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Abstract

Antimicrobial-resistance (AMR) genes in bacteria are often carried on plasmids and these plasmids can transfer AMR genes 
between bacteria. For molecular epidemiology purposes and risk assessment, it is important to know whether the genes 
are located on highly transferable plasmids or in the more stable chromosomes. However, draft whole-genome sequences 
are fragmented, making it difficult to discriminate plasmid and chromosomal contigs. Current methods that predict plasmid 
sequences from draft genome sequences rely on single features, like k-mer composition, circularity of the DNA molecule, 
copy number or sequence identity to plasmid replication genes, all of which have their drawbacks, especially when faced with 
large single-copy plasmids, which often carry resistance genes. With our newly developed prediction tool RFPlasmid, we use a 
combination of multiple features, including k-mer composition and databases with plasmid and chromosomal marker proteins, 
to predict whether the likely source of a contig is plasmid or chromosomal. The tool RFPlasmid supports models for 17 differ-
ent bacterial taxa, including Campylobacter, Escherichia coli and Salmonella, and has a taxon agnostic model for metagenomic 
assemblies or unsupported organisms. RFPlasmid is available both as a standalone tool and via a web interface.

DATA SUMMARY
•	 RFPlasmid is a Linux-based tool and the software is avail-

able at https://​github.​com/​aldertzomer/​RFPlasmid.
•	 A pip package is available for installation of RFPlasmid.
•	 A platform-independent web interface for RFPlasmid is 

available at http://​klif.​uu.​nl/​rfplasmid/.
•	 RFPlasmid databases containing all plasmid proteins are 

available at http://​klif.​uu.​nl/​download/​plasmid_​db/.
•	 Training data sets are available at http://​klif.​uu.​nl/​down-

load/​plasmid_​db/​trainingsets2/​trainingsfiles_​zip.
•	 All databases and files are available on Zenodo (https://​

doi.​org/​10.​5281/​zenodo.​3968422).
•	 Supporting data can be found on Figshare: https://​figshare.​

com/​s/​b82569f2d5cd02b099cc

INTRODUCTION 

Many bacterial species carry plasmids, extrachromosomal 
mobile genetic elements that can transfer from one bacterium 

to another [1]. They often replicate autonomously in the host 
using a variety of replication systems. Generally, they are 
circular; however, some species carry linear plasmids [2, 3]. 
Plasmids often carry genes that provide a benefit to the host, 
such as additional metabolic capabilities [4], antimicrobial-
resistance (AMR) genes [5] and virulence factors that affect 
host invasion and infection, including type IV secretion 
systems, toxins, adhesins, invasins and antiphagocytic factors 
[6, 7].

Conjugative transfer of plasmids is considered the most 
important way of spreading AMR among bacteria [8]. There 
is a growing concern about the possibility of AMR transmis-
sion via the food chain [9]. Furthermore, the integration of 
AMR genes in chromosomes is a worrying development for 
new epidemic strains, as it provides a mechanism for vertical 
transmission of AMR genes without the potential fitness 
deficit associated with the maintenance of plasmids [10]. 
For molecular epidemiology purposes and risk assessment, 
the identification of chromosomal and plasmid sequences 
provides fundamental knowledge regarding the transmission 
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of AMR and is essential in surveillance of bacteria with 
plasmid-associated AMR. Molecular identification of plasmid 
and chromosomal genotypes can distinguish whether the 
spread of AMR genes is driven by epidemic plasmids to 
different hosts or by clonal spread of bacterial organisms.

Many molecular epidemiology studies using short-read Illu-
mina sequences are available for resistant organisms and the 
number of sequenced genomes available is in the hundreds 
of thousands [11–13]. These existing datasets could provide a 
wealth of information on plasmid dissemination, were it not 
for one major drawback: assembly of short-read sequencing 
data results in hundreds of contigs that must be individu-
ally characterized as to their origin from either plasmid or 
chromosomal DNA.

