane, at positions just inside the membrane. We associate ‘left’
with the feed/retentate side, for which we index ‘f’, and associate ‘right’
with the permeate side (freshwater, diluate), with index ‘p’. Eq. (21) is
sometimes referred to as the Hertz equation [23]. We combine Eqs. (17)
and (21), which leads to

𝐽𝑖 = 𝐾f,𝑖 𝛷𝑖 𝑣w
𝑐f,𝑖 exp

(

Pe𝑖
)

− 𝑐p,𝑖

exp
(

Pe𝑖
)

− 1

= 𝐾f,𝑖𝛷𝑖𝑣w
√

𝑐f,𝑖𝑐p,𝑖
sinh

(

1∕2
(

Pe𝑖 + ln
(

𝑐f,𝑖∕𝑐p,𝑖
)))

sinh
(

1∕2 Pe𝑖
)

(22)

which is the general result for retention in an RO membrane with
neutral solutes (e.g., Eq. (10) in Ref. [24]). Because of the depen-
dence of solubility, i.e., partitioning, described by the factor 𝛷𝑖, in
combination with a derivation based on ion–water and ion–membrane
friction, captured by the factor 𝐾f,𝑖, we call this the solution-friction
model, or SF-model. It is identical to the sieving model put forward by
Kedem and colleagues in the 1950s and 1960s [19,25], though there are
differences in the derivation. The same set of expressions is also called
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the homogeneous model for RO membranes [5]. The sieving coefficient,
𝜎𝑖, is a common term in the literature on this subject and relates to 𝐾f,𝑖
and 𝛷𝑖 according to

𝜎𝑖 = 1 −𝐾f,𝑖𝛷𝑖 . (23)

his result was already arrived at by Spiegler and Kedem, see their
q. (49) in case in their equation we implement that 𝜈s ≪ 𝜈w, see
lso Eq. (76) in Ref. [26], or Eq. (16) in Ref. [27]. We combine
qs. (2), (18), and (22) to obtain for solute retention

𝑖 =
(1 − F) 𝜎𝑖
1 − F 𝜎𝑖

(24)

here F = exp
(

−Pe𝑖
)

. Eq. (24) is equivalent to Eq. (3) in Ref. [27],
q. (4) in Ref. [16], Eq. (38) in Ref. [3], and Eq. (129) in Ref. [28],
hen we make the following conversions: 𝜔 =

(

1 − 𝜎𝑖
)

𝑘m,𝑖, 𝑃 =
s = 𝐾f𝛷𝑖𝑘m,𝑖, and thus 𝑘m,𝑖 = 𝑃s∕

(

1 − 𝜎𝑖
)

. Another formulation is
1 − 𝜎𝑖

)

∕𝑃s ⋅ 𝑣w = ln
{

𝑐p ⋅ 𝜎𝑖∕
(

𝑐p − 𝑐f
(

1 − 𝜎𝑖
))}

(Eq. (9) in Ref. [29]).
ote that when a DBL or CP layer is included, we must replace here
f for the concentration right at the membrane. Note also that these
quations are only valid in the limit of a low water recovery, and
ssume that we describe transport of neutral solutes.

For low 𝑣w, the expression for solute flux 𝐽𝑖, Eq. (22), simplifies
o (see Eq. (3.1) in Ref. [25])

𝑖 =
(

1 − 𝜎𝑖
) (

𝑘m,𝑖
(

𝑐f ,𝑖 − 𝑐p,𝑖
)

+ ⟨𝑐𝑖⟩ 𝑣w
)

(25)

here ⟨𝑐𝑖⟩ is the average of 𝑐f,𝑖 and 𝑐p,𝑖. Eq. (25) is called the arithmetic
ean expression [23]. Based on Eq. (24), retention in the limit of low
w is given by

𝑖 =
𝜎𝑖

1 − 𝜎𝑖
Pe𝑖 =

𝜎𝑖
𝜔

𝑣w (26)

which shows that for very low water velocities, retention goes to zero,
and for a non-zero retention we need 𝜎𝑖 > 0 and thus we need either

non-unity 𝐾f ,𝑖-factor or a non-unity partitioning function, 𝛷𝑖. Note
hat Eq. (26) is not the same as Eq. (20) which describes retention
ccording to the SD model. Note as well that Eq. (26) does not follow
rom combining Eqs. (2), (18) and (25).

In the other limit, of a high permeate water flux, 𝑣w, Eq. (22)
implifies to

𝑖 =
(

1 − 𝜎𝑖
)

𝑐f,𝑖 𝑣w (27)

hich implies that in this limit solute flux is only due to advection, and
o longer depends on diffusion. In this high-Pe limit, retention is given
y

𝑖 = 𝜎𝑖 (28)

hich is Eq. (30) in Ref. [19] and Eq. (34) in Ref. [28]. Eq. (28)
escribes that an RO membrane has a natural limit in what retention
t can achieve, determined by the extent to which solutes are excluded
rom the membrane (which implies a value of 𝛷𝑖 < 1), and by the extent
f solute–membrane friction (which leads to 𝐾f,𝑖 < 1). If a membrane
oes not do either, i.e., it does not exclude solutes, i.e., 𝛷𝑖 = 1, and it
oes not impose a frictional force on solutes at all, i.e., 𝐾f,𝑖 = 1, then
he SF theory predicts that retention will be zero, and in our view that
s a correct result: for an RO membrane to function, either solutes must
e excluded from the membrane, leading to 𝛷𝑖 < 1, or there must be a
olute–membrane friction, i.e., 𝐾f,𝑖 < 1, and ideally both. Instead, the
D-model, Eq. (20), does not make these detailed predictions at all, see
similar discussion in Ref. [21].

Interesting is the effect of membrane thickness, which influences
m,𝑖. In the limit of a high permeate water flux, 𝑣w, there is no effect of
hickness on retention, though there is for lower values of 𝑣w. In that

case a thicker membrane leads for the same 𝑣w to a higher retention. Or
vice-versa, when for the same 𝑣w the membrane is made thinner, thus
Pe𝑖 decreases, then retention decreases, because diffusion of solutes
increases, see Fig. 3A. Thus, thin(ner) membranes are not necessarily
advantageous.
7

3.2. A 1D model for RO of neutral solutes including concentration polar-
ization

Next we extend the SF-model with solute transport across a diffusion
boundary layer (DBL), or alternatively called concentration polariza-
tion layer (CP layer) located in front of the membrane, i.e., on the
upstream side [30]. This layer is assumed to have a certain thickness
and all water and solutes are transported across this layer before
reaching the membrane. Eq. (21) which describes solute advection and
diffusion in a membrane also applies to the DBL, now with 𝐾f,𝑖 = 1
ecause there is no porous structure in the DBL that generates friction
ith the solutes. Furthermore, 𝑐m,L,𝑖 → 𝑐f,𝑖, 𝑐m,R,𝑖 → 𝑐int,𝑖, and Pe𝑖 →

Pedbl,𝑖. We then arrive at

𝐽𝑖 = 𝑣w
𝑐f,𝑖 exp

(

Pedbl,𝑖
)

− 𝑐int,𝑖

exp
(

Pedbl,𝑖
)

− 1

= 𝑣w
√

𝑐f,𝑖𝑐int,𝑖
sinh

(

1∕2
(

Pedbl,𝑖 + ln
(

𝑐f,𝑖∕𝑐int,𝑖
)))

sinh
(

1∕2 Pedbl,𝑖
)

(29)

where Pedbl,𝑖 = 𝑣w∕𝑘dbl,𝑖, with 𝑘dbl,𝑖 = 𝜀s𝐷∞,𝑖∕𝐿dbl, where 𝜀s is a
orosity- and tortuosity-correction in the solution phase, e.g., because
f a spacer material, and where 𝐿dbl is an estimated thickness of the
BL layer. With more stirring, or a higher cross flow rate (velocity of

he water pumped along the membrane), this thickness goes down and
dbl,𝑖 goes up. In Eq. (29) we use ‘f’ for feed, but that is only correct in an
xperiment at very low water recovery. More generally, when we use
his equation in a 2D module calculation, we should use here ‘u, b’ for
he bulk phase on the upstream side, instead of ‘f’. The concentration
t the interface between DBL and membrane (but still in solution) is
int,𝑖. In the limit of a low water flow rate, 𝑣w, Eq. (29) simplifies to

𝑖 = 𝑘dbl,𝑖
(

𝑐f,𝑖 − 𝑐int,𝑖
)

+ 1∕2 𝑣w
(

𝑐f,𝑖 + 𝑐int,𝑖
)

. (30)

In a 1D geometry where Eq. (18) applies, Eq. (29) can be rewritten to

𝑐int,𝑖 = 𝑐p,𝑖 +
(

𝑐f,𝑖 − 𝑐p,𝑖
)

exp
(

Pedbl,𝑖
)

(31)

and if 𝑐int,𝑖 ≫ 𝑐p,𝑖, then Eq. (31) simplifies to 𝑐int,𝑖 = 𝑐f,𝑖 ⋅exp
(

Pedbl,𝑖
)

. For
any asymmetric binary salt, Eqs. (29)–(31) also apply, but the diffusion
coefficient 𝐷∞,𝑖 is replaced by the harmonic mean diffusion coefficient
of the binary salt, 𝐷hm, see Ref. [12].

When we combine all these equations, we obtain the following
generalized RO solute retention equation that includes the effect of
concentration polarization (Eq. (13) in Ref. [5])

𝑅𝑖 = 1 −
[

1 +
(

(

1 − 𝜎𝑖
)−1 − 1

)

⋅ exp
(

−Pedbl,𝑖
) (

1 − exp
(

−Pe𝑖
))

]−1
. (32)

When Pedbl,𝑖 → 0, i.e., when the mass transfer coefficient of the
DBL is large enough, for instance because of sufficient stirring, then
Eq. (32) simplifies to Eq. (24). Eq. (32) predicts a maximum in re-
tention, as also shown in Fig. 3A, and this maximum retention is
at a membrane Pe-number given by Pe𝑖 = ln (1 + w) where w =
𝑘dbl,𝑖∕𝑘m,𝑖 (Eq. (15) in Ref. [5]). The maximum retention is then given

by 𝑅max,𝑖 = 1 −
[

1 +
(

(

1 − 𝜎𝑖
)−1 − 1

)

⋅ w ⋅ (1 + w)−(1+1∕w)
]−1

(Eq. (15′)
in Ref. [5]), which for w → ∞ simplifies to Eq. (28). For reference, we
give the result when the SD-model is combined with a CP-layer based
on Eq. (31), for a 1D geometry, which is 𝑅𝑖 = 𝑣w∕

(

𝑣w + 𝜔 exp
(

Pedbl
))

.
In the general case of the SF-model in combination with a CP-layer,

based on Eq. (32), we can analytically solve all relevant properties in
and near the membrane as follows. For a known value of 𝑣w, retention
𝑅𝑖 follows from Eq. (32), then Eq. (2) leads to 𝑐p,𝑖, 𝐽𝑖 follows from
Eq. (18), Eq. (31) results in the concentration just on the upstream
outside side of the membrane, and then with Eq. (17) we obtain
the solute concentration just inside the membrane on that same side.
Subsequently we can use Eq. (35), which we will discuss further
on, to calculate the applied pressure. If the applied pressure is an
input parameter, then an extra iteration is needed, but that is not

complicated.
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Fig. 3. Results of calculations for retention of neutral solutes by an RO membrane in a 1D geometry, combining membrane transport modeling with solute partitioning and
concentration polarization, based on Eqs. (24) and (28). (A) Retention as function of permeate water flux, 𝑣w, and solute mass transfer coefficients (𝜎𝑖 = 0.9). (B) Examples of
solute concentration profiles across the membrane.
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We present in Fig. 3A results for retention as described by Eq. (32)
for various values of the ratio 𝑘dbl,𝑖∕𝑘m,𝑖. Also results are presented
for the limiting retention given by Eq. (28). For selected conditions,
concentration profiles are presented in Fig. 3B. These profiles are quite
strongly non-linear with a steeper decay in concentration near the
permeate side. They are not straight lines as would be expected in the
SD model.

3.3. Pressure and water flow in a 1D model of RO for neutral solutes

Having discussed how solutes are retained by RO membranes, we
next describe the relation between the hydrostatic pressure that is
applied across an RO membrane, 𝛥𝑃 h,∞, and the resulting permeate
water flux, 𝑣w. The force balance on the water that will be presented
in Section 5 describes fluid flow through porous media in the pres-
ence of solutes that move through that same porous structure. The
theory describes how water flows because of gradients in hydrostatic
and osmotic pressure [31] (the latter due to gradients in total solute
concentration), and is slowed down by friction with the membrane
matrix and by friction with solutes. When solutes also have friction
with the membrane (resulting in 𝐾f,𝑖 < 1), then the water velocity
decreases: with increasing solute–membrane friction, solutes become
more of an obstacle for water to flow. In the opposite limit when solutes
‘just flow along’ with the water, without solute–membrane friction,
they do not hinder water transport and then this same theory leads for
neutral solutes to the classical Darcy equation for fluid flow through a
porous medium. At the edges of the membrane, we have jumps both in
osmotic pressure and hydrostatic pressure [28,32,33], and it is essential
to understand these to predict the direction of water flow, especially
in the absence of a significant hydrostatic pressure. These topics are
addressed in Sections 5 and 6.

Interesting are the changes of pressure across the CP-layer,
i.e., across the DBL. The osmotic pressure increases through the DBL,
because it is a direct function of the local solute concentration, which
also increases towards the membrane (because the solutes are rejected
by the membrane while water flows through). At the same time, the hy-
drostatic pressure does not change through the DBL, i.e., the externally
applied hydrostatic pressure ‘arrives at’ the membrane unchanged.
Only there, at the outer surface of the membrane, are there jumps
in the hydrostatic pressure and osmotic pressure upon entering the
membrane [33–36].
8

The physical phenomena at the outsides of the membrane are highly
intriguing, even for neutral solutes. We know there is a jump ‘down’
in solute concentration upon entering the membrane when solutes are
excluded from the membrane, described by 𝛷𝑖 < 1. A first question
s then how the osmotic pressure changes across the interface. The
orrect analysis leads to the result that also the osmotic pressure goes
own, from a value 𝛱∞ just outside the membrane to a value 𝛱m just
nside the membrane, with 𝛱m < 𝛱∞ when 𝛷𝑖 < 1 for all solutes.
or ideal solutions the osmotic pressure (both inside and outside a
embrane) is proportional to the solute concentration according to
= 𝑐 𝑅𝑇 (where c is a total concentration, i.e., a summation over

ll solutes), and thus the jump in osmotic pressure (counted in the
embrane relative to outside) is 𝛥𝛱 =

(

𝑐T,m − 𝑐∞
)

𝑅𝑇 , where 𝑐T,m is
a total solute concentration in the membrane. If we now include the
partitioning equation we arrive at 𝛥𝛱 = −𝑐∞

(

1 −𝛷𝑖
)

𝑅𝑇 (assuming
that all solutes have the same 𝛷𝑖), which is negative. This means
the osmotic pressure goes down upon entry into the membrane. The
magnitude of this change is proportional to the solute concentration
just outside the membrane, and thus 𝛥𝛱 can be quite significant on
the upstream side of a membrane, while on the downstream side there
will hardly be any jump in pressure between outside and inside the
membrane.

The next step is to find the relationship between this osmotic
pressure change at the membrane interface and the hydrostatic pressure
change there. The result is very elegant, and follows from analysis
of mechanical equilibrium across this interface, namely that the total
pressure is invariant across each of the membrane interfaces (between
just outside and just inside) [37], with this total pressure a summation
of hydrostatic pressure and minus the osmotic pressure. This will be
further explained in Section 5 as the consequence of a force balance
acting on the water evaluated over a very thin layer with steep changes
in pressures, similar to how electrical double layer theory follows from
chemical equilibrium across an interface with an associated change in
voltage. Thus, at each of the two membrane interfaces we have

𝛱m −𝛱∞ = 𝑃 h,m − 𝑃 h,∞ (33)

where ‘∞’ refers to just outside the membrane, and ‘m’ to just inside.
Thus, a step downward in osmotic pressure upon entry into the mem-
brane (in case 𝛷𝑖 < 1) translates into an equally large step downward

in hydrostatic pressure (Eq. (60a) in Ref. [26]). This step downward is
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the most significant on the side of the membrane with a large solute
concentration. Note that in the SD-model it is stated that only on the
downstream side of the membrane there is a pressure drop, with no
pressure change on the upstream side of the membrane, see for instance
a discussion and references in Ref. [21]. However, for RO with neutral
solutes, these assumptions do not agree with an analysis based on
mechanical equilibrium.

