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Abstract

Tropical montane systems are characterized by a high plant species diversity and complex envi-
ronmental gradients. Climate warming may force species to track suitable climatic conditions
and shift their distribution upward, which may be particularly problematic for species with
narrow elevational ranges. To better understand the fate of montane plant species in the face
of climate change, we evaluated a) which environmental factors best predict the distribution of
277 plant species along the Himalayan elevational gradient in Nepal, and b) whether species
elevational ranges increase with increasing elevation. To this end, we developed ecological niche
models using MaxEnt by combining species survey and presence data with 19 environmental
predictors. Key environmental factors that best predicted the distribution of Himalayan plant
species were mean annual temperature (for 54.5% of the species) followed by soil clay content
(10.2%) and slope (9.4%). Although temperature is the best predictor, it is associated with many
other covariates that may explain species distribution, such as irradiance and potential
evapotranspiration. Species at both ends of the Himalayan elevational gradient had narrower
elevational ranges than species in the middle. Our results suggest that with further global
warming, most Himalayan plant species have to migrate upward, which is especially critical
for upland species with narrow distribution ranges.

Introduction

One of the central questions in ecology is what controls the distribution of species. This question
has become more urgent because climate change is forcing species to track suitable climatic
conditions and shift their distribution ranges either poleward or upward (Chen et al. 2011,
IPCC 2014). Particularly in montane landscapes in (sub-)tropical biomes, the presence of steep
mountain ranges and shallow latitudinal gradient in climatic conditions is likely to leave plant
species with only one option – shifting their ranges upward. In these landscapes, such shift in
species distribution ranges will be particularly problematic for plant species with narrow
elevational ranges as they are likely to be forced to move upward rapidly to maintain viable
population sizes, and for those living near mountain tops as smaller land surface area is available
at higher elevations (Körner 2007). To better understand the fate of montane plant species in the
face of climate change, it is urgently needed to understand which environmental factors best
predict their distribution and how they are spatially distributed in montane landscapes.

The elevational gradient (sometimes referred to as an ‘altitudinal gradient’) is an ideal system
to study the multiple factors that control species distribution, as it presents a complex, multiple-
factor gradient that affects plant species distribution in multiple ways. Temperature, solar radi-
ation, precipitation and soil properties are important determinants of plant species distribution,
since they set the local site conditions and thus the abiotic niches (Hemp 2006). Temperature
decreases linearly with increasing elevation, and it regulates plant metabolic rates that are vital
for plant survival, growth and reproduction. Lower temperature at higher elevations may not
only impair plant performance but also lead to slower soil microbial activity and other soil proc-
esses, hence lower nutrient availability (Müller et al. 2016a, Vincent et al. 2014). Under clear sky,
solar radiation increases with increasing elevation because of reduced atmospheric turbidity. But
the amount of solar radiation received by organisms depends on clouds and fog, and both often
increase with increasing elevation (Adhikary 2012, Körner 2007). Consequently, in the areas
often covered with clouds, productivity of montane species may be strongly limited by irradi-
ance (Fyllas et al. 2017). With increasing elevation, in the subtropics, precipitation usually
increases up to cloud condensation elevation and decreases beyond (Körner 2007). Montane
soils are, in general, poorly developed, stony, shallow, relatively infertile and often acidic.
With increasing elevation, soils become thinner, less developed and less fertile (FAO 2015).
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Precipitation, evapotranspiration, topography and soil water-
holding capacity determine water availability, hence plant survival.
Particularly in steep montane landscapes, thin, stony and infertile
soils have a low water-holding capacity, which impedes seedling
and sapling establishment (Müller et al. 2016a, 2016b).
Additionally, diurnal and seasonal variability of environmental
factors increase with increasing elevation (Rasmann et al. 2014)
exposing high elevation plants to comparatively harsher, more
stressful and variable environmental conditions. All the aforemen-
tioned environmental factors play crucial roles in shaping plant
species distribution along elevational gradients; however, their
relative importance is still contested (Bhattarai et al. 2004,
Dubuis et al. 2013, Müller et al. 2016a).

Rapoport’s elevational rule

The elevational ranges of various groups of organisms (trees,
mammals, birds, reptiles, insects and amphibians) increase with
increasing elevation, a phenomenon which has been coined
‘Rapoport’s elevational rule’ (Stevens 1992). Stevens (1992)
suggested that these wider ranges are the result of higher climatic
variability that species experience at higher elevations. The climatic
variability hypothesis (more generally the environmental
variability hypothesis) posits that species occurring in climatically
variable habitats, such as those at high elevations, would develop
wider environmental tolerances and, hence, occupy wider eleva-
tional ranges than species occurring in climatically stable habitats,
such as those at low elevations (Pintor et al. 2015, Stevens 1992).
The generality of Rapoport’s elevational rule is still contested –
some studies found strong support for it (Pintor et al. 2015,
Rasmann et al. 2014, Schellenberger Costa et al. 2018, Subedi
et al. 2020), while others have found little (Feng et al. 2016) or
no support (Bhattarai & Vetaas 2006, Lee et al. 2013, Vetaas &
Grytnes 2002).