Multiple bioinformatic methods have been described to 
predict plasmids in silico, e.g. cBar by using distinguishing 
pentamer frequencies [14], PlasmidSPAdes by using assembly 
coverage [15], Recycler [16], PlasmidFinder by using replicon 
sequences [17], placnet by combining assembly information, 
comparison to reference sequences and plasmid-diagnostic 
sequence features [18], PLAScope by using chromosomal and 
plasmid databases [19], MLPlasmids by using pentamers and 
machine learning [20], and Platon by using replicon distribu-
tion differences of protein-encoding genes and contig circu-
larity [21]. The predictions with some methods suffer from 
a low sensitivity or specificity [22], or are optimized for one 
specific bacterial genus and cannot be used for metagenomics.

In this study, we present our tool RFPlasmid, a novel approach 
for the prediction of bacterial plasmid sequences in contigs 
from short-read assemblies, with models for 17 different 
bacterial genera and a taxon agnostic model. We compared 
RFPlasmid to other available tools and show it that it performs 
equally well or better when using taxon-specific models. We 
identified genomic signatures of plasmid and chromosomal 
sequences based on 5 bp k-mers, a custom plasmid protein 
database with >193000 entries, a database of known replicons 
[23], single-copy chromosomal marker genes [24], contig 
lengths and gene counts. We trained a Random Forest model 
on more than 8000 pseudo assemblies from bacterial chro-
mosomes and plasmids, and validated our approach using 
both the out-of-bag (OOB) error rate of Random Forest, and 
an independently generated dataset of plasmid and genomic 
contigs. Our prediction model is optimized for genome 
assemblies of 17 different genera and metagenomics, outper-
forming any other tool currently available. Additionally, we 
have identified potential factors responsible for prediction 
errors and propose downstream analyses to alleviate these 
problems.

THEORY AND IMPLEMENTATION
Implementation
RFPlasmid extracts feature information from whole-genome 
sequence contigs, and by using a Random Forest model, the 
likely source (plasmid or chromosomal) of the contigs is 
predicted. The tool supports 17 different bacterial species 

or taxa, including Bacillus, Borrelia, Burkholderia, Campy-
lobacter, Clostridium, Corynebacterium, Cyanothece, Entero-
bacteriaceae, Enterococcus, Lactobacillus, Lactococcus, Listeria, 
Pseudomonas, Rhizobium, Staphylococcus, Streptomyces and 
Vibrio, and a taxon agnostic model for unknown unsupported 
organisms or for metagenomics data. This taxon agnostic 
model is called ‘generic’. A flow scheme describing the 
procedure is given in Fig. 1. Furthermore, the tool contains 
an easy-to-use training option with which additional models 
can be added.

Input
Contigs from short-read assemblies in fasta format are 
used as input files. The web interface takes a single genome, 
the command line tool can process up to several thousand 
genomes from a single folder.

Single-copy chromosomal marker genes
CheckM [24] predicts ORFs of the contigs using Prodigal [25] 
and determines whether these encode taxa specific single-
copy marker genes. The number of specific marker genes per 
contig is counted and saved.

Plasmid marker proteins
Two different reference databases with plasmid maker 
proteins are used: the plasmid replicon database and the 
plasmid protein database. The plasmid replicon database 
consists of known plasmid replication proteins, downloaded 
from the database of PlasmidFinder [23] (accession date 22 
May 2017). The plasmid protein database was generated with 
plasmid proteins from all bacterial taxa from the National 
Center for Biotechnology Information (NCBI) GenBank 
(accession date 22 May 2017) and the plasmid database of the 
MOB-suite v1.4.1 [26]. Near-identical proteins were clustered 
using USearch v5.2.32 [27], resulting in a database with 193 
176 plasmid proteins.