Inside the membrane, the velocity of water follows from a friction
balance that we explain in Section 5, which in a general form is
Eq. (84). For neutral solutes, this becomes

𝑣w = −𝕜†F-m

(

1
𝑅𝑇

𝜕𝑃 h,m

𝜕𝑥
−
(

1 −𝐾f,𝑖
) 𝜕𝑐T,m

𝜕𝑥

)

(34)

here we assume for all solutes the same 𝐾f,𝑖. Here 𝕜†F-m is a water–
membrane permeability that also includes friction of water with the
membrane via a friction of solutes with the membrane. This latter effect
disappears when 𝐾f,𝑖 = 1 and then the †-index can be dropped. In
that case we will have a linear pressure gradient in the membrane that
leads to transmembrane water flow (Eq. (65) in Ref. [26]). Assuming a
constant value for 𝕜†F-m, we can integrate over the membrane thickness,
𝐿m, implement Eq. (33) for mechanical equilibrium, as well as the
relation for solute partitioning, and then obtain the classical result that
the transmembrane water flow rate is given by

𝑣w = 𝑘†F-m
(

𝛥𝑃 h,∞ − 𝜎𝑖 ⋅ 𝛥𝛱
∞)

(𝑅𝑇 )−1 (35)

where 𝛥’s here and in the remainder of this section refer to a value
upstream minus that downstream. Eq. (35) is Eq. (41) in Ref. [34], and
is Eq. (10.21) in Ref. [38]. (Note that in the SD-model, see Eq. (12) in
Ref. [20], the term 𝜎𝑖 is not present.) Interestingly, Eq. (35) describes
that for water to flow, the applied pressure must compensate the
osmotic pressure difference across the membrane (not overcome ‘the’
osmotic pressure at the DBL/membrane interface), and the less so the
lower 𝜎𝑖. Thus if solutes are not very much excluded by the membrane,
water will still flow while the hydrostatic pressure can be much lower
than the upstream osmotic pressure [3]. Note that ∞ here refers to just
outside the membrane, so on the upstream side ∞ refers to a position
between DBL and membrane.

In Fig. 4A, we analyze the required transmembrane pressure for any
value of the water flux, 𝑣w, and we notice that for each flux there is
one pressure. It is not the case that we first need to overcome some
discrete value of the osmotic pressure of the feedwater before water
starts to flow across the membrane. This is because the osmotic pressure
that must be overcome is the difference in osmotic pressure across the
membrane, and retention is low at low water velocities, and then the
osmotic pressure on the permeate side approaches that on the feed
side, i.e., in the limit of very low transmembrane water velocities, the
osmotic pressure difference goes to zero. However, as also shown in
Fig. 4A, the more a membrane becomes selective, with the reflection
coefficient increasing, in this case from 𝜎𝑖 = 0.90 to 𝜎𝑖 = 0.98, the
more we obtain a curve in alignment with the common understanding
that a minimum pressure is needed to overcome the osmotic pressure,
before water starts to flow. Furthermore, Fig. 4B illustrates that in the
SF model the flow of solutes more or less monotonically increases with
pressure. This is very different from what the SD-model predicts, that
solute flow is independent of pressure [22].

3.4. Energy efficiency of RO with neutral solutes in 1D geometry

Having analyzed the flow of solutes and water as function of pres-
sure, we can next analyze energy efficiency, 𝜂RO, for which results
are presented in Fig. 5. To calculate the energy efficiency, we must
divide the ‘thermodynamic’ energy, given by Eq. (14), by the real
input energy, which is the pressure difference 𝛥𝑃 h,∞ times the flow
of water across the membrane, 𝜙v,prod (which is equal to the water
flowrate 𝑣w times membrane area). When we take the ratio of these two

h,∞
9

energies, water flowrate cancels out, and we obtain 𝜂RO = 𝐸min∕𝛥𝑃 . w
This efficiency 𝜂RO starts at zero at very low water velocities (for low
Pe𝑖), and then increases. In the limit of a very high water–membrane
permeability (𝛽 → ∞, with 𝛽 = 𝑘†F-m𝛱f∕

(

𝑅𝑇𝑘m,𝑖
)

, where the osmotic
pressure of the feed stream is 𝛱f = 𝑐f𝑅𝑇 ), and in the absence of
concentration polarization (CP), we can reach an energy efficiency of
around 80% when 𝜎𝑖 = 0.90, which is a maximum value that cannot
be further increased at that value of 𝜎𝑖. When the CP layer plays a
more important role, we need a higher pressure at the DBL/membrane
interface to overcome the higher osmotic pressure, and this reduces
𝜂RO. And when the water–membrane permeability decreases, efficiency
also drops, for instance to values around 40%–50% at 𝛽 = 10, see Fig. 5.

Interestingly, this parameter 𝛽 does not depend on membrane thick-
ness, so the equations do not simply predict that we have a higher
energy efficiency if we reduce membrane thickness. The only effect of
thickness is via 𝑘m,𝑖 which is part of the definition of Pe𝑖. A thinner
membrane leads to lower Pe𝑖, and can help to increase efficiency (see
curve for 𝛽 = 10 when we go from high Pe𝑖 back to Pe𝑖 ∼ 0.4), but for
Pe𝑖 already small, a thinner membrane only reduces efficiency because
the membrane becomes more leaky and retention goes down which
reduces 𝐸min and that reduces 𝜂RO. This illustrates that – even in this
relatively simple example of RO of a neutral solute in a 1D geometry
for low water recovery – the effect of various parameters is not always
straightforward. An extended calculation for a full module that we
discuss next demonstrates that the relations between water recovery,
retention, and energy efficiency can be even more intricate.

3.5. 2D model for an RO module for neutral solutes

In the present section we theoretically analyze an RO module for
the removal of neutral solutes. The model uses analytical expressions
for solute and water flow across the membrane at any position in the
module, while solving mass balances in the direction between inlet and
outlet of a flow channel, i.e., in the z-direction along the membrane,
see Fig. 6A. So we call this a two-dimensional (2D) model, because that
is the physical geometry that is described. The two coordinate axes 𝑧
on each side of the membrane are parallel, and we assume the water to
flow co-currently, i.e., the exits of both channels are on the same end
of the module. On each side of the membrane we assume one value
for the pressure, i.e., we neglect pressure changes through the flow
channels, that is, along the membrane. Thus, in the entire module there
is one value of 𝛥𝑃 h,∞. On the permeate side there is no inlet, but all
water that passes the membrane, going from feed to permeate, leaves
as the permeate product stream.3 We now introduce a dimensionless
coordinate axis along the membrane, 𝜉, which starts at 𝜉 = 0 at the
inlet (feed) where 𝑧 = 0, and runs to 𝜉 = 1 at the outlet of the upstream
compartment (retentate).

We use the model for removal of neutral solutes in an RO membrane
as discussed in previous section, neglect the diffusion boundary layer
(DBL), and thus use Eq. (22) for solute flow, and Eq. (35) for water
flow, each evaluated at all positions z (or 𝜉) in the module. Flow
along the membrane is by advection only, thus backdiffusion in the
𝑧-direction through the module is not considered. An overall balance
is used describing that the sum of volume flow rates on the upstream
side (high pressure side) and on the downstream side (low pressure
side) at that same z-position, is equal to the volume flow rate of the
feedwater. A similar overall balance in salt flow rates can also be set
up. Combination of these two balances leads to

𝑐p =
𝑐f𝜙v,f − 𝑐𝜙v

𝜙v,f − 𝜙v
=

𝑐f − 𝑐 ⋅ 𝑓
1 − 𝑓

(36)

which relates the solute concentration on the downstream side, i.e., the
permeate concentration, 𝑐p, at any z-position, to concentrations and

3 The term retentate, with index ‘r’, from now on refers to the exit of the
pstream side. We use ‘p’ for the z-position dependent permeate concentration
ithin the module, while the exit on that side is denoted as ‘p, exit’.
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Fig. 4. Permeate water flux 𝑣w (expressed as a 𝑃𝑒-number) and the molar flux, 𝐽𝑖, of a neutral solute as function of 𝛥𝑃 h,∞, normalized by the feed osmotic pressure, 𝑐f𝑅𝑇 , across
n RO membrane in a 1D geometry. Results of calculations related to Fig. 3 (𝑘dbl,𝑖∕𝑘m,𝑖 = 5, 𝛽 = 1).
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Fig. 5. Energy efficiency, 𝜂RO, of an RO membrane process with neutral solutes in a
1D geometry. Results of calculations related to Figs. 3 and 4 (𝑘dbl,𝑖∕𝑘m,𝑖 = 5, 𝜎𝑖 = 0.90).

flow rates on the upstream side (at the same z-position), and to the feed
concentration, 𝑐f . We also introduce here a dimensionless upstream
flowrate f, given by 𝑓 = 𝜙v∕𝜙v,f . This factor f starts at 𝑓 = 1 at 𝜉 = 0,
and decreases with 𝜉, to reach 𝑓 |𝜉=1 = 1−WR at 𝜉 = 1. The z-position-
dependent concentration and flowrate on the upstream side are denoted
as c and 𝜙v, and have no additional index from now on.

In steady-state, we have on the upstream side a differential balance
for the volumetric flow rate given by

𝜕𝜙v = −𝑣w𝐴 (37)
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𝜕𝜉
where 𝐴 is the total membrane area in the module. A differential
balance for the solute flow rate is
𝜕
(

𝑐 𝜙v
)

𝜕𝜉
= −𝐽𝑖𝐴 . (38)

oth equations can be discretized in various ways and solved, for
nstance using the backward Euler-method, which is equivalent to
odeling N ideally stirred tanks in series [39]. We solve these two
ifferential balances together with flux equations such as Eq. (22) for
𝑖 (with 𝑐f,𝑖 replaced by c).

Intriguingly, in the limit that Pe𝑖 ≫ 1, thus when Eq. (24) can
e used, then together with Eqs. (37) and (38) we obtain the elegant
esult that at each position in the module water flowrate and solute
oncentration on the upstream side are related by

𝑐
𝑐f

=
(

1
𝑓

)𝜎𝑖
. (39)

We can apply Eq. (39) to retentate stream, where 𝑓 = 1 − WR, and
in this way calculate 𝑐r . With Eq. (36) we can subsequently calculate
the exit permeate concentration, 𝑐p,exit . Indeed, with the development
of Eq. (39), we can now quickly evaluate the retention that can be
achieved in a module. In the 1D calculation earlier on in this section,
in the advection-dominated limit, retention was given by 𝑅𝑖 = 𝜎𝑖, but
in a 2D module, retention is always less, as follows from combining
Eqs. (2), (36), and (39), resulting in

𝑅𝑖 = 1 −
𝑐p,exit
𝑐f

= 1 −
(

1 − (1 − WR)1−𝜎𝑖
)

/

WR (40)

which in the limit of low water recovery simplifies to

𝑅𝑖 = 𝜎𝑖 − 1∕2 ⋅ 𝜎𝑖 ⋅
(

1 − 𝜎𝑖
)

⋅ WR +⋯ (41)

which indicates how in the limit of WR → 0 we end up at the result
arrived at earlier for the 1D model, that for very low water recovery we
have a retention of 𝑅𝑖 = 𝜎𝑖, but when WR increases this retention drops.
So a high water recovery is nice, but will always go at the expense
of retention. This is because of the increasing concentration on the
upstream side as we move through the module, and thus the solute
concentration of the water that flows through the membrane further
down the module is higher than earlier on, which reduces module
retention.
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Fig. 6. Theoretical results of 2D RO module calculations with neutral solutes. (A)
Schematic diagram of co-current flow 2D RO model. (B) Calculated energy efficiency,
𝜂RO, against specific productivity, SP (WR = 80%, 𝜂ERD = 50%). Red line is for 𝜎𝑖 = 0.95,
in which case retention is 𝑅𝑖 ∼ 90%. green line is for 100% retention. Blue line describes
energy consumption when using two smaller RO modules in series instead of one larger
module for 𝜎𝑖 = 0.95.

The pressure that must be applied follows implicitly from solving a
single differential equation for 𝑓 versus 𝜉, which is based on combining
Eqs. (35)–(37), leading to

− SP
WR ⋅

𝜕𝑓
𝜕𝜉

= 𝛥𝑃 h,∞

𝛱f
−

𝜎𝑖
1 − 𝑓

(

1
𝑓𝜎𝑖

− 1
)

(42)

where we introduce the specific productivity SP, a dimensionless pa-
rameter given by SP = ⟨𝑣w⟩𝑅𝑇

/

(

𝑘†F-m𝛱f

)

, where ⟨𝑣w⟩ = WR ⋅𝜙v,f∕𝐴 is
the permeate water flux, averaged over the module. In the numerical
calculation, for any value of SP and 𝜎𝑖, the pressure ratio 𝛥𝑃 h,∞∕𝛱f is
varied until solving this equation from 𝜉 = 0 to 𝜉 = 1 leads to f going
from 𝑓 = 1 to 1 − WR.

Now, we first analyze the minimum pressure and maximum effi-
ciency in an RO module, which can be achieved in the limit of a low
permeate water flux, 𝑣w. The pressure required in this limit is what
is needed to push the water through the membrane to just reach the
required concentration at the exit of the module, 𝑐r , in this limit of low
SP. Thus – based on Eq. (35) – the minimum pressure is

𝛥𝑃 h,∞,min = 𝜎𝑖
(

𝑐r − 𝑐p,exit
)

𝑅𝑇 . (43)

This pressure can be multiplied by a factor 𝜙v,f
(

1 − 𝜂ERD (1 − WR)
)

where 𝜂ERD is the efficiency of the energy recovery device (to recover
energy from the pressure of the retentate flow), to obtain a total energy
input. The thermodynamic minimum energy follows from Eq. (12)
(without the factor 1∕2 because we discuss neutral solutes at the mo-
ment), multiplied by the flow rate of all permeate water produced,
𝜙v,prod. The ratio of this thermodynamic energy over the total energy
input, is the efficiency 𝜂RO. For the calculation we discuss below, with
𝜂 = 0.50 and certain values for the setpoints for WR and 𝑅 , we
11

ERD 𝑖
obtain a maximum efficiency of about 32%, see Fig. 6B. If we assume
that the membrane perfectly blocks all solutes (𝜎𝑖 → 1), we can derive
for the maximum efficiency

𝜂RO,max = −
(

(1 − WR) ⋅ ln (1 − WR)
) / (

1 − 𝜂ERD (1 − WR)
)

. (44)

At the same WR as before of 80%, according to Eq. (44) we have a
maximum efficiency of ∼36%, thus the non-unity value of 𝜎𝑖 in the full
calculation leads to a moderate lowering of the RO efficiency. When
we operate at lower WR, we can increase efficiency up to a maximum
efficiency of 41% when WR = 53% (𝜎𝑖 = 0.95). Higher efficiencies are
possible with higher 𝜂ERD with a further reduced WR (for 𝜂ERD = 90%,
we have 60% efficiency at WR = 32%, again 𝜎𝑖 = 0.95). Note that these
are maximum efficiencies in the limit of low SP.

Full calculations, also for higher SP, are presented in Fig. 6B, which
plots energy efficiency 𝜂RO versus specific productivity, SP. Starting at
a maximum value of 𝜂RO at low SP, 𝜂RO steadily drops with increasing
SP. Cost calculations will determine where on this curve is the optimal
point of operation. The curve depends on water recovery and on 𝜎𝑖,
but interestingly, it does not depend on 𝑐f or on the water–membrane
friction, 𝑘†F-m. A higher 𝑘†F-m leads to movement along the curve to lower
SP, but we stay on the curve. The same for a lower feed concentration,
which via 𝛱f = 𝑐f𝑅𝑇 has the effect that SP goes up and thus – moving
along the curve – 𝜂RO goes down. So when we remove solutes at given
values of WR and retention 𝑅𝑖 (such as WR = 80% and 𝑅𝑖 = 90%),
energy efficiency decreases when 𝑐f decreases.