In this study, we focused on the Himalayan elevation gradient
in Nepal because 1) it is one of the longest and steepest elevational
gradients in the world, 2) it is a global hotspot of biodiversity
(Mittermeier et al. 2004), 3) global warming is forcing numerous
treeline species along this gradient tomove upward at a rate as high
as 26 m per decade (Chhetri et al. 2018, Gaire et al. 2014, Suwal
et al. 2016), and 4) the distribution of species along an elevational
gradient according to Rapoport’s elevational rule can be tested
along this gradient. Some studies have reported unimodal patterns
in tree species elevational ranges along this elevational gradient
(Bhattarai & Vetaas 2006, Vetaas & Grytnes 2002), while others
have reported a monotonic increase in elevational ranges among
other groups of plant species (Feng et al. 2016, Subedi et al.
2020) supporting Rapoport’s elevational rule. These studies used
an elevation band (100 m bands) approach. Firstly, based on the
data on species elevational ranges in the published floral databases,
they estimated species elevational ranges as the differences between
the maximum and minimum elevations of species rounded to the
nearest 100 m and elevational midpoints as the averages of the
elevational limits of species. Then, they used average elevational
ranges of all species that occur in each elevation band or species
whose elevational midpoints occur in each elevation band to
evaluate the relationship between species elevational ranges and
elevation. However, species elevational midpoints and average
elevational ranges based on presence records may not be represen-
tative of the species’ elevational optima – points where species
occurrence or abundance peak (Pintor et al. 2015), and elevational
tolerance – the elevational range where species could actually

occur. For example, the elevational midpoint of a species with
its elevational ranges between 100 and 1500 m a.s.l. is 800 m
a.s.l. However, its elevational optimum may be higher or lower
than 800 m a.s.l. depending on whether species abundance is left-
or right-skewed. The species’ elevational optima should be in the
middle of species’ niches rather than the middle of their elevational
ranges, and the modelled ecological niches and their projected
spatial distributionsmay provide a better measure of species’ eleva-
tional tolerance than the elevation of presence records alone.
Therefore, in this study, we used MaxEnt (Phillips et al. 2004,
2006) to model ecological niches and project spatial distributions
of 277 plant species that are most common among the 1169 inven-
toried plant species and that belong to 9 different life forms
and subsequently used these niches and distributionmaps to calcu-
late species’ elevational optima and ranges (see Methods for
details).

Here we addressed two research questions. First, which envi-
ronmental factors best predict the distribution of plant species
along an elevational gradient? We hypothesized that temperature
would be the key environmental factor that best predicts the
distribution of plant species along an elevational gradient because
it 1) decreases predictably with elevation, 2) directly influences
plant physiology and soil processes vital for plant survival, growth
and reproduction, and 3) constrains growth of plant species by
controlling growing season length. Second, how do species’ eleva-
tional ranges change with elevation along an elevational gradient?
We hypothesized that plant species living at high elevations, where
environmental conditions are harsher, more stressful and variable,
would have wider physiological tolerances to environmental
conditions and occupy broader elevational ranges compared to
plant species living at low elevations, where environmental condi-
tions are more benign and stable, according to Rapoport’s eleva-
tional rule (Pintor et al. 2015, Stevens 1992).

Methods

Study site

For our study, we selected the Himalayan elevational gradient in
Nepal, one of the longest and steepest elevational gradients in
the world. Within a horizontal span of mere 200 km, elevation
varies from 60 m a.s.l. in the south to the highest peak of the world
in the north (HMGN/MFSC 2002) resulting in a roughly south-
facing elevational gradient. Along the gradient, trees can grow at
up to 4000 m a.s.l. (treeline) while alpine meadows can be found
at up to 5000 m a.s.l. (TISC 2002). Temperature decreases linearly
along this gradient (Lillesø et al. 2005), and precipitation shows a
mid-elevation maximum (Acharya et al. 2011, Kansakar et al.
2004). This gives rise to an extensive bioclimatic gradient ranging
fromwet, warm and stable tropical climate in the lowlands in south
to cold, more stressful and variable alpine climate in the Himalayas
in the north (HMGN/MFSC 2002, Lillesø et al. 2005). As a result of
this elevation-driven variation in environmental conditions and
habitats, Nepal is a home to disproportionately higher percentage
of the world’s flora and fauna (5.1% of gymnosperms, 2.7% of
angiosperms, 9.3% of birds and 4.5% of mammals in 0.1% of global
land area, HMGN/MFSC 2002) – a global hotspot of biodiversity
(Mittermeier et al. 2004).

