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In the published simulation studies on greenhouse climate control that employ optimal

control, often non-realistic weather forecasts are employed, e.g. the realisation of the

weather or artificially created forecasts are used. This research aims to quantify the effect

of weather forecast errors on the performance of the controlled greenhouse system

measured in terms of operational return. The operational return is defined as the differ-

ence between the cost of resources (resource use� cost) and the income through yield

(yield� product price). A stochastic model of the weather forecast error was identified

based on historical weather observations and forecasts from a weather forecasting service.

An uncertainty analysis using the stochastic model showed that a considerable number of

control inputs are sensitive to the forecast errors. A simulation study involving three

7 day-intervals throughout the growing season showed, however, that the performance of

the controlled greenhouse system is not significantly affected by the forecast error, a

performance decrease of 0:03 euro:m�2 (2 %) was observed with respect to the case in

which perfect forecasts were used. The results suggest that an optimal control algorithm

which (a) is updated every 15 min with the full state information, (b) uses forecasts pub-

lished every 6 h and (c) uses published forecasts with a weather forecast error similar to the

weather forecasting service used here, is able to mitigate the effect of the weather forecast

error on the performance of the greenhouse system.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Netherlands is one of the biggest exporters of vegetables

in the world, but this comes at a price. In 2018, the Dutch

horticultural industry consumed 100:5 PJ, of which only 7:4 PJ

were produced in a sustainable manner. This use of energy

resulted in a CO2 emission of 5:7 Mt (Velden& Smit, 2019). The
.J.P. Kuijpers), d.antunes
m.j.g.v.d.molengraft@tue.
.12.014
by Elsevier Ltd on behalf
/).
Dutch horticultural industry signed an agreement with the

Dutch government to decrease the CO2 emission and its

environmental footprint. Among other innovations, auto-

matic control of the greenhouse is likely to contribute to

achieving the goals set in the Dutch agreement and may lead

to a more sustainable cultivation worldwide (van Straten &

van Henten, 2010).
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Nomenclature

Sub- and superscripts

,d discretised signal or function

,* optimised signal or value

,r realisation of variable ,in scenario r

,i integrated value of variable ,over interval

Greek symbols

d sample from the full-horizon uncertainty space

ql lower bounds of the inequality constraints

qu upper bounds of the inequality constraints

m average of stochastic variable

mh average of stochastic variable w

x additive term in ARð1Þ-model

s standard deviation of stochastic variable

sh standard deviation of stochastic variable w

Sx reference to model component x

tf lead time of a forecast

tl sampling interval of signals, s

Τ lead time instance

J multiplicative term in ARð1Þ-model

Alphabetical symbols

a number of time instances since the previously

published forecast

A augmented system matrix for Kalman filter

B augmented input matrix for Kalman filter

c vector of weights expressing the contribution of

each input to the operational return

Cbuf crop carbohydrates in assimilate buffer, g:m�2

Cfrt crop carbohydrates in fruit, g:m�2

Cfrt;off lower bound of fruit buffer, g:m�2

Cleaf crop carbohydrates in leaves, g:m�2

CO2;air greenhouse air CO2 concentration, g:m�3

CO2;out outside air CO2 concentration, element in d, g:m�3

bd forecast of the uncontrollable inputs to the

greenhouse system, i.e. the weather forecast

d uncontrollable inputs to the greenhouse system,

i.e. the realisation of the weather
~d published weather forecast

d local weather measurement of the realised

weather
�d previously published forecast synchronised with

the prediction horizon

e realisation of the forecast error

e augmented forecast error over all values of the

lead time tf

e forecast error at current time instance
be predicted forecast error
be augmented predicted forecast error
~e updated forecast error
~e augmented updated forecast error

fvminð ,Þ function describing the minimum ventilation rate

as a function of wind speed, m3:m�2:s�1

fvmaxð ,Þ function describing themaximumventilation rate

as a function of wind speed, m3:m�2:s�1

Fð ,Þ discrete-time dynamical model of the greenhouse

system

hð ,Þ inequality constraints expressed as functions of

the inputs and states

Hair greenhouse air humidity, g:m�3

Hout outside absolute air humidity, element in d, g:m�3

Ix identity matrix of size x� x

j integer variable

J operational return, V:m�2

k integer variable

lð ,Þ operational return function, V:m�2

LAImax maximal leaf area index, m2:m�2

M number of time instances in an hour

nd number of uncontrollable inputs

ne number of inequality constraints

np number of time instances forecasted per forecast

nu number of inputs

nx number of states

N length of the prediction horizon

Nsc number of scenarios

N ðm; sÞ normal distribution with mean m and standard

deviation s

p2ð ,Þ carbon footprint, kg:m�2

bP predicted estimate covariance matrix
~P updated estimate covariance matrix

Q process covariance matrix

Qsun global radiation, element in d, W:m�2

r specific scenario

R measurement covariance matrix

sð ,Þ gas use function, m3:m�2

SLA specific leaf area, g:m�2

Tair greenhouse air temperature, �C
Tc24 24 h average greenhouse air temperature, �C
Tout outside air temperature, element in d, �C
u controllable inputs to the greenhouse system

uboi the level of operation of the boiler, W:m�2

ucby (pure) CO2 bought, g:m�2:s�1

uchp the level of operation of the combined heat and

power (CHP), W:m�2

uCO2 greenhouse CO2 injection, g:m�2:s�1

ueby electrical power bought, W:m�2

uese electrical power sold, W:m�2

ufrt fruit harvest, g:m�2:s�1

ug controllable inputs to the greenhouse climate

model

uhps electrical power to HPS lighting, W:m�2

ulea leaf harvest, g:m�2:s�1

uled electrical power to LED lighting, W:m�2

uscr screen set (1 represents fully deployed), (� )

usto energy flux to heat buffer, W:m�2

uven ventilation rate, m3:m�2:s�1

U set of admissible values for the inputs

vwind wind speed, element in d, m:s�1

w residual term after estimation of ARð1Þ-model, the

stochastic element

w augmented residual term after estimation of

ARð1Þ-model

x state vector of the greenhouse system

xs heat stored in heat buffer, J:m�2

xt the state of the system at the present time
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X set of admissible values for the states

yc the interaction between the crop and the

greenhouse

yg the interaction between the greenhouse and the

crop

Acronyms

AR autoregressive

CEMPC certainty equivalence model predictive control

CHP combined heat and power

CO2 carbon dioxide

HPS high-pressure sodium

i.i.d. independent and identically distributed

KF Kalman filter

KNMI royal Netherlands meteorological institute

RMPC randomised model predictive control

PACF partial autocorrelation function

b i o s y s t em s e ng i n e e r i n g 2 1 4 ( 2 0 2 2 ) 2 0 7e2 2 9 209
Automatic control can be used to compute suitable trajec-

tories for the control inputs to the greenhouse system (e.g. level

of operation of the combined heat and power unit (CHP),

ventilation rate, CO2 injection) in order to improve, for

example, yield, CO2 emission or a combination of both. To

realise optimal control, the literature often proposes optimal

control (Kuijpers et al., 2021; Seginer et al., 2018; Tap, 2000; van

Straten & van Henten, 2010) among various other control ap-

proaches. In optimal control, the control action is the result of

an objective function optimisation over a future time interval.

Throughout this time interval, the operation of the greenhouse

system is affected by various weather variables, such as global

radiation, temperature and wind speed. Optimisation over a

future time interval thus requires a forecast of the relevant

weather variables. Due to necessary approximations in nu-

merical weather models used for weather forecasting and the

chaotic nature of the weather system, weather forecasts may

not match the actual realisation of the weather variable,

introducing uncertainty in the weather forecast. The uncer-

tainty of a weather forecast typically increases with forecast

lead time. The forecast lead time is the period of time between

the instance of time when the forecast is published and the

time instance at which the weather variable is predicted.

In the literature on optimisation-based greenhouse climate

control t, various approaches to modelling and incorporating

weather forecasts are presented. When simulating past time

instances, the actual realisation of the weather can be

substituted for the weather forecasts (Achour et al., 2020;

Ferreira& Ruano, 2008; Seginer et al., 2017b; van Beveren et al.,

2015). Weather forecasts can also be synthesised by, e.g.

assuming periodic weather (Seginer et al., 2017a) combined

with a stochastic variable (Chen et al., 2018) or by assuming

constant weather (Ioslovich & Seginer, 2002). Irrespective of

the approach used, most published research assumes that the

weather forecast matches the actual realisation of the

weather variable, i.e. no weather forecast error. The lazy-man

weather forecast presented in Tap (2000) and used in van

Ooteghem (2007), however, does include a weather forecast

error. Also, in documented experimental studies, such as

Ghoumari et al. (2005), a weather forecast error was included

through the use of weather forecasting services. In Su et al.

(2021), the weather forecasts are based on data collected in

previous years. The latter researches, alongside most other

documented researches in which a weather forecast error is

present, did not incorporate the uncertainty of the weather

forecast error in the synthesis of the controller. Chen and You
(2021) presents an approach in which the uncertainty in the

weather forecasts is included, this approach is, however,

limited to short prediction horizon. The latter makes it

impossible to use an economic cost function as presented in

the precursor of thework presented here (Kuijpers et al., 2021).

If the uncertainty in the weather forecast error is not

included in the synthesis of the controller, the resulting con-

trol action may be optimal with respect to the employed

objective function for some realisations of the weather but

suboptimal for others, i.e. risk is not taken into account

(Doeswijk, 2007). In turn, a system takes risk into account if it

satisfies robust performance conditions, i.e. performance

specifications are met for a predetermined set of possible

realisations of the uncertainty. In Mayne (2014) and Saltık

et al. (2018), various model predictive control (MPC) algo-

rithms are discussed that are tailored to uncertain systems. If

the weather forecast error is considered as a stochastic vari-

able, various algorithms can be employed to obtain robust

performance. The research presented in this paper builds

upon the work presented in Oldewurtel et al. (2014) and Zhang

et al. (2013), in which stochastic MPC and randomised MPC

(RMPC) algorithms were considered for building climate con-

trol. The latter control algorithmsmay also be viable solutions

to the challenges in the greenhouse control problem, pri-

marily as we hypothesise that the uncertainty in weather

forecasts considerably affects the performance of both

applications.

To the best of our knowledge it is unclear to what extent

the weather forecast error affects the performance of an

optimally controlled greenhouse system. This research aims

to quantify the loss in performance of the system due to

weather forecast errors when the controller synthesis ne-

glects the effect of the uncertainty. The performance of the

greenhouse system is measured in terms of the operational

return, which balances the cost of resources (resource use�
cost) with the income through yield (yield� product price).