Impact Statement

Antimicrobial-resistance (AMR) genes in bacteria can 
rapidly spread when the genes are located on plasmids. 
For molecular epidemiology purposes and risk assess-
ment, it is important to know whether an AMR gene is 
located on highly transferable plasmids or on the more 
stable chromosomes. Whole-genome sequencing makes 
it easy to determine whether a strain contains a resist-
ance gene. However, it is not easy to determine whether 
the gene is chromosomal or plasmid located, since clas-
sification of plasmid and chromosomal contigs is diffi-
cult. RFPlasmid is able to predict whether the likely 
source of short-read assembly contigs are chromosomal 
or plasmid. The tool is optimized for 17 different bacterial 
taxa, including Campylobacter, Escherichia coli and Salmo-
nella, and can also be used for metagenomic assemblies.
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Fig. 1. Flow diagram of RFPlasmid.
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RFPlasmid uses diamond searches [28] against the two 
plasmid reference databases, blastx for the replicon data-
base and blastp for the protein database, with default settings 
and an E value cut-off of 1e−30. For each contig, the blastx 
replicon hit with the highest identity is selected and the 
number of blastp hits with the plasmid protein database is 
counted.

k-mer profiles
Two different methods of k-mer counting are implemented: 
the standard method counting the number of nucleotide 
pentamers (5-mers) using Python (default), and the faster, 
optional method jellyfish [29]. A k-mer size of 5 is used, 
because this size outperformed 3-mers, 4-mers and 6-mers 
[14]. The fraction of each 5-mer is calculated in the Pandas 
dataframe by dividing the counted number of 5-mers by the 
total number of 5-mers in the contig.

Classification using Random Forest models
A Python Pandas dataframe is generated, to structure all 
the different features of the query whole-genome sequence 
contigs, including contig name, contig length, fraction-
specific maker genes, fraction plasmid genes, highest replica-
tion gene identity and k-mer fractions. The Pandas dataframe 
is exported as a csv, which is imported in R for training or 
classification using the Random Forest library [30].

Training data sets
The training data sets were made as follows: complete and 
identified chromosomal and plasmid sequences were down-
loaded from NCBI GenBank (accession date 7 November 
2017), and for Listeria, plasmid sequences were downloaded 
from NCBI GenBank with accession date 30 September 
2019. Simulated reads of 500 bp each were generated with 
50× coverage using the gen-single-reads script (https://​
github.​com/​merenlab/​reads-​for-​assembly). Assembly was 
performed using SPAdes v3.11.1 [31] with default settings. 
Contigs smaller than 200 bp were removed. Table 1 shows the 
assemblies of the developed training data sets of each taxon. 
The taxon agnostic model (generic) was created by combining 
all chromosomal and plasmid contigs from the taxon-specific 
models together.

Random Forest models were trained using 5000 trees. Class 
imbalances were solved by making use of the sampsize 
option, whereby 66% of the smallest class was selected as 
option in sampsize for both classes when training each tree 
in the forest to prevent class imbalance errors and error 
inflation [32]. Random Forest uses an internal validation 
where 66% of the contigs of the training sets are used 
for training and 33 % are used for testing per tree in the 
Random Forest. The output of every tree is averaged and 
results in the OOB error, which is a minor overestimation 
of the actual error [32].

For benchmarking RFPlasmid and comparison with existing 
tools, RFPlasmid prediction analysis was performed using 
the prediction mode on the training data sets, and this 

prediction was compared with the output of the other tools: 
cBar [14], PLAScope [19], MLPlasmids [20] and Platon 
[21].

External validation
To investigate the performance of RFPlasmid on non-
simulated data, we downloaded the Illumina and Nano-
pore reads of 24 multidrug-resistant Escherichia coli 
genomes from ENA (European Nucleotide Archive) from 
BioProjects PRJNA505407 and PRJNA387731, which 
were also used by Schwengers et al. [21]. We performed 
both hybrid assembly using Unicycler v0.4.9b [33] and 
short-read-only assembly with SPAdes (v13.3.0). We 
could assemble 22 isolates into distinct chromosomal and 
plasmid contigs using Unicycler. Isolates V232 and V92 
were excluded after inspection of the sequence graphs 
using Bandage v0.8.1 [34], as chromosomal and plasmid 
contigs could not be distinguished. Contigs larger than 
200 bp from the SPAdes assemblies were aligned against 
the corresponding complete hybrid assembly using Last 
v984 [35] and the best scoring hits against plasmid and 
chromosome contigs were collected. In total, 85 contigs 
(153 kb) of the 2832 (110 Mbp) contigs in the entire 
dataset were discarded as they had identical hits on both 
chromosome and plasmid.