MaxEnt

As modelled ecological niches and their projected spatial distribu-
tions may provide a better measure of species’ elevational tolerance
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than the elevation of presence records alone, we used a modelling
approach. MaxEnt version 3.3.3k (Phillips et al. 2004, 2006) was
selected over other species distribution modelling (SDM) algo-
rithms because 1) it is a powerful presence-only SDM algorithm
that can efficiently handle complex interactions between species
presence records and environmental predictors (Elith et al.
2006, 2011), 2) it makes relatively accurate predictions with small
number of presence records (Pearson et al. 2007, van Proosdij et al.
2016, Wisz et al. 2008), 3) it has been reported to outperform other
SDM algorithms (Aguirre-Gutiérrez et al. 2013, Elith et al. 2006,
Giovanelli et al. 2010, Hao et al. 2020, Merckx et al. 2011, Wisz
et al. 2008), 4) it does not require species absence records which
are difficult to confirm (MacKenzie 2005, Raes & Aguirre-
Gutiérrez 2018), and 5) it allows using all species presence records
available in floral databases and natural history collections. For
their improved predictive performances, ensemble models are
increasingly being used for SDM (Aguirre-Gutiérrez et al. 2013,
Araújo & New 2007, Hao et al. 2020). However, it is very difficult
to estimate contributions of individual environmental variables
to the final species distribution model from an ensemble model.
As one of our main aims is to identify key environmental factors
that best predict plant species distribution along the elevational
gradient (factors contributing the most to species distribution
models), MaxEnt alone was used instead of ensemble of
different SDM algorithms. MaxEnt uses species presence records,
environmental predictors and randomly drawn background
samples tomodel species’ ecological niches and project their spatial
distributions.

Study species and their presence records

The national forest inventory (2010–2014) undertaken by Forest
Research and Training Centre (then Department of Forest
Research and Survey) Nepal served as the main source of species
presence records. Two-phase stratified systematic cluster sampling
was used for the inventory. In the first phase, Nepal was divided
into 4 × 4 km grids. At each grid node, a sample cluster of
4–6 concentric circular plots (four (2 × 2) plots 300 m apart in
north-south and east-west directions in lowlands with relatively
homogenous forests, and six (3 × 2) plots 150 m apart in
north-south and 300 m apart in east-west directions in hills and
mountains with heterogeneous forests) was positioned starting
at the grid node and moving first towards north and then towards
east. Each plot had four concentric circular subplots of radii
4, 8, 15 and 20 m that were used to identify the trees to species
and measure individual stem diameter at breast height (DBH),
and tree height of trees of DBH ranges 5–9.9, 10–19.9, 20–29.9
and 30 cm and more, respectively. In addition to that each plot
had four 1 m2 subplots each located 5 m away from the centre
of the plot in four cardinal directions that were used to assess
species-wise stem count of non-woody vascular plants. Next, each
plot had four circular subplots of 2 m radii each located 10 m away
from the centre of the plot in four cardinal directions that were
used to assess species-wise stem count and mean height of seed-
lings, saplings and shrubs with DBH <5 cm. In the second phase,
450 sample clusters representing 2544 sample plots located in the
forests below 4000 m a.s.l. and with a slope <45° were selected
for field measurements (for details see DFRS 2015). Of these
2544 sample plots, we used species presence data from 2039 sample
plots for which plant species were reliably identified to species
level. Plant species names were standardized using multiple
sources (Tropicos, Taxonomic Name Resolution Service, The

Plant List and The International Plant Names Index) and,
in case of discrepancies, verified by a taxonomist from
Tribhuvan University, Nepal, to synonymize all taxonomic names
to their currently accepted taxonomic names. In case of conflict,
the currently accepted taxonomic names in The Plant List were
used. Finally, of the 1169 inventoried plant species, 333 species
(167 tree, 85 shrub, 31 herb, 14 fern, 14 grass, 14 liana, 5 orchid,
2 palm and 1 sedge species) were recorded in at least 10 unique
sample plots and were selected for the study. The detailed list of
the selected plant species is presented in Supplementary Table 1.
Orchid was used as a separate life form to be consistent with the
national forest inventory, Nepal database – that was used as the
main source of species presence records for this study.

To supplement the aforementioned surveyed presence records,
additional presence records were compiled from the online floral
databases (Global Biodiversity Information Facility: http://www.
gbif.org, Integrated Digitized Biocollections: http://www.idigbio.
org and iNaturalist: http://www.inaturalist.org) and supplemen-
tary fieldwork (undertaken in Oct–Dec 2017). Both currently
accepted taxonomic names and their unambiguous synonyms
retrieved from The Plant List – that was used as the starting point
for the taxonomic backbone of theWorld Flora Online –were used
to download presence records from the online floral databases.
Citations for the records thus downloaded are presented in
Supplementary Table 4.

Cleaning species presence records

The species presence records were cleaned in two steps. In the first
step, all duplicate records (using currently accepted taxonomic
names and their synonyms to download records from the online
floral databases returned duplicate records); records based on fossil
specimens, and plants not from wild; records with missing coor-
dinates, zero coordinates, coordinates with latitude = longitude
(impossible in case of Nepal), invalid coordinates, and coordinates
likely to be based on country centroids or country capitals (records
within threshold of 0.0083 degrees ≈ 1 km of country centroids or
country capitals); records with coordinates country mismatch;
and records with coordinates uncertainty ≥1 km were removed
using process described in the R package speciesgeocodeR
(Zizka & Antonelli 2015). To avoid pseudo-replication, all
duplicates at 0.0083 degrees ≈ 1 km spatial resolution (also the
raster resolution of environmental predictors, see below) were also
removed.