3.6. Efficiency and cost analysis for a 2D RO model

Having analyzed energy efficiency, we can make a preliminary cost
analysis for optimal operation of an RO module using the RO model
discussed in the last section. Optimal RO operation minimizes the sum
of two cost factors, first the energy use, and second material costs.
The energy costs are the product of five factors: 1. the costs of a unit
of energy CUE (in an arbitrary monetary unit, per J of energy); 2. a
multiplier m1 for the total energy use in a unit or plant, over that
required to generate the pressure in the RO unit; 3. the factor RT ;
4. the feed flow rate 𝜙v,f ; and 5. the required energy per m3 feed
stream. The material costs are the product of four factors: 1. the costs to
purchase membranes, CMP (in the same monetary unit as above, per
m2); 2. a multiplier m2 to relate to other plant expenses, assumed to
be proportional to the installed membrane area; 3. the required area
𝐴; and 4. one over the lifetime of the membrane, i.e., the operational
time 𝛥𝑡 that a membrane can sustain before it must be replaced. The
energy per m3 feed stream is the applied pressure multiplied by a term
that accounts for the recovery of pressure energy, thus 𝛥𝑃 h,∞ times a
factor 1− 𝜂ERD (1 − WR). We add up energy and material costs to arrive
at the total costs (per time of operation)

TC = 𝑚1 ⋅CUE ⋅𝜙v,f ⋅𝛥𝑃
h,∞ ⋅

(

1 − 𝜂ERD (1 − WR)
)

+𝑚2 ⋅CMP ⋅𝐴∕𝛥𝑡 . (45)

Because we define efficiency as 𝜂RO = 𝐸min ⋅ WR∕
(

𝛥𝑃 h,∞ ⋅
(

1 − 𝜂ERD
(1 − WR))), Eq. (45) becomes

tc =
𝛼 ⋅ ecmin

𝜂RO
+ 1

SP , 𝛼 =
𝑚1 ⋅ CUE ⋅ 𝑘†F-m ⋅𝛱2

f ⋅ 𝛥𝑡
𝑚2 ⋅ CMP ⋅ 𝑅𝑇

(46)

where ecmin = 𝐸min∕𝛱f , where tc is the dimensionless total costs per
unit product, and where the cost factor 𝛼 is dimensionless as well.
This factor is proportional to the cost of energy, and inversely propor-
tional to the cost of purchasing the membranes. Thus less expensive
membranes increase this factor 𝛼.

We make a calculation based on the
(

𝜂RO − SP
)

–curve of the last
section for 𝜎𝑖 = 0.95, and obtain the result that for 𝛼 = 0.01 we have
an optimum SP = 8.34, and when 𝛼 increases tenfold (energy 10× more
expensive, or membranes 10× less expensive), then SP drops to 2.95,
i.e., the optimum situation is now at an almost 3× larger system (for the
same production of water). If the change in 𝛼 is because of an increase
in energy costs, then after the optimization, the total operational costs
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Fig. 7. Results of cost optimization of RO module for perfect retention, 𝑅𝑖 = 𝜎𝑖 = 1, as function of an increase in the cost factor 𝛼∕𝛼0 (a factor describing energy over material
costs) leading at each 𝛼 to a different optimum for WR and SP, and a different 𝜂RO. Panel B is based on 𝛼 increasing because material costs go down, with energy costs unchanged.
In this case, less expensive membranes lead to a higher energy efficiency, 𝜂RO.
is only a factor of 4 larger, not 10. And when the increase in 𝛼 is
because membrane purchase costs decreased by a factor of 10, then
without further system modifications this would lead to a reduction
in the total costs by a factor of 1.7, but after optimization (installing
more membranes, thus reducing SP) a cost reduction by a factor 4 is
achieved.

Thus this calculation shows that when energy costs increase, thus 𝛼
increases, that the system should be operated at higher efficiency and
lower SP, i.e., it becomes favorable that more membranes are purchased
and installed. And the same result is obtained for the case that the
purchase costs of membranes goes down (or we make improvements
such that we can use them longer, i.e., 𝛥𝑡 goes up), then 𝛼 also goes
up, and we also want to run the desalination plant at lower SP and
higher efficiency 𝜂RO. Thus, because of cost optimization, ‘less expen-
sive membranes have higher efficiency’. This conclusion, here arrived
at for neutral solutes, likely also applies for RO with salt solutions. In
the next section we make a similar analysis for ED.

In a second calculation we investigate the influence of water recov-
ery. When the aim is to make an optimization for the same retention,
we face the issue that retention depends on water recovery. This can
be dealt with by including a bypass of feedwater to the product stream
(if the realized retention is higher than the setpoint for retention), or
by assigning a pecuniary penalty to any offset in retention. Because we
do not want to deal with these complications now, we assume in what
follows that retention is perfect, i.e., we set 𝜎𝑖 = 1. Then retention is
always the same, namely 100%.

In that case the differential equation (42) leads to the analytical
result

WR⋅𝛾−ln (1 − WR ⋅ 𝛾∕ (𝛾 − 1) ) = WR⋅𝛾2∕SP , 𝛾 = 𝛥𝑃 h,∞/

𝛱f (47)

and together with Eqs. (13) and (46), we can make the calculations
presented in Fig. 7 where for each value of 𝛼 we can now find the
optimum WR and SP. With an energy recovery device with an efficiency
𝜂ERD = 50% and an initial cost factor 𝛼 = 0.01, then the system has
the following optimized properties: WR ∼ 84.3%, 𝜂RO ∼ 16.6%, and
SP ∼ 9.68. As Fig. 7A shows, when the factor 𝛼 goes up, either because
material costs are lowered or the price of energy goes up, the new
optimum is at a higher energy efficiency 𝜂RO, with SP going down
because we push the water through at a lower rate per unit membrane
area, with a significantly increased size of our module: in Fig. 7A, we
can see that SP goes down from ∼9 to ∼3 when 𝛼 is increased by a factor
10, which then implies that it becomes favorable to increase the total
area in the membrane modules by a factor of ∼3 (for the same amount
of water that is treated). The optimal water recovery decreased from
12

around 84% to 71% when 𝛼 increases by a factor of 10.
We now assume that the increase in 𝛼 is because we are able to re-
duce the material costs, either by extending the lifetime of membranes
or by reducing CMP, both of which will increase the cost factor 𝛼.
We then arrive at a percentage-wise improvement (reduction) in total
costs as depicted in Fig. 7B, first simply by factoring in that material
costs go down, without redoing the optimization, and secondly after a
renewed optimization which further improves the cost reduction. The
corresponding new values of 𝜂RO, WR, and SP, are depicted in Fig. 7A.
The end result is that the energy efficiency of the process goes up
significantly, and this happens in some sense ‘because’ the materials
were less expensive.

Of course this analysis was only an example calculation, and a
large range of factors is neglected, such as the effect of the DBL
on transport, the dependence of fouling on transmembrane flowrates,
and many other process constraints. And again, this entire calculation
was for a membrane that under all conditions perfectly blocks the
solutes, which is not the case in reality. And the calculation was for a
neutral solute, not for a salt solution... Another assumption was that the
hydrostatic pressure on the upstream side was set to a constant factor,
neglecting the decrease in pressure between inlet and outlet (order of
0.2 bar) [40]. Another cost factor that is relevant to include is that
of water pretreatment. Pretreatment costs scale linearly with feed flow
rate, so is inversely proportional to water recovery (for a given system
permeate production). Yet another factor is brine disposal which has an
associated cost [40], and if that is proportional to the volume thereof
(and not on the total amount of salt in there), then another factor
must be included that scales with (1−WR)/WR, which would shift the
optimum to a higher WR. Optimization studies that incorporate these
effects are very useful. Also of interest are calculations that incorporate
that in RO the direction of flow of permeate is at right angles to the flow
direction on the retentate side, i.e., in the module flow is in crosscurrent
mode. For ED we discuss crosscurrent flow in Sections 6.3–6.5.

3.7. Optimization for two combined RO modules in a system

Let us next analyze what advantage can be achieved when we work
with two RO modules, not one, as also analyzed in Ref. [41]. When
we compare with a single module, the ratio of total water throughput
over total membrane area must be the same, i.e., with two modules, on
average they must be twice as small. In the calculation we make, the
retentate of module 1 is directed to module 2 that operates at a higher
pressure. The same overall setpoint applies as in Section 3.5 of 80%
water recovery. We again use 𝜎𝑖 = 0.95 and 𝜂ERD = 50%.

What we find is that there is a positive effect of the use of multiple

units when we work at low SP, in the region where efficiency is at
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a maximum, see Fig. 6 [1]. Now, in that limit, with two modules in
series, efficiency 𝜂RO can increase significantly, from ∼32% to ∼48%.

t the optimum, water recovery is almost the same in both units, at
value of ∼55%, similar to statements in Ref. [41] and references in

here. Furthermore, we find that the pressure in the second unit is about
.2× that of the first module. (Thus the retentate of module 1, which is
bout 45% in volume of the feed stream, is further increased in pressure
y 1.2× what was the pressure applied to the water entering the first
odule.) However, with increasing SP the advantage decreases, the

ptimal ratio of pressures decreases from the factor 2.2 to 1.0, i.e., the
wo pressures in the modules become the same. Or in other words, there
s no advantage any more of using two modules. This observation, that
sing multiple modules is not always better, may go against a common
otion on the design of RO systems where the general idea is that more
nits are always better, because then we do not have to push so hard
n the first module where solute concentrations are still low. However,
ur calculations show this is only the case at low SP.

This finalizes the discussion of various aspects of the modeling of
n RO unit to remove neutral solutes. In Section 6 we discuss 1D and
D calculations of an RO module with a symmetric 1:1 salt solution.

. A simple model for electrodialysis for symmetrical cell pairs

A simple model for electrodialysis can be derived by an approach
hat we will outline next. In electrodialysis feedwater flows into two
djacent sets of channels, see Fig. 1B. In one series of channels the
ater will be desalinated, which are the diluate channels, denoted
y ‘d’. Salt ions move from these d-channels to the concentrate ‘c’
hannels. In many practical ED stacks, the flow pattern in each channel
s in first approximation ‘at 90 degrees’ to the flow pattern in adjacent
hannels. This is called a cross-flow geometry. This geometry is more
omplicated to model, and thus in this section we assume that we have
erfect co-current flow, i.e., we assume a one-dimensional geometry
here the two flows enter the module from the same side and flow in

he same way on either side of the membranes. The two channels can
till be different in width and the flowrates (thus residence times) can
e different.

An ED stack has two electrodes on either end where electronic
urrent is transferred to ionic current. In this review we do not discuss
he electrodes but we focus on the repeating unit of an ED stack, which
s the membrane cell pair, see Fig. 1B, which consists of two membranes
nd two flow channels. As mentioned, in the flow channels we assume
o-current flow of the water along the membranes, from inlet to exit
f the channel. While the water flows through these thin channels be-
ween the membranes, ions move from the d-channels to the c-channels
y transport across the membranes. This process is possible because
driven by the electrical current – anions move in one way out of

ach d-channel, to be transported through membranes that are selective
or anions. These are ‘anion-exchange membranes’ or AEMs, which
re membranes in which the water-filled pores are lined with high
oncentrations of positive membrane charges (of the order of 5 M fixed
embrane charge per volume of water in the membrane). The cations
ove in the other direction, passing cation-exchange membranes, or
EMs. These CEMs have a high concentration of fixed negative charge,
gain of the order of 5 M, and they preferentially allow access to
ations, largely blocking the passage of anions. Each d-channel has
uch an AEM on one side, and a CEM on the other. The net effect of
his layout of a cell pair, of a sequence of an AEM, d-channel, CEM,
nd c-channel, and this repeated tens to hundreds of times, is that the
-channels are being desalinated, while the salinity in the c-channels
ncreases between entrance and exit of each channel. Thus in the AEMs
nions are the main charge carrier, while in the CEMs cations carry
ost of the charge. These ions in their respective membrane are the

ounterions (anions in an AEM, cations in a CEM). The minority ions,
hat ideally are fully blocked, are called coions (cations in AEM, anions
n CEM).
13
Explanation of coion leakage in ED. Let us describe the functioning of the ED
cell pair in an alternative manner. With the current directed to the right, cations
will flow rightward, and anions will flow leftward. In the bulk of the channels, for
a symmetric system, this current is equally carried by cations, moving right, and
anions that move left. Cations and anions can have velocities in this left–right
direction that tend to zero (near a blocking membrane), but they do not flow
‘back’ at any point in the module. With AEMs and CEMs alternatingly placed
in the stack, and with cations moving right, anions left, then the following will
happen. One type of channel has a CEM on its right side. That membrane freely
allows the cations to pass to the next channel (to the right). And that same channel
has an AEM on its left side, and anions can pass that membrane freely and move
left. But now, in these adjacent channels, things are different. The anions want
to continue moving left, but now they encounter a CEM which blocks them.
And cations that want to move right, encounter an AEM that blocks them. So in
this second set of channels, the ions accumulate, and thus the salt concentration
increases. These channels will be the concentrate channels. Ions that arrive in
these channels, cannot escape.

What was just described, is the ideal functioning of an ED stack, and it is
generally like this early on in a cell pair, where current densities are still high and
concentration differences between the two types of channels, 𝑐d and 𝑐c, still low1.
But further on in the stack, with 𝑐c ≫ 𝑐d, ions start to leak from the concentrate
channel. They leak in the direction that drives them onward, not back to the
diluate channel that they came from, but on to the next diluate channel. The
membrane that blocked them from leaving the concentrate channel in the ideal
case (e.g., the AEM for a cation), becomes leaky. Why is that? Chemically the
membrane is of course the same as before. But this increased coion leakage from
the concentrate channels is because the increasing concentration difference across
this membrane leads to more and more diffusion of coions. Indeed, diffusion is
the main membrane transport mechanism for co-ions in ED. Thus further on in a
cell pair, the driving force for diffusion increases, and thus ions that were kept in
the concentrate channel quite well at first, now increasingly leak out; so cations
that entered a concentrate channel on the left side, now leak out on the right
side.

It now turns out to be the case that this leakage is more pronounced for
membranes that have a high diffusion coefficient, and for membranes that are
thin. With thin membranes, the gradient in concentration across the membrane
is steep, and we therefore have a large driving force for diffusion [42]. To avoid
this leakage from the concentrate channel, membranes should not be too thin (a
thickness of at least 10 μm is a well-known estimate). This increased leakage is a
reason why, towards the exit of a channel, the net rate of salt removal goes down
(per unit membrane area). The other reason is that the local current density goes
down, so the transport of ions from diluate to concentrate channels (the intended
purpose of ED) also goes down. This decrease is because the resistance goes up
in the diluate channel, and Donnan potentials increase. So for a given cell pair
voltage, 𝑉cp, the high current densities that could be achieved early on in the
channel, are dropping significantly the further one progresses down the channels.
Thus the flux of cations and anions arriving in the concentrate channels goes down
significantly. And at the same time diffusional leakage goes up, as discussed. As
a consequence, at some point in the channel a condition is reached that current
is still running, but the net salt transport from diluate to concentrate channels
(arrival minus leakage) drops to zero. At this point (and beyond), the current
efficiency, 𝜆, reaches the value of zero. This limiting value of 𝜆 = 0 will be used
further on to calculate the ‘final’ current density and salt concentrations, 𝑐d and
𝑐c, in a stack run at a fixed cell pair voltage.
1 The same analysis applies to a (short, or ‘differential’) stack that is fed from reservoirs

to which the effluent also flows back (batch-mode ED operation, solution is recirculated

between the reservoirs and the stack, and is desalinated over time). Then statements

about ‘early on in the stack’ can be changed to ‘early in time’, and ‘further on’ by

‘later’, assuming we started with two reservoirs at equal salt concentration. Note that

in this layout, the stack can be run at constant voltage or constant current. Instead, in

the calculation of co-current flow in a single stack without these reservoirs, then in the

common design with two undivided end-electrodes, then the entire stack is operated at

one value of the cell pair voltage, and the further we are away from the entrance, the

lower is the current density.
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In a later section we discuss how to optimize ED operation by
having multiple ED stacks in series with different water velocities
and operational currents, but for now we discuss a single cell pair.
In the simple model we discuss, we neglect water transport through
the membranes. Unfortunately, in reality this water flow is not zero,
and has a tendency to lower ED performance, but for now we neglect
it. Thus the water recovery, WR, is directly set by how much of the
feedwater flows to the c-channels and how much to the d-channels,
namely WR = 1∕

(

1 + 𝜙v,c∕𝜙v,d
)

. Thus, for equal flow rates to the two
channels, we have WR = 0.50.

We set up for each channel a steady-state plug flow model, with
ion transport through the membranes in a ‘sideways’ direction. In
each channel, at each position 𝑧, where 𝑧 is the direction along the
membranes, there are concentration profiles across the channel, from
membrane to membrane, but they can be relatively minor when the
channels are narrow.4 Thus for the moment in each channel we use a z-
dependent mass balance that does not have any dependence on position
in the perpendicular x-direction, which is the direction towards the
membranes, at right angles to the z-direction of water flow along the
membranes. Then a mass balance for an ion i at some position in a flow
channel becomes

𝑝
𝜕𝑐𝑖
𝜕𝑡

= −𝑣z
𝜕𝑐𝑖
𝜕𝑧

± 𝑎 ⋅
(

𝐽AEM,𝑖 + 𝐽CEM,𝑖
)

(48)

where p is the porosity (open volume fraction) of the channel, 𝑣z the
velocity of the water through the channel, in the direction along the
membrane. This is an average velocity, i.e., it is a water flowrate
in m3/s divided by the cross-sectional area of a channel (the cross-
section through which the water flows). It is a superficial velocity,
i.e., the presence of a spacer material that reduces p does not change the
numerical value of 𝑣z. The specific membrane surface area is a, which
is the area of one membrane lining a channel divided by the channel
volume. And thus 𝑎 = 1∕𝐿ch, where 𝐿ch is the width of the channel. We
use the symbol ± in Eq. (48) to avoid technicalities of how to define
the directions of fluxes, because that is not essential at this moment.