This research employs weather forecasts that are syn-

thesised using a stochastic weather forecast error model,

inspired by Oldewurtel et al. (2014) and Zhang et al. (2013).

The forecast error model is based on an autoregressive (AR)

model with a stochastic element. Here, a model is used to

predict the weather forecast error, in contrast to Huang and

Chalabi (1995), who showed an approach in which the

windspeed is predicted using an adaptive AR model. The

parameters of the forecast error model are identified using

historical observations and historical forecasts from the

https://doi.org/10.1016/j.biosystemseng.2021.12.014
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KNMI, more specifically, forecasts from the HARMONIE-

AROME Cy40 model (Bengtsson et al., 2017). Similar to the

KNMI, the synthesised weather forecasts are published every

6 h. A Kalman filter updates the previously published fore-

cast until a new forecast is published, using the measured

weather at the greenhouse site, an approach similar to

Doeswijk (2007) and Oldewurtel et al. (2014). This research

also aims to quantify the loss in performance of the system

due to weather forecast errors when the controller synthesis

takes into account the effect of the uncertainty. To this

extent, the RMPC algorithm presented in Zhang et al. (2013)

was also evaluated.

The contribution of this research is three-fold:

� The parameters in the stochastic error model proposed

in Oldewurtel et al. (2014) and Zhang et al. (2013) are

identified based on historical data from the HARMONIE-

AROME Cy40 model for the Dutch climate.

� The loss in performance of the optimally controlled

greenhouse system due to weather forecasts is quanti-

fied for non-zero weather forecast error when the

controller neglects the effect of the uncertainty.

� The loss in performance of the optimally controlled

greenhouse system due to weather forecasts is quanti-

fied when controlled with RMPC, an algorithm in which

the effect of the uncertainty is explicitly included.

The paper is the first to investigate the impact of weather

forecast errors on the optimal control of greenhouse which so

far has been tackled without taking the uncertainty in these

forecast errors into account. We conclude that forecast error

have a significant impact on control inputs but not on return.

These findings provide useful insights and play an important

role in the area of optimal greenhouse control.

The remainder of this paper is organised as follows,

Section 2 elaborates on the models employed for the

greenhouse and the weather forecasts, as well as the

various control approaches that are used. The simulation

studies and corresponding results are presented in Section 3

and the results are discussed in Section 4. Directions for

future work and the conclusion of this research are pre-

sented in Section 5.
2. Models & methods

The research presented here builds upon the greenhouse

control problem as presented in Kuijpers et al. (2021). Relevant

parts of this control problem are presented in Subsection 2.1.

The parameters of the stochastic weather forecast error

model are identified based on historical data for the Dutch

climate. Subsection 2.2 details the origin of the historical

weather forecasts and corresponding historical weather

measurements. Subsection 2.3 presents the estimation of the

parameters of the stochastic model. The various types of

weather forecasts and the simulation studies that are used to

evaluate the effect of the forecast error are presented in

Subsection 2.6. The Kalman filter and RMPC, that distinguish

the various types of weather forecasts, are presented in

Subsection 2.4 and 2.5, respectively.
2.1. Greenhouse control problem

The controlled greenhouse system is graphically representedby

the block diagram in Fig. 1. Themodel of the greenhouse system

is composed of the energy management system model SE,

greenhouse climate system model and lighting system model

SG andcropgrowthand transpirationmodelSC. Thegreenhouse

system is modelled with a state-space representation with

states x2Rnx , controllable inputs u2Rnu and uncontrollable in-

puts d2Rnd . The components of the state vector x and control-

lable inputsvectoruare listed inTables1and2, respectively.The

interactionbetween thegreenhouse climatemodel and thecrop

model (temperature, CO2 concentration, radiation and relative

humidity) and vice versa (assimilation and transpiration) are

denotedbyyg andyc inFig. 1, respectively. Thedynamicalmodel

F : Rnx � Rnu � Rnd/Rnx represents SE, SG and SC and provides

a mapping from inputs (u and d) and states to the states tl into

the future. The integratedmodel used in this paper builds upon

the models and corresponding assumptions presented in

Vanthoor (2011),vanBeverenetal. (2015), Segineretal. (2018) and

Katzin et al. (2021) for the lighting models. In Kuijpers et al.

(2021), changes to these models are presented that have been

made to arrive at a control-oriented model. Kuijpers (2021)

provides a complete, exhaustive description of the model used

in this study. The reader is referred to the aforementioned

publications for more details on these models. The simulation

studies presented here are based on a greenhouse with high-

pressure sodium (HPS) lamps.

The continuous-time controllable inputs to the greenhouse

system u can be updated every 15 min, tl ¼ 15,60 ¼ 900 s and

are held constant in between samples, following Kuijpers et

al. (2021). These control inputs are typically inputs to other

control systems realising a desired setpoint, e.g. e.g. the

heating system is controlled using uboi2R, in practice, instead

of a control, this will be a setpoint provided to a low-level

control system. For the sake of computational efficiency,

these inputs are discretised using a zero-order hold with

sampling time tl.In the simulation studies presented here, the

discrete-time control inputs to the greenhouse system ud2Rnu

resulted from an optimisation problem solved by the receding

horizon optimal controllerSM, the resulting control inputs are

denoted by u*
d2Rnu . The controller aimed to optimise the

operational return J2R (Vm�2),

JðudÞ¼
XN
j¼0

lðudðjjkÞ; cðjjkÞÞ; (1)

over a finite receding horizon. This horizon starts at time

instance k and subsequent time instances in the horizon are

denoted by j2f0;… ; Ng, where N is the length of the pre-

diction horizon. The length of the prediction horizon used in

this research reflects 3 days, i.e. N ¼ 288 as tl ¼ 900 s. The

greenhouse system is characterised by slow time scales,

which originate mainly from crop- and fruit development.

In Kuijpers et al. (2021), however, the elements that induce

the slow time scale are either removed or reformulated to

arrive at a model for a fully developed, generative crop. The

results presented in this paper are based on a model with a

fully developed, generative crop. Function l : Rnu � Rnu/R

expresses the contribution of each element in ud to the

https://doi.org/10.1016/j.biosystemseng.2021.12.014
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Fig. 1 e Block diagram representation of the greenhouse control system. The system is composed of controllerSM, energy

management system SE, greenhouse climate and lighting system model SG and crop growth and transpiration model SC.

The control inputs to the greenhouse system are denoted by u. The elements of u input to SC encompass the harvest of fruits

and leaves. The inputs to the greenhouse climate model, e.g. ventilation, screen deployment, heating, CO2 injection are

denoted by ug, these are internal to the model F. The uncontrollable inputs to the greenhouse climate model are denoted by

d, the outside weather. Variables yg and yc denote the effect of the greenhouse climate on the crop (temperature, CO2

concentration, radiation and relative humidity) and the effect of the crop on the greenhouse (assimilation and

transpiration), respectively.

Table 1 e States in the greenhouse systemmodel and corresponding constraints represented by lower and upper bounds.

States xd ¼ ½xs;Tair;Hair;CO2;air;Cbuf ;Cleaf ; Cfrt; Tc24�
Symbol Lower bound Upper bound Unit Description

xs 0 3,106 J:m�2 Heat stored in heat buffer

Tair 10 35 �C Greenhouse air temperature

Hair
2 5 35 gfH2Og:m�3 Greenhouse air humidity

CO2;air 0:69 2:79 gfCO2g:m�3 Greenhouse air CO2 concentration

Cbuf 0 20 gfCH2Og:m�2 Crop carbohydrates in assimilate buffer

Cleaf 0 LAImax=SLA gfCH2Og:m�2 Crop carbohydrates in leaves

Cfrt Cfrt;off ∞ gfCH2Og:m�2 Crop carbohydrates in fruit

Tc24 10 35 �C 24 h average greenhouse air temperature

1 The notation ,ðkjtÞ denotes the variable ,ðkþtÞ predicted at
time instance t.

2 The bounds on absolute humidity are supplementary to the
bounds on relative humidity in hð ,Þ.
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operational return, the control inputs are multiplied with

weights c2Rnu to express the contribution of each input in

monetary units, i.e. lðud; cÞ ¼ cTud. The input vector ud in-

cludes elements with a negative contribution to the return

(costs) such as through gas use or electricity use, ud also

includes elements with a positive contribution (profit) such

as fruit harvest and electricity sales. In the model by

Kuijpers et al. (2021), fruit harvest is modelled as an control

input.

The discrete-time states of the greenhouse system xd2 Rnx

affect the optimisation of the controllable inputs ud through the

constraints. The state constraints are expressed by the lower

andupper bounds inTable 1, representedby setX3Rnx . The set

U3Rnu represents admissible values for the inputs, based on

the lower and upper bounds in Table 2. These constraints

represent either equipment limits or limits to the domains of

themodels beingused. The authors avoid using soft constraints

as these require the tuning of artificial parameters and will

dilute the economic cost function. All inputs have a continuous

domain. The ne inequality constraints are expressed in terms of

functions h : Rnx � Rnu/Rne , these are lower and upper boun-

ded by ql2Rne and qu2Rne , respectively. The optimisation
problem aims to find u*
d by maximizing the operational return

within the feasible region outlined by the constraints

u*
d ¼argmax

udð,jkÞ

XN
j¼0

ldðudðjjkÞ; cðjjkÞÞ; (2)

Subject to:

xdðjþ 1jkÞ¼Fð xdðjjkÞ;udðjjkÞ; bdðjjkÞÞ;
ðxdðjjkÞ;udðjjkÞÞ2X�U;

ql �hðxdðjjkÞ;udðjjkÞÞ� qu; cj2f0;… ; Ng

xdð0jkÞ¼xt:

The state of the system at the present time is represented

by xt2Rnx . Vector xdðjjkÞ is the predicted1 state at future time

https://doi.org/10.1016/j.biosystemseng.2021.12.014
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Table 2 e Inputs to the greenhouse systemmodel and corresponding constraints represented by lower and upper bounds.
All bounds are fixed except for the bounds on the ventilation rate control input uven. The bounds on uven, fvminð ,Þ : R/ R

and fvmaxð ,Þ : R/R, originate from the model by de Jong (1990) and depend on the wind speed.