In the second step, species’ elevational ranges reported in
published literature (Fraser-Jenkins et al. 2015, Fraser-Jenkins &
Kandel 2019, http://www.efloras.org/ 2019, Jackson 1994,
Paudyal & Haq 2008, Rajbhandari & Rai 2019, Shrestha et al.
2018) were used to identify and discard doubtful presence records,
that is presence records beyond the reported species’ elevational
ranges. Furthermore, to make sure the cleaned presence records
are representative of the reported species’ elevational ranges,
species with presence records covering<50% of the reported eleva-
tional ranges were also discarded. This reduced the number of
spatially unique presence records to 10 775 and the number of
selected plant species to 281 with per species spatially unique
presence records ranging from 3-324. Since cleaning of species
presence records reduced the number of spatially unique presence
records of four out of 281 species to less than five, that is the abso-
lute minimum number of presence records required for MaxEnt
modelling (Pearson et al. 2007, van Proosdij et al. 2016), only
277 species (143 tree, 76 shrub, 23 herb, 13 grass, 9 liana, 7 fern,
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4 orchid, 1 palm and 1 sedge species) were considered for further
analysis.

Environmental predictors

To avoid edge effects as result of modelling truncated niches
(Raes 2012), we defined Nepal plus 200 km buffer surrounding
the Nepalese border as our area of interest. We included this buffer
to include a wide range of environmental conditions, so that it is
easier to model the drivers of species distribution. To relate species
presence records to environmental predictors, 53 climatic, topo-
graphic and edaphic variables were compiled. Freely available
global datasets were downloaded, cropped to the area of interest,
and aggregated to 30 arc-seconds (~1 km) spatial resolution,
as and when necessary. Climatic variables (monthly temperature,
precipitation, solar radiation, wind speed and water vapour
pressure, and 19 bioclimatic variables) were downloaded from
WorldClim (http://worldclim.org/version2, Fick & Hijmans
2017).WorldClim 2was selected because it has improved estimates
for areas with low station density and areas with sharp gradients
such as rain-shadows (Fick & Hijmans 2017). Mean annual solar
radiation, wind speed and water vapour pressure were computed
using WorldClim 2 monthly data. Aridity (Thornthwaite’s aridity
index), climatic moisture index, growing degree days (base
temperature= 10 ˚C) and potential evapotranspiration (annual
PET, PET extremes and PET seasonality) were computed using
WorldClim 2 monthly data using ENVIREM R package (Title &
Bemmels 2018). Cloud cover variables (mean annual cloud
frequency and cloud cover seasonality) were downloaded from
EarthEnv (http://www.earthenv.org/cloud, Wilson & Jetz 2016).
Maximum climatic water deficit (MCWD) was computed using
WorldClim 2 monthly data based on Malhi et al. 2009.

Soil variables were downloaded from ISRIC-SoilGrids (ftp://ftp.
soilgrids.org/data/aggregated/1km/, Hengl et al. 2017). SoilGrids
provides predictions at seven standard depths (0, 5, 15, 30, 60,
100 and 200 cm) for standard soil variables like organic carbon,
bulk density, cation exchange capacity (CEC), pH, soil texture frac-
tions, coarse fragments, available water capacity and water content.

As topsoil conditions determine whether a seedling can establish or
not, the first four SoilGrids layers were used to compute the
weighted average over a depth interval of 0–30 cm, that is topsoil,
using trapezoidal rule for numerical integration (Hengl et al. 2017).

Topographic variables like elevation, aspect and slope
were computed using digital elevation model downloaded from
CGIAR-CSI (https://cgiarcsi.community/data/srtm-90m-digital-
elevation-database-v4-1/). Finally, distance to water sources
was computed using river network data downloaded from
HydroSHEDS (http://www.hydrosheds.org/) and global lakes
and wetlands data downloaded from WWF (https://www.world
wildlife.org/pages/global-lakes-and-wetlands-database). The detailed
list of thus compiled 53 environmental variables is presented in
Supplementary Table 2.

Selection of environmental predictors for MaxEnt modelling

As multicollinearity among environmental variables can distort
model estimation and prediction, we used a Spearman’s rank
correlation coefficient of 0.7 as threshold to identify highly corre-
lated environmental variables (Dormann et al. 2013). Correlations
among environmental variables are presented as a cluster dendro-
gram and as a bivariate correlation matrix in Figure 1 and
Supplementary Table 3, respectively. Then, to identify the variables
that best describe the ecological variations along the studied eleva-
tional gradient, we used a principal component analysis (PCA).
Loadings of environmental variables along the first two principal
components are presented in Supplementary Figure 1. As we were
interested in modelling elevational distributions of species based
on their observed presence records, we used 52 environmental
variables (elevation excluded) of 1437 spatially unique presence
locations (of 281 species left after cleaning) for correlation analysis
and PCA. Also, the results were similar when doing correlation
analysis and PCA on the whole area of interest (data not shown).
Highly correlated environmental variables are not necessarily
ecologically redundant, but they often have the same spatial
patterns and cannot always be distinguished. Therefore, from each
cluster of highly correlated variables, we selected one variable that