We now consider a binary 1:1 salt. We add up Eq. (48) for anions
and cations, assume steady-state, thus the term 𝜕𝑐𝑖∕𝜕𝑡 is zero, and
consider that at each position z we have electroneutrality, i.e., 𝑐+ = 𝑐−,
and from now onward we use 𝑐𝑗 for the salt concentration, i.e., 𝑐𝑗 =
𝑐+,𝑗 = 𝑐−,𝑗 which is z-dependent, and different between the c- and the
d-channels (the two channels are referred to by index j). Thus we add
up Eq. (48) for the two ions, and then divide by 2. The summation
of the four fluxes 𝐽𝑖,IEM is twice the total salt flux, 𝐽salt , which is the
flux of salt from d- to c-channels, per unit area of one membrane, as a
summation of the two membranes together. We then arrive at

𝑣z
𝜕𝑐𝑗
𝜕𝑧

= ±𝑎𝑗𝐽salt = ±𝑎𝑗𝜆cp
𝐼
𝐹

(49)

where we introduce the current efficiency 𝜆cp, a process parameter that
is z-dependent in the cell pair, i.e., 𝜆cp(𝑧), and we introduce the current
density 𝐼 in A/m2. In an ED stack, in a cell pair, from entrance to exit
(i.e., from 𝑧 = 0 to 𝑧 = 𝓁, with 𝓁 the length of the channel in flow
direction), current density I will change with z. We cannot make the
current constant in a normal ED stack. This is because there are two
end-electrodes that have a certain voltage between them. Therefore it
is the cell pair voltage, 𝑉cp, which will be the same at each z-position in
the cell, and because Donnan potentials and resistances increase with
z, current will decrease in that direction.

Eq. (49) introduces a cell-pair based current efficiency 𝜆cp which
relates to the total salt transport flux between the d- and c-channels,
𝐽salt , and the current, I, all z-dependent. To calculate 𝜆cp and 𝐽salt we

4 This is not always the case, and sometimes these profiles do matter
ignificantly. Also with three or more different ions, instead of a simple binary
alt, the situation in the flow channels can become radically different, and
oncentration profiles across the channel must then be considered.
14

t

must solve at each z-coordinate a membrane model for the AEM and
the CEM, and in each membrane describe the flow of counterions and
coions. In such a model all parameters, including the diffusion coeffi-
cients of the ions, and the membrane charge, can be different between
AEM and CEM. This calculation is possible, but in this review we
simplify this situation, and assume the AEM and CEM are each other’s
perfect ‘mirror image’. Thus, the fixed membrane density in an AEM,
denoted by the symbol X, has the same magnitude as the membrane
charge of a CEM, and only the sign of these two charges is opposite to
one another. Furthermore, the diffusion coefficient of the counterions in
the AEM and CEM is the same, and the same for the coions (coions and
counterions can still have diffusion coefficients that are different from
one another). With these assumptions, the cell-pair based 𝜆cp is now
the same as a ‘single membrane’-based current efficiency 𝜆th, where
we use the subscript ‘th’ for ‘theoretical’ because this single membrane-
efficiency cannot be measured but can be obtained from a theoretical
model of a single ion-exchange membrane (IEM), as we will do in this
section.

Thus, in each of the two channels of an ED cell pair, we now have
the mass balance

𝑣z,𝑗
𝜕𝑐𝑗
𝜕𝑧

= ±𝑎𝑗𝜆th
𝐼
𝐹

. (50)

q. (50) can be solved as function of z if we know I(z) and 𝜆th(𝑧), and
o do that, at each position z two algebraic equations (AEs) must be
olved jointly with Eq. (50) in each channel. Because the right side of
q. (50) is the same for each channel, except for the ± sign, and except
or 𝑎𝑗 , we can add up these two balances over the two channels, and
rrive at

𝐿ch𝑣z
𝜕𝑐
𝜕𝑧

|

|

|

|d-channel
+ 𝐿ch𝑣z

𝜕𝑐
𝜕𝑧

|

|

|

|c-channel
= 0 (51)

where we implemented how in each channel 𝑎𝑗 = 1∕𝐿ch,𝑗 . Eq. (51)
can be integrated from the inlet to a certain position z. When we
have an equal inlet concentration 𝑐|𝑧=0, namely equal to the feedwater
concentration, 𝑐f , we arrive at

𝜙v,d
(

𝑐d(𝑧) − 𝑐f
)

+ 𝜙v,c
(

𝑐c(𝑧) − 𝑐f
)

= 0 (52)

where we converted from flow velocities 𝑣z to flow rates in each
channel, 𝜙v,𝑗 , by multiplying each side by the geometrical ‘depth’,
which is the membrane area divided by the path length 𝓁. Thus we end
up with an equation describing how all salt that is removed from one
channel ends up in the other channel. Eq. (52) is an AE that becomes
part of the model and it replaces the ODE for one of the channels.
Thus, the full ED model (co-current, steady-state, symmetry, ...) consists
solely of one ODE and three AEs, to be ‘tracked’ along a coordinate z
from entrance to exit of the cell pair. Note that still WR can have any
value, and also the width of each channel can be different, thus the
residence time in the d- and c-channels can be very different.

Now, interestingly, for any 𝑐d we see from Eq. (52) that 𝑐c automat-
ically follows, and as we show below, for a given cell pair voltage, 𝑉cp,
then 𝜆th and 𝐼 also follow automatically. Thus, there is no particular
ependence on position z. Thus, we can also rewrite the one remaining
DE, that we will evaluate for the d-channel, and we take 𝐼 as a
ositive number, to
𝜕𝑐d
𝜕𝑡∗

= −𝑎d 𝜆th
𝐼
𝐹

(53)

here the time-on-stream, 𝑡∗, is given by 𝑡∗ = 𝑧∕𝑣z. This representation
hows that this model is equally valid for two very different cases: first,
he above-discussed geometry of an ED cell pair with two co-current
low channels, and second the same model also applies for an ED stack
ith relatively low desalination ‘per pass’ where the effluents of each

hannel are rerouted to two storage tanks from which the same channel
s fed again. Now 𝑡∗ really is a time. In that case, the area/volume
atio, 𝑎d, in Eq. (53) is changed to the area of one membrane times

he number of cell pairs, divided by the volume of the d-reservoir
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(including volumes of tubing and the channels in the ED stack). The
final modification is that in Eq. (52), we replace volume flow rates by
the two reservoir volumes. Note that the model as presented assumes
no volume flow through the membranes, but this effect can be included
with few modifications. Let us point out again that despite the appear-
ance of a ‘time’ 𝑡∗, nevertheless at the level of the membrane this is a
steady-state process model.

To solve this model, we can calculate the time step 𝛥𝑡∗ when we let
𝑐d step downward in fixed increments starting at an initial value. We
can use the Crank–Nicolson scheme in which 𝜆th and 𝐼 are averaged
between known values at subsequent ‘cd-lines’, at k-1 and k, according
o [39]
𝑐d,𝑘 − 𝑐d,𝑘−1
𝑡∗𝑘 − 𝑡∗𝑘−1

= −
𝑎d
𝐹

⋅
1
2
⋅
(

𝜆th,𝑘−1𝐼𝑘−1 + 𝜆th,𝑘𝐼𝑘
)

. (54)

Now we only have to formulate expressions for current efficiency, 𝜆th,
and for current density, 𝐼 , as function of 𝑐d and cell pair voltage 𝑉cp.
This is discussed in the next section.

4.1. Calculation of current and current efficiency in ED

To calculate current and current efficiency, we must first relate
current density I to the voltage drops over the membranes and flow
channels. The cell pair voltage, 𝑉cp, is a summation of the voltage
drops across two channels (d- and c-channels), two membranes (AEM
and CEM), and in total four Donnan potential drops (at each chan-
nel/membrane interface in the cell pair). For a symmetric system,
the four Donnan potentials simplify to two times the same difference
between two Donnan potentials. In the symmetric model we also
assume each membrane has the same resistance. The two channels
will, as desalination progresses, have very different resistances. In
each membrane, the relationship between current and voltage can be
described by

𝐼 = ±𝑘m|𝑋|𝐹𝛥𝜙m (55)

where 𝑘m is a membrane transport coefficient, |𝑋| is the magnitude of
the membrane charge density, and 𝛥𝜙m is a dimensionless potential,
or voltage, drop across the membrane. This voltage drop is only across
the inner part of the membrane, excluding the voltage changes (Donnan
potentials) at the two edges of each membrane. These we will discuss
further on. Eq. (55) assumes that both ions have the same diffusion
coefficient in the membrane, 𝐷m, and thus the mass transfer coefficient
𝑘m, which is the ratio of this 𝐷m over membrane thickness, 𝐿m, is
the same for both ions. This diffusion coefficient will be much lower
than in free solution, because of membrane porosity, tortuosity, and
the small pore size. For instance, diffusion in the membrane will be
slower by a factor of 20–50 compared to outside, in free solution.
Eq. (55) furthermore assumes that the membrane charge density, |𝑋|,
is large compared to salt concentrations outside the membrane. (In
a generalized version of Eq. (55), the term |𝑋| is replaced by an
verage total ions concentration,

⟨

𝑐T,m
⟩

.) Any voltage 𝜙 can always be
ultiplied by the thermal voltage, 𝑉T = 𝑅𝑇 ∕𝐹 ∼ 25.6 mV (at room

temperature), to arrive at a dimensional voltage in (m)V.
Similar to Eq. (55), we have a current–voltage relationship across

the d- and c-channels, given by

𝐼 = ±2𝑘ch,𝑗𝑐𝑗𝐹𝛥𝜙ch,𝑗 (56)

where 𝑘ch,𝑗 is a channel transfer coefficient, given by 𝑘ch,𝑗 = 𝜀𝐷∞∕𝐿ch,𝑗 ,
where 𝐷∞ is the diffusion coefficient of ions in free solution. The
factor 𝜀 is the channel porosity p divided by a tortuosity factor 𝝉,
i.e., 𝜀 = 𝑝∕𝝉, and describes how in the spacer channel the effective
diffusion coefficient for electromigration is lower than in free solution,
because of a spacer structure that fills the channel. The channel width
is 𝐿ch,𝑗 . Note the factor 2 in Eq. (56) which relates to both anions and
cations contributing equally to current flow. Eq. (56) is valid when the
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two ions have the same diffusion coefficient,5 and in the absence of
concentration gradients across the channel.

Next we consider the four Donnan potential drops at the four
membrane/solution interfaces. In the symmetric system we discuss, the
two Donnan drops at the AEM are exact mirror-images of those at the
CEM because we assume the same |𝑋| for AEM and CEM, so we only
ave to discuss one of these membranes here. We continue to assume
hat we only have monovalent ions in solution. We neglect all ion
artitioning effects other than the Boltzmann distribution that relates to
he charge of ions. This Boltzmann equation for each ion, distributing
etween just in the membrane and just outside, is

m,𝑖 = 𝑐∞,𝑖 exp
(

−𝑧𝑖𝛥𝜙D
)

(57)

where ∞ refers to a position just outside the membrane (in the ED
model z-dependent), and Eq. (57) applies to the interface of the mem-
brane with electrolyte in the d- and c-channels. The Donnan potential
at each of these interfaces is the potential just in the membrane, relative
to just outside, in solution.

Based on electroneutrality in the membrane, valid at each position
in the membrane, we have

𝑐m,+ − 𝑐m,− + 𝜔|𝑋| = 0 (58)

where 𝜔 is the sign of the membrane charge (𝜔 = +1 for an AEM and
𝜔 = −1 for a CEM). Based on Eqs. (57) and (58) we can derive for the

onnan potential that

𝜙D = sinh−1
𝜔|𝑋|

2𝑐∞
(59)

where the function sinh(x) is identical to 1∕2 (exp (𝑥) − exp (−𝑥)), and
inh−1 is the inverse of that function (also written as asinh or arcsinh).
q. (59) is valid for a solution with monovalent ions only, and with-
ut considering partitioning coefficients other than pure ‘Boltzmann’
lectrostatics. For a detailed discussion on the various contributions to
he partitioning coefficient at an interface between free solution and
microporous charged material, see Refs. [17,39]. As Eq. (59) shows,

or a membrane with negative fixed charge, i.e., a CEM, which needs
o ‘pull in the cations’, the Donnan potential is negative, i.e., from just
utside to just inside the membrane, the potential goes down.

The eight voltage drops described in the above equations can all
e added up (taking care of appropriate choices of ±-signs), to arrive
fter multiplication with 𝑉T, at the cell pair voltage, 𝑉cp. And this 𝑉cp
s invariant with z; see Fig. 2 in Ref. [42] for an example of a voltage
rofile. (Thus the eight individual voltages described above, they all
hange with z, but their summation, which is 𝑉cp, does not.)

Before we show the result of such a combined expression for 𝑉cp
versus current, I, and versus channel salt concentrations, 𝑐d and 𝑐c, we
irst evaluate the Donnan potential, Eq. (59), in a novel, useful, manner.
he Donnan potential, as described by Eq. (59), must be evaluated
n two sides of the same membrane (and then for two membranes),
nd because both count ‘inside minus outside’, the result for a given
embrane is

𝜙D,tot = sinh−1
|𝑋|

2𝑐d
− sinh−1

|𝑋|

2𝑐c
(60)

which we can call the total Donnan potential across a membrane.
(This excludes the membrane potential across the inner part of the
membrane due to current, as given by Eq. (55).) We drop here and
below the subscript ∞ when we refer to salt concentrations just outside
the membrane. We next evaluate the equation for 𝜔 = −1, i.e., a
CEM, but for an AEM the same result is obtained with a final overall
minus-sign difference. Now, generally, Eq. (60) is not used in this way,

5 As long as we have a binary salt, also for ions of different valency and
iffusion coefficient, an expression such as Eq. (56) can always be arrived at,
ut the harmonic mean diffusion coefficient must be used.



Journal of Membrane Science 647 (2022) 120221P.M. Biesheuvel et al.

w
p
e
t

t
m
t
b
f

𝜆

w
𝐽
𝜆
b
t
o
i
n
w
d
b
t
t
N

𝐽

perhaps because it looks somewhat too unwieldy. Instead, in literature
the following equation can often be found, which is

𝛥𝜙D,tot = ± ln
𝑐c
𝑐d

(61)

and this expression is valid for an ideal membrane, one that perfectly
blocks coions. There is no dependence on membrane charge here. A
prefactor in front of the ln-term can be added, which is then called
permselectivity, which describes the difference between the ideal ln-
term and the measured Donnan potential. The ±-symbol depends on
the sign of the membrane charge and on whether ‘𝛥’ is defined from
c-side to d-side or vice-versa.

Now, interestingly, Eq. (61) follows from Eq. (60) as a first term in a
Taylor-expansion around the point that 𝑋−1 → 0. This first term is very
accurate when on both sides of the membrane the salt concentration is
very low compared to X. But we can now add the second term in the
Taylor expansion and obtain a novel, highly accurate, expression for
the Donnan potential, given by

±𝛥𝜙D,tot = ln
𝑐c
𝑐d

−
(

𝑐2c − 𝑐2d
) /

𝑋2 (62)

where the total Donnan potential decreases (in magnitude) when mem-
brane charge density X drops, or when the difference between 𝑐c and 𝑐d
increases. Note that this novel equation is only valid as a first correction
to Eq. (61) when X is of the order of the salt concentration or larger.
For lower X, we must use Eq. (60). Note that in Eqs. (60) and (62) it
is important to use the same unit for c and for X, either both in M or
both in mM, i.e., mol/m3.

Thus, the new expression provides a correction to the Donnan
potential for finite values of X, without invoking the empirical concept
of a permselectivity. The additional term correctly identifies that the
correction to ideality depends on the membrane charge density X, but
also on 𝑐d and 𝑐c, and this clearly highlights how the concept of a
permselectivity is not an intrinsic membrane property, but for a given
membrane varies with salt concentration, even along the z-coordinate
within the same ED module (or changes in time in a batch experiment
with changing reservoir concentrations).

In general, for arbitrary salt mixtures, and with other partitioning ef-
fects besides pure electrostatics, it is advisable to return to a Boltzmann
equation for each ion, Eq. (57), in combination with electroneutrality
in the membrane. In further model extensions, we can include how the
membrane charge is a function of pH or of the concentration of other
ions, such as the Ca2+-concentration just in the membrane (in case
these ions adsorb), and these ion concentrations in turn depend on the
Donnan potential, thus on X. Also other acid–base associations between
ions can be included, such as the protonation of an ion, to go from a ba-
sic to acidic state, such as NH3 associating with an H+-ion to NH4

+, of
which the distribution depends on pK and local pH [43]. Furthermore,
mass transport effects across the channels (especially for solutions
with three or more types of ions) will lead to ion concentrations just
outside the membrane (which are the concentrations that are used in
the Donnan equilibria) that are different from the channel-averaged
concentrations at that z-position. Also transmembrane water flow can
be of importance, because it ‘pushes’ ions away from the membrane
surface, or pulls them in, and thus also modifies ion concentrations just
next to the membrane. All in all, in detailed modeling of an ED cell,
the above simplified equations must always be critically evaluated to
ascertain whether they are sufficiently accurate for the situation under
study.