Inputs ud ¼ ½uchp;uboi;uhps;uled;ueby;uese;uCO2;ucby;usto;uven;uscr;ulea;ufrt�
Symbol Lower bound Upper bound Unit Description

uchp 0 125:28 W:m�2 The level of operation of the combined heat and power (CHP)

uboi 0 83:33 W:m�2 The level of operation of the boiler

uhps 0 100 W:m�2 Electrical power to HPS lighting

uled 0 61:67 W:m�2 Electrical power to LED lighting

ueby 0 250 W:m�2 Electrical power bought

uese 0 250 W:m�2 Electrical power sold

uCO2 0 250 gfCO2g:m�2:s�1 Greenhouse CO2 injection

ucby 0 250 gfCO2g:m�2:s�1 (Pure) CO2 bought

usto � 250 250 W:m�2 Energy flux to heat buffer

uven fvminðdÞ fvmaxðdÞ m3:m�2:s�1 Ventilation rate

uscr 0 1 � Screen set (1 represents fully deployed)

ulea 0 0:4,10�6 gfCH2Og:m�2:s�1 Leaf harvest

ufrt 0 0:4,10�4 gfCH2Og:m�2:s�1 Fruit harvest

3 https://data.knmi.nl/datasets/harmonie_arome_cy40_p1/0.2.
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instance jþ k computed at time instance k. The inputs to the

greenhouse at time instance jþ k predicted at time instance

kare represented by udðjjkÞ. The forecast of the uncontrollable

inputs to the greenhouse bdðjjkÞ2Rnd encompasses the relevant

weather variables i.e. global radiation, outside air tempera-

ture, outside air CO2 concentration, outside air humidity and

wind speed. It is implicit in (2) that the controller is assumed to

have full state information.

The optimisation algorithm presented in (2) was solved

iteratively with a receding horizon. The control strategy u*
d

was updated every sample, i.e. every 15 min, in contrast to the

daily update rate, i.e. every 96 samples, as used in Kuijpers et

al. (2021). The increased update rate is a first step towards

mitigation of the effect of the forecast error (Mayne, 2014). At

every sample, the optimisation algorithm obtained feedback

of the system through the state of the system at the present

time xt. The state of the system includes the effect of the

weather forecast error at previous time instances. The real-

ised forecast error e2Rnd , the value of which is uncertain,

manifests itself through bdðjjkÞ ¼ dðjþkÞ þ eðjjkÞ. One of the

approaches to handle the uncertainty is to neglect its effect

and design a controller based on the nominal case, assuming

dðjþkÞ ¼ bdðjjkÞ. The latter technique, often combined with a

high update rate as discussed previously, is referred to as

certainty equivalence MPC (CEMPC) (Saltık et al., 2018) and

mitigates the effect of the forecast error eðjjkÞ on the opera-

tional return J through feedback. The CEMPC controller was

used in the simulation studies as the approachwhich neglects

the effect of the uncertainty on the performance of the

controlled greenhouse system.

Throughout the results presented in this paper, three in-

dicators are used to compare the performance of the green-

house system under varying configurations and conditions.

The first indicator is the operational return l (Vm�2), intro-

duced in (1),

lðu;cÞ¼cfrt$ufrtþ cese$uese� cchp $uchp�cboi $uboi�ccby $ucby�ceby$ueby

(3)

which balances the income through fruit yield and electricity

sales with the cost for buying electricity, using gas and buying
(pure) CO2. To isolate the effect of uncertainty in the weather

forecasts, the uncertainty in price forecasts (e.g. cfrt, ceby) is

omitted (Kuijpers, Antunes, et al., 2021). The latter indicator is

also employed as objective function in the optimisation al-

gorithm (2). The following two indicators will only be used to

compare simulations of the greenhouse systemand have been

chosen in accordance with Kuijpers et al. (2021) to allow for

comparison. The second indicator is the gas use denoted by

sð,Þ : Rnu/R (m3 m�2), gas is used by the CHP uchp and boiler

uboi

sðuÞ¼a�1
g

�
uchp þuboi

�
(4)

where ag ¼ 31:65 MJ m�3 (Vermeulen, 2016) represents the

energy content per cube of gas. The gas use is defined here as a

separate performance indicator, but is also required for both

lð ,Þ and p1ð ,Þ and is included in cchp and cboi. The third indicator

is the carbon footprint p2ð ,Þ : Rnu/R (kg:m�2)

p1ðu; cÞ¼ cfrt,ufrt � cchp ,uchp � cboi,uboi (5)

The carbon footprint increases with the use of gas, buying

pure CO2 ucby and buying electricity ueby, the carbon footprint

decreases with selling electricity uese. All aforementioned in-

dicators are linear combinations of the inputs. The weights c

used to express the contribution of each input to indicator

value in the respective unit are defined in Kuijpers et al. (2021)

and Vermeulen (2016, p. 330).

2.2. Weather forecasts & observations

In this subsection, the origin of the historical data which were

used in the estimation of parameters of the stochastic

weather forecast error model is presented. The historical data

for the weather forecasts originate from the HARMONIE-

AROME Cy40 model3 run by the KNMI. The weather fore-

casts are published every 6 h starting at midnight, i.e. at time

instances k2f0; 6M; 12M;…g, where M ¼ 4 is the number of

time instances in an hour. The lead time of a forecast tf2R

represents the time interval between the time instance the

https://data.knmi.nl/datasets/harmonie_arome_cy40_p1/0.2
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Fig. 2 e Historical temperature observations d compared to 33 temperature forecasts ~d in the interval February 1st, 2020 to

February 16th, 2020, originating from the HARMONIE-AROME Cy40model. The forecasts have been plotted as separate lines

starting at the time of the forecast with a length of 48 h. The first forecast ~d (light blue) is published at February 2nd at

06:00 h, the last forecast in this interval (pink) is published at February 14th at 00:00 h. (For interpretation of the references

to colour in this figure legend, the reader is referred to the Web version of this article.)
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forecast is published k2 and the time instance at which the

weather variable is predicted k1, i.e. tf ¼ k1 � k2. The relevant

weather variables forecasted are outside air temperature Tout

ð�CÞ, outside absolute air humidity Hout ðg:m�3Þ, wind speed

vwind ðm:s�1Þ and global radiation Qsun (W m�2). The weather

forecasts by the HARMONIE-AROME Cy40 model have a

maximal lead time of 48 h, with a temporal resolution of 1 h,

i.e. np ¼ 49 time instances are forecast, at time instances tf2

f0; 1M; 2M; …; 48Mg. The outside air CO2 concentration

CO2;out ðg:m�3Þ is not forecasted. The HARMONIE-AROME Cy40

model provides forecasts for a spatial grid covering Europe.

The grid consists out of 340� 340 points spaced 0:05� along

both lateral and longitudinal axis. Although the research

presented here involves a simulation study and the green-

house is not location-bound, we chose the grid point closest to

the greenhouse where the data from the weather realisation d

originates from, Bleiswijk, grid point 52� 20 9:6
00
N;

4� 300 50:36
00
E (Kempkes et al., 2014). The historical data for the

weather observations originated from the automatic weather

station Rotterdam (06344)4 located at 51� 580N; 04� 270E, 9 km

away from the forecast grid point. All observations and 400

forecasts, here denoted by ~d2Rnd , for that specific location

were stored in the period from 01� 01� 2020 to 01� 07�
2020. In Fig. 2, a subset of this data, i.e. historical temperature

observations and 33 temperature forecasts, is presented.

Every individual forecast is represented by a line of 48 h in

length. The historical data for the forecasts and the observa-

tions were used to identify the stochastic model of the

weather forecast error as described in Subsection 2.3.

In the simulation studies, the realisation of the weather

applied to the system d originated from an experiment

described in Kempkes et al. (2014), where various energy-

saving options in greenhouses were investigated in a Ven-

low Energy kas located in Bleiswijk, The Netherlands. The

data, which consist of outside air temperature Tout ð�CÞ,
outside absolute air humidity Hout ðg:m�3Þ, outside air CO2

concentration CO2;out ðg:m�3Þ, wind speed vwind ðm:s�1Þ and

global radiation Qsun (W m�2), are measured at 5 min interval,
4 https://knmi.nl/nederland-nu/klimatologie/uurgegevens.
during the years 2011 to 2014. In the simulation studies here,

only year 2014 was used. The historical observations by the

KNMI could not be used for this purpose due to the unavail-

ability of CO2 concentration measurements and an insuffi-

cient temporal resolution, i.e. the observations by the KNMI

have a resolution of 1 h where at least 15 min is required.

Subsection 2.3 details how the data from Kempkes et al. (2014)

was combined with the stochastic weather forecast error

model to synthesise weather forecasts for the realisation of

the weather.

In this study the forecast data from the HARMONIE-AROME

Cy40 model between 01� 01� 2020 and 01� 07� 2020 was

used. This not only limits the data to the meteorological

winter, spring and summer seasons but also does not capture

the year-to-year differences in the climate or the forecasting

of it.

2.3. Weather forecast error model

For a weather forecast published at time instance k and

forecasting weather variables at time instance kþ tf , the

forecast error e is defined as the difference between the pub-

lished weather forecast ~d and the corresponding weather

realisation d, i.e.

e
�
tf
��k�¼ ~d

�
tf
��k�� d

�
kþ tf

�
(6)

The forecast error for tf >0 can only be calculated in

retrospect as dðkþtf Þ is not available at time instance k. A

stochastic forecast error model was used to describe the sto-

chastic properties of the error in the weather forecast. The

structure of the stochastic forecast error model was chosen to

reflect that of an autoregressive model of order 1 (ARð1Þ), a
model with a similar structure was successfully employed for

building climate control in Oldewurtel et al. (2014) and Zhang

et al. (2013). The deterministic part of this ARð1Þ-model is able

to capture structural deviations such as a non-collocated

forecasting and measuring facility (Doeswijk, 2007). The

latter three studies have shown the ability of an ARð1Þ-model

to describe the weather forecast error. The ARð1Þ-model is

https://knmi.nl/nederland-nu/klimatologie/uurgegevens
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Fig. 3 e Partial autocorrelation function (PACF) of (left) historical forecast error e, (right) the residual after parameter

estimation w. The lags follow from the lead time tf and are in terms of hours. From the left panel one can observe that an

ARð1Þ-model can sufficiently capture the correlations between different lags in eð,jkÞ. The right panel shows that the residual

after parameter estimation w is not autocorrelated. The PACF presented here is for the temperature element, the PACF for

the other weather variables have not been plotted.
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parameterised by diagonal matrix J2Rnd�nd , vector x2 Rnd

and is given by

e
�
tf þ1

��k�¼Je
�
tf
��k�þ xþw

�
tf
�
; (7)

where wðtf Þ � N ðmh; shðtf ÞÞ represents the residual after

parameter estimation with mean mh2Rnd and standard devi-

ation sh2Rnd . The contribution of this research is the esti-

mation of the parameters J, x and wðtf Þ using relevant

historical observations and forecasts from a Dutch weather

forecasting service. With respect to the model proposed in

Oldewurtel et al. (2014) and Zhang et al. (2013) the dependency

ofw on tf was added to account for the increase in the forecast

error e for increasing values of the lead time tf . As this paper

describes a simulation study that aims to quantify the effects

of forecast errors on a controlled greenhouse system, an

ARð1Þ-model will suffice in removing unwanted, unrealistic

effects such as from a non-collocated forecasting and

measuring facility. The estimation of the parameters J, x and

wðtf Þ in (7) can be cast into a least squares regression problem

and is solved as such.