Figure 1. Cluster dendrogram showing correlation among environmental variables. Fifty-two environmental variables (elevation excluded) of 1437 spatially unique presence
locations were used for the correlation analysis. In this case, a height of 0.3, indicated by dotted line, is taken as a threshold. Height is defined as 1 – Spearman’s rank correlation
coefficient. All the variables with height ≤ 0.3 (or Spearman’s rank correlation coefficient≥ 0.7) are considered highly correlated. Details of environmental variable abbreviations
used in the plot are presented in Supplementary Table 2.
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was thought to be the ecologically most relevant factor that deter-
mines the elevational distribution of species and/or that had
highest loading along one of the first three principal components.
This resulted in a selection of 19 least correlated environmental
variables (10 climatic, 6 edaphic and 3 topographic, Table 1).
To represent the cluster of correlated temperature (e.g. temper-
ature extremes) and non-temperature variables (such as
irradiance and PET), we selected mean annual temperature
(MAT). Although temperature extremes (e.g. maximum temper-
ature of warmest month, minimum temperature of coldest
month) may co-shape species distribution boundaries, we believe
that MAT is more important in shaping species performance and
distribution. Across the 1437 spatially unique presence locations,
MAT is closely correlated with maximum temperature of
warmest month (Spearman’s rank r = 0.99, p < 0.001) and with
minimum temperature of coldest month (Spearman’s rank
r = 0.98, p < 0.001). Hence, to avoid multicollinearity problems
we used only MAT, as it captures both the variation in summer
and winter temperature, and the average growing conditions
during the year.

MaxEnt modelling

Samples with data (SWD) format of MaxEnt version 3.3.3k
(Phillips 2010) in R package dismo (Hijmans et al. 2017) were used
to construct species distribution models for 277 plant species. As
we were interested in modelling elevational distributions of species

based on their observed presence records, we used 1437 spatially
unique presence locations as background sample. To comply with
the ecological theory that species responses to environmental
gradients are often unimodal (Austin 2007), MaxEnt was restricted
to use only linear and quadratic features (Boucher-Lalonde et al.
2012, Merow et al. 2013), where linear features represent one side
of a unimodal response due to partial representation of the entire
gradient.

To test the significance of the models, we compared the AUC
(area under the receiver operating characteristic curve) values of
the models to the AUC values of the bias-corrected null models,
that is models based on the random presence records (Raes &
Ter Steege 2007). For this, for each species, 100 bias-corrected
null models were constructed with the presence records
randomly drawn from 1437 spatially unique presence records.
The number of randomly drawn presence records was kept equal
to the number of true presence records of the target species. The
models with AUC values >95th percentile AUC value of the null
models were considered to perform significantly better than
expected by chance. Only the significant models were retained
for further analysis.

Data analysis

To evaluate which environmental factors best predict the distribu-
tion of plant species along an elevational gradient, we analysed the
frequency with which environmental variables were found

Table 1. List of 19 least correlated environmental variables selected for this study. Variable categories, sub-categories, names and their corresponding units and
abbreviations are shown.

SN

Environmental variable

Category Sub-category Name and unit Abbreviation

1 Climatic Temperature Isothermality (Mean temperature diurnal range/Temperature annual range) * 100 IT

2 Mean annual temperature (°C) MAT

3 Mean temperature diurnal range (Mean of monthly (maximum temperature -
minimum temperature) °C)

TDR

4 Temperature annual range (Maximum temperature of warmest month -
Minimum temperature of coldest month, °C)

TAR

5 Precipitation Annual precipitation (mm) AP

6 Precipitation of driest quarter (mm) PDQ

7 Precipitation seasonality (coefficient of variation) PS

8 Other climatic Cloud cover seasonality (standard deviation * 100) CCS

9 Mean annual cloud frequency (% * 100) MACF

10 Thornthwaite’s aridity index AI

11 Edaphic Chemical Soil organic carbon content (gm/kg) OCC

12 Soil pH * 10 in water pH

13 Physical Available soil water capacity until wilting point (%) AWCWP

14 Soil clay content (%) ClayC

15 Soil coarse fragments content (%) CFC

16 Soil silt content (%) SiltC

17 Topographic Aspect (deg) Aspect

18 Distance to water (arc sec) D2W

19 Slope (deg) Slope
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to be the most important (cf. Bradie & Leung 2016). For this, for
each species with a significant species distribution model, we
identified the environmental variable that contributed the most
to the model (i.e. the most important environmental variable)
based on the relative percentage contributions of the variables to
the model.

To test whether species elevational ranges increase with
increasing elevation along an elevational gradient, a simple linear
regression was carried out with species’ elevational ranges and
elevational optima. For this, firstly, all significant species distribu-
tion models were projected onto the geographical space using
MaxEnt’s ‘density.Project’ function to derive probability of
occurrence maps for the entire study area. Secondly, these maps
were reclassified using ‘10 percentile training presence logistic
threshold’ (one of the most conservative and absence independent
thresholds inMaxEnt) to produce discrete presence-absence maps,
that is species distribution maps (Liu et al. 2011). Finally, these
species distribution maps were used to compute species’ eleva-
tional distribution parameters, that is the elevational minimum,
maximum, optimum and range. To have a conservative estimate
of a species’ elevational distribution parameters, the 5th and 95th

percentile elevation values were used as estimates of the elevational
‘minimum’ and ‘maximum’, respectively. The difference between
elevational maximum andminimumwas used as an estimate of the
elevational ‘range’. The mid-value of the elevation class with the
highest proportion of pixels predicted to be occupied was used
as an estimate of the elevational ‘optimum’. For this, the distribu-
tion map of each species was classed into 100 m elevational bins,
and for each elevational bin, the proportion of pixels predicted to
be occupied was calculated. This procedure effectively corrects
for the smaller available surface area at higher elevational bins.
All calculations and analyses were done with R-3.4.3 (R Core
Team 2017).