Phage, resistance and transposase gene prediction 
within contigs 

The presence of phage genes and resistance genes in 
assembled contigs of the training data were determined 
by performing a diamond (v0.9.30) search against the 
ProphET phage database [36] using an E value cut-off of 
1e−10 and the Resfinder database (accessed 01-07-2020) 
with a cut-off of 90 % identity and 60 % coverage (identical 
to the default settings of the online version of Resfinder). 
The presence of transposase-encoding genes was assessed 
by aligning encoded proteins using hmmer3 (v3.1b2) 
(http://​hmmer.​org/) against the transposase database of 
ISEscan [37] with an E value cut-off of 1e−30.

Software availability
The operating system for RFPlasmid is Linux and the 
software is available at https://​github.​com/​aldertzomer/​
RFPlasmid. The databases containing all plasmid proteins 
are available at http://​klif.​uu.​nl/​download/​plasmid_​db/ 
and all training data are available at http://​klif.​uu.​nl/​down-
load/​plasmid_​db/​trainingsets2/​trainingsfiles_​zip, and all 
databases and files can be found on Zenodo (https://​doi.​
org/​10.​5281/​zenodo.​3968422). A platform-independent 
web interface for RFPlasmid is available at http://​klif.​uu.​
nl/​rfplasmid/. A pip and conda package are available for 
installation of RFPlasmid. The pip package instals most 
requirements except diamond, jellyfish and R. CheckM 
requires installation of an external database.

https://github.com/merenlab/reads-for-assembly
https://github.com/merenlab/reads-for-assembly
http://hmmer.org/
https://github.com/aldertzomer/RFPlasmid
https://github.com/aldertzomer/RFPlasmid
http://klif.uu.nl/download/plasmid_db/
http://klif.uu.nl/download/plasmid_db/trainingsets2/trainingsfiles_zip
http://klif.uu.nl/download/plasmid_db/trainingsets2/trainingsfiles_zip
https://doi.org/10.5281/zenodo.3968422
https://doi.org/10.5281/zenodo.3968422
http://klif.uu.nl/rfplasmid/
http://klif.uu.nl/rfplasmid/
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RESULTS
Classification results on training data
The number of plasmid contigs of the training data sets 
varied between 127 and 11 513 plasmid contigs per taxon, 
with the Enterobacteriaceae set having the highest number 
of plasmid contigs (Table 1). We compared the predicted 
contig location to the known contig location with plasmid 
contigs correctly classified as plasmid (called ‘plasmid 
correct’), chromosomal contigs correctly classified as 
chromosomal (called ‘chromosome correct’), chromo-
somal contigs incorrectly classified as plasmids (called 

‘chromosome incorrect’) and plasmid contigs incorrectly 
classified as chromosomal (called ‘plasmid incorrect’). 
Results are determined in percentages, both calculated as 
bp of each predicted contig divided by the total bp as well as 
percentages of correctly and incorrectly predicted contigs 
(Fig. 2a, b, Table S1, available with the online version of 
this article), where the bp percentages are the best approach 
to determine the prediction performance of RFPlasmid, as 
very small contigs with repetitive sequences make up a large 
part of the number of contigs, but attribute little to plasmid 
or chromosomal sequences.

Table 1. Assemblies of the developed training data sets

Taxon No. of chromosomes No. of plasmids No. of generated contigs for training data sets
(chromosome/plasmid)

Total no. of bp

Bacillus 377 291 20 055
(15 736/4319)

1.77e+09

Borrelia 28 23 1564
(110/1454)

3.32e+07

Burkholderia 211 47 26 256
(25 139/1118)

1.48e+09

Campylobacter 197 406 5423
(3652/1771)

3.42e+08

Clostridium 100 46 6537
(6044/493)

4.09e+08

Corynebacterium 166 63 4614
(4350/264)

4.31e+08

Cyanothece 5 6 634
(399/235)

2.95e+07

Enterobacteriaceae 151 2297 28 544
(13 621/14 923)

9.07e+08

Enterococcus 57 44 6270
(3693/2576)

1.73e+08

Lactobacillus 206 110 19 412
(15 610/3802)

5.17e+08

Lactococcus 37 76 3423
(2104/1319)