To support the hypothesis that an ARð1Þ model structure

suffices to describe the correlation between the data samples,

the partial autocorrelation function5 (PACF) was calculated for

the available historical data. The model in (7) describes the

evolution of the forecast error for Tout, absolute air humidity

Hout, wind speed vwind and global radiation Qsun, all elements in

d except for the CO2 concentration CO2;out as no forecasts of the

CO2 concentration are available in the historical forecast data.

The left panel of Fig. 3 depicts the PACF for the temperature

element in e, the lags follow from the lead time tf in terms of

hours, as the temporal resolution of the forecasts is 1 h. The

PACF for all elements in e is significant for lag 1 only, hence an
5 The partial autocorrelation function at lag k2N of variable
zðtÞ2R with t2N is defined as the correlation between zðtÞ and
zðt�kÞ with the correlation between zðtÞ and
zðt�1Þ; zðt�2Þ;…; zðt�kþ1Þ removed (Box et al., 2016).
ARð1Þ model structure suffices to describe the correlation be-

tween the samples in e (Box et al., 2016). The PACF of the

temperature component ofw in the right panel of Fig. 3 shows

that partial autocorrelation at lag 1 is compensated by the

ARð1Þ-model. This supports the hypothesis that the parame-

ters were estimated successfully and that the model structure

is sufficient to describe the autocorrelation in the data. The

PACF of the residuals also supports the choice of model order,

first, and the fact that no moving average mechanism is pre-

sent. Results leading to similar conclusions were obtained for

the other components of vectors e and w. The interactions

between weather variables are not captured by the individual

PACFs, therefore J in (7) was chosen to be diagonal. Also, the

residuals w were modelled as independent signals. An anal-

ysis, including the cross terms in the correlation of e, was out

of scope of this research as the model in (7) provides a

description of the weather forecast error which is sufficiently

accurate for this research. After identification, the standard

deviation sh of w is determined per value of tf .

Propagation of the stochastic model allows for the creation

of artificial forecasts ~d with similar stochastic properties as

the historical weather forecasts based on a weather realisa-

tion d, i.e. ~d ¼ dþ e and substituting e with (7). In order to

generate a forecast, realisations of wðtf Þ � N ðmh; shðtf ÞÞ have
to be obtained. In Fig. 4, the historical temperature observa-

tions and 33 synthesised forecasts are presented for the same

period of time as in Fig. 2. Every individual forecast is repre-

sented by a line of 48 h in length.

In order to compare the stochastic properties of the his-

torical forecasts and the synthesised forecasts, Fig. 5 pre-

sents the mean m and corresponding 3s-bounds as a function

of tf for both forecasts. The left panel of Fig. 5 presents the

average forecast error, denoted by mh, and 3s-bounds of for

the temperature element in the historical forecasts. The right

panel of Fig. 5 presents the same stochastic properties of the

synthesised temperature forecast errors. One can observe

that the stochastic properties of the synthesised

https://doi.org/10.1016/j.biosystemseng.2021.12.014
https://doi.org/10.1016/j.biosystemseng.2021.12.014


Fig. 4 e Historical temperature observations d compared to 33 synthesised temperature forecasts ~d in the interval February

1st, 2020 to February 16th, 2020. The forecasts are plotted as separate lines starting at the time of the forecast with a length

of 48 h. The first forecast ~d (light blue) is published at February 2nd at 06:00 h, the last forecast in this interval (pink) is

published at February 14th at 00:00 h. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)

Fig. 5 e The stochastic properties, mean m and 3s-bounds are presented for various values of tf for (left) the original

temperature forecasts (right) synthesised temperature forecasts. The stochastic properties in these panels are based on 400

forecasts each. One can observe that the stochastic properties of the synthesised temperature forecasts using (7) and the

original forecasts from the HARMONIE-AROME Cy40 model match.
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temperature forecast errors are similar to those of the orig-

inal forecasts.

2.4. Kalman filter

The parameter estimation in Section 2.3 shows that a part of

the weather forecast error exhibits deterministic behaviour,

e.g. because of non-collocatedmeasurements or deterministic

errors within the weather forecast itself. The Kalman filter

presented in this section is able to compensate for this

deterministic part. The Kalman filter provides a better esti-

mate than one could obtain without, i.e. by simply relying on

the measurements. The previously published forecast

synchronised with the prediction horizon is denoted by
�dðjjkÞ2Rnd and defined as

�dðjjkÞ¼ ~dðjþ ajk� aÞ (8)

where a2N is the number of time instances since the previ-

ously published forecast.
The Kalman filter proposed in this subsection uses the

local weather measurement d2Rnd to update the previously

publishedweather forecast d until a new forecast is published.

The Kalman filter compensates for the deterministic part of

the model, i.e. the multiplication of the previous error eðtf
��kÞ

with J and the addition of x.

Thepredictionstageof theKalmanfilteruses themodel in (7)

to predict the augmented forecast error at the next time instant

beðkÞ¼
0
BB@

beð0jkÞbeð1jkÞ
«be�np

��k�

1
CCA2Rnp,nd (9)

which contains the predicted forecast error for the np time

instants within the forecast. The update stage of the Kalman

filter updates the predicted augmented forecast error be using

the forecast error at the current time instance denoted by

eðkÞ ¼ �dð0jkÞ� dðkÞ2Rnd . to calculate the augmented updated

forecast error ~e2Rnp,nd . The predicted and updated estimate

https://doi.org/10.1016/j.biosystemseng.2021.12.014
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covariancesmatrices are represented by bP2Rnp,nd�np,nd and ~P2

Rnp,nd�np,nd , respectively. The Kalman filter is graphically rep-

resented as part of the block diagram in Fig. 6. The switch in

Fig. 6 represents the ability to exclude the effect of the Kalman

filter in the forecast. The left part of Fig. 6 represents the

synthesis of artificial forecasts as outlined in Subsection 2.3.

To arrive at the error model for the prediction stage of the

Kalman filter, the model presented in (7) was augmented with

all values for tf . The Kalman filter iterates along the time axis

k instead of the lead time axis tf . The forecast error at time

instance k, eðtf
��kÞ, however, can be related to eðtf

��kþ1Þ by

substitution of eðtf �1
��kþ1Þ ¼ eðtf

��kÞ in (7). These operations,

concerning both the tf -timescale and the k-timescale, are

depicted in Fig. 8. Figure 8 depicts the transition from eðΤ jKÞ
(indicated by 1) to eðΤ jKþ1Þ (indicated by 2), using equation (7)

and eðtf � 1
��kþ1Þ ¼ eðtf

��tÞ. After the two operations, the pre-

diction model used in the prediction stage is obtained

2
6664

be�tf ��k�
be�tf þ 1

��k�
«

be�tf þ np

��k�

3
7775¼

2
6664
J 0 / 0

0 J / 0

« « 1 «

0 0 / J

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

2
6664

~e
�
tf
��k� 1

�
~e
�
tf þ 1

��k� 1
�

«

~e
�
tf þ np

��k� 1
�

3
7775

þ

2
6664

I

I

«

I

3
7775

|ffl{zffl}
B

xþ

2
6664

wð0Þ

wð1Þ

«

wðnpÞ

3
7775

|fflfflfflfflffl{zfflfflfflfflffl}
w

(10)

which can be written in a compact form as

beðkÞ¼A~eðk� 1ÞþBxþw (11)

with augmented system matrix A ¼ Inp5J and augmented

input matrix B ¼ Inp�1 5 Ind , where 5 denotes the Kronecker

product and Inp an identity matrix of size np � np. In (11), w

represents the augmented residual term of the ARð1Þ-model.

The initial state estimate of the Kalman filter beð0Þ was

determined by propagating beð0j0Þ ¼ dð0j0Þ � dð0Þ along tf using

the ARð1Þ-model in (7). Let e2Rnp,nd represent the augmented

realised forecast error. The initial value of the estimate

covariance matrix bPð0j0Þ was calculated using

bPð0j0Þ¼ E
h
ðeð0Þ� beð0ÞÞðeð0Þ � beð0ÞÞTi (12)
Fig. 6 e Overview of various events that occur throughout time.

specify the weather at hourly intervals Mtl ¼ 4tl, the Kalman fi

are published every 6 h.
By assuming that the realised forecast error eðtf
��tÞ results

from the same ARð1Þ process as in (7), the evolution of the

estimation error of the forecast error, eðtf
��kÞ� beðtf ��kÞ; can be

described as

�
e
�
tf
��t�� be�tf ��t��¼J

�
e
�
tf
��t�1

�� be�tf ��t� 1
��þw (13)

which is an ARð1Þ-model. The covariance of a forecast by an

ARð1Þ-model is given by

bPðjjkÞ¼ E
h
ðeðkþ jjkÞ� beðkþ jjkÞÞðeðkjkÞ � beðkjkÞÞTi¼s2

hð1�J2nÞ
1�J2

(14)

according to Box et al. (2016). The elements in the estimate

covariancematrix bPð0j0Þ in (12) are given in (14), in which j and

k follow from the multiplication of two vectors having ele-

ments similar to the vector presented in (9). The process

covariance matrix of the Kalman filter represents the covari-

ance ofw, i.e. Q ¼ ½shð0Þ; shð1Þ;…;shðnpÞ�. The elements ofw are

zero-mean Gaussian processes as required to obtain optimal

state estimation (Anderson&Moore, 2005). Themeasurement

covariancematrix of the Kalman filter was chosen as R ¼ 0:15

Inp , representing the accuracy of the climate sensors. In the

simulation studies, however, themeasurementswere equal to

the actual realisation of the climate, as indicated in Fig. 7.

2.5. Randomised MPC

The RMPC controller was used in the simulation studies as the

approach which takes the effect of the uncertainty on the

performance of the controlled greenhouse system into ac-

count. The RMPC algorithm is presented in Zhang et al. (2013)

and discussed in Saltık et al. (2018) and Schildbach et al. (2012).

This subsection details the application of the RMPC approach

to the greenhouse control problem, a more elaborate

description of the RMPC algorithm is given in Zhang et al.