Limitations of methods

A few methodological limitations might have influenced our
results. First, we used global environmental datasets with a spatial
resolution of 1 × 1 km as sources of our environmental predictors.
It is likely that these datasets did not fully capture all the local
details in the Himalayas because i) the environmental conditions
may vary over short distances in the Himalayas, and ii) the
observed data that are bases of these global interpolations are
sparse in the Himalayas (Deblauwe et al. 2016). However, in
absence of reliable national/regional datasets these were the best
datasets available for the study area.

Second, although it is established that species distributions are
jointly regulated by abiotic environments and biotic interactions
(e.g. Godsoe et al. 2017, MacArthur 1972, Peterson et al. 2011,
Soberón & Peterson 2005, Wisz et al. 2013), we did not account
for biotic interactions as predictor variables in our study because
biotic interactions are inherently complex, and especially so when
we consider several species at a time. Moreover, although changes
in land use may affect species distributions, we only focused here
on natural forest vegetation and did not include land use change in
the analysis. For example, in Nepal, nearly two-thirds of the total
forest area is affected by grazing by free roaming cattle (DFRS
2015). Because standardized country-wide data on the occurrence
and intensity of grazing are not available, we only focused on how
climatic, edaphic and topographic environmental variables affect
species distribution ranges.

Results

Out of 277 species, 255 species (92%) had distribution models
performing significantly better than expected by chance. Only
the significant models were retained for further analysis.
Examples of the predicted species distribution maps are shown
in Figure 2.

Environmental factors predicting the distribution of plant
species along the elevational gradient

All 255 species had a relationship with one or more of the environ-
mental predictors. Mean annual temperature followed by soil clay
content (ClayC) and slope were themost important environmental
variables predicting the distribution of plant species along the
elevational gradient. MAT contributed the most to the distribu-
tions of 139 out of 255 species (54.5%), followed by ClayC
(10.2%) and slope (9.4%) (Figure 3). Examples of species’ response
to MAT, ClayC and slope are shown in Figure 4. Spatial GIS
maps of these three environmental variables are presented in
Supplementary Figure 2.

Relationship between elevational ranges and elevation along
the elevational gradient

The species elevational ranges initially increased with the eleva-
tional optima of the species, but this increase peaked between
2000 and 3000 m a.s.l. and then decreased beyond 3000 m a.s.l.
(Figure 5, adj.r2= 0.47, p< 0.001). Also, the results were similar
when regression analysis was carried out with species elevational
ranges and elevational midpoints (the averages of the lowest and
highest elevations of species; data not shown). The majority of
species had their elevational optima at or towards the lower end
of the elevational gradient. There were comparatively more tree
species at low elevations and more shrub species at high elevations.
Liana species occurred mainly in the lowlands. As some of the life
forms, for example fern, orchid and sedge had too few species for
the comparison, we pooled them into a non-woody class together
with herbs and grasses for this analysis. Some species showed wide
distribution ranges irrespective of their elevational optima, for
example Stephania japonica var. discolor (Blume) Forman and
Cotoneaster ellipticus (Lindl.) Loudon (Figure 5).

Discussion

We evaluated which environmental factors predict the distribution
of plant species along an elevational gradient, and whether species’
elevational ranges increase with increasing elevation. We found
that MAT followed by ClayC and slope are the key environmental
factors predicting the distribution of plant species along an
elevational gradient. Species elevational ranges showed a unimodal
relationship with elevation.

It should be acknowledged that the importance of environ-
mental factors may change with varying spatial scales of analysis
(Blundo et al. 2012). For example, we used environmental datasets
with a spatial resolution of 1 × 1 km, which may conceal more
subtle responses to local topography and elevational gradients.
However, since our studied elevational gradient is very large
(60 m a.s.l. in the south to 8848 m a.s.l. in the north), we think this
is less of a problem. It should also be acknowledged that we
describe statistical relationships between species distribution and
environmental variables and that correlation does not necessarily
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Figure 2. Examples of species distribution maps for four plant species as predicted by MaxEnt: a) Abies spectabilis, b) Alnus nepalensis, c) Fraxinus floribunda and d) Pinus roxbur-
ghii. Maps are clipped to Nepal. The blue line indicates national boundary of Nepal. The Government of Nepal published on 20th May 2020 a new political map including Kalapani,
Lipulekh and Limpiyadhura inside the Nepal borders. As our research started in 2016, in our research, we used the previous version of map without these territories. Species
presence records outside the green distribution areas represent the 10% of the presence records with the lowest MaxEnt probability of occurrence values used to threshold the
distribution maps. Areas with missing environmental data were excluded from MaxEnt modelling.