9.04e+07

Listeria 142 73 2685
(2371/200)

4.24e+08

Pseudomonas 254 42 18 645
(17 636/1009)

1.58e+09

Rhizobium 52 51 4241
(1573/2668)

3.50e+08

Staphylococcus 247 136 9124
(7763/1361)

6.81e+08

Streptomyces 82 64 6449
(6357/92)

7.03e+08

Vibrio 123 41 11 265
(10 282/983)

5.91e+08

Taxon agnostic model (generic) 2958 3937 222 723
(194 597/28 126)

1.19e+10
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To address potential over-training, we present the OOB error 
and prediction failures of the complete model. Random Forest 
uses an internal validation where 66% of the contigs of the 
training sets are used for training and 33% are used for testing 
per tree in the Random Forest. The output of every tree is 
averaged and results in the OOB error, which is a minor over-
estimation of the actual error [32]. The OOB classification 
results and the output of the complete model on the training 
data sets are presented in Fig. 2(a), Table S1. The results show 
that RFPlasmid can correctly identify the source of 87–100 % 
of the contigs, which is 95–100 % of the total bp count. Often, 
the taxon-specific model outperforms the taxon agnostic 
model (generic) (Fig. 2).

Random Forest outputs votes for the plasmid class (votes 
plasmid) and for the chromosomal class (votes chromosomal), 
ranging from 0 (=negative) to 1 (=positive). We observe that 
contigs that with scores between 0.4 and 0.6 are the main 
source of incorrectly predicted contigs (Fig. 3a). The incor-
rectly predicted contigs are mostly small contigs as shown in 
Fig. 3(b). Contigs smaller than 3 kb are difficult to classify, 
their scores are generally lower, possibly because the k-mer 
content cannot be reliably determined and specific k-mer 
content is an important feature for RFPlasmid classification 
(Fig. S1), or the contigs do not contain coding sequences 
(CDSs), whereas chromosomal and plasmid marker genes are 
also an import classification feature (Fig. S1). Furthermore, 
the small contigs consist of genes that usually have multiple 
copies on both genome and plasmid, such as transposases 
or phage genes [38]. To investigate the latter hypothesis, we 
determined the presence of phage genes and transposases 
on the incorrectly and correctly predicted contigs, and 
determined the phage and transposase content per contig. 
This analysis was performed on contigs containing at least 
one CDS. The highest rates of phage genes were found in the 
chromosome incorrectly classified contigs where 10% (1179 
of 11 565) of the chromosome incorrect contigs consisted 
of  >50% phage genes, compared to 6% (1316 of 22 063) 
of plasmid correct, 5% (5386 of 101 005) of chromosome 
correct and 3.5 % (13 of 372) of plasmid incorrect contigs 

(Fig. 4a). The highest rates of transposases were also found in 
chromosome incorrect contigs, where 22% (2514 of 11 565) 
of the chromosome incorrect contigs consisted of  >50% 
transposases, compared to 14% (3125 of 22 063) of plasmid 
correct, 3% (3268 of 101 005) of chromosome correct and 
7% (25 of 372) of plasmid incorrect contigs (Fig. 4b); and in 
the chromosome incorrect contigs, 59% (2487 of 4200) of 
the transposase-carrying contigs were small contigs (<3 kb).

As the primary reason for our tool is to determine whether we 
can reliably predict whether AMR genes are carried on plas-
mids or chromosomes, we analysed the assembled contigs for 
the presence of resistance genes using the Resfinder database. 
Resistance genes were found on 5019 of the 175 027 contigs 
(135 004 contigs with >1 CDS) (Fig. 4c), of which 13% (2773 
out of 21 306) of plasmids contigs carry an AMR gene and 
1.77% (1977 out of 112 006) of the chromosomal contigs carry 
AMR genes. Only 3 out of 5019 AMR-harbouring contigs 
were plasmid incorrect contigs, and 4.3% (215 out of 5019) 
were chromosome incorrect contigs. Of these 213 chromo-
some incorrect AMR gene harbouring contigs, 38% (n=82) 
were located on small contigs (<3 kb); therefore, we conclude 
that we can reliably identify the DNA source that carries these 
genes, for example, for risk assessment.