Now we can finally add up all eight voltages to obtain one final
equation. The result shown next assumes that c- and d-channels have
the same width, 𝐿ch, and we already discussed the assumption that each
membrane has the same charge X and the same transport properties,
thus the same 𝑘m. We then arrive at

𝑉cp − 2

(

ln
𝑐c −

𝑐2c − 𝑐2d
2

)

= 𝐼
(

1
(

1 + 1
)

+ 2
)

(63)
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𝑉T 𝑐d 𝑋 𝐹 2 𝑘ch 𝑐d 𝑐c 𝑘m|𝑋|
where 𝑐c, 𝑐d and current density I are all z-dependent. The placements
of the factors ‘2’ at the end of this equation may seem counterintuitive,
with one in the numerator, one in the denominator, but they are
correct. We can use Eq. (63) to derive the current at the inlet of the
stack (or, cell pair), because then both 𝑐c and 𝑐d are equal to 𝑐f , and
thus all Donnan effects disappear, and we obtain

𝑉cp =
𝑅𝑇
𝐹 2

(

1
𝑘ch𝑐f

+ 2
𝑘m|𝑋|

)

𝐼 (64)

hich includes two (actually four) resistances in series at each z-
osition in an ED stack, namely the resistance in each channel and in
ach membrane. Each resistance is the inverse of a conductivity, and
hese are respectively 2𝑘ch𝑐f and 𝑘m|𝑋| (both with units mol/m2/s).

Finally we evaluate the current efficiency 𝜆th, at each z-position. To
hat end we must establish what is the flux of counterions through each
embrane, which is the desired effect, leading to desalination, and

he flux of coions, which is a deleterious effect, reducing desalination,
ecause coions leak out of the c-channels to the d-channels. Based on
luxes through a single membrane, we define 𝜆th as

th = 𝐹
𝐽m,ions

𝐼
=

𝐽m,+ + 𝐽m,−

𝐽m,+ − 𝐽m,−
(65)

here 𝐽m,ions is the total ions flow through a membrane, 𝐽m,ions =
m,+ + 𝐽m,−, and the current density is 𝐼 = 𝐹

(

𝐽m,+ − 𝐽m,−
)

. The factor
th is only defined for desalination of a 1:1 salt, and will always be
etween 0 and 1, with 𝜆th = 1 for ideal operation, with only counterion
ransport through each membrane. In the limit of 𝜆th = 1, for each unit
f charge a full salt molecule is removed from a diluate channel, while
n the limit of 𝜆th = 0 current is passing the membrane, but there is no
et salt removal. This last situation develops near the exit of an ED cell
here all ions arriving in a concentrate channel leak out again to a next
iluate channel, see a box in Section 4. Next, we analyze ion transport,
oth of counterions and coions, across a membrane. To that end we use
he Nernst–Planck (NP) equation that can be solved at any position in
he membrane together with local electroneutrality. For each ion, the
P-equation is

𝑖 = −𝐷m,𝑖

( 𝜕𝑐m,𝑖

𝜕𝑥
+ 𝑧𝑖𝑐m,𝑖

𝜕𝜙
𝜕𝑥

)

(66)

where 𝜙 is the inner-membrane potential, and x is a coordinate directed
across the membrane (across the shortest distance, i.e., across the
thickness). We neglect advection in the membrane (water flow and the
drag thereof on ions). We assume the same diffusion coefficient for
anions and cations in the membrane, and thus we can subtract anion
flux from cation flux, to arrive at

𝐼∕𝐹 = 𝐽+ − 𝐽− = −𝐷m𝑐T,m
𝜕𝜙
𝜕𝑥

(67)

where 𝑐T,m is the total concentration of the two ions together in the
membrane, i.e., 𝑐T,m = 𝑐m,+ + 𝑐m,−. Let us reiterate again, that all equa-
tions in this section only apply to a 1:1 salt with only one type of cation
and one type of anion. Even adding one other type of cation of the same
charge but with a different diffusion coefficient can significantly change
the model outcome, let alone when this ion has a different valency.

Note that current density I in Eq. (67), calculated based on ion
transport in a membrane, is the same current density that also crosses
(at that same z-position) each of the flow channels, and crosses the
other membrane too; i.e., there is (at each z-position) only one value
of current I, the same at each location across each of the channels, and
it has the same value in all the other cell pairs (at that z-position),
which are all exact copies of one another. Related to this statement is
that this model assumes that all current ‘lines’ cross the stack at right
angles to the channels and membranes, i.e., the current crosses these
layers in the shortest direction. This is a highly accurate assumption.

The NP equation for anions and cations also leads to an expression
for the total ions flux

𝐽m,ions = 𝐽+ + 𝐽− = −𝐷m

( 𝜕𝑐T,m −𝑋
𝜕𝜙

)

. (68)

𝜕𝑥 𝜕𝑥
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In the derivation of Eqs. (67) and (68), the electroneutrality condition
in the membrane is implemented. Note that Eq. (68) makes use of X

ithout a |⋯ |-statement, and indeed X here can be negative and pos-
tive. Because of steady-state both equations can be integrated across
he membrane, leading to

= ±𝑘m𝐹
⟨

𝑐T,m
⟩

𝛥𝜙m (69)

here the term
⟨

𝑐T,m
⟩

is based on an appropriate average of 𝑐T,m
between the two sides of the membrane (from just in the membrane
very near the diluate channel, to very near the concentrate channel).
For a highly charged membrane, it is a very good approximation
to take the straight average of the two values of 𝑐T,m at the two
sides of the membrane (still just inside the membrane), i.e.,

⟨

𝑐T,m
⟩

=
1∕2

(

𝑐T,m||d + 𝑐T,m||c
)

.
How to obtain this total concentration 𝑐T,m at each side? To that

end, we return to the earlier Donnan analysis. For a 1:1 salt and no
additional partitioning effects, we arrive at

𝑐T,m =
√

𝑋2 + 4𝑐2∞ = |𝑋| + 2 𝑐2∞
/

|𝑋| + ⋯ (70)

i.e., this total ions concentration is independent of the sign of X (see
full expression), and is always larger than |𝑋|, i.e., always 𝑐T,m ≫ |𝑋|.

ow, for a highly charged membrane, with |𝑋| much larger than the
wo salt concentrations on both sides, we can assume 𝑐T,m ∼ |𝑋|. That
pproximation was used in the derivation of Eq. (55) and thus in the
inal result, Eq. (63), but to be very precise an appropriate average of
T,m must be used here instead of |𝑋|.

The integration of Eq. (68) across the membrane, possible because
m,ions is independent of position in the membrane, results in

m,ions = ±𝑘m
(

𝛥𝑐T,m −𝑋𝛥𝜙m
)

. (71)

e calculate 𝜆th according to Eq. (65) by implementing Eqs. (67) and
71), and obtain

th = 1 − 𝑘m𝐹𝛥𝑐T,m
/

|𝐼| (72)

here we made the replacement
⟨

𝑐T,m
⟩

→ |𝑋|.
At high enough |𝑋| (relative to 𝑐c and 𝑐d), from Eq. (70) we can

erive that the difference in 𝑐T,m across the membrane can be simplified
o 𝛥𝑐T,m = 2

(

𝑐2c − 𝑐2d
)

∕ |𝑋|, a result that we can implement in Eq. (72)
o arrive at

th = 1 −
2𝑘m𝐹
|𝑋||𝐼|

(

𝑐2c − 𝑐2d

)

(73)

hich is the final equation that we need to solve the full co-current
D model. Let it be reminded that all parameters such as fluxes and
otentials in Eq. (71) and other equations for membrane transport all
epend on position z in the module, or alternatively, depend on time
∗.

Eq. (73) is interesting in its own right, as it shows that 𝜆th will be
igh, near unity, at high currents and a high membrane charge, and
or low salt concentration differences, but 𝜆th will go down for lower
urrents and lower membrane charge. It also goes down when 𝑘m goes
p, which occurs when the membrane thickness is reduced. Indeed, for
ery thin membranes, ED does not work, because then there is a large
lux of coions across the membranes that opposes desalination [42].
The same problem is found in ‘reverse electrodialysis’ with membranes
hat are too thin or too permeable or not charged high enough: then
here is a large salt flow across the membranes, so the potentially large
ower is not realized because the salt solutions in the two channels
re rapidly mixed up.) Eq. (73) illustrates that 𝜆th will depend strongly
n position in the cell, because current I will change with z, and
oncentrations 𝑐d and 𝑐c as well. So current efficiency is not a fixed
umber, it is not a property of the membranes.

Calculation results are made with this model for co-current flow in
D for a constant 𝑉cp across the cell pair (the same value of 𝑉cp at
17

ach position z). Results show that while the d-channel is desalinating, s
he Donnan potential strongly increases on the diluate side (by a value
hich exceeds the decrease on the concentrate side), the current goes
own, and current efficiency decreases, finally to drop all the way to
ero, i.e., lim𝑧→∞ 𝜆th = 0, see Fig. 8. We can use this result to calculate
rom Eq. (73) the final salt concentration in a single-pass co-current
D cell pair when the cell is large enough, together with Eqs. (52) and
63). These three equations can be solved analytically when we start
ith a certain final diluate concentration, 𝑐d, then calculate 𝑐c, then
𝐼|, and finally 𝑉cp. Calculation results are presented in Fig. 9A and
how the final, i.e., minimum, 𝑐d that can be reached in an ED stack
s function of cell pair voltage 𝑉cp for two values of water recovery,
R. Also the current density in this ‘steady-state’ limit is plotted. In

ll cases the stack is fed with artificial seawater, i.e., a 0.5 M 1:1 salt
olution. Other parameters are 𝑋 = 4.0 M, 𝑘m = 1 μm∕s, 𝑘ch = 5 μm∕s,

and 𝐿ch = 200 μm.
The calculation just discussed describes how deep we can poten-

tially desalinate as function of cell pair voltage, and what will be the
final, ‘steady state’, current density. But it does not give us the average
current density, which we need to calculate the electrical energy input.
To that end we analyze the full model and for a certain residence time
𝑡∗ and specific area 𝑎d = 1∕𝐿ch, we calculate as function of 𝑉cp the
exit value for 𝑐d, and the average current density ⟨𝐼⟩ (in A/m2). This
calculation, of which results are presented in Fig. 9B, also shows a result
familiar in the ED literature, that with increasing ⟨𝐼⟩, at some point
𝑉cp diverges. This divergence is generally attributed to concentration
polarization (CP), which in the context of ED is the decrease of salt
concentration towards the membranes in the diluate channels. Interest-
ingly, we also find the same divergence in the present model that does
not include the CP effect yet. In this model the reason for the divergence
of the voltage is that we reach complete desalination, and as a conse-
quence the resistance in the diluate channel rapidly increases just as
the Donnan potentials at the diluate-membrane interfaces. We discuss
a more extensive 3D ED model including concentration polarization in
Section 6.5.

In summary, the co-current ED model is a powerful and insightful
model to discuss and quantify several well-known observations in ED,
such as the decrease of the current density and current efficiency
between inlet and outlet of a flow channel, see Fig. 8. In the next section
we use the model to relate stack energy efficiency 𝜂ED to the specific
productivity of freshwater in ED, a relation that we need in a full cost
optimization study.

4.2. Energy efficiency and cost optimization of an ED stack

With an ED model available, we can now address the question how
to decide at what current to run an ED stack, and how much membrane
area to use. To that end we must balance energy and material costs,
similar to what we did for RO in Section 3.6. We again set up a
relationship between energy efficiency, now given by the symbol 𝜂ED,
and the volume flow rate of product water per unit membrane area,
expressed as a specific productivity, SP, see Fig. 10. In ED electric
energy is the main input of energy, given by the product of cell pair
voltage and average current density, and thus energy efficiency is given
by

𝜂ED =
𝜙v,d𝐸min

⟨𝐼⟩𝐴𝑉cp
(74)

here A is the area of one of the membranes in a cell pair. Just as for
O, also for ED we set up an equation for the total costs per time of
peration, TC, and this equation is basically the same as Eq. (45), now
iven by [44]

C = 𝑚1 CUE ⟨𝐼⟩𝐴𝑉cp + 𝑚2
∑

𝑗
CMP𝑗𝐴𝑗∕𝛥𝑡𝑗 (75)

hich has the costs of electrical energy as a first contribution, and

econd a summation over AEMs and CEMs of a term that includes
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Fig. 8. Calculations of desalination in electrodialysis with co-current flow in diluate and concentrate channels for 𝑉cp = 180 mV, 𝑐f = 0.5 M, WR = 0.5, and 𝑋 = 4.0 M. As function
f time-on-stream, t*, salt concentrations in the two channels change, first rapidly, then slowly, while current I goes down as well as current efficiency, 𝜆th. In steady-state (at
arge t*), there is still a flow of current across the channels and membranes, but the net salt transport is zero, thus 𝜆th → 0.
Fig. 9. Analysis of concentrations and current density in ED based on co-current flow. (A) For two values of WR we analyze as function of 𝑉cp the steady-state diluate concentration,
d, which can be reached after a long enough residence time t*, as well as the resulting final current density for WR = 0.5. (B) For a fixed 𝑡∗ = 40 s (SP = 5), the cell pair voltage
cp diverges at a certain average current density ⟨𝐼⟩, when desalination goes to completion.
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heir purchase costs per m2, their area, Aj, and their lifetime, 𝛥𝑡𝑗 .
e now assume that all three of these factors are the same for the

wo membranes. We insert Eq. (74), divide by 𝜙v,d, multiply by the
embrane transfer coefficient, 𝑘m, and obtain

c =
𝛼 ⋅ ecmin

𝜂ED
+ 1

SP , 𝛼 =
𝑚1 ⋅ CUE ⋅𝛱f ⋅ 𝛥𝑡𝑗 ⋅ 𝑘m

2 ⋅ 𝑚2 ⋅ CMP (76)

here SP = 𝜙v,d∕
(

𝐴𝑘m
)

. We can minimize 𝜂ED if we know its depen-
ence on SP, for a given value of 𝛼. Based on the co-current ED model,
e can generate a list of calculation outputs for a specific membrane

ystem, which are the ‘data points’ in Fig. 10, and fit with an equation
hat subsequently is used in the cost optimization study. Interestingly,
he same as for RO, see Fig. 6, we obtain a curve of 𝜂 vs. SP with

maximum efficiency at low SP, and a decrease in 𝜂 at higher SP.
ere, the blue fit line in Fig. 10 follows the trend 𝜂 ∝ (SP+cnst)−1,
hile a more accurate fit line (green) is obtained by ‘multiplying the
lue line’ with an empirical function, tanh(SP0.8/3.2). These functions
o not need to have a physical basis; they are just fit functions that

summarize’ real calculation results in a continuous function that can
e used in a cost optimization study. When the purchase costs of
embranes go down, this minimization shows that we should run at

ower SP, i.e., for a given production of freshwater we should install
18

ore membranes, and run them at a higher efficiency. Thus one can E
gain quip that ‘cheaper membranes are more efficient’ just as was the
ase for RO.

. Fundamentals of ion and water transport across membranes

.1. Introduction

In the previous sections we made use of simplified approaches for
he transport of solutes and water through RO and ED membranes.
n the RO-calculation we neglected charge effects, while in the ED-
odel we neglected ion–membrane friction and advection of ions. In a

eneralized approach all these driving forces and frictions are jointly
onsidered, in both types of processes. Also the acid–base reactions
etween ions, often also involving the H+-ion, are important to include.
n both outsides of the membranes there is equilibrium (across the

nterface) both with regard to pressure (mechanical equilibrium), and
ith regard to chemical potential of solutes (chemical equilibrium).
hese equilibria also depend on non-electrostatic contributions to the
artitioning of solutes across the water–membrane interface of which
he two most important ones are affinity and volumetric excess ef-
ects [5]. For transport across the membrane, be it for membranes as
hin as 100 nm as in RO, and membranes 100 to 1000 times thicker for
D, we can start with continuum theory from the field of electrokinetics
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Fig. 10. Energy efficiency in electrodialysis, 𝜂ED, versus specific productivity, SP,
according to the co-current ED model for the situation analyzed in Figs. 8 and 9 (red
circles). In all calculations a 500 mM salt solution is desalinated to 50 mM, and water
recovery is 50%. Fit line according to 𝜂 ∝ (SP+cnst)−1 (blue) and more accurate fit
(green line) can be used in cost optimization studies.

of thin channels, and apply this theory to transport in the pores in
RO and ED membranes. These models, such as the space charge (SC)
model [45–49], then become much more simple because profiles in
concentration and potential across the cross-section of a pore in the
membrane then do not need to be considered. This simplified ‘uniform
potential’ (UP) model, i.e., the SC-model with averaging over the cross-
section of the pore, describes ion transport and water flow through
the pores of a membrane, and considers the effect of pressure on both
membrane interfaces [32,49–51]. The UP-model is thus an extension
of the Teorell–Meyer–Sievers (TMS) model that describes ion transport
across membranes, but TMS theory does not include water flow. The
UP-model can now be extended to incorporate many more effects than
we could in the SC model. Besides water–membrane and water–ion
friction, we can now also include ion–membrane friction and ion–ion
friction, the latter describing how ions that overtake slower ones drag
these along, and vice-versa slow ions will retard faster ones. In the two-
fluid model (TFM) [52,53] this detailed model that includes various
frictional forces is extended with a description of water flow [54,55].