Figure 3. Relative frequencies of environmental variables that had the highest contribution to the significant distribution models of 255 Himalayan plant species. The three most
important variables were mean annual temperature (MAT), soil clay content (ClayC) and slope. For abbreviations of the other environmental variables, see Table 1.
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meanmechanistic causation, although there are clear physiological
and ecological reasons why these environmental variables may be
important. Below we discuss the mechanisms likely to underlie the
aforementioned elevational patterns that we found and the likely
effects of future global warming on plant species distributions
along an elevational gradient.

Environmental factors predicting the distribution of plant
species along the elevational gradient

Climatic factors
Temperature.We hypothesized that temperature would be the key
environmental factor predicting the distribution of plant species
along the elevational gradient because it directly influences plant
metabolic rates and physiological processes, and controls growing
season length. MAT indeed contributed the most to the distribu-
tions of the majority (54.5%) of the Himalayan plant species

(Figure 3), suggesting that MAT is the core factor shaping the
distribution of species in the Himalayas (Angelo & Daehler
2015, Chhetri et al. 2018, Guisan et al. 1998). However,
MAT correlated closely with a suite of other temperature and
non-temperature environmental variables (Figure 1). The majority
of these variables are, quite similar to MAT, like mean tempera-
tures of different quarters (e.g. coldest, warmest, driest and wettest
quarters), and temperature extremes (e.g. minimum temperature
of coldest month and maximum temperature of warmest month)
while others are derived or directly related to temperature like
growing degree days and PET. However, other variables that
correlated with MAT, like solar radiation, water vapour pressure,
wind speed, maximum climatological water deficit and edaphic
variables like available soil water content and bulk density are
not directly linked to temperature. These variables could affect
species distributions through very different ecological mechanisms
than MAT. In this sense, our current approach of selecting one

Figure 4. Examples of probabilities of species occurrence as predicted by MaxEnt in relation to a) mean annual temperature (MAT, top panels), b) soil clay content (ClayC, middle
panels) and c) slope (bottom panels). Each point represents one of the 906 794 1 × 1 km grids of the study area.
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variable from each cluster of highly correlated variables for SDM
did not allow to tease apart a single ecological mechanism regu-
lating plant niches along the elevational gradient. Nevertheless,
it has been useful in highlighting the relative importance of
temperature and its associated temperature and non-temperature
covariates in shaping plant niches along the gradient (cf.
Whittaker 1967).

Precipitation. Precipitation affects species distributions along
African mountains and lowlands (Amissah et al. 2014, Maharjan
et al. 2011, Schmitt et al. 2013) and in Neotropical lowlands
(Toledo et al. 2012), but in Nepal aridity and annual precipitation
were only fifth and seventh in importance for determining species
distributions (Figure 3). Precipitation in Nepal is driven by
summer monsoon and winter westerlies. Summer monsoon enters
Nepal from the east and migrates west, as east-west ranging
Himalayas deflect the monsoon winds westwards and prevent
northward penetration. Additionally, in winter, westerlies supply
precipitation to the northwest mountains. Because of the topo-
graphic barrier posed by east-west ranging Himalayas, precipita-
tion in Nepal is more region-specific rather than showing a
strong trend with elevation (Kansakar et al. 2004, Lillesø et al.

2005). This region-specific nature of precipitation in Nepal may
have weakened the roles of precipitation and aridity in defining
plant species distributions along the elevational gradient.

Irradiance. Many tropical forests are light-limited. In Peru,
irradiance was, surprisingly, one of the key environmental factors
regulating forest productivity along an Andean elevational
gradient (Fyllas et al. 2017). This suggests that irradiance could also
affect plant species distributions along the elevational gradient in
Nepal. A strong positive correlation between solar radiation and
MAT (r= 0.84, p< 0.001, Supplementary Table 3) suggests that
Himalayan plant species distribution could also be predicted by
growth potential and carbon gain (cf. Maharjan et al. 2011,
Sterck et al. 2014). Yet, this is not very likely, as cloud cover
(i.e. mean annual cloud frequency and cloud cover seasonality),
which is another good proxy for irradiance, hardly affected the
distribution of plant species (Figure 3).

Edaphic factors
Soil clay content. Soil clay content was the second most important
environmental factor predicting the distribution of 10.2% of
the species (Figure 3). A high soil clay content improves water