(2013). The RMPC algorithm handles the uncertainty in the

optimisation problem by drawing Nsc independent and iden-

tically distributed (i.i.d.) samples from the full-horizon un-

certainty space, i.e. d1; …; dNsc with dk ¼ fwkð0Þ;…;wkðnpÞg. Let
bdrðjjkÞcr2f1;…;Nscg denote the weather prediction input to

the controller in scenario r. The Nsc distinct weather pre-

dictions bdrðjjkÞ lead to distinct predicted state trajectories,

indicated by xrdðjjkÞ. The optimisation, irrespective of the
The RHOC algorithm is run every tl ¼ 15 min. The forecasts

lter operates at the same frequency and weather forecasts

https://doi.org/10.1016/j.biosystemseng.2021.12.014
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Fig. 7 e Block diagram of the synthesis of artificial forecasts ~d and the Kalman filter implementation. The block denoted by

(4) uses the equation in (7) to generate artificial forecasts. The blocks denoted by [1] extract the first time instance from the

time interval represented by the signal. The block denoted by (5) uses the equation in (8) to synchronise the previously

published forecast ~d with the prediction horizon of the optimisation algorithm, resulting in �d. The predicted and updated

forecast errors are represented by be and ~e, respectively, their estimate covariance matrices by bP and ~P, respectively. The

weather forecast input to the controller is denoted by bd. The weather forecast input to the controller bd can be chosen to be

equal to the unfiltered forecast �d, or equal to the updated forecast �d� ~e.

Fig. 8 e An overview of the various operations on signals

along the timescale k and timescale tf . The circles

represent forecast instants, the arrows between them

indicate the possible transitions. The AR(1)-model

transforms forecasts instants along the tf -timescale (dash-

dotted line), the operation eðtf �1
��kþ1Þ ¼ eðtf

��kÞ is
represented by the dashed line. The Kalman filter operates

along the timescale k.

b i o s y s t em s e ng i n e e r i n g 2 1 4 ( 2 0 2 2 ) 2 0 7e2 2 9 217
number of scenarios, aims to optimise a (single set of) opti-

mised trajectories for the controllable inputs of the system u*
d.

As the operational return does not depend on the state tra-

jectories, the objective value for each scenario will be equal.

The state trajectories xrdcr2f1;…;Nscg in each of the scenarios

will be different, and the state trajectories of all scenarios

should satisfy the constraints. The optimisation problem in (2)

is rewritten to include multiple scenarios

u*
d ¼argmax

udð,jkÞ

XN
j¼0

ldðudðjjkÞ; cðjjkÞÞ (15)
subject to:

xr
dðjþ 1jkÞ¼ F

�
xr
dðjjkÞ;udðjjkÞ; bdrðjjkÞ�

�
xr
dðjjkÞ;udðjjkÞ

�
2X�U

ql �h
�
xr
dðjjkÞ;udðjjkÞ

� � qu

xr
dð0jkÞ¼xt cj¼f0;… ; Ng; cr2f1;…;Nscg:
In literature, various robustness properties have been

established for RMPC with respect to chance constraints. For

example, Zhang et al. (2014) establish a relation between the

number of scenariosNsc and the confidence in only violating a

pre-specified number of constraints. An increased number of

scenarios would increase the confidence that the constraints

of the greenhouse system would not be exceeded. However,

due to the scale of the optimisationproblem in (15), inducedby

the prediction horizon, the model size and number of con-

straints, obtaining Nsc > 3 is computationally not viable in our

implementation. Therefore, instead of replacing our set of

constraints hð ,Þ and the lower- and upper bounds of the

design variables by chance constraints, the Nsc ¼ 3 scenarios

were required to satisfy all the constraints. Even though the

full-horizon uncertainty space is not fully sampled by using

Nsc ¼ 3 scenarios, we hypothesise that the resulting optimised

control trajectories from (15) are more robust to various fore-

cast errors from the uncertainty space as compared to the

trajectories resulting from (2).

2.6. Forecast types & simulation studies

In order to evaluate the effect of the weather forecast error on

the performance of the controlled greenhouse system, various

https://doi.org/10.1016/j.biosystemseng.2021.12.014
https://doi.org/10.1016/j.biosystemseng.2021.12.014


b i o s y s t em s e n g i n e e r i n g 2 1 4 ( 2 0 2 2 ) 2 0 7e2 2 9218
configurations of the system were simulated. In this subsec-

tion, the various types of forecasts and simulation studies are

presented.

Four forecast types were defined that distinguish the

various configurations of the system. The forecast is linked to

the configuration of the controller, e.g. the use of multiple

scenarios is linked to the RMPC algorithm, the combination of

the two is, however, referred to as a forecast type in the

remainder of this paper. The different forecast types are per-

formance bound (PB), Certainty Equivalence MPC (CEMPC),

CEMPC in combination with a Kalman filter (CEMPCþ KF) and

RMPC in combination with Kalman filters (RMPCþ KF). The

main features of the forecast types are presented in the first

four columns of Table 3. Note that all forecasts are generated

using the (7), the realised CO2;out was substituted for its fore-

cast. The forecast types provide the optimisation problem in

(2) or (15) with different values for bdðjjkÞ:

� PerformanceBound (PBMPC): bdðjjkÞ ¼ dðkþjÞ, the forecast
of the weather bd matches the realisation d, resulting in a

non-causal, and therefore not realistic, control approach.

This forecast type, with full prior knowledge of the

weather, resembles themaximalattainableperformance.

� Certainty Equivalence MPC (CEMPC): bdðjjkÞ ¼ dðjjkÞ, the
previously published forecast synchronised with pre-

diction horizon of the optimisation algorithm is

assumed to be equal to the realisation d. The published

forecasts are synthesised using (7). This forecast type

resembles the case in which the effect of the uncer-

tainty on the performance of the controlled system is

neglected by assuming the forecast matches the real-

isation. Theweather forecast error is a result of both the

deterministic and stochastic part of the model in (7).

� CEMPC in combination with a Kalman filter (CEMPCþ
KF): the previously published forecast synchronised

with the prediction horizon is updated using the esti-

mated forecast error by a Kalman filter, i.e.

bdðjjkÞ¼ �dðjjkÞ � ~eðkÞ (16)

� This forecast type neglects the effect of the uncertainty,

the published forecasts are, in contrast to the previous

forecast type, updated using the local weather mea-

surements. The Kalman filter will (partly) compensate
Table 3 e The various forecast types employed in this research
(CEMPC), CEMPC in combination with a Kalman filter (CEMPCþ
filters (RMPCþ KF). The columns specify, the origin of the foreca
is interpolated fromhourly to quarter-hourly values andhowm
in which simulation study the forecast type is used (-) and w

bd update interpolation

PB d n:a: n:a:

CEMPC d No Linear

CEMPCþ KF �d� ~e KF Linear

RMPCþ KF �d
r � ~er KF Linear
for the deterministic part of the model in (7). Rando-

mised MPC in combination with Kalman filters

(RMPCþ KF): Nsc forecasts are generated using (7) and

are updated by Nsc independent Kalman filters.

bdrðjjkÞ¼ �drðjjkÞ�~erðkÞ cr2f1;…;Nscg (17)
, perf
KF) a

st sup
any sc
hich n
This forecast type takes into account the effect of the

uncertainty on the performance of the system in the

synthesis of the controller.
The Kalman filter is used to update the forecasts published

every 6 h. Linear interpolation is used determine the quarter-

hourly values of the forecast error from the hourly values from

the (updated) forecasts. The length of the KNMI forecasts was

48 h, the values for wðtf Þ therefore are estimated up to tf ¼
48M. In using (4) to create forecasts with a length similar to

the prediction horizon of (2), N ¼ 288 (72 h), the standard de-

viation of the stochastic part, i.e. sh was kept constant for

j>48M, i.e. shðtf ,MÞ ¼ shð48 ,MÞctf 	 48. The latter was

schematically represented in Fig. 9.

Three simulation studies were used to obtain a better un-

derstanding of how the forecast error affects the controlled

greenhouse system:

� simulation study 1: the stochastic properties of the

original forecasts and the forecasts filtered by the Kal-

man filter are compared.

� simulation study 2: this study provides insight into the

effect of the forecast error on the value optimised con-

trol trajectory u*
d at the first time instance, i.e. u*

dð0jkÞ.
The sensitivity of u*

dð0jkÞ to changes in the forecast error

indicates to what extent the optimised control trajec-

tories are affected by the forecast error. This simulation

study is performed for both original forecasts CEMPC

and forecasts filtered by the Kalman filter CEMPCþ KF.

� simulation study 3: the controlled greenhouse system

was simulated during three 7-day intervals, for each of

the four forecast types. The performance bound is used

as reference to compare the performance of the

controlled system to the other forecast types. In this

simulation study, the performance bound represents

the maximal attainable performance, resulting from a

static optimisation based on the optimisation problem
ormance bound (PB), certainty equivalence MPC
nd randomised MPC in combination with Kalman

plied to the controller bd, whether it is updated, how it
enarios are employed. The three last columnsdenote
ot (∙).

Nsc Sim: 1 Sim: 2 Sim: 3

1 ∙ ∙ -

1 - - -

1 - - -

3 ∙ ∙ -
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Fig. 9 e Schematic representation of the weather forecast

used in the prediction of the RHOC. The (filtered) weather

forecast is defined at hourly intervals, represented by the

green instances above. In-between the estimates the

hourly values are linearly interpolated to arrive at values

for every 15 min. After 2 days (¼48M) instances into the

prediction horizon, sh is kept constant at its value

shð48 ,MÞ. (For interpretation of the references to colour in

this figure legend, the reader is referred to the Web version

of this article.)
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in (2) with a prediction horizon of length 7 days, i.e. N ¼
7,24M. The latter optimisation does not employ a

receding horizon and therefore does not use feedback.
3. Results

The results of the simulation studies introduced in Subsection

2.6 are presented in this section. The subsections are ordered

accordingly.

3.1. Forecast error and estimation

The stochastic properties of the weather forecast error pre-

sented in Subsection 2.3, more specifically in Fig. 5, are valid at

the time instances at which a forecast is published. In between

those time instances, the previously published forecast was

synchronised with the prediction horizon of the optimisation

algorithm, according to (8). Also, if the Kalman filter was

enabled, the previously published forecast was updated using

localweathermeasurements. In thesimulationstudypresented

in this subsection, the stochastic properties of the forecast error

are evaluated while taking into account all time instances and

thus including the time instances at which no forecast was

published. Figure 10 presents the stochastic properties, mean m

and 3s-bounds, as a function of tf for (left) the unfiltered tem-

perature forecasts (right) filtered temperature forecasts for all

time instances. To evaluate the stochastic properties, the 2016

forecasts from the three 7-day simulations presented in

Subsection 3.3, were evaluated. Through using the forecasts

fromthe7-daysimulations, a realistic distributionwasobtained

between time instances at which a forecast is published and

time instances at which no forecast is published.