In the two-fluid model, a local force balance acting on solutes (such
as ions) includes driving forces and frictions. Driving force acting on
a solute are mathematically formulated as the negative of a gradient
of an ion’s chemical potential. Frictions experienced by a solute are
with the water flowing through the pores, and with the membrane
matrix, which is an immobile background structure. For the water a
similar force balance is set up but driving forces acting on the water
are hydrostatic and osmotic pressures gradients [36,38]. Thus ions
and other solutes are described in a very different manner from how
the water that flows past the ions through the pores is described.
This is one of the key points of the two-fluid model (TFM). And this
is different from Maxwell–Stefan (MS) theory that was successfully
developed for multicomponent gas flows in porous media where all gas
substances can be described in like fashion. This MS theory has also
been applied to electrolytes, i.e., the flow of ions and water through
porous media, but it then faces several shortcomings. MS theory applied
to electrolyte flow relies quite heavily on a statistical–mechanical view
wherein the molecular nature of water is included and all ions and
other solutes just like each water molecule occupy one of the available
statistical sites. This electrolyte version of MS theory also too much
considers water to flow according to its own concentration gradient,
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as if it is also a dispersed species, which it is not. Instead, water
molecules in a porous medium aim to ‘keep contact’ with as many
water molecules as possible, and thus across the membrane they will
fill up all available space forming thin ‘strands’ of connected water
pathways. Thus the water in a membrane is not present in a dispersed
‘gas-like’ state, but is a cohesive continuum fluid that fills up the porous
medium. Ions and other solutes – these are discrete, dispersed entities
– they travel across these pathways formed by the water molecules. MS
theory applied to electrolytes does not consider the difference between
total, hydrostatic and osmotic pressure, and generally has a hard time
implementing partitioning and equilibrium conditions on the outer
surfaces of membranes. Instead, all of these effects are comprehensively
included in the two-fluid model, which describes the flow of ions and
other solutes through tortuous media simultaneously with solvent flow,
using different expressions for both. We will demonstrate the accuracy
of the two-fluid model by comparing with results of an experiment
where water and solutes flow in opposite directions through an ion-
exchange membrane (osmosis), which is an experiment that is very
hard to describe precisely. But first we present the basics of flow of
ions (and other solutes) and water according to the two-fluid model.

5.2. Flow of solutes through membranes in the two-fluid model (TFM)

To describe the flow of ions through a porous tortuous medium,
we first of all set up an expression for the chemical potential of an
ion. Ions can be hydrated to some extent, and the water molecules that
are firmly bound in its water shell are part of what we call the ion.
In this section the porous medium is a membrane, so at some point
the explanation switches from ‘porous medium’ to ‘membrane.’ We can
consider multiple contributions to the chemical potential of an ion (unit
J/mol) in a porous medium, adding up to

𝜇𝑖 = 𝜇ref,𝑖 + 𝑅𝑇
(

ln 𝑐𝑖 + 𝑧𝑖𝜙
)

+ 𝜇aff,𝑖 + 𝜇exc,𝑖 + 𝜈𝑖𝑃
tot ⋯ (77)

here the reference value 𝜇ref,𝑖 is of importance when ions take part in
hemical reactions, while ln 𝑐𝑖 relates to diffusion (ion entropy), 𝑧𝑖𝜙 to
lectrostatic effects, 𝜇aff,𝑖 to an affinity, leading to (one contribution to)
solubility 𝑆𝑖 or partitioning coefficient 𝛷𝑖, and where finally 𝜇exc,𝑖 is
function that describes various volumetric interactions between ions,

nd between ions and the porous medium [17]. The pressure insertion
erm 𝜈𝑖𝑃 tot relates to the molar volume of an ion 𝜈𝑖, where total pressure
tot is hydrostatic pressure, 𝑃 h, minus osmotic pressure, 𝛱 .

Across any thin interface, where we can assume mechanical equilib-
ium, the total pressure is invariant, as we will discuss in Section 5.3,
o in a partitioning function, as below, this term cancels out. For
he volumetric term, 𝜇exc,𝑖, when only interactions of an ion with the
orous medium are of importance (and not between ions), then it is
constant factor that can then be jointly considered with 𝜇aff,𝑖. Then,

or a neutral solute, we arrive for the distribution of a solute across a
orous medium/solution interface (between ‘in’ and ‘out’), at
𝑐𝑖,in
𝑐𝑖,out

= exp
(

−
(

𝜇aff,𝑖 + 𝜇exc,𝑖
)

∕𝑅𝑇
)

= 𝑆𝑖 = 𝛷𝑖 (78)

where the solubility 𝑆𝑖 or partitioning coefficient 𝛷𝑖 is a constant
factor if the affinity and excess terms do not depend (too much) on
concentrations just outside and inside the pore. Also other effects can
contribute to 𝛷𝑖 which then leads to additional thermodynamic penal-
ties (or attractions) for an ion to enter a porous medium. The excess
contribution is often described as function of an ion size–pore size
ratio, 𝜆, described for a perfectly cylindrical pore and spherical ions by
𝛷𝑖 =

(

1 − 𝜆𝑖
)2, but many more accurate expressions are available [39].

For ions, with a charge different from zero, we can extend Eq. (78) with
a Boltzmann (Donnan) term, and we then end up with

𝑐𝑖,in = 𝑐𝑖,out𝛷𝑖 exp
(

−𝑧𝑖𝛥𝜙D
)

(79)

which extends Eq. (57), by now including a partitioning effect that has
a non-electrostatic origin.
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In the two-fluid model, on the basis of Eq. (77) we describe the
driving forces acting on an ion as minus the gradient of chemical
potential. And these driving forces are compensated by all frictional
forces, according to a force balance given by

driving,𝑖 + friction,𝑖 = 0 . (80)

ssuming for simplicity ions not to have volume, thus 𝜈𝑖 = 0, we obtain
or the driving force acting on a mole of ions

driving,𝑖 = −
𝜕𝜇𝑖
𝜕𝑥

= −𝑅𝑇
(

1
𝑐𝑖

𝜕𝑐𝑖
𝜕𝑥

+ 𝑧𝑖
𝜕𝜙
𝜕𝑥

)

(81)

where we consider a single coordinate, x. An extension to multiple
coordinates or dimensions is straightforward. We can leave out here a
gradient-term related to 𝜇aff,𝑖 because this ion–membrane affinity will
e invariant across the membrane. And for the same reason we also
eave out the excess-term that relates to volume effects. Thus we only
ave to consider a force related to diffusion, and to the electric field,
.e., electromigration.

Frictional contributions are due to friction of the ion with other ions
hat have a different velocity (otherwise there is no friction), with the
ater, and with the membrane matrix. Friction with other types of ions
epends on the concentration of those other species, i.e., the more of
hem, the more friction, but the friction with the water, and with the
embrane matrix, these terms have no dependence on concentration.
e neglect ion–ion friction now – otherwise see Ref. [54] – so the

riction of ions is only with the water that also flows through the
orous medium, and with the membrane matrix. Each frictional term
s the product of the velocity difference and a friction factor describing
riction of the ion and that other phase. We then arrive at (p. 128 in
ef. [38])

friction,𝑖 = −
∑

𝑗
𝑓 ∗
𝑖-𝑗

(

𝑣𝑖 − 𝑣𝑗
)

= −𝑓 ∗
𝑖-w

(

𝑣𝑖 − 𝑣w
)

− 𝑓 ∗
𝑖-m 𝑣𝑖 (82)

where water velocity is 𝑣w and we included in the last part that the
elocity of the membrane is zero, 𝑣m = 0. We present here velocities as
uperficial velocities, per unit total membrane area. In a more detailed
nalysis we start with interstitial velocities, for instance for the water
hat is its velocity flowing through the space not occupied by the solutes
ithin the pores of the membrane structure. In that more detailed
nalysis we also first set up these forces balances in the direction
long the flow path of a tortuous pore, and when converting to an x-

coordinate that is directed straight across the membrane, a tortuosity
factor arises in the final equations. These detailed steps go beyond the
scope of this tutorial review, but are explained in Ref. [39].

We can rewrite the ion–water frictional coefficient to a diffusion
coefficient of the ion in the membrane, 𝐷m,𝑖, by the Einstein equation,
𝑓 ∗
𝑖-w = 𝑅𝑇 ∕𝐷m,𝑖 (p. 128 in Ref. [38]). This diffusion coefficient is lower

than in free solution because it includes the porosity and tortuosity
of the membrane pores. We now obtain an extended Nernst–Planck
equation for ion flow inside a membrane (Eq. (7) in Ref. [5]) where
advection, diffusion and electromigration all contribute [56]

𝐽𝑖 = 𝐾f,𝑖𝑐m,𝑖𝑣w −𝐾f,𝑖𝐷m,𝑖

( 𝜕𝑐m,𝑖

𝜕𝑥
+ 𝑧𝑖𝑐m,𝑖

𝜕𝜙
𝜕𝑥

)

(83)

and where we also incorporated that 𝐽𝑖 = 𝑐m,𝑖𝑣𝑖. Concentrations here
are those inside the membrane pores. The friction factor, or hindrance
function, 𝐾f,𝑖, is given by 𝐾f,𝑖 = 1∕

{

1 + 𝑓 ∗
𝑖-m∕𝑓 ∗

𝑖-w
}

, and has a value
between 0 and 1, and describes that ions have a direct friction with the
membrane structure, not only with the water that directly envelopes
them and flows past them. The ion–membrane frictional coefficient is
𝑓 ∗
𝑖-m but its value we do not need to know if we phrase the problem

in terms of 𝐾f,𝑖. In a further extended theory that includes how part
of the pore volume is occupied by solutes and not available for the
flow of free water, then instead of the unique function 𝐾f,𝑖, we have
two different functions that we could call 𝐾c,𝑖 and 𝐾d,𝑖, in line with
literature on NF transport theory where often separate ‘convective’
20

and ‘diffusive’ hydrodynamic functions are implemented. But in the
two-fluid model, in case we assume that solutes do not occupy too
much space in the pores, there is one friction function, 𝐾f,𝑖. If 𝐾f,𝑖 is
unity, ions have no friction with the membrane matrix, and then the
dependence of water flow on pressure simplifies significantly, with a
constant water permeability factor, 𝑘∗F-m, which otherwise depends on
the local concentration of solutes in the membrane, as we will explain
in the next section. In any case, Eq. (83) is a general expression for ion
transport in porous media, extended compared to the standard Nernst–
Planck equation with advection and with ion–membrane friction, which
leads to the factor 𝐾f,𝑖.

5.3. Flow of water through membranes in the two-fluid model (TFM)

Now we continue with transport of water through the pores of a
porous medium. In the derivation that follows, we assume the pores
are filled with water completely and ions are ‘point charges’. For a full
account including solute volume effects, see Ref. [39]. We can now set
up a balance of forces acting on a volume element of water in the pore,
with the driving force a gradient in total pressure, i.e., −𝜕𝑃 tot∕𝜕𝑥 is the
force acting on a volume element of water. It indeed has the correct unit
N/m3. The forces acting on the water are a friction with the membrane
structure, 𝑓F-m𝑅𝑇

(

𝑣m − 𝑣w
)

, where 𝑣m = 0 because the membrane is
immobile (ref. [38], p. 126), and friction with all types of solutes, and
this friction is proportional to the concentration of that type of solute,
which leads to ∑

𝑖 𝑓
∗
𝑖-w𝑐m,𝑖

(

𝑣𝑖 − 𝑣w
)

. All these forces are added up, and
their sum-total is set to zero, resulting in

− 𝜕𝑃 tot

𝜕𝑥
− 𝑓F-m𝑅𝑇𝑣w +

∑

𝑖
𝑓 ∗
𝑖-w𝑐m,𝑖

(

𝑣𝑖 − 𝑣w
)

= 0 . (84)

We can solve Eq. (84) at each position in the membrane, together
with the extended Nernst–Planck equation, Eq. (83). Now, a significant
simplification is arrived at if we assume there is no ion–membrane
friction, and thus we can set 𝐾f,𝑖 = 1 in the NP equation, Eq. (84),
for all ions. Then inserting the NP equation in Eq. (84) results in

− 1
𝑅𝑇

(

𝜕𝑃 h

𝜕𝑥
− 𝜕𝛱

𝜕𝑥

)

− 𝑓F-m𝑣w −
∑

𝑖

( 𝜕𝑐m,𝑖

𝜕𝑥
+ 𝑧𝑖𝑐m,𝑖

𝜕𝜙
𝜕𝑥

)

= 0 (85)

where we implemented that 𝑃 tot = 𝑃 h −𝛱 and 𝐷m,𝑖 = 𝑅𝑇 ∕𝑓 ∗
𝑖-w. Now,

because in the ideal case that we discuss here the osmotic pressure
equals the total ion concentration times RT, thus 𝛱 = 𝑐T,m 𝑅𝑇 with
T,m =

∑

𝑖 𝑐m,𝑖, Eq. (85) simplifies to

− 1
𝑅𝑇

𝜕𝑃 h

𝜕𝑥
− 𝑓F-m𝑣w +𝑋

𝜕𝜙
𝜕𝑥

= 0 (86)

nd thus we have an exact cancellation of the osmotic pressure acting
n the water, and the diffusional forces acting on the ions, which
ransfer to the water via ion–water friction. But this only happens when
he ions have no friction with other phases except for the water. In
q. (86) we also included local electroneutrality in the membrane,
𝑖 𝑧𝑖𝑐m,𝑖 + 𝑋 = 0 (with X either positive or negative). Then we end

p with Eq. (86) where we have a hydrostatic pressure gradient acting
n the water, water–membrane friction, and an electrostatic body force
erm, which actually entered this force balance because of water–ion
riction. We can rewrite Eq. (86) to

w = −𝕜F-m

(

1
𝑅𝑇

𝜕𝑃 h

𝜕𝑥
−𝑋

𝜕𝜙
𝜕𝑥

)

(87)

where we made the replacement 𝕜F-m = 1∕𝑓F-m. For an uncharged
membrane, 𝑋 = 0, and then Eq. (87) simplifies to the Darcy equation,
Eq. (34). Thus water flows across an uncharged membrane not by
diffusion but because of an internal pressure gradient [26,31,57,58].
Thus, Eq. (87) is an extension of Darcy’s law, valid for charged porous
media [28,50]. For a constant membrane charge, it can be easily
integrated between the two sides of the membrane. Let it be reminded
that the last three equations all assumed 𝐾f,𝑖 = 1.

The final element of transport theory through a porous structure
filled with a continuum fluid such as water, with dispersed enclosed en-

tities, such as ions, is mechanical equilibrium at the interface between
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the structure and the outside solution. This was already discussed in
Section 3. Here we derive the mechanical equilibrium condition based
on Eq. (85), because with all gradient terms much larger in a thin
interfacial region than the terms proportional to velocities (or in other
words, the structure of the interfacial region is not significantly modi-
fied by flows of ions and water across it), we arrive at the conclusion
that 𝑃 tot is invariant across any thin interface, and thus 𝑃 h − 𝛱 is
invariant as well [32,45,50], and this leads to the earlier conclusion
that across an interface the change in osmotic pressure 𝛱 (either up or
down) equals the change in hydrostatic pressure 𝑃 h across that same
interface. It may be good to reiterate that osmotic pressure is not really
a pressure in the sense that it has a direct ‘hydraulic’ or ‘mechanical’
impact. It is simply a measure of solute concentration, in the ideal case
linearly related to solute concentration.