Figure 5. Relationship between elevational range and elevational optimum for 255 Himalayan plant species (represented by coloured shapes). Shapes correspond to life forms
of the studied species. Ferns, grasses, herbs, orchids and sedges were grouped into a single non-woody class. Colours of shapes correspond to colours of environmental variables
contributing the most to the models in Figure 3. Regression line and coefficient of determination (adj.r2) are shown. Shade around regression line indicates 95% confidence
interval. Both intercept and slopes are significant at p< 0.001. Adj.r2 went up to 0.49 without outliers, that is without species labelled with their name abbreviations.
Species name abbreviations used in the plot refer to first three letters of their genus, species and variety. The species list is shown in Supplementary Table 1. Histogram bars
in the bottom panel are frequencies of species elevational optima along the gradient.
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availability for plants as soils with many small clay particles have a
larger surface area that increases the soil water-holding capacity (r
with available soil water capacity until wilting point = 0.42,
p< 0.001, Supplementary Table 3), which positively affects water
uptake, plant water status, evaporative cooling and carbon gain.
Counterintuitively, soil clay content was negatively correlated with
soil nutrient availability (r with soil CEC=−0.44, p< 0.001; r with
soil organic carbon content =−0.69, p< 0.001, Supplementary
Table 3). Perhaps, in case of relatively young mountains such as
the Himalayas, higher temperature and precipitation in the
lowlands are accompanied by increased weathering and leaching,
resulting in nutrient-poor clayey soils, whereas in the highlands
exposed bedrock and recent weatheringmay result in nutrient-rich
soils. This suggests that plants growing at low elevationsmay there-
fore be limited by low nutrient availability whereas plants growing
at high elevations may be limited by water scarcity. In general, our
results support previous findings that inclusion of edaphic varia-
bles considerably improves the prediction of species distribution
along elevational gradients (Cianfrani et al. 2019, Dubuis et al.
2013, Walthert & Meier 2017).

Topographic factors
Slope. Slope was the third most important environmental factor
predicting the distribution of 9.4% of the species (Figure 3).
Areas with steep slopes are typical for relatively young mountains
such as the Himalayas. They provide extreme conditions for plants,
as they are less stable, suffer more from water run-off (Mu et al.
2015) and erosion (Cha & Kim 2011). Steep slopes are also more
shallow (r between slope and depth to bedrock =−0.74, p< 0.001,
Supplementary Table 3), which reduces the opportunity for
rooting and water and nutrient uptake. Topographic variation in
slopes may range from crests to slopes and valleys, which results
in a marked edaphic and hydrological gradient that might be
partitioned by different plant species (Huggett 2004, Schietti
et al. 2014).

Elevational distribution ranges are widest for plant species
from intermediate elevation

In line with Rapoport’s elevational rule, we hypothesized that plant
species from high elevations (where environmental conditions are
harsher, more stressful and variable) would have wider physio-
logical tolerances to environmental conditions and therefore
occupy broader elevational ranges than plant species from low
elevations, that experience more benign and stable environmental
conditions (Pintor et al. 2015, Stevens 1992). In contrast, we found
that species distribution ranges were widest for species that had
their optimum between 2000 and 3000 m a.s.l. elevation
(Figure 5). Earlier Himalayan studies (Bhattarai & Vetaas 2006,
Vetaas & Grytnes 2002) suggested that in the lowlands and high-
lands, a high species richness (overall species richness in the
lowlands and endemic species richness in the highlands) may lead
to stronger interspecific competition and narrower species ranges.
Schellenberger Costa et al. (2018) have confirmed this stronger
interspecific competition hypothesis for the lower slopes of Mt.
Kilimanjaro. Compliant with the suggestion, the majority of the
studied species had their elevational optimum at or towards the
lowlands (Figure 5). Alternatively, broad elevational ranges at
the middle of the gradient could be the result of a mid-domain
effect (Colwell & Hurtt 1994) in which species with broad
elevational ranges are bound to have their elevational optima closer

to the centre of the domain (cf. Bhattarai & Vetaas 2006, Colwell &
Lees 2000).

Potential effects of climate change on future distribution
of plant species

Our results suggest that temperature and its temperature
(e.g. temperature extremes) and non-temperature covariates (such
as irradiance and PET) followed by soil clay content and slope are
the key environmental factors predicting the distribution of plant
species along the Himalayan elevational gradient and that species
at both ends of the Himalayan elevational gradient have narrower
elevational ranges than species in the middle. With further global
warming, these species will be forced to 1) acclimate or adapt to the
changed conditions, 2) track suitable climatic ranges through
dispersal and move upward, or 3) go extinct. Thus, as long as
competition of plants from the lowlands does not affect the distri-
bution of mid-elevation species, their distribution might be less
affected by climate warming as they occupy broad elevational
ranges. In contrast, given the identified species ranges are due to
abiotic conditions and the lowland species are likely already living
at their thermal maximums, the distribution of warm-adapted and
cold-adapted species at both ends of the gradient might be affected
more by climate warming because they occupy narrower eleva-
tional ranges. All plant species have, to a certain extent, the ability
to acclimate physiologically to increased warming (Slot & Winter
2017), but the question is whether these species will not be outcom-
peted by warm-adapted species that move upwards. Furthermore,
it is likely that lowland species are already living at their thermal
maximums. Thus, tracking suitable climatic ranges could probably
be the best long-term survival strategy. Given a maximum
predicted warming of 0.35 °C per decade in South Asia (IPCC
2013), and a thermal lapse rate of 0.5 °C per 100 m (Barry
1992), the species should move 70 m per decade. This is only
feasible when elevational corridors are available or through assisted
regeneration. However, assisted regeneration at such a scale would
be challenging. Consequently, the Himalayan plant species may
face an uncertain future in the face of climate change.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S026646742100050X
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