The effect of using the previously published forecast until a

new forecast is published can be observed when comparing

the left panel of Fig. 10 to the right panel in Fig. 5. One can

observe from Fig. 10 that the uncertainty, in terms of 6s, ex-

ceeds 8 �C at a lead time tf ¼ 31 (7.75 h). When evaluating only

the time instances at which a forecast is published, see Fig. 5,
the uncertainty is lower, i.e. 6s exceeds 8 �C at a lead time tf ¼
76 (19 h). The 3s bounds, thus, grow faster for increasing lead

times tf when evaluating all time instances. The latter is ex-

pected as the lead time of the published forecast grows as a in

(8) increases. The 3s-bounds increase and decrease periodi-

cally, an effect which is hypothesised to be due to the updates

arriving every 6 h. The mean forecast error m is expected to

reach a constant value of � 0:38 �C, which can be found

through equating eðtf þ1
��kÞ to eðtf

��kÞ and solving for eðtf
��kÞ in

(7). The constant value of the forecast error in the left panel of

Fig. 10 for tf >200, however, is � 1:09 �C, significantly lower.

How this links with the synchronization of the published

forecast with the prediction horizon of the controller has not

been the subject of further study.

The Kalman filter aims to improve the forecasts through (a)

updating the previously published forecasts using local

weathermeasurements and (b) compensating the effect of the

deterministic part in (7). In Fig. 10, one can observe that the

contribution of the deterministic part in (7) is relatively small

compared to the uncertainty, i.e. the mean deviates in the

order of 1 �C whereas the contribution of the stochastic part,

measured in terms of 3s, is in the order of 4 �C. The second aim

of the Kalman filter is, therefore, expected to contribute less to

the overall improvement. One can observe the effect of the

improvements (a) and (b) when comparing the left panel of

Fig. 10 to the right panel. The updates of the forecasts decrease

s for tf ¼ 0 from 0:96 �C to 0:49 �C. The effect of compensating

the deterministic part of the stochastic weather forecast error

model can be observed by comparing the average forecast

error, indicated by m, its value for tf > 200 decreased from

�1:09 �C to � 0:71 �C.

3.2. Uncertainty analysis

The receding horizon optimal controller based on (2) is sen-

sitive to the forecast error if the value of u*
d at the first time

instance is considerably different for various realisations of

the forecast error. This sensitivity was evaluated by repeat-

edly solving the optimisation algorithm in (2) for different

values of the forecast error. As only the value of u*
d at the first

time instance, i.e. u*
dð0jkÞ is applied to the system, this analysis

was limited to u*
dð0jkÞ. The sensitivity with respect to the

operational return is not included as this cannot be inter-

preted in a simple way, because the operational return is the

result of a closed-loop system. Moreover, analysing the

sensitivity per control input can support reasoning about the

sensitivity of specific subsystems within the total system. As

the sensitivity may depend on the state of the system xt and

the prevailing weather d (not the forecast error), the sensi-

tivity is evaluated at distinct time instances throughout the

year. Five time instances were selected, 17th of February at

00:00 h, 12th of March at 00:00 h and 12:00 h and the 12th of

June at 00:00 h and 12:00 h. The state of the system xt at the

various time instances was based on the HPS simulation

presented in Kuijpers et al. (2021). For each of the time in-

stances, 80 simulations were performed using forecasts

updated by the Kalman filter, denoted by CEMPCþ KF, and the

original forecasts denoted by CEMPC. Generally, forecast er-

rors are thought to deteriorate the performance of the

https://doi.org/10.1016/j.biosystemseng.2021.12.014
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automatic climate control, we therefore expect differences in

the control input.

From the elements in the vector u*
dð0jtÞ, see Table 2, only

those relevant to understand the effect of the forecast errors

are presented. Figure 11 presents histograms of the value of

the level of operation of the CHP uchp, level of operation of the

boiler uboi, electricity exchange with the grid ueby � uese, CO2

injection uCO2, energy flux to the heat buffer usto, ventilation

rate uven, screen deployment uscr and leaf harvest uleain u*
dð0jtÞ.

If a specific element of u*
dð0jtÞ attains a comparable value for

the various forecasts, i.e. the element is not sensitive to

forecast errors, a narrow distribution results. If a specific

element of u*
dð0jtÞ attains various values for various forecasts,

i.e. the element is sensitive to forecast errors, various columns

are shown with a combined sum of 80. Figure 11 presents

histograms for simulations representing the state of the sys-

tem and the prevailing weather at February 17, 00:00 h, simi-

larly Figs. 12 and 13 present histograms for March 12, 12:00 h

and June 12, 00:00 h, respectively. The width of the histogram

bins result from the minimal and maximal bounds in Table 2,

except for the ventilation rate uven as the minimal and

maximal ventilation rate depend on the windspeed. Figures

11e13 show the differences in u*
dð0jtÞ for forecasts updated

by the Kalman filter, denoted by CEMPCþ KF, and the original

forecasts denoted by CEMPC. The histograms of the simula-

tions with the filtered forecasts are not considerably different

from the histograms of the simulations with unfiltered fore-

casts. One can thus conclude that the difference in sensitivity

to forecast error between the two forecast types is negligible.

The subsequent results are therefore independent of the

forecast type.

One can observe from Figs. 11e13 that, overall, the ele-

ments such as the level of operation of the CHP uchp, boiler uboi

and CO2 injection uCO2were sensitive to the forecast error. We

hypothesise that these are sensitive as these affect the

greenhouse air temperature. The sensitivity of the CO2 injec-

tion uCO2 is due to the dependency of CO2 concentration on the

greenhouse air temperature through the ideal gas law. Note
Fig. 10 e The stochastic properties, mean m and 3s-bounds, as a

(right) filtered temperature forecasts, for all time instances. The

forecasts each. When compared with the left panel, the right p
that no forecast error is present in the forecast of the outside

air CO2 concentration. We hypothesise that the sensitivity of

CO2 injection uCO2 with respect to the forecast error is due to

the CO2 concentration being operated close to its maximum

value, see Table 1, a different temperature therefore requires

different uCO2 to meet the constraints. Although during most

time instances, all values of the inputs elements were in close

proximity of the simulation with the weather realisation d,

considerably different values were obtained for especially for

the level of operation of the CHP uchp, and CO2 injection uCO2.

Figures 15 and 16 in Appendix A show, similarly to Fig. 11, the

uncertainty analysis for March 12, 00:00 h and June 12, 12:00 h.

Overall, one can observe an increased sensitivity of the ele-

ments in u*
dð0jtÞ to the forecast error as the season progresses.

We hypothesise that this is due to the system being operated

closer to constraints, as discussed previously. Throughout the

season, the system is operated closer to the relative humidity

bound, the data on this, however, is ambiguous as this bound

is not active in all cases in which considerably different tra-

jectories were observed.

3.3. Controlled system performance

The simulation study presented in this subsection evaluated

the effect of weather forecast error on the performance of the

controlled greenhouse system. As the effect of forecast errors

on the performance of the system depends on the state of the

system xt and the prevailing weather d, three intervals of

7 days spread throughout the growing season are presented.

The three intervals are the 11th up to and including the 17th

day of the months January, April and May. The state of the

greenhouse and the crop at the start of the interval were based

on the simulationswithHPS lighting inKuijpers et al. (2021). To

prevent effects of the forecast error after the 7� day interval,

the horizon shrank to ensure no time instances after the

7� day interval were considered in the prediction horizion.

A successful execution of the optimisation algorithm in (2)

guarantees constraint satisfaction of the system when the

resulting trajectory is applied and the prevailing weather is
function of tf for (left) the unfiltered temperature forecasts

stochastic properties in these panels are based on 2688

anel shows the effect of the Kalman filter.
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Fig. 11 e Histograms of the value of various elements in u*
dð0jtÞ, for various realisations of the forecast error. The prevailing

weather and state of the system used in these simulations represent the actual system at February 17, 00:00 h. For both the

unfiltered forecasts CEMPC and the filtered forecasts CEMPCþ KF, 80 simulations have been performed. The value of the

(left-to-right, top-to-bottom) level of operation of the CHP uchp, level of operation of the boiler uboi, electricity exchange with

the grid ueby � uese, CO2 injection uCO2, energy flux to the heat buffer usto, ventilation rate uven, screen deployment uscr and leaf

harvest ulea are presented. The value at the first time instance of the respective elements for the simulation with zero

forecast error is represented by the orange line. (For interpretation of the references to colour in this figure legend, the reader

is referred to the Web version of this article.)

Fig. 12 e Histograms of the value of various elements in u*
dð0jtÞ, for various realisations of the forecast error. The prevailing

weather and state of the system used in these simulations represent the actual system at March 12, 12:00 h. For both the

unfiltered forecasts CEMPC and the filtered forecasts CEMPCþ KF, 80 simulations have been performed. The value of the

(left-to-right, top-to-bottom) level of operation of the CHP uchp, level of operation of the boiler uboi, electricity exchange with

the grid ueby � uese, CO2 injection uCO2, energy flux to the heat buffer usto, ventilation rate uven, screen deployment uscr and leaf

harvest ulea are presented. The value at the first time instance of the respective elements for the simulation with zero

forecast error is represented by the orange line. (For interpretation of the references to colour in this figure legend, the reader

is referred to the Web version of this article.)
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equal to its forecast. The control approaches without perfect

weather predictions, however, may potentially cause

constraint violation. Therefore, after optimisation, the first

element of the optimised control trajectory, alongside the

realisation of the uncontrollable input, were used in an open-

loop simulation to determine the state of the system at the

next time instant. Table 5 presents the integrated constraint
violation values for the three weather forecast types without

perfect predictions, i.e. CEMPC, CEMPCþ KF and RMPCþ KF,

for the three 7 day intervals. One can observe that the upper

bound of the state constraint on CO2;air is violated during all of

the three 7 day intervals, the violation values itself, e.g. 5:04 g:h:

m�3 for CEMPC forecast type in April are small compared to the

magnitude of the variable CO2;air. The violations in the lower

https://doi.org/10.1016/j.biosystemseng.2021.12.014
https://doi.org/10.1016/j.biosystemseng.2021.12.014


Fig. 13 e Histograms of the value of various elements in u*
dð0jtÞ, for various realisations of the forecast error. The prevailing

weather and state of the system used in these simulations represent the actual system at June 12, 00:00 h. For both the

unfiltered forecasts CEMPC and the filtered forecasts CEMPCþ KF, 80 simulations have been performed. The value of the

(left-to-right, top-to-bottom) level of operation of the CHP uchp, level of operation of the boiler uboi, electricity exchange with

the grid ueby � uese, CO2 injection uCO2, energy flux to the heat buffer usto, ventilation rate uven, screen deployment uscr and leaf

harvest ulea are presented. The value at the first time instance of the respective elements for the simulation with zero

forecast error is represented by the orange line. (For interpretation of the references to colour in this figure legend, the reader

is referred to the Web version of this article.)
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bound of Cfrt represent the effect of impossible harvesting, i.e.

harvesting when the fruit buffer Cfrt already depleted. As Cfrt is

expressed in dry-mass, a violation of 0:002 kg m�2 represents

0:035 kg m�2 in fresh weight, which, in the case of January,

results in 0:04 Vm�2 income through yield. Therefore, a viola-

tion of the state constraints for Cfrt significantly affects the

operational return, which, for a 7 day-interval in January is

1:16 V m�2. Because of the magnitude of this effect on the

operational return and the fact that the contribution of fruit

harvest to the operational return is straightforward, the

resulting operational return was compensated for the

constraint violation. A violation of the state constraint on CO2;air

also affects the objective function, its effect on the objective

function, however, is hypothesised to be smaller and more

difficult to evaluate than the fruit harvest violation.