This analysis allows us to address the question why water always
has a tendency to flow to that side of a membrane that has the highest
salt concentration. This is because of the two osmotic pressure changes
across the two outer surfaces, and they are different if the outside
solutions are different [57,59]. And both for the case of neutral solutes
and an uncharged membrane, and for the case with ions and a charged
membrane, in both cases this leads to a hydrostatic pressure profile in
the membrane that is such that water will flow to the concentrated
side [58]. For a neutral membrane the osmotic pressure goes down
the most on the high-concentration side, and thus hydrostatic pressure
there drops the most as well (from a value outside the membrane). For
a highly charged membrane (and when 𝛷𝑖 is not too far from unity),
osmotic pressure goes up upon entering the membrane. This increase
in pressure is the lowest on the high-concentration side, at a value just
above the charge density |𝑋|. Thus again we develop a pressure profile
nside the membrane that pushes the water to the high-salinity side. All
f this assumes the two outside hydrostatic pressure to be the same, or
lose to one another. If not, if we apply a hydrostatic pressure difference
cross the membrane, we can overcome the osmotic effect, and this is
f course what we do in RO and NF.

.4. Counterfluxes of salt and water in osmosis

To illustrate the two-fluid model, and to provide evidence for its
alidity and accuracy, we discuss results of an accurate fit of this theory
o data of the flow of water and salt across an ion-exchange membrane.
his experiment is called osmosis, and water and salt flow because of
difference in salt concentration between the two outside solutions on

ither side of the membrane, without pressure differences or current.
esults of this experiment are presented in Fig. 11 as function of the
oncentration on the low-salinity side, 𝑐d, which has values changing
in time) from 4 mM to 130 mM. During that time the salt concentration
n the concentrate side decreases from 800 to 525 mM. Over the 35 hr
f the experiment, the volume on the diluate side drops by 40% and
hat water flows to the concentrated side, see Ref. [39] for details. In
his experiment water flows to the high-salinity side, while salt flows
n the other direction. Thus, inside the membrane these two flows are
n opposite direction. This makes this an experiment that is not easy to
ccurately reproduce in a theoretical model, i.e., it is a very good test
f a mass transfer theory.

When we apply the mass transport theory described above, with
ation and anion fluxes the same (which is because the electrical
urrent through the membrane is zero), and with equal diffusion coef-
icients of the ions in the membrane, we find that it works excellently
nd results in the very good fit to the data shown in Fig. 11. In the
ntegration of the water force balance, Eq. (84), the total concentration
f ions in the membrane is set to a constant value, which is calculated
s an average of the values on the two sides, and these concentrations
re calculated by Eq. (70). The salt flux is given by an equation that we
ill discuss further on, Eq. (91). Based on Ref. [60] we derive a value of
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𝛷𝑖 = 0.82. The partitioning function 𝛷𝑖 is part of the calculation of 𝑐T,m,
by making use of Eq. (79) which is evaluated for both ions, leading to

𝑐T,m =
√

𝑋2 +
(

2𝛷𝑖𝑐∞
)2 . (88)

Membrane charge density is 𝑋 = −5.1 M and membrane thickness is
𝐿m = 120 μm. To fit the model to the data, we derive a hindrance
factor of 𝐾f,𝑖 = 0.51. Because 𝐾f,𝑖 ≠ 1, we cannot use Eq. (87).
The values we derive for the transport parameters 𝑘m = 0.31 μm∕s
(corresponding to a diffusion coefficient in the membrane about 50×
less than in free solution), and 𝑘F-m = 137 (mm)4/mol/s (which corre-
sponds to ∼20 mL/m2/hr/bar) are in line with earlier reported values
in Ref. [54]. Thus, we can conclude that the two-fluid model including
chemical and mechanical equilibrium is very well capable of describing
fluxes of water and salt in the osmosis experiment. Note again that these
fluxes were in opposite directions inside the membrane.

It is interesting to estimate the velocities of the water and the ions in
the membrane. We assume a porosity of 34% and we consider velocities
straight across the membrane. We analyze the start of the experiment,
when the concentrations on the two sides are 4 mM and 800 mM. The
water velocity is now ∼300 nm/s. The counterion velocity is constant
across the membrane and is ∼15 nm/s. This is a velocity in the direction
opposite to the water flow and it is about 5% of the water velocity. Thus
the counterions first of all have a velocity relative to the water, to not
be dragged along, and then a 5% extra velocity to make them move
against the water in the reference frame of the membrane. The coions
have a concentration that on the high-salinity side is about a factor of
100 smaller than that of the counterions, and many orders smaller than
that on the low-salinity side. If velocity is calculated as a flux divided by
a concentration, one could state that the velocity of the coions is much
higher than of counterions, and rapidly increasing towards the low-
salinity side. But if coions are predominantly transported by diffusion,
this interpretation of velocity must not be taken too literally — it is not
the case that an individual coion accelerates while moving across the
membrane [61].

6. Extended models for reverse osmosis and electrodialysis

6.1. 1D RO model for electrolyte solutions based on good coion exclusion

In this and the next section we focus on RO for a 1:1 salt solution
and a charged membrane, using a model based on the assumption that
coions are excluded very well from the membrane and thus the salt
flux (we have equal fluxes of cations and anions, all denoted by 𝐽𝑖 in
this section) is determined by the transport rate of the coions. For a
highly charged membrane (relative to 𝛷𝑖𝑐∞), we have an abundance of
counterions and only a few coions in the membrane, and then according
to the extended Nernst–Planck equation the transport rate of a 1:1 salt
with equal ion diffusion coefficients and equal values of 𝐾f,𝑖 and 𝛷𝑖 is
given by

𝐽𝑖 = 2 ⋅ 𝑣w ⋅ |𝑋|

−1 ⋅𝐾f,𝑖 ⋅𝛷
2
𝑖 ⋅ 𝑐int ⋅ 𝑐p ⋅

sinh
(

𝑣w∕𝑘m,𝑖 + ln
(

𝑐int∕𝑐p
))

sinh
(

𝑣w∕𝑘m,𝑖
) (89)

which is Eq. (32) in Ref. [32] and Eq. (41) in Ref. [53], extended
to include the term 𝐾f,𝑖 𝛷2

𝑖 . Implemented here is an expression for
the coion concentration just in the membrane relative to that outside,
𝑐m,co ⋅ |𝑋| =

(

𝛷𝑖𝑐∞
)2, valid when |𝑋| ≫ 𝛷𝑖𝑐∞. In Eq. (89), ‘int’ refers

o a position on the upstream side just outside the membrane. For low
ater flow rates, Eq. (89) simplifies to

𝑖 ⋅
|𝑋|

𝐾f,𝑖𝛷2
𝑖

= 𝑘m,𝑖

(

𝑐2int − 𝑐2p
)

+ 𝑣w

(

𝑐2int + 𝑐2p
)

+ ⋯ (90)

which has a term dependent on 𝑘m,𝑖 (thus based on diffusion), and a
second term proportional to 𝑣w (advection). At low enough 𝑣w only the
first, diffusional, term plays a role, and then salt flux does not depend
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Fig. 11. Experimental and theoretical results of salt flux, 𝐽salt , and water velocity, 𝑣w, across a cation-exchange membrane placed between two solutions with different salt
concentration (initially 𝑐d = 4 mM and 𝑐c = 800 mM). Water flows to the high-salinity side, and salt in the other direction. There is no external pressure difference and there is no
current. See main text for parameter settings.
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on 𝑣w. However, advection starts to play a role when 𝑣w is of the order
of 𝑘m,𝑖. If we only use the first term in Eq. (90), we arrive at

𝐽𝑖 = 𝐵′ ⋅ 𝑅𝑇 ⋅
(

𝑐2int − 𝑐2p
)

(91)

where 𝐵′ is a salt permeability with unit m/(s⋅Pa) given by

𝐵′ =
𝐾f,𝑖 𝑘m,𝑖 𝛷2

𝑖
|𝑋|𝑅𝑇

(92)

which can be recalculated to a number with dimension LMH/bar by
multiplying with 3.6⋅1011 (where LMH refers to liters of permeate water
per square meter of membrane per hour). We include the CP layer, and
we can thus describe 𝑐int by Eq. (31). If we assume a high retention and
thus 𝑐p ≪ 𝑐f, this simplifies to

𝑐int = 𝑐f ⋅ exp
(

𝑣w∕𝑘dbl,𝑖
)

(93)

where we assumed that beyond the DBL the salt concentration is 𝑐f
(i.e., we consider the limit of low water recovery). Salt retention is then
given by

𝑅𝑖 = 1 − 𝐵′ ⋅ 𝑅𝑇 ⋅ 𝑐f ⋅ 𝑣
−1
w ⋅ 𝑒2 𝑣w∕𝑘dbl,𝑖 (94)

which predicts that retention not only depends on permeate water
flux, 𝑣w, but also on feed concentration, as is well-known experimen-
tally [62]. This is different in the SD-model where the latter dependence
is absent.

To calculate the pressure drop across the membrane we can use
Eq. (84) which results in
1
𝑅𝑇

𝜕𝑃 tot

𝜕𝑥
+ 𝑓F-m𝑣w + 1

𝐷m,𝑖

(

𝑐T,m𝑣w − 2𝐽𝑖
)

= 0 (95)

when we assume equal diffusion coefficients of the two ions in the
membrane. If we insert that 𝑐T,m ∼ |𝑋| and 𝐽𝑖 = 𝑐p𝑣w, we arrive at an
expression that can be integrated across the membrane, after which the
pressure term can be evaluated on both sides (𝑃 tot

|

|L = 𝑃 h,L,∞−2𝑅𝑇 𝑐int,
𝑃 tot

|

|R = 𝑃 h,R,∞ − 2𝑅𝑇 𝑐p, and 𝛥𝑃 h,∞ = 𝑃 h,L,∞ − 𝑃 h,R,∞), which leads to

𝑃 h,∞∕𝑅𝑇 − 2 ⋅
(

𝑐int − 𝑐p
)

= 𝑣w ⋅
(

𝑓F-m𝐿m +
(

|𝑋| − 2𝑐p
)

∕𝑘m,𝑖
)

(96)

hich can be analytically solved. In practice, it will be hard to dis-
inguish the various resistance terms on the right, and it is useful to
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implify and obtain for the permeate water flux

w = 𝐴 ⋅
(

𝛥𝑃 h,∞ − 𝛥𝛱∞)

(97)

ith A an effective water–membrane permeability with unit m/(Pa.s),
r LMH/bar, and where the osmotic pressure across the membrane,
𝛱∞, is given by 𝛥𝛱∞ = 2𝑅𝑇

(

𝑐int − 𝑐p
)

. This equation is the same as
in the SD-model, but the derivation is different. In Fig. 12 we evaluate
Eqs. (94) and (97) for three feed concentrations of a 1:1 salt to describe
salt retention 𝑅𝑖 and water flow rate 𝑣w. We use 𝑘dbl,𝑖 = 65 LMH,
𝐴 = 1.70 LMH/bar, and 𝐵′ = 10 mLMH/bar. Detailed comparison with
data [33,63] leads to the conclusion that |𝑋| scales with 𝑐int to the
power 0.4. Implementing this effect leads to a salt permeability 𝐵′′ that
is an intrinsic membrane property.

6.2. 2D RO model for electrolyte solutions in the good coion exclusion
regime

We continue with a discussion of RO with ideal 1:1 salt solutions
and present results of a 2D module calculation. This can later be
extended to solutions of more ions, and effects of pH on ion protonation
and on membrane charge (acid–base reactions) [14,55,64–67]. We use
a membrane transport model where coion diffusion is the limiting
transport step, described by Eqs. (91), (93), and (97). We also include
a CP-layer (DBL) as boundary equation. Concentration 𝑐f in Eq. (93)
becomes a z-coordinate dependent upstream salt concentration.

We implement these equations in a 2D model for an RO module
similar to the approach for neutral solutes in Section 3, where we
solved transport equations at each position 𝜉 in a module, which led to
the calculation results presented in Fig. 6. We use the same approach
and analyze a module with a given membrane area, and always the
same average permeate water flux that we set to a realistic value of
20 LMH with a feedwater concentration 𝑐f either of 50 or 500 mM,
representative of moderately brackish water, and of seawater. In both
cases there is a minimum pressure and one could in theory work just
beyond that pressure. Then water recovery is very low and we have a
very low permeate concentration, see Fig. 13A. However, this choice
leads to a very high energy cost per unit produced water because a
lot of feedwater needs to be pressurized, see Fig. 13B. It is better to
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Fig. 12. Calculations for desalination of a 1:1 salt solution in reverse osmosis. (A). Salt retention as function of permeate water flux 𝑣w and feed salt concentration 𝑐f . (B).
Dependence of 𝑣w on applied pressure, 𝛥𝑃 h,∞. Calculations based on Eqs. (94) and (97).
increase the applied pressure and increase water recovery. We then
need less feedwater, still producing 20 LMH permeate, while 𝑐p only
changes moderately. The energy costs decrease and thus the total costs
of operation, TC, as well, until a minimum is reached beyond which TC
goes up again. We use Eq. (45) to describe the cost of operation of the
RO module. Because of the fixed system size, the second part related to
membrane costs is constant, and thus, to find the optimum pressure and
other factors, various cost factors such as CUE are irrelevant as well.
The only thing of importance in the present calculation is the applied
pressure, 𝛥𝑃 h,∞, times the feed flow rate 𝜙v,f (which is proportional
to the fixed production flowrate, divided by WR) and times the factor
1 − 𝜂ERD (1 − WR), where we use 𝜂ERD = 0.5. We leave out other cost
factors relating to pretreatment or brine discharge.

For 𝑐f = 50 mM, this simple calculation provides a minimum in
total costs at a pressure around 19 bar (about 25% above the minimum
pressure), and a water recovery at that condition of WR ∼ 78%. For
seawater, 𝑐f = 500 mM, the minimum pressure is at ∼46 bar, the
optimum is at 64 bar (about 40% above the minimum), and water
recovery at that optimal condition is 55%. Interestingly, this water
recovery, in the range 50%–60%, is a common value for operation of
seawater desalination plants.

When we compare these two conditions of 𝑐f 50 mM and 500 mM,
we have for the same water flowrate 𝑣w a much better retention for
brackish water than for seawater (when we define ‘goodness’ as how
close we are to 100%). Indeed, for brackish water we have at the
economic optimal point a permeate concentration of 𝑐p = 0.30 mM
and thus a retention of ∼99.4%, while for seawater we have at the
optimum a permeate concentration of 𝑐p ∼ 14 mM, and thus a retention
of 𝑅𝑖 ∼ 97%. This is about a factor of 6 difference (based on how far
we are from 100%).

6.3. 2D cross-current ED model

We continue with advanced calculations for electrodialysis (ED). In
Section 4 a model for ED was discussed where the water flows co-
currently along the membranes. (Note that ‘current’ in a description of
flow patterns does not relate to electrical currents, but to the direction
of the flow of water in the channels.) In the present section we com-
pare this flow pattern with two other modes of water flow. The first
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alternative is counter-current operation as explained in Fig. 14. This
is mathematically similar to co-current flow, but now the direction of
water flow in the concentrate channels is opposite to that in the diluate
channels. Finally we compare with cross-current flow, where flow in
the concentrate channels is ‘at a 90 degrees angle’ relative to the flow
direction in the diluate channels. Mathematically, a two-dimensional
(2D) problem is then solved. We compare ED operation in these three
modes on the basis of the important curve of efficiency 𝜂ED vs. specific
productivity, SP. So each calculation is made for the same separation,
where the diluate concentration goes down from 500 mM to 50 mM,
and water recovery is 50%. As Fig. 14 demonstrates, efficiency is best
(for a certain value of SP) in counter-current operation, next best is
cross-current, and last is co-current flow. The differences are significant
in a range of SP-values between ∼ 3 and 10. And in addition, because
it is never useful to work ‘left of’ the maximum, for co-current flow one
would not operate below SP ∼ 5, while for counter-current flow it can
still be sensible to operate as low as SP = 3. Thus, in this range of SP-
values, there is a significant effect of the flow geometry on operational
efficiency. However, for higher production rates, in this case beyond
SP ∼ 15, the three flow geometries all give the same result, i.e., the
exact type of flow does not matter at these high flow rates. The flow
geometry only matters at low SP, and as discussed before, operation at
low SP is economically attractive when material costs are low relative
to energy costs [44]. When instead costs of materials are a large part
of the total operational expenses, operation is at an economic optimum
with less membrane area, at higher electrical currents, and then cal-
culation results are that the dependency of efficiency on productivity
does not depend very much on the mode of operation.

6.4. Optimization of a stack of two ED modules

Now we extend the calculation for ED to the multi-module level. A
layout is considered with two ED modules (two ED stacks) that can be
different from one another, and together they are the ED system. We
consider different ways to combine these two modules in the system.
We make comparisons for the same value of SP evaluated at the system-
level. Thus, we add together all areas in the two modules to a total area
A that is used in the calculation of SP, and if we compare with a system
consisting of a single module, that one module can have the same total
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Fig. 13. Calculations for a 2D RO module for fixed water productivity of 20 LMH and 50 mM 1:1 salt solution as feed (A and B) or a 500 mM solution (C and D). Other
parameters as in Fig. 12.