Investigating the importance of each feature in the different 
training models shows that single-copy chromosomal markers 
genes and plasmid marker genes appear to function taxa wide 
as they are important in every model, while k-mer content is 
specific per taxon (Fig. S1). The specific k-mer content of each 
taxon is likely due to the correlation of the G+C content of 
plasmids with their host organism [39], where the plasmids 
have a lower G+C content compared to their hosts (Fig. S2) 
[40].

Batch processing of RFPlasmid is recommended, since the 
execution time of RFPlasmid is 1671 min for the bacteria 
model, consisting of 6895 files with a total of 1.19×1010 bp, 
which is a mean of 14 s per file by using 16 cores. The predic-
tion of one single Campylobacter genome (ca. 2 Mbp) by using 
one core takes almost 8 min.

Fig. 2. Performance of RFPlasmid models on training data. Shown are the OOB performance in percentages, calculated as (a) predicted 
bp divided by the total number of bp and (b) predicted contigs divided by the total number of contigs, coloured as plasmid correct 
(purple), chromosome correct (blue), chromosome incorrect (green) and plasmid incorrect (red).
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Fig. 3. RFPlasmid prediction results stratified for contig sizes. (a) Box plot displaying the plasmid prediction scores (votes_plasmid) of 
small (<3 kb) and large (>3 kb) contigs, grouped per correctly and incorrectly classified plasmid and chromosome contigs. (b) Graph of 
RFPlasmid prediction results, grouped per correctly and incorrectly classified plasmid and chromosome contigs, subdivided according 
to contig size.
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Benchmarking RFPlasmid and comparison with 
existing tools
We compared the performance of RFPlasmid with other 
plasmid-prediction tools. Plasmid-predictions tools that 
assemble plasmid contigs from read files like PlasmidSPAdes 
[15], Recycler [16] and placnet [18] are not developed to 
be used with assembled data and, therefore, are excluded 
from this comparison. The plasmid-prediction tools that can 
predict plasmid contigs from assembled data were tested and 
compared with RFPlasmid. The comparison was performed 
by using the models and training data sets described in 
this study: cBar [14] with the metagenome training data, 
PLAScope [19] with the E. coli subset of the Enterobacte-
riaceae training data, MLPlasmids [20] with the Enterococcus 
faecium and E. coli subsets of the Enterococcus training 
data and Enterobacteriaceae training data, respectively, 
Platon [21] with all taxa-specific models, the metagenome 

training data and the external E. coli set. Percentages of 
correctly predicted bp are calculated and compared with the 
RFPlasmid prediction results (Fig. 5, Table S2). We show that 
RFPlasmid outperforms the tested tools by having a lower 
number of incorrectly classified plasmid and chromosome 
contigs compared to cBar and MLPlasmids for Enterococcus, 
and by predicting a lower number of plasmid incorrect classi-
fied contigs compared to PLAScope. RFPlasmid outperforms 
Platon by having a higher number of correctly classified 
plasmid contigs [e.g. for taxon-specific models 26307 
(RFPlasmid) vs 15257 (Platon) contigs], whereas Platon 
shows a slightly better prediction of chromosomal contigs 
compared to RFPlasmid [e.g. for taxon-specific models 
133598 (RFPlasmid) vs 147 036 (Platon) contigs] (Table 
S2). RFPlasmid has a mean chromosome incorrect classi-
fied contig rate of 1.24% bp and a mean plasmid incorrect 
classified contig rate of 0.29% bp.

Fig. 4. Presence of phage genes, transposases and resistance genes in training data contigs. (a) A violin graph with box plot with the 
percentage of phage genes (log

10
 scale) in training data contigs, (b) a violin graph with box plot with the percentage of transposases (log

10
 

scale) in training data contigs, and (c) bar plot with counts of contigs with >1 resistance gene, all grouped per correctly and incorrectly 
classified plasmid and chromosome contigs.
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To investigate the performance of RFPlasmid on non-
simulated data, we also used 22 E. coli genomes (external E. 
coli set), previously used by Schwenger et al. [21]. The error 
rate of RFPlasmid with non-simulated data is very low; only 
0.52% of bp (85 contigs out of 2832 contigs) were incorrectly 
predicted with most of them (62 contigs out of 85 contigs) 
being small (<3 kb) (Fig. 5). Manual investigation of the larger 
incorrectly predicted contigs shows that 16 contigs contain 
phage-encoding genes and 3 contigs a plasmid replication 
gene, of which one encodes IncQ1, which is presumably 
integrated into the genome of isolate H69.