The forecast error combined with the prevailing weather

may result in a non-realistic weather forecast whichmakes the

optimisation problem in (2) infeasible. If the solver of (2) did not

converge to a feasible solution, the optimised control trajectory

u*
d from the previous time step was used for the corresponding

time step, e.g. u*
dðtþ1Þ for the first non-converged solution. The

largest number of subsequent time steps at which the solver

did not converge was 11, which represents an interval of 2:75 h

of the aforementioned open-loop control strategy. The highest

number of time steps within an interval, not necessarily sub-

sequent, was 46 for the CEMPC forecast type in May, which is

7% of the time steps within the interval.

Table 4 presents the resulting operational return J as in (1),

gas use s, carbon footprint p2, the integrated value of the

ventilation rate over the interval and averaged screen use for

the different forecast types, PBMPC, CEMPC, CEMPCþ KF,

RMPCþ KF and time periods throughout the growing season.

The operational return J in Table 4 is compensated for the
violations of the lower-bound of Cfrt, based on Table 5. The

simulations with the controllers without explicitly taking into

account the uncertainty in the weather forecast error, i.e.

CEMPC and CEMPCþ KF result in a loss of performance of at

most 0:03 Vm�2 with respect to the performance bound.

Concluding, the effect of weather forecast errors on the per-

formance of the greenhouse is small. The increase in the

operational return of the simulations with CEMPC and

CEMPCþ KF controller with respect to the performance bound

in April can be explained through constraint violation, see

Table 5. In practice, the operational return for CEMPC and

CEMPCþ KF will be lower. Figure 14 presents optimised tra-

jectories during the interval of January 11th to January 17th for

the four forecast types simulated: PBMPC, CEMPC,

CEMPCþ KF and RMPCþ KF. One can observe the trajectories

coincide to a large extent, the most notable differences are

during the night. We hypothesise that this is due to the low

outside air temperature in the period, this will result in

operation close to the lower temperature bound and which

can be violated upon selection of different type of forecast.

The spikes that can be observed in (among others) the fruit

harvest ufrt occur at times when a new forecast arrives from

the KNMI. At these times the new forecast differed consider-

able from the forecast that was updated, leading to a different

control strategy.

A detailed analysis of the data presented in Table 4 shows

that the difference between original forecasts and updated

forecasts, between CEMPC and CEMPCþ KF, is small, yielding

not significantly different values for all indicators except for

the integrated ventilation sum uven and gas use. Overall, the

constraint violation values for the simulations with CEMPCþ
KF are lower than those for CEMPC, see Table 5. The latter

indicates that the weather forecasts in the CEMPCþ KF are
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Fig. 14 e From top to bottom, left to right, the operational return J, fruit harvest ufrt, gas use s, electricity exchange with net

ueby � uese, ventilation rate uven, screen use uscr, HPS lighting uhps and CO2 injection uCO2 in the period January 13th to January

17th for the four forecast types simulated: PBMPC, CEMPC, CEMPCþ KF and RMPCþ KF.
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closer to the actual realisation and thus result in a lower

constraint violation value.

From Table 4, one can observe that the simulations with

the RMPC controller result in a loss of performance of at most

0:04 Vm�2 with respect to the performance bound. From

Table 5, one can observe that the RMPC controller violates the

least amount of constraints. The low amount of constraint

violation is linked to the increased gas use and increased

ventilation sum of the simulations with RMPC controller as

the controller is using more resources to satisfy the con-

straints on the Nsc scenarios. Concluding, the RMPC controller

results in more conservative behaviour which shows through

an increased gas use and ventilation rate. A comparison be-

tween the simulations presented in Section 3.3 with the PB

and RMPC configurations is justified because of the low

constraint violation values.
4. Discussion

Here the results presented in Section 3 are discussed to

answer the main question of this research. In Subsection 4.1

the ability of the stochastic weather forecast error model to

synthesise forecasts with similar properties as those from the

KNMI is discussed. In Subsection 4.2, the performance of the

Kalman filter is discussed. Subsection 4.3 discusses the main

question of this paper, i.e. to what extent does the forecast

error affect the performance of the controlled system. Addi-

tionally, Subsection 4.3 discusses the performance of an al-

gorithm that explicitly includes the effect of the uncertainty in

the controller synthesis. Subsection 4.4 discusses the imple-

mentation in practice of the various parts of the proposed

approach presented in this paper.
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Table 4 e The (left to right) integrated values of

ventilation rate over the interval ui
ven, screen set uscr,

operational return J, gas use s and carbon footprint p2 for
the different forecast types, PBMPC, CEMPC, CEMPCþ KF,
RMPCþ KF, and time periods throughout the growing
season. The values indicate a loss in performance of
maximal 0:03 Vm�2 with respect to the performance
bound and an inconsiderable difference between the
CEMPC and CEMPCþ KF simulations.

ui
ven

½m3:m�2�
uscr

½ � �
J

½Vm�2�
s

½m3:m�2�
p2

½kg:m�2�
January

PB 327:20 0:66 1:16 1:69 6:77

CEMPC 336:57 0:73 1:14 1:60 6:75

CEMPCþ KF 340:64 0:73 1:14 1:61 6:75

RMPCþ KF 348:86 0:72 1:12 1:72 6:79

April

PB 478:44 0:50 2:61 1:43 5:61

CEMPC 502:71 0:52 2:63 1:52 5:74

CEMPCþ KF 942:73 0:52 2:63 1:53 5:72

RMPCþ KF 577:02 0:48 2:62 1:62 5:98

May

PB 1173:94 0:36 1:95 1:14 3:36

CEMPC 1050:51 0:40 1:93 1:12 3:47

CEMPCþ KF 1158:22 0:41 1:93 1:10 3:47

RMPCþ KF 1178:33 0:37 1:91 1:22 3:52
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4.1. Weather forecast error model

Subsection 2.3 presents a stochastic weather forecast error

model, in this subsection the implications of this model on the

simulation studies are discussed. From Fig. 5, one can conclude

that the stochastic properties of the weather forecast error

model in (7) match the stochastic properties derived from the

historical data from the KNMI. There exists, however, a signif-

icant difference between theoriginal and synthesised forecasts,
Table 5 e Constraint violation values for the three weather fore
KF and RMPCþ KF, for the three 7-day intervals. The values pres
integrated over the 7-day interval. The columns, indicated eith
lower bound, respectively. During the interval, of length 168 h
constrains which are violated during the simulations are prese
Cleaf , the fruit buffer Cfrt and relative humidity RH.

CO2;air ½g:h:m�3� Cleaf ½kg:h:
Y [ Y

January

CEMPC 0 2:29 0

CEMPCþ KF 0 2:34 0

RMPCþ KF 0 0:13 0

April

CEMPC 0 5:04 0

CEMPCþ KF 0 4:47 0

RMPCþ KF 0 0:08 0

May

CEMPC � 0:03 2:71 0

CEMPCþ KF � 0:02 3:16 0

RMPCþ KF 0 0:01 0
as one can observe by comparing the original forecasts in Fig. 2

with synthesised forecasts in Fig. 4. The spread in forecasts for a

specific time instance that have been synthesised is larger

compared to the spread in the KNMI forecasts. This is the result

of the inability of the model in (7) to correlate various forecasts

for the same time instance. To illustrate this, consider the

temperature at the 11th of February at 15.00 h, in the 2 days

before thatmoment, 8 forecasts arepublishedwhichpredict the

temperatureat that specific instant. FromFig. 2, onecanobserve

that the 8KNMI forecasts at the specific time instant donot vary

considerably, as opposed to the synthesised forecasts, see Fig. 4.

Theweather forecasterrormodeldoesnot correlate the forecast

error eðtf
��tÞ and eðtf �a

��tþaÞ where a2f0; 6M; 12M;…g. This
deficiency of the model in (4) does not affect the second simu-

lation study presented in Subsection 3.2, as no subsequent

forecasts are employed there. The third simulation study is

affected by the latter deficiency as it involves simulations over

an interval.We hypothesise that the loss in performance due to

weather forecast errors presented was overestimated. It is,

however, unclear to what extent the loss in performance is

overestimated. The magnitude of the overestimation is

hypothesised to be small as the sensitivity to forecast errors of

terms that affect the operational return is low, as presented in

Subsection 3.2. The loss in performance when using more

realistic forecasts, such as the real forecasts, is thus hypoth-

esised to be lower.

4.2. Kalman filtering

The Kalman filter presented in Subsection 2.4 aims to improve

the forecasts through (a) updating the previously published

forecasts using local weather measurements and (b)

compensating the effect of the deterministic part in (7).

In Fig. 10, one can observe that the standard deviation of

the forecast error for tf ¼ 0 is decreased from 0:96 �C to 0:49 �C.
cast types without perfect predictions, i.e. CEMPC, CEMPCþ
ented in this table represent the constraint violation values
er by ↑ or ↓, refer to constraint violations of the upper or
, both the lower- and upper-bound can be violated.. Only
nted here, i.e., the CO2 concentration CO2;air, the leaf buffer

m�2� Cfrt ½kg:h:m�2� RH ½%h�
[ Y [ Y [

0 � 0:002 0 0 0

0 0 0 0 0

0 0 0 0 0

0:01 � 0:004 0 0 19

0:01 � 0:004 0 0 12

0 0 0 0 0

0:00 0 0 0 193

0:00 0:00 0 0 165

0 0 0 0 0:23
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The decrease of the standard deviation for small values of tf
was hypothesised to improve the performance of the

controlled greenhouse system. The uncertainty analyses

presented in Figs. 11e13, however, show no considerable dif-

ference between the simulations with CEMPC and CEMPCþ
KF. Also, the simulation results in Table 4 do not show a

considerable difference between the simulations using

CEMPC and CEMPCþ KF, for the cases that were tested.