Fig. 14. Comparison of three flow patterns in an ED module, namely counter-current, cross-current, and co-current flow. Calculation results for an ED module based on input
parameters from Section 4, evaluated as efficiency 𝜂ED versus specific productivity, SP. All calculations for desalination from 500 to 50 mM, at a water recovery of 50%.
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Fig. 15. Comparison of different methods of stacking two ED modules. Each individual stack is described by the 2D cross-current geometry. (A). Explanation of in-series and
counter-current process layout. (B) Energy efficiency, 𝜂ED, for three possible process layout schemes. (C). Relative increase in 𝜂ED for the in-series layout when we vary the relative
sizes of the two stacks.
area to have the same system-level SP in this comparison. Results of
this calculation are presented in Fig. 15. All calculations in this section
are based on the most realistic module layout (flow pattern) which is
cross-current flow. Thus calculations here are based on a 2D model for
each separate module, and then two modules are jointly considered,
and for each value of SP, all free parameters are varied to arrive at an
optimized efficiency 𝜂ED, such that the curves in Fig. 15 are optimal for
any chosen mode of stacking.

In Fig. 15 the line for single module is the same as if we had two
smaller modules each with half the area, placed next to one another (in
parallel). Thus the ‘parallel’ line in Fig. 15 is the same as the line for
cross-current flow in Fig. 14. The second line is for the two modules
placed in series, one behind the other. The cell pair voltages in both
modules can be changed, and the aim is to arrive at the required
setpoint (desalination from 500 mM to 50 mM) with the lowest total
energy investment. Finally, the upper line is for two modules that on
the system-level are operated in counter-current (each module by itself
is operated in cross-current). Clearly, at moderate SP-values we can
increase efficiency by either of these system-level stacking options.
Around SP ∼ 3, an improvement by about ∼25% is possible when we
go from a single module to two (smaller) modules. Note that in each
module the cell pair voltage must be chosen exactly right to obtain
this advantage, otherwise efficiency can even be worse than in a single
module.

In a next set of calculations, presented in Fig. 15C, we only analyze
the ‘in-series’ system-geometry and change the sizes (i.e., membrane
area) of the two modules, but still with overall the same system-level
SP (i.e., if one module is made larger, the other must be made smaller),
while we again optimize the two voltages in each module. Reported is
the relative increase in efficiency compared to the situation of a single
module. The two extremes, at the very left and very right in Fig. 15C
refer to the single module, and the condition in the exact middle is the
in-series geometry with two equally-sized modules. We notice that we
can gain a further increase in efficiency if the first unit is increased
in size by up to 50% and the second one made smaller by that same
amount. Note that this change in size can simply be realized by having
more cell pairs in the first, larger, unit, and less in the second, smaller,
unit (with all water still flowing through both stacks), which increases
the residence time in the first unit and reduces it in the second. At
the lowest SP (upper curve), we can have a relative efficiency increase
(relative to the single module) of ∼25%. The improvement compared
to the case of two equally-sized modules (at the vertical dashed line) is
relatively modest, not more than about 5%, but nevertheless it might
pay off to increase the number of cell pairs in the first unit, and reduce
25

this number in the second unit.
6.5. 3D Cross-current ED model with concentration polarization

In this final section we further increase the level of detail of the
model for an ED module, by including concentration polarization (CP).
In a simplified model without CP, at each macroscopic position in the
module we have across the height of the channel a constant salt con-
centration, i.e., in this direction we have perfect mixing (‘crosschannel
mixing’). In the full 3D cross-current model that includes CP, we solve
the Nernst–Planck equation for each ion, not only in the membrane,
but also across the height of the channel, resulting in a description
of the development of concentration profiles in this direction, and
thus different concentrations are calculated at the membrane surface
relative to the center of the channel, i.e., we now include concentration
polarization. In the numerical 3D calculation, space is discretized in
all three directions into a large number of gridpoints. At any distance
from the membrane, water flows along the membrane in the required
direction from inlet to outlet, also advecting ions with it. At the same
time, by diffusion and electromigration ions also move towards, or
away from, the membranes. We assume plug flow for the water, i.e., at
each position we have the same velocity of water in the direction along
the membranes. We neglect water flow through the membrane, and in
that regard the membranes are ideal. However, we do include that the
membranes are leaky for coions, as discussed at length in Section 4,
and this is an important modeling element. We assume steady-state
and an ED cell with unsegmented electrodes, i.e., at each position in
the stack there is only one cell pair voltage, which is the same as
the approach in previous sections. Parameters are: membrane charge
density 𝑋 = 4.0 M, membrane ion transfer coefficient 𝑘m = 0.24 μm∕s,
channel thickness 𝐿ch = 200 μm, and ion diffusion coefficient in the
flow channel 𝐷ch = 1 ⋅ 10−9 m2/s, which includes a porosity and
tortuosity effect.

For many conditions, we notice that significant concentration pro-
files develop across the height of the channel, sometimes up to a factor
∼4 difference in concentration between the center of a channel and the
channel/membrane interface. Because of these concentration profiles
the resistance across the diluate channel goes up somewhat but this
is a small effect. Much more important are two other effects related
to the membranes. First of all, CP increases the Donnan potential on
the diluate/membrane interface (more than it reduces the Donnan
potential on the other side), because the salt concentration at the
channel/membrane interface is now much lower. For this reason the
cell pair voltage goes up and thus the energy consumption. But another
effect is even more important. Because of the decreasing concentration
in the diluate channel at the channel/membrane interface, and likewise
the increasing concentration on the concentrate side, salt leakage from

the concentrate channels significantly increases, which lowers current
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Fig. 16. Calculations for ED with 3D cross-current geometry and non-ideal membranes, with and without concentration polarization (CP). For two values of feed salt concentration
and three values of salt removal (percentage-wise reduction in diluate salt concentration), results are presented for the energy ratio as function of specific productivity, SP. The
energy ratio is the calculated energy use to reach the required salt removal when we do include CP (which is a more precise model) over a model that neglects CP (a model
based on the assumption of ‘crosschannel mixing’).
efficiency, 𝜆. Now, because we need to arrive at the same setpoint of a
ertain salt removal, to compensate for this leakage, currents must be
ncreased, and this also leads to higher voltages. This increased leakage,
nd the required compensation for it such that we arrive at the same
etpoint, is the key reason why if we include CP in a model in which
embranes are leaky for co-ions, we have a significantly larger energy

onsumption, in some of the calculations reported in Fig. 16 up to a
actor of two more.

Calculations are performed at many values of the specific produc-
ivity, SP, and in each calculation the cell pair voltage is adjusted until
certain salt removal is achieved. Based on the average current density
nd energy use, the energy ratio is calculated, which is the theoretical
nergy use when the CP-effect is included, divided by the energy use
ased on an ED model without CP. The energy ratio is then a kind of
rror that we make in a calculation without CP, where a more accurate
nalysis should have included CP. One can also conceive of the energy
atio as the technological potential to reduce energy consumption by
eveloping ED channel designs that reduce the CP effect. Thus we
resent in Fig. 16 results of the energy ratio, for different values of salt
emoval and feed salt concentration as function of SP. These energy
atios are always beyond one, and this implies that an ED module
ncluding CP always needs more energy than without CP, to arrive
t the same salt removal. As Fig. 16 shows, for low productivity, and
oderate salt removal (50%), the energy ratio is not too far from unity.
owever, for a higher salt removal calculations show energy ratios
oing up to values of two. Thus, at high SP and high salt removal (above
0%), CP is important and significantly increases the energy use. Thus,
oth for low and high feed salt concentration, the effect of CP can be
ery significant when we simultaneously aim for a high salt removal
nd high productivity.

. Conclusions and outlook

In this tutorial review, we have presented theory for reverse osmosis
nd electrodialysis, explaining how both technologies are based on fun-
amental transport theory, and illustrating their application in simple
eometries, complete modules, and in system optimization of multiple
ombined units. For RO we discussed the solution-friction model which
redicts a limiting retention at a high permeate water flux. For a 2D
odule, an analytical result was derived when advection dominates

hat leads to a simple model of RO for neutral solutes, that can be
sed in cost optimization studies. For ED we develop new equations
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for Donnan equilibrium that extend the standard ideal expression. We
present analytical equations for current efficiency, showing that this is
a process parameter, not a membrane material property. We analyze
combination of multiple modules in a system, and explain that for
RO there can be a positive effect but only at a low permeate water
flux. For ED, it can be useful to couple multiple modules, but only
if membranes are relatively inexpensive and we can work at high
energy efficiency. Concentration polarization in ED has a small effect
when salt removal is below 80%, but must be included when a larger
concentration reduction must be achieved.

As an outlook, let us summarize a few topics that we did not address.
First of all, it is important to study how to extend both in RO and
ED from simple 1:1 salt solutions to multi-ionic solutions. Even the
addition of one extra type of anion or cation significantly changes
the entire modeling framework. In addition, in real water sources also
the protonation degree of ions must be considered, which depends on
local pH. At high concentrations, ions also associate in ion pairs. These
effects are relevant to study because for instance an ammonium ion
is acted on by the electrical field, but the neutral ammonia species, is
not. Thus retention of these ions is strongly pH-dependent. For very tiny
pores, a related topic is the effective size of ions, that has an impact on
their partitioning and their mobility within the membranes. Ions with
a higher charge will be hydrated better, and are expected to be slower.
State-of-the-art theory for simultaneous transport and reaction of ions
(such as acid–base reactions between ions) assumes that these reactions
are very fast, but it is interesting to study if that is a correct assumption.
Another important assumption is local electroneutrality in channels and
in membranes. Especially in reverse osmosis where membranes can
be as thin as 100 nm, it is important to know if Poisson’s equation
must be used to replace the assumption of local electroneutrality in the
membrane.

Other topics of relevance are the use of NF and RO to remove
organic micropollutants (OMPs) and other charged molecules such as
perfluoroalkyl substances (PFAS). A very different topic is the theoret-
ical study of electro-deionization (EDI), which is an ED system with
channels containing (mixed bed) resin particles to reduce energy costs
and produce ultra-pure water. In the theory for EDI we may have to
include water-splitting reactions at points where acidic and basic resin

particles touch.
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Nomenclature

Symbols
𝑎 Specific membrane surface area,

𝑎 = 1∕𝐿ch

m−1

𝐴 Membrane area m2

𝑐𝑖,𝑗 Concentration of solute or ion 𝑖 in
stream 𝑗a

mol/m3

𝑐m,𝑖 Concentration of ion 𝑖 in membrane mol/m3

𝑐T,m Total concentration of all ions
together in the membrane

mol/m3

CMP Costs of material purchase
CUE Costs of a unit of energy
𝐷m,𝑖 Membrane-based diffusion

coefficient, 𝐷m,𝑖 = 𝜀𝐷∞,𝑖

m2/s

𝑒min Theoretical minimum energy of a
desalination process

W

ecmin ecmin = 𝐸min∕𝛱f
𝐸min Theoretical minimum energy of

desalination per m3 of freshwater
produced

J/m3

𝑓 Dimensionless 𝑧-dependent
upstream flowrate, 𝑓 = 𝜙v(𝑧)∕𝜙v,f

𝐹 Faraday’s constant (96485 C/mol) C/mol
driving,𝑖 Driving force on ion 𝑖 J/mol/m
friction,𝑖 Friction force on ion 𝑖 J/mol/m
𝑓elec,𝑗 Contribution to the free energy

density of a solution
J/m3

by Coulomb interactions between
ions

𝑓F-m Friction of water with the
membrane matrix

mol⋅s/m5

𝑓 ∗
𝑖-𝑗 Friction factor of ion 𝑖 with another

ion 𝑗
J.s/mol/m2

𝑓 ∗
𝑖-m Friction factor of an ion with the

membrane matrix
J.s/mol/m2

𝑓 ∗
𝑖-w Friction factor of an ion with water J.s/mol/m2

𝐼 Current or current density A, or A/m2

𝐽𝑖 Transmembrane molar flow rate of
solutesb

mol/m2/s

𝑘B Boltzmann’s constant (1.3806 10−23

J/K)
J/K

𝑘ch Channel mass transfer coefficient,
𝑘ch = 𝜀𝐷∞∕𝐿ch

(m/s)

𝑘F-m Water–membrane permeability,
𝑘F-m = 𝕜F-m∕𝐿m = 𝐿m∕𝑓F-m

m4/mol⋅s

𝑘m,𝑖 Membrane mass transfer coefficient,
𝑘m,𝑖 = 𝐷m,𝑖∕𝐿m

m/s

𝐾f ,𝑖 Function describing
solute–membrane friction

𝐿ch Flow channel thickness m
𝐿m Membrane thickness m
𝑚1, 𝑚2 Multiplier for total energy use;

multiplier for other plant expenses
𝑁av Avogadro’s number (6.0221 1023

mol−1)
mol−1

𝑛𝑖 Ion concentration in numbers per
volume

m−3

𝑝 Membrane porosity
𝑃 h Hydrostatic pressure Pa (bar)
𝑃𝑖 Passage of ion or solute 𝑖,

𝑃𝑖 = 1 − 𝑅𝑖
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Pe𝑖 Membrane Péclet-number,
Pe𝑖 = 𝑣F∕𝑘m,𝑖

𝑅 Gas constant (8.3144 J/mol/K) J/mol/K
𝑅𝑖 Retention (or rejection) of ion or

solute 𝑖
𝑆𝑖 Solubility (same as 𝛷𝑖)
𝑆𝑗 Entropy associated with a certain

water flow
J/s/K

SP Specific productivity, a measure of
average transmembrane water flow
rate

𝑇 Temperature K
𝑡∗ Time-on-stream, 𝑡∗ = 𝑧∕𝑣𝑧 s
tc Dimensionless total costs
TC Total costs per time in operation
𝑉cp Cell pair voltage V
𝑣w Transmembrane water velocity,

permeate water fluxb
m/s

𝑉T Thermal voltage, 𝑉T = 𝑅𝑇 ∕𝐹 V
𝑣𝑧 Velocity of water through a

channel, i.e., along membrane
m/s

WR Water recovery
𝑥 Coordinate towards and across

membrane
|𝑋| Magnitude of the membrane charge

density
mol/m3

𝑧 Direction along membrane
𝛼1, 𝛼2 Over-pressurization factors
𝛥𝑐 Extent of desalination (difference in

salt concentration between
mM

feedwater and product water,
𝛥𝑐 = 𝑐f − 𝑐p)

𝛥𝑃 h,∞ Hydrostatic pressure difference
across the membrane

Pa (bar)

𝛥𝑡 Membrane lifetime s
𝛥𝜙ch,𝑗 Potential drop across channel 𝑗

(dimensionless)
𝛥𝜙Donnan,𝑗 Donnan potential at

solution/membrane interface
𝛥𝜙Donnan,tot Total Donnan potential across a

membrane
𝛥𝜙m Potential drop across the inner

coordinates of the membrane
𝜀 𝜀 = 𝑝∕𝝉
𝜂 Energy efficiency, ratio of

theoretical minimum energy to
achieve a certain
desalination over the actual energy
investment
(also called TEE, thermodynamic
energy efficiency)

𝜆B Bjerrum length m
𝜆cp Current efficiency
𝜇𝑖 Chemical potential of an ion J/mol
𝜇aff ,𝑖 Contribution of affinity to the

chemical potential of an ion with a
certain phase

J/mol

𝜇exc,𝑖 Contribution of volumetric
interactions to the chemical
potential of an ion

J/mol

𝜇ref ,𝑖 Reference value relevant when ions
are part of chemical reactions

J/mol

𝜈i Molar volume of an ion m3/mol
𝜈𝑖𝑃 tot Pressure insertion term J/mol
𝛱 Osmotic pressure of a solution Pa (bar)
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𝛱dbl∕mem Osmotic pressure at the interface
between DBL and membrane

Pa (bar)

𝜎𝑖 Reflection coefficient, 𝜎𝑖 = 1 −𝐾f,𝑖𝛷𝑖
𝜏 Tortuosity
𝝉 Tortuosity factor of a porous

structure 𝝉 = 𝜏2

𝜙 Volume fraction of all ions together
𝜙v Volumetric flowrate m3/s
𝛷𝑖 Partitioning coefficient (same as 𝑆𝑖)
𝜉 Dimensionless coordinate along the

membrane from inlet to outlet (0 to
1)

𝜔 Sign of the membrane charge
density

Subscripts
c concentrate (in RO: retentate)
f feedwater
p product water, or freshwater (in

RO: permeate)
∞ conditions outside of membrane, or

salt concentration in solution for a
𝑧:𝑧 salt

aThe words ‘ion’ and ‘solute’ are interchangeably used in this table.
bThese fluxes across the membrane are defined per unit geometrical
‘outer’ area of a membrane, i.e., they are defined as superficial
velocities, not interstitial. This means they are not defined for
instance per cross-sectional area of the pores only.
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