DISCUSSION
Identification of plasmid and chromosomal sequences is 
essential in surveillance of bacteria with plasmid-associated 
AMR and provides fundamental knowledge for molecular 
epidemiology and risk assessment of these bacteria. We 
showed that RFPlasmid is able to predict chromosomal and 
plasmid contigs with error rates ranging from 0.002 to 4.66 
% (Fig. 2a) and that the use of taxon-specific models can be 
superior to a general plasmid prediction model. Single-copy 
chromosomal marker genes, plasmid genes, k-mer content 

and length of contig all appear to be informative; however, 
k-mer content is highly specific for taxa. Prediction of small 
contigs remains unreliable, since these contigs consists 
primarily of repeated sequences present in both plasmid and 
chromosome, e.g. transposases, or because k-mer content or 
marker genes cannot be easily identified. Contig length and 
inclusion of marker genes can also be influenced by the pres-
ence of repetitive sequences in the contig, which will increase 
the change of mis-assemblies. Repetitive sequences will also 
have reduced unique k-mer content, which make them harder 
to characterize. To solve the problem with small contigs that 
are part of larger plasmids, long-read sequencing can be a 
solution to obtain the complete sequence of the plasmids [33].

Comparison with existing methods shows that RFPlasmid 
generally performs equally or better to currently available 
methods. RFPlasmid is, to our knowledge, the first described 
tool that is optimized for 17 bacterial taxa and also includes 
a generic model when the taxon is not in the database (e.g. 
also suitable for metagenomics assembly data). If a good 
reference set with well identified chromosomal and plasmid 
contigs of another bacterial taxon is available, an easy training 
option is implemented in RFPlasmid, to train a new model 

Fig. 5. Comparison of RFPlasmid performance with existing tools. Shown are the prediction performance of the compared tools for each 
specific model and associated training data set, represented in percentages (calculated as bp predicted divided by the total bp for each 
plasmid correct, chromosome correct, chromosome incorrect and plasmid incorrect contig). The y-axis is modified and starts from 82%, 
since percentages 0–80 % are all chromosome correct performances.
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for this bacterial taxon. Our web-interface makes RFPlasmid 
accessible to users who are unfamiliar with the command line 
interface, which will improve uptake of the use of our tool.

Improvements are still possible for RFPlasmid. Careful 
examination of the incorrectly classified contigs shows that 
these frequently contain many phage genes or transposases. 
Phages are often found on chromosomes, rarely on plas-
mids; therefore, including a phage detection algorithm could 
certainly improve predictions, although that is out of scope 
for this study, as phage prediction has its own difficulties and 
complexities [41]. Furthermore, phage-like plasmids have 
been detected [42, 43] that would need to be investigated 
to see whether it is possible to distinguish these from real 
phages. Smaller contigs that consisting solely of transposases 
(1–3 kb usually) are generally present on both chromosome 
and plasmid, and these could be detected and marked as 
such. Integrated plasmids, such as the IncQ1 plasmid in 
the external dataset in E. coli isolate H69, show that some 
predictions will remain difficult. Other improvements could 
be the detection of rRNA operons, as these are usually chro-
mosomally encoded, or circularization detection for revealing 
smaller plasmids [21]. An evaluation of the combination of 
the above-mentioned features with taxon-specific models 
would be interesting for future research.

Availability and requirements
Project name: RFPlasmid.

Project home page: https://​github.​com/​aldertzomer/​
RFPlasmid.

Operating system(s): Linux (shell).

Programming language: Python, R, Bash.

Other requirements: CheckM, diamond.

Optional: jellyfish.

License: e.g. AGPL.

Any restrictions to use by non-academics: none.
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