Although the trajectories optimised by the CEMPCþ KF

approach seem to violate constraints to a lesser extent, the

data over the various simulations is not unambiguous. The

latter unambiguity is due to quality of the estimations by the

Kalman filter, this quality varies over the simulations due to

the stochastic part of the model in (7).

The Kalman filter also compensates the effect of the deter-

ministic part in (7). The mean forecast error over various fore-

casts is EðeÞ ¼ x,ð1�JÞ�1, which can be derived from (7) using

EðwÞ ¼ 0. The mean forecast error over various forecasts is

represented by m in Fig. 10. By comparing both panels in Fig. 10,

one can observe that the mean forecast error for tf < 150 is

compensated, but that the forecast error for tf 	 150 is still

considerable. The latter effect is hypothesised to be due to the

measurement covariance matrix R, the value of which may be

chosen even lower to reflect a higher accuracy of the local

weather measurements. Also, the mean forecast error m de-

viates in the order of 1 �C whereas the contribution of the sto-

chastic part is in the order of 4 �C. The influence of the mean

forecasterrorwasmarginalcomparedtothestochasticelement.

One of the reasons that the effect of the Kalman filter is low

is because of the quality of the forecasts. The forecasts by the

KNMI have a low mean forecast error and a low forecast error

for low values of the lead time. This is, partly, due to the small

distance between the point for which the historical forecasts

were provided and the point at which the historical observa-

tions were obtained. The effect of the Kalman filter will be

larger if the forecasts are provided for a location far from the

greenhouse, see Doeswijk (2007). The distance between the

measurement station collecting the historical observations

and the grid point in theweather forecasts was approximately

9 km. An increased distance between the point of observation

and the point for which the forecasts are provided will

decrease the accuracy of the forecasts, and potentially in-

crease the mean forecast error (Doeswijk, 2007).

4.3. Performance loss

The third simulation study, presented in Subsection 3.3, shows

that the loss in performance, in terms of operational return, for

a non-zero weather forecast error is small. For the simulations

with CEMPC and CEMPCþ KF, the performance loss is at most

0:02 V:m�2 with respect to the performance bound, as can be

observed from Table 4. The performance loss in practice is,

however, hypothesised to be larger due to constraint violations,

see Table 5. This, however, does not imply that the effect of the

forecast error on the greenhouse system is small. The CEMPC

controller is characterised by a high update rate (15 min�1). The

effect of the uncertainty in the forecast error can, thus, be

measured at the states of the systemafter 15 min, which allows
the receding horizon algorithm to mitigate the effect of the

uncertainty through feedback. The performance of a system

controlled with a lower update rate will be lower than the

performance specified here. Also, the feedback from the sys-

tem, via xt in (2), does not include any error which is unrealistic.

The simulation studies presented here are based on forecasts

from theKNMI,which are sufficiently accurate for this purpose,

asmentioned the weather is forecasted at a location 9 km from

the weather observation station. Also, the KNMI updates the

weather forecasts every 6 h with the new output of the nu-

merical weather model.

FromTable 4, one can observe that for the simulationswith

RMPCþ KF a performance loss of at most 0:04 Vm�2 with

respect to the performance bound was obtained. By including

multiple scenarios the controller becomes more conservative

(Saltık et al., 2018) as the constraints in (15) have to be satisfied

for all the Nsc scenarios. The latter resulted in a higher venti-

lation sum and higher gas use throughout the interval for the

RMPCþ KF controller as can be observed in Table 4. The

conservatism induced by the scenarios considered in the

RMPCþ KF controller did not significantly affect the opera-

tional return. Due to the increased gas use, the carbon foot-

print did increase significantly. The optimised control

trajectories of the RMPCþ KF controller ensure a lower degree

of constraint violation as can be observed in Table 5. Because

of the diverse degrees of constraint violation for the simula-

tions, the performance of the CEMPC and RMPC simulations

should not be compared directly.

The uncertainty analyses show a considerable sensitivity

for some of the elements in the first time instance of the

optimised control trajectories, the resulting effect on the

performance of the controlled greenhouse system is low. The

latter observation is a result of the chosen objective function

which is based on a weighting of the inputs according to l in

(1). For example, in the case of Fig. 11, CO2 injection uCO2

varies throughout the region constraint by U, i.e. highly

sensitive. uCO2 affects J through crop growth and thus through

ufrt, this effect is small compared to e.g. the cost of gas. A high

sensitivity to the forecast error might result in frequently

changing control strategy if the forecast error is also varying

(e.g. through updates by the weather service, updates from a

Kalman filter). In the case of, e.g., the level of operation of the

CHP uchp this might not be desirable from a maintenance

perspective, as switching the CHP on and off might affect its

durability (van Beveren et al., 2019). The latter is an additional

reason to opt for a RMPCþ KF controller as its trajectories will

be, generally, less sensitive to changes in one of the

scenarios.

The model of the system that was used in this research

describes the operation of the greenhouse with only fast time

scales (Kuijpers et al., 2021). If slow time scales are also

included, for example through the inclusion of a long-term

energy storage or the development process of the crop, a

longer prediction horizon will be required, e.g. weeks (van

Straten & van Henten, 2010). A longer prediction horizon will

require long-termweather forecasts, which typically aremore

uncertain as compared to the short-term weather forecasts

used here.
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The simulation studies all assume that the algorithms

solving (2) and (15) find the global optimum for u*
dð0jtÞ, how-

ever due to the complexity of the problem this cannot be

guaranteed. The settings of the NLP (and underlying LP) solver

have been chosen with solely with the aim to find this global

optimum (compared to e.g. speed of the algorithm). The global

optimum and with that the results of the sensitivity analysis

might shift when formulating a different control problem, e.g.,

choosing a different objective function.

4.4. Implementation

When implementing the approach presented in this paper,

the weather forecasts will arrive from a weather forecasting

service such as the KNMI. In this paper, however, a sto-

chastic weather forecast error model was employed to (a) be

able to generate forecasts based on a set of measured

weather and (b) to extend this to multiple forecasts gener-

ated on one set of measured weather for the RMPC approach.

When employing an approach that neglects the uncertainty

in the forecast error and only requires one forecast, i.e.

CEMPC or CEMPCþ KF, one can use the weather forecasts

arriving from a weather forecasting service. When the RMPC

approach is employed, the scenarios might result from the

various perturbations used in an ensemble prediction sys-

tem such as presented in Frogner et al. (2019). Both ap-

proaches will remove the need for a stochastic weather

forecast error model and the corresponding downsides

mentioned in Subsection 4.1.

The RMPC approach in this research usedNsc ¼ 3 scenarios,

the inclusion of additional scenarios was computationally not

viable in our implementation. With this configuration, a less

constraint violations were observed, see Subsection 4.3.

Further research on robust performance of the greenhouse

system, e.g. through including more scenarios or including

other control approaches (Saltık et al., 2018), should be per-

formed to support these observations.

The receding horizon optimal control problems in (2) and

(15) assume infinite computational power, as the state infor-

mation xt arrives at the same time instant at which the first

part of the resulting control trajectory u*
dð0jkÞ is applied to the

system. In practice, the latter will induce a delay in the control

system which will affect the performance of the system. A

similar effect can be observed in the observed in the Kalman

filter where the local weather measurement is used to update

the weather forecast.

The results presented here apply to the greenhouse design

and the climate type employed in this study. The parameters

used for the greenhouse climate mainly originate from the

model presented in van Beveren et al. (2015). The crop pa-

rameters originate from Vanthoor (2011) and limit the results

of this study to tomato crops. The results presented are also

based on the Dutch climate, which is classified by the

K€oppeneGeiger climate classification system as a temperate

climate without a dry season and warm summers (Beck et al.,

2018). The description of the forecast error and its stochastic

properties is different for other locations with other climate
types or when different weather forecasting service are used.

The ideas proposed in this paper, however, may transfer to

climates with a different classification as well. There has been

no other study using a similar approach in different climates.

As the models are white-box models, one could integrate

different crops or greenhouses into this approach.
5. Conclusion & recommendations

The aim of this research was to quantify the loss in perfor-

mance of the system due to weather forecast errors. Through

simulation of three 7 day-intervals, spread throughout the

growing season, we observed a loss in performance of at most

2 % with respect to maximal attainable performance in the

optimally controlled greenhouse due to weather forecast er-

rors. The 15 min update rate of the receding horizon optimal

controller, in combination with the low forecast error in the

forecasts by the Royal Netherlands Meteorological Institute

contribute significantly to maintaining performance close to

the maximal attainable performance. Due to the inability of

the weather forecast error model to correlate various forecast

for the same time instance, the employed forecasts are

hypothesised to result in an overestimation of the loss in

performance. The model of the greenhouse system employed

in this research does not include slow time scales, hence a

short prediction horizon is sufficient. This, however, consid-

erably limits the required length of the weather forecast and

reduces the magnitude of the uncertainty.

The Kalman filter employed to improve the forecasts did

not contribute considerably to the performance of the closed

loop as compared to a configuration without Kalman filter.

The Kalman filters contribution is hypothesised to be larger

for weather forecasts with a lower quality, i.e., an increased

mean forecast error.

The availability of weather forecasting service, with

ensemble predictions, would remove the need for the sto-

chastic weather forecast error model and corresponding as-

sumptions. A next step would therefore be to apply RHOC in

practice with real weather forecasts.
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Appendix A
Figure 15 e Histograms of the value of various elements in u*
dð0jtÞ, for various realisations of the forecast error. The

prevailing weather and state of the system using in these simulations represent the actual system at March 12, 00:00 h. For

both the unfiltered forecasts CEMPC and the filtered forecasts CEMPCþ KF, 80 simulations have been performed. The value

of the (left-to-right, top-to-bottom) level of operation of the CHP uchp, level of operation of the boiler uboi, electricity exchange

with the grid ueby � uese, CO2 injection uCO2, energy flux to the heat buffer usto, ventilation rate uven, screen deployment uscr

and leaf harvest ulea are presented. The value at the first time instance of the respective elements for the simulation with

zero forecast error is represented by the red line.
Figure 16 e Histograms of the value of various elements in u*
dð0

prevailing weather and state of the system using in these simu

both the unfiltered forecasts CEMPC and the filtered forecasts CE

of the (left-to-right, top-to-bottom) level of operation of the CHP

with the grid ueby � uese, CO2 injection uCO2, energy flux to the h

and leaf harvest ulea are presented. The value at the first time i

zero forecast error is represented by the red line.
jtÞ, for various realisations of the forecast error. The

lations represent the actual system at June 12, 12:00 h. For

MPCþ KF, 80 simulations have been performed. The value

uchp, level of operation of the boiler uboi, electricity exchange

eat buffer usto, ventilation rate uven, screen deployment uscr

nstance of the respective elements for the simulation